1
|
Ghaani M, Azimzadeh M, Büyüktaş D, Carullo D, Farris S. Electrochemical Sensors in the Food Sector: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39453461 DOI: 10.1021/acs.jafc.4c09423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
In a world that is becoming increasingly concerned with health, safety, and the sustainability of food supply chains, the control and assurance of food quality have become of utmost importance. This review examines the application and potential of electrochemical sensors in the dynamic field of food science to meet these expanding demands. The article introduces electrochemical sensors and describes their operational mechanics and the components contributing to their function. A summary of the most prevalent electrochemical methods outlines the diverse food analysis techniques available. The review shifts to discussing the food science applications of these sensors, highlighting their crucial role in detecting compounds in food samples like meat, fish, juice, and milk for contemporary quality control. This paper showcases electrochemical sensors' utility in food analysis, underscoring their significance as powerful, efficient tools for maintaining food safety and how they could transform our approach to global food quality control and assurance.
Collapse
Affiliation(s)
- Masoud Ghaani
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Food Packaging Lab, University of Milan, via Celoria 2 - I, 20133 Milan, Italy
- Department of Civil, Structural & Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Mostafa Azimzadeh
- Department of Mechanical Engineering, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Duygu Büyüktaş
- Department of Food Engineering, Faculty of Engineering, Izmir Institute of Technology, Gülbahçe Köyü, Urla, Izmir 35430, Turkey
| | - Daniele Carullo
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Food Packaging Lab, University of Milan, via Celoria 2 - I, 20133 Milan, Italy
| | - Stefano Farris
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Food Packaging Lab, University of Milan, via Celoria 2 - I, 20133 Milan, Italy
| |
Collapse
|
2
|
Eker F, Duman H, Akdaşçi E, Witkowska AM, Bechelany M, Karav S. Silver Nanoparticles in Therapeutics and Beyond: A Review of Mechanism Insights and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1618. [PMID: 39452955 PMCID: PMC11510578 DOI: 10.3390/nano14201618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
Silver nanoparticles (NPs) have become highly promising agents in the field of biomedical science, offering wide therapeutic potential due to their unique physicochemical properties. The unique characteristics of silver NPs, such as their higher surface-area-to-volume ratio, make them ideal for a variety of biological applications. They are easily processed thanks to their large surface area, strong surface plasmon resonance (SPR), stable nature, and multifunctionality. With an emphasis on the mechanisms of action, efficacy, and prospective advantages of silver NPs, this review attempts to give a thorough overview of the numerous biological applications of these particles. The utilization of silver NPs in diagnostics, such as bioimaging and biosensing, as well as their functions in therapeutic interventions such as antimicrobial therapies, cancer therapy, diabetes treatment, bone repair, and wound healing, are investigated. The underlying processes by which silver NPs exercise their effects, such as oxidative stress induction, apoptosis, and microbial cell membrane rupture, are explored. Furthermore, toxicological concerns and regulatory issues are discussed, as well as the present difficulties and restrictions related to the application of silver NPs in medicine.
Collapse
Affiliation(s)
- Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (F.E.); (H.D.); (E.A.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (F.E.); (H.D.); (E.A.)
| | - Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (F.E.); (H.D.); (E.A.)
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Medical University of Bialystok, 15-089 Bialystok, Poland;
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR 5635, University Montpellier, ENSCM, CNRS, F-34095 Montpellier, France
- Functional Materials Group, Gulf University for Science and Technology (GUST), Masjid Al Aqsa Street, Mubarak Al-Abdullah 32093, Kuwait
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (F.E.); (H.D.); (E.A.)
| |
Collapse
|
3
|
Gong H, Zheng Y, Kan G, Chen L, Wang X, Zhong J. Preparation of 1,2-benzenedialdehyde-crosslinked oligo-gelatin conjugates and poly-gelatin nanoparticles to stabilize traditional and Pickering emulsions, respectively. Food Chem 2024; 463:141426. [PMID: 39340914 DOI: 10.1016/j.foodchem.2024.141426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/17/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Abstract
This research aimed to develop a desolvation and 1,2-benzenedialdehyde crosslinking method to prepare crosslinked gelatin substances for emulsion stabilization. The oligo-gelatin conjugates and poly-gelatin nanoparticles could be formed at the 1,2-benzenedialdehyde concentration of 50 g/L and ≥ 150 g/L, respectively. The formation mechanism involved intra/inter-molecular amine-benzenedialdehyde-thiol and amine-benzenedialdehyde-amine crosslinking reactions. With increasing 1,2-benzenedialdehyde preparation concentrations (50-450 g/L), the crosslinked gelatin substance sizes increased from 81.5 ± 20.1 nm to 105.5 ± 20.8 nm in the dried state, and increased (from 35 ± 8 nm to 220 ± 36 nm) then decreased to 115 ± 28 nm in the water. Furthermore, the fish oil emulsions stabilized by the crosslinked gelatin substances showed different creaming stability: 250 g/L (43.5 ± 1.5 %) > 350 g/L (41.4 ± 1.0 %) > 450 g/L (37.5 ± 2.2 %) > 150 g/L (11.2 ± 0.4 %) > 50 g/L (0.0 ± 0.0 %). The results suggested this method was useful for preparing oligo-gelatin conjugates and poly-gelatin nanoparticles to stabilize traditional and Pickering emulsions, respectively.
Collapse
Affiliation(s)
- Huan Gong
- Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yulu Zheng
- Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Guangyi Kan
- Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Lijia Chen
- Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xichang Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jian Zhong
- Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai 200135, China; Marine Biomedical Science and Technology Innovation Platform of Lingang Special Area, Shanghai 201306, China.
| |
Collapse
|
4
|
Mikaeeli Kangarshahi B, Naghib SM, Rabiee N. DNA/RNA-based electrochemical nanobiosensors for early detection of cancers. Crit Rev Clin Lab Sci 2024; 61:473-495. [PMID: 38450458 DOI: 10.1080/10408363.2024.2321202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/02/2024] [Accepted: 02/16/2024] [Indexed: 03/08/2024]
Abstract
Nucleic acids, like DNA and RNA, serve as versatile recognition elements in electrochemical biosensors, demonstrating notable efficacy in detecting various cancer biomarkers with high sensitivity and selectivity. These biosensors offer advantages such as cost-effectiveness, rapid response, ease of operation, and minimal sample preparation. This review provides a comprehensive overview of recent developments in nucleic acid-based electrochemical biosensors for cancer diagnosis, comparing them with antibody-based counterparts. Specific examples targeting key cancer biomarkers, including prostate-specific antigen, microRNA-21, and carcinoembryonic antigen, are highlighted. The discussion delves into challenges and limitations, encompassing stability, reproducibility, interference, and standardization issues. The review suggests future research directions, exploring new nucleic acid recognition elements, innovative transducer materials and designs, novel signal amplification strategies, and integration with microfluidic devices or portable instruments. Evaluating these biosensors in clinical settings using actual samples from cancer patients or healthy donors is emphasized. These sensors are sensitive and specific at detecting non-communicable and communicable disease biomarkers. DNA and RNA's self-assembly, programmability, catalytic activity, and dynamic behavior enable adaptable sensing platforms. They can increase biosensor biocompatibility, stability, signal transduction, and amplification with nanomaterials. In conclusion, nucleic acids-based electrochemical biosensors hold significant potential to enhance cancer detection and treatment through early and accurate diagnosis.
Collapse
Affiliation(s)
- Babak Mikaeeli Kangarshahi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia, Australia
| |
Collapse
|
5
|
Parkhe VS, Tiwari AP. Gold nanoparticles-based biosensors: pioneering solutions for bacterial and viral pathogen detection-a comprehensive review. World J Microbiol Biotechnol 2024; 40:269. [PMID: 39009934 DOI: 10.1007/s11274-024-04072-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024]
Abstract
Gold Nanoparticles (AuNPs) have gained significant attention in biosensor development due to their unique physical, chemical, and optical properties. When incorporated into biosensors, AuNPs offer several advantages, including a high surface area-to-volume ratio, excellent biocompatibility, ease of functionalization, and tunable optical properties. These properties make them ideal for the detection of various biomolecules, including proteins, nucleic acids, and bacterial and viral biomarkers. Traditional methods for detecting bacteria and viruses, such as RT-PCR and ELISA, often suffer from complexities, time consumption, and labor intensiveness. Consequently, researchers are continuously exploring novel devices to address these limitations and effectively detect a diverse array of infectious pathogenic microorganisms. In light of these challenges, nanotechnology has been instrumental in refining the architecture and performance of biosensors. By leveraging advancements in nanomaterials and strategies of biosensor fabrication the sensitivity and specificity of biosensors can be enhanced, enabling more precise detection of pathogenic bacteria and viruses. This review explores the versatility of AuNPs in detecting a variety of biomolecules, including proteins, nucleic acids, and bacterial and viral biomarkers. Furthermore, it evaluates recent advancements in AuNPs-based biosensors for the detection of pathogens, utilizing techniques such as optical biosensors, lateral flow immunoassays, colorimetric immunosensors, electrochemical biosensors, and fluorescence nanobiosensors. Additionally, the study discusses the existing challenges in the field and proposes future directions to improve AuNPs-based biosensors, with a focus on enhancing sensitivity, selectivity, and their utility in clinical and diagnostic applications.
Collapse
Affiliation(s)
- Vishakha Suryakant Parkhe
- Department of Medical Biotechnology and Stem Cells and Regenerative Medicine, Centre for Interdisciplinary Research, D.Y. Patil Education Society, Deemed to be University, Kolhapur, Maharashtra, 416006, India
| | - Arpita Pandey Tiwari
- Department of Medical Biotechnology and Stem Cells and Regenerative Medicine, Centre for Interdisciplinary Research, D.Y. Patil Education Society, Deemed to be University, Kolhapur, Maharashtra, 416006, India.
| |
Collapse
|
6
|
Valizadeh Shahbazlou S, Vandghanooni S, Dabirmanesh B, Eskandani M, Hasannia S. Ultrasensitive Quantification of MUC16 Antigen/Amine-Terminated Aptamer Interaction by Surface Plasmon Resonance: Kinetic and Thermodynamic Studies. Adv Pharm Bull 2024; 14:388-399. [PMID: 39206405 PMCID: PMC11347734 DOI: 10.34172/apb.2024.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/13/2023] [Accepted: 01/07/2024] [Indexed: 09/04/2024] Open
Abstract
Purpose MUC16 is a commonly employed biomarker to identify and predict ovarian cancer (OC). Precise measurement of MUC16 levels is essential for the accurate diagnosis, prediction, and management of OC. This research seeks to introduce a new surface plasmon resonance (SPR) biosensor design that utilizes aptamer-based technology to enable the sensitive and real-time detection of MUC16. Methods In this study, the sensor chip was immobilized with an anti-MUC16 aptamer (Ap) by utilizing 11-mercaptoundecanoic acid (MUA) as a linker to attach the amine-terminated Ap to the chip using EDC/NHS chemistry. Results The results indicated that the newly created aptasensor had a detection limit of 0.03 U/mL for MUC16 concentration, with a linear range of 0.09 to 0.27 U/mL. The findings demonstrate good precision and accuracy (<15%) for each MUC16 concentration, with recoveries ranging from 93% to 96%. Additionally, the aptasensor exhibited high selectivity, good repeatability, stability, and applicability in real human serum samples, indicating its potential as a valuable tool for the diagnosis and treatment of OC. Conclusion According to the outcomes, the designed aptasensor exhibited acceptable specificity to detect the CA125 antigen and could be utilized for the serum detection of target antigen by SPR method.
Collapse
Affiliation(s)
| | - Somayeh Vandghanooni
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sadegh Hasannia
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
7
|
Dhahi TS, Dafhalla AKY, Saad SA, Zayan DMI, Ahmed AET, Elobaid ME, Adam T, Gopinath SCB. The importance, benefits, and future of nanobiosensors for infectious diseases. Biotechnol Appl Biochem 2024; 71:429-445. [PMID: 38238920 DOI: 10.1002/bab.2550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 12/19/2023] [Indexed: 04/11/2024]
Abstract
Infectious diseases, caused by pathogenic microorganisms such as bacteria, viruses, parasites, or fungi, are crucial for efficient disease management, reducing morbidity and mortality rates and controlling disease spread. Traditional laboratory-based diagnostic methods face challenges such as high costs, time consumption, and a lack of trained personnel in resource-poor settings. Diagnostic biosensors have gained momentum as a potential solution, offering advantages such as low cost, high sensitivity, ease of use, and portability. Nanobiosensors are a promising tool for detecting and diagnosing infectious diseases such as coronavirus disease, human immunodeficiency virus, and hepatitis. These sensors use nanostructured carbon nanotubes, graphene, and nanoparticles to detect specific biomarkers or pathogens. They operate through mechanisms like the lateral flow test platform, where a sample containing the biomarker or pathogen is applied to a test strip. If present, the sample binds to specific recognition probes on the strip, indicating a positive result. This binding event is visualized through a colored line. This review discusses the importance, benefits, and potential of nanobiosensors in detecting infectious diseases.
Collapse
Affiliation(s)
- Th S Dhahi
- Electronics Technical Department, Southern Technical University, Basra, Iraq
| | - Alaa Kamal Yousif Dafhalla
- Department of Computer Engineering, College of Computer Science and engineering, University of Hail, Hail, Kingdom of Saudi Arabia
| | - Sawsan Ali Saad
- Department of Computer Engineering, College of Computer Science and engineering, University of Hail, Hail, Kingdom of Saudi Arabia
| | | | | | - Mohamed Elshaikh Elobaid
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, Malaysia
| | - Tijjani Adam
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, Malaysia
- Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Arau, Perlis, Malaysia
- Advanced Communication Engineering, Centre of Excellence (ACE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, Malaysia
| | - Subash C B Gopinath
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, Malaysia
- Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Arau, Perlis, Malaysia
| |
Collapse
|
8
|
Proniewicz E. Gold and Silver Nanoparticles as Biosensors: Characterization of Surface and Changes in the Adsorption of Leucine Dipeptide under the Influence of Substituent Changes. Int J Mol Sci 2024; 25:3720. [PMID: 38612534 PMCID: PMC11011725 DOI: 10.3390/ijms25073720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Early detection of diseases can increase the chances of successful treatment and survival. Therefore, it is necessary to develop a method for detecting or sensing biomolecules that cause trouble in living organisms. Disease sensors should possess specific properties, such as selectivity, reproducibility, stability, sensitivity, and morphology, for their routine application in medical diagnosis and treatment. This work focuses on biosensors in the form of surface-functionalized gold (AuNPs) and silver nanoparticles (AgNPs) prepared using a less-time-consuming, inexpensive, and efficient synthesis route. This allows for the production of highly pure and stable (non-aggregating without stabilizers) nanoparticles with a well-defined spherical shape, a desired diameter, and a monodisperse distribution in an aqueous environment, as confirmed by transmission electron microscopy with energy-dispersive X-ray spectroscopy (TEM-EDS), X-ray diffraction (XRD), photoelectron spectroscopy (XPS), ultraviolet-visible (UV-VIS) spectroscopy, and dynamic light scattering (DLS). Thus, these nanoparticles can be used routinely as biomarker sensors and drug-delivery platforms for precision medicine treatment. The NPs' surface was coated with phosphonate dipeptides of L-leucine (Leu; l-Leu-C(R1)(R2)PO3H2), and their adsorption was monitored using SERS. Reproducible spectra were analyzed to determine the orientation of the dipeptides (coating layers) on the nanoparticles' surface. The appropriate R2 side chain of the dipeptide can be selected to control the arrangement of these dipeptides. This allows for the proper formation of a layer covering the nanoparticles while also simultaneously interacting with the surrounding biological environment, such as cells, tissues, and biological fluids.
Collapse
Affiliation(s)
- Edyta Proniewicz
- Faculty of Foundry Engineering, AGH University of Krakow, 30-059 Krakow, Poland
| |
Collapse
|
9
|
Soni D, Gandhi D. Toxicity evaluation of silver nanoparticles synthesized from naringin flavonoid on human promyelocytic leukemic cells and human blood cells. Toxicol Ind Health 2024; 40:125-133. [PMID: 38243157 DOI: 10.1177/07482337241227244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Increasing applications of silver nanoparticles (AgNPs) in multiple products like cosmetics, medicines, drugs, paints, and other new materials have raised concern for their toxic effects on living beings and the surrounding environment. In the present study, cytotoxicity and genotoxicity of AgNPs synthesized using plant flavonoid (Naringin) as a reducing agent were investigated on human promyelocytic leukemic (HL-60) cells and human blood as an in vitro model. The LC50 of AgNPs was found to be 4.85 µM. Dose-dependent increase in cell death and caspase activity was observed in the presence of AgNPs. The comet assay showed a 60%-70% (p < .05) increase in tail DNA at 0.48 and 0.96 µM AgNPs. CBMN in PBMCs also confirmed the genotoxic potential of AgNPs-induced DNA damage. AgNPs resulted in 1.5-1.54 fold (p < .05) increase in the level of ROS in HL-60 cells after 12 h of exposure. AgNP showed toxicity in human cells through ROS generation and cellular damage through membrane dysfunction, caspase activation, apoptosis, and DNA damage.
Collapse
Affiliation(s)
- Deepika Soni
- National Institute of Pathology, New Delhi, India
- CSIR-National Environmental Engineering Research Institute, Nehru Marg, India
| | - Deepa Gandhi
- CSIR-National Environmental Engineering Research Institute, Nehru Marg, India
- All India Institute of Medical Sciences, Bhopal, India
| |
Collapse
|
10
|
Hilda L, Mutlaq MS, Waleed I, Althomali RH, Mahdi MH, Abdullaev SS, Singh R, Nasser HA, Mustafa YF, Alawadi AHR. Genosensor on-chip paper for point of care detection: A review of biomedical analysis and food safety application. Talanta 2024; 268:125274. [PMID: 37839324 DOI: 10.1016/j.talanta.2023.125274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023]
Abstract
Over the last decade, paper-based biosensing has attracted considerable attention in numerous fields due to several advantages of them. To elaborate, using paper as a substrate of sensing approaches can be considered an affordable sensing approach owing to low cost of paper, and alongside that, the ability to operate without requiring external equipment. In many cases, cost-effective fabrication techniques such as screen printed and drop casting can be supposed as other benefits of these platforms. Despite the portability and affordability of paper-based assay, two important limitations including sensitivity and selectivity can decrease the application of these sensing approaches. Initially, decoration of paper substrate with nanomaterials (NMs) can improve the properties of paper due to high surface area and conductivity of them. Secondly, the presence of bioreceptors can provide a selective detection platform. Among different bioreceptors, deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) can play a significant role. From this perspective, paper-based biosensors can be used for the detection of various gens which related to biomedical or food safety. In this review, we attempted to summarize recent trends and applications of paper-based genosensor, along with critical arguments in terms of NMs role in signal amplification. Furthermore, the lack of paper-based genosensors in field the of biomedical and food safety will be discussed in the following.
Collapse
Affiliation(s)
- Lelya Hilda
- Department of Chemistry, Universitas Islam Negeri Syekh Ali Hasan Ahmad Addary Padangsidimpuan, Padangsidimpuan, Indonesia.
| | - Maysam Salih Mutlaq
- Department of Radiology & Sonar Techniques, AlNoor University College, Nineveh, Iraq
| | | | - Raed H Althomali
- Department of Chemistry, Prince Sattam Bin Abdulaziz University, College of Arts and Science, Wadi Al-Dawasir, 11991, Saudi Arabia
| | | | - Sherzod Shukhratovich Abdullaev
- Faculty of Chemical Engineering, New Uzbekistan University, Tashkent, Uzbekistan; Department of Chemical Engineering, Central Asian University, Tashkent, Uzbekistan; Scientific and Innovation Department, Tashkent State Pedagogical University named after Nizami, Tashkent, Uzbekistan
| | - Rajesh Singh
- Department of Electronics & Communication Engineering, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun, 248007, India
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Ahmed H R Alawadi
- Building and Construction Technical Engineering Department, College of Technical Engineering, The Islamic university, Najaf, Iraq
| |
Collapse
|
11
|
Qian L, Xiao J, Li K, Zhou Y. Multiplex Detection of RNA Viruses Based on Ligation Reaction and Universal PCR Amplification. Curr Microbiol 2024; 81:75. [PMID: 38261072 DOI: 10.1007/s00284-023-03582-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/02/2023] [Indexed: 01/24/2024]
Abstract
To detect several RNA viruses simultaneously, a method based on multiplex ligation reaction combined with multiplex qPCR or multiplex PCR+capillary electrophoresis was established to detect four RNA viruses: human immunodeficiency virus (HIV), hepatitis C (HCV), influenza A virus (IAV) H1N1 and H5N1. The experimental conditions including ligation probe concentration, annealing procedure, ligation temperature and ligase dosage were optimized intensively. We found that the specificity of the ligation reaction was affected by the probe concentration predominantly, high-probe concentration (100 nM) resulted in splint-independent ligation with efficiency comparable to that with RNA splint. The sensitivity of the ligation reaction was affected by the annealing mode apparently as the sensitivity of the step-down annealing mode was 100 times higher than that of the isothermal annealing at 37 °C. Under the optimized condition, this assay could detect virus RNA as low as 16 viral copies per reaction in doubleplex and triplex real-time quantitative PCR detection with satisfactory specificity and precision. By multiplex PCR+capillary electrophoresis, four RNA viruses could be detected in one tube with the sensitivity of 10 copies per reaction.
Collapse
Affiliation(s)
- Lijun Qian
- College of Biological Science and Medical Engineering, Donghua University, #2999 North Renmin Road, Songjiang District, Shanghai, 201620, China
| | - Junhua Xiao
- College of Biological Science and Medical Engineering, Donghua University, #2999 North Renmin Road, Songjiang District, Shanghai, 201620, China
| | - Kai Li
- College of Biological Science and Medical Engineering, Donghua University, #2999 North Renmin Road, Songjiang District, Shanghai, 201620, China
| | - Yuxun Zhou
- College of Biological Science and Medical Engineering, Donghua University, #2999 North Renmin Road, Songjiang District, Shanghai, 201620, China.
| |
Collapse
|
12
|
Ramalingam M, Jaisankar A, Cheng L, Krishnan S, Lan L, Hassan A, Sasmazel HT, Kaji H, Deigner HP, Pedraz JL, Kim HW, Shi Z, Marrazza G. Impact of nanotechnology on conventional and artificial intelligence-based biosensing strategies for the detection of viruses. DISCOVER NANO 2023; 18:58. [PMID: 37032711 PMCID: PMC10066940 DOI: 10.1186/s11671-023-03842-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
Recent years have witnessed the emergence of several viruses and other pathogens. Some of these infectious diseases have spread globally, resulting in pandemics. Although biosensors of various types have been utilized for virus detection, their limited sensitivity remains an issue. Therefore, the development of better diagnostic tools that facilitate the more efficient detection of viruses and other pathogens has become important. Nanotechnology has been recognized as a powerful tool for the detection of viruses, and it is expected to change the landscape of virus detection and analysis. Recently, nanomaterials have gained enormous attention for their value in improving biosensor performance owing to their high surface-to-volume ratio and quantum size effects. This article reviews the impact of nanotechnology on the design, development, and performance of sensors for the detection of viruses. Special attention has been paid to nanoscale materials, various types of nanobiosensors, the internet of medical things, and artificial intelligence-based viral diagnostic techniques.
Collapse
Affiliation(s)
- Murugan Ramalingam
- School of Basic Medical Sciences, Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu, 610106 China
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 31116 Republic of Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan, 31116 Republic of Korea
- BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116 Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116 Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116 South Korea
- Department of Metallurgical and Materials Engineering, Faculty of Engineering, Atilim University, 06836 Ankara, Turkey
| | - Abinaya Jaisankar
- Centre for Biomaterials, Cellular and Molecular Theranostics, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632014 India
| | - Lijia Cheng
- School of Basic Medical Sciences, Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu, 610106 China
| | - Sasirekha Krishnan
- Centre for Biomaterials, Cellular and Molecular Theranostics, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632014 India
| | - Liang Lan
- School of Basic Medical Sciences, Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu, 610106 China
| | - Anwarul Hassan
- Department of Mechanical and Industrial Engineering, Biomedical Research Center, Qatar University, 2713, Doha, Qatar
| | - Hilal Turkoglu Sasmazel
- Department of Metallurgical and Materials Engineering, Faculty of Engineering, Atilim University, 06836 Ankara, Turkey
| | - Hirokazu Kaji
- Department of Biomechanics, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, 101-0062 Japan
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, 78054 Villingen-Schwenningen, Germany
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country, 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine, 28029 Madrid, Spain
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 31116 Republic of Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan, 31116 Republic of Korea
- BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116 Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116 Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116 South Korea
| | - Zheng Shi
- School of Basic Medical Sciences, Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu, 610106 China
| | - Giovanna Marrazza
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
13
|
Yari P, Liang S, Chugh VK, Rezaei B, Mostufa S, Krishna VD, Saha R, Cheeran MCJ, Wang JP, Gómez-Pastora J, Wu K. Nanomaterial-Based Biosensors for SARS-CoV-2 and Future Epidemics. Anal Chem 2023; 95:15419-15449. [PMID: 37826859 DOI: 10.1021/acs.analchem.3c01522] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Affiliation(s)
- Parsa Yari
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Shuang Liang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Vinit Kumar Chugh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Bahareh Rezaei
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Shahriar Mostufa
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Venkatramana Divana Krishna
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Renata Saha
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Maxim C-J Cheeran
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Jian-Ping Wang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jenifer Gómez-Pastora
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Kai Wu
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
14
|
Valenzuela-Amaro HM, Aguayo-Acosta A, Meléndez-Sánchez ER, de la Rosa O, Vázquez-Ortega PG, Oyervides-Muñoz MA, Sosa-Hernández JE, Parra-Saldívar R. Emerging Applications of Nanobiosensors in Pathogen Detection in Water and Food. BIOSENSORS 2023; 13:922. [PMID: 37887115 PMCID: PMC10605657 DOI: 10.3390/bios13100922] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023]
Abstract
Food and waterborne illnesses are still a major concern in health and food safety areas. Every year, almost 0.42 million and 2.2 million deaths related to food and waterborne illness are reported worldwide, respectively. In foodborne pathogens, bacteria such as Salmonella, Shiga-toxin producer Escherichia coli, Campylobacter, and Listeria monocytogenes are considered to be high-concern pathogens. High-concern waterborne pathogens are Vibrio cholerae, leptospirosis, Schistosoma mansoni, and Schistosima japonicum, among others. Despite the major efforts of food and water quality control to monitor the presence of these pathogens of concern in these kinds of sources, foodborne and waterborne illness occurrence is still high globally. For these reasons, the development of novel and faster pathogen-detection methods applicable to real-time surveillance strategies are required. Methods based on biosensor devices have emerged as novel tools for faster detection of food and water pathogens, in contrast to traditional methods that are usually time-consuming and are unsuitable for large-scale monitoring. Biosensor devices can be summarized as devices that use biochemical reactions with a biorecognition section (isolated enzymes, antibodies, tissues, genetic materials, or aptamers) to detect pathogens. In most cases, biosensors are based on the correlation of electrical, thermal, or optical signals in the presence of pathogen biomarkers. The application of nano and molecular technologies allows the identification of pathogens in a faster and high-sensibility manner, at extremely low-pathogen concentrations. In fact, the integration of gold, silver, iron, and magnetic nanoparticles (NP) in biosensors has demonstrated an improvement in their detection functionality. The present review summarizes the principal application of nanomaterials and biosensor-based devices for the detection of pathogens in food and water samples. Additionally, it highlights the improvement of biosensor devices through nanomaterials. Nanomaterials offer unique advantages for pathogen detection. The nanoscale and high specific surface area allows for more effective interaction with pathogenic agents, enhancing the sensitivity and selectivity of the biosensors. Finally, biosensors' capability to functionalize with specific molecules such as antibodies or nucleic acids facilitates the specific detection of the target pathogens.
Collapse
Affiliation(s)
- Hiram Martin Valenzuela-Amaro
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Alberto Aguayo-Acosta
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Edgar Ricardo Meléndez-Sánchez
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Orlando de la Rosa
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | | | - Mariel Araceli Oyervides-Muñoz
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| |
Collapse
|
15
|
Ghoniem SM, ElZorkany HE, Hagag NM, El-Deeb AH, Shahein MA, Hussein HA. Development of multiplex gold nanoparticles biosensors for ultrasensitive detection and genotyping of equine herpes viruses. Sci Rep 2023; 13:15140. [PMID: 37704638 PMCID: PMC10500010 DOI: 10.1038/s41598-023-41918-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023] Open
Abstract
Gold nanoparticles (GNPs) biosensors can detect low viral loads and differentiate between viruses types, enabling early diagnosis and effective disease management. In the present study, we developed GNPs biosensors with two different capping agent, citrate-GNPs biosensors and polyvinylpyrrolidone (PVP)-GNPs biosensors for detection of EHV-1 and EHV-4 in multiplex real time PCR (rPCR). Citrate-GNPs and PVP-GNPs biosensors can detect dilution 1010 of EHV-1 with mean Cycle threshold (Ct) 11.7 and 9.6, respectively and one copy as limit of detection, while citrate-GNPs and PVP-GNPs biosensors can detect dilution 1010 of EHV-4 with mean Ct 10.5 and 9.2, respectively and one copy as limit of detection. These findings were confirmed by testing 87 different clinical samples, 4 more samples were positive with multiplex GNPs biosensors rPCR than multiplex rPCR. Multiplex citrate-GNPs and PVP-GNPs biosensors for EHV-1 and EHV-4 are a significant breakthrough in the diagnosis of these virus types. These biosensors offer high sensitivity and specificity, allowing for the accurate detection of the target viruses at very low concentrations and improve the early detection of EHV-1 and EHV-4, leading to faster control of infected animals to prevent the spread of these viruses.
Collapse
Affiliation(s)
- Shimaa M Ghoniem
- Department of Virology, Animal Health Research Institute, Agriculture Research Center, Giza, 12618, Egypt
| | - Heba E ElZorkany
- Nanotechnology and Advanced Materials Central Lab, Agriculture Research Center, Giza, 12619, Egypt
| | - Naglaa M Hagag
- Genome Research Unit, Animal Health Research Institute, Agriculture Research Center, Giza, 12618, Egypt
| | - Ayman H El-Deeb
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, P.O. Box 12211, Giza, Egypt
- Department of Virology, Faculty of Veterinary Medicine, King Salman International University, South Sinai, Egypt
| | - Momtaz A Shahein
- Department of Virology, Animal Health Research Institute, Agriculture Research Center, Giza, 12618, Egypt
| | - Hussein A Hussein
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, P.O. Box 12211, Giza, Egypt.
| |
Collapse
|
16
|
Yu Z, Liao Y, Liu J, Wu Q, Cheng Y, Huang K. A smartphone-based gold nanoparticle colorimetric sensing platform for kanamycin detection in food samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4282-4288. [PMID: 37599591 DOI: 10.1039/d3ay01076g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
The misuse of kanamycin in the breeding industry can pose a threat to human health through food exposure. Therefore, it is crucial to monitor kanamycin (Kana) levels in food. This study presents a novel colorimetric approach for detecting kanamycin based on the aggregation of gold nanoparticles (AuNPs) induced by kanamycin. To achieve this, a single-stranded DNA (ssDNA) aptamer was employed to bind the surface of AuNPs and maintain their dispersion under high salt concentrations. Upon adding Kana, the aptamer selectively binds to it and separates from the gold surface, resulting in the aggregation of AuNPs. This leads to a color change in the solution (from red to purple to blue) which can be observed under salt conditions. The proposed sensor demonstrated a linear range of 0.5-3 nM and a limit of detection (LOD) of 0.11 nM under optimal conditions. Its practicability was tested by monitoring kanamycin in six food samples, including milk, honey, vitamin C effervescent tablets, vegetable, and meat with satisfactory spiked recoveries. The sensor's miniaturization, convenience, simplicity, and low cost make it a desirable choice for fast and highly sensitive detection of Kana.
Collapse
Affiliation(s)
- Ziyan Yu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China.
| | - Yaxiao Liao
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China.
| | - Jie Liu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China.
| | - Qin Wu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China.
| | - Yu Cheng
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China.
| | - Ke Huang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China.
| |
Collapse
|
17
|
Alex A V, Mukherjee A. An ultrasensitive "mix-and-detect" kind of fluorescent biosensor for malaoxon detection using the AChE-ATCh-Ag-GO system. RSC Adv 2023; 13:14159-14170. [PMID: 37180011 PMCID: PMC10167908 DOI: 10.1039/d3ra02253f] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Malaoxon, a highly toxic metabolite of malathion, can lead to severe harm or death if ingested. This study introduces a rapid and innovative fluorescent biosensor that relies on acetylcholinesterase (AChE) inhibition for detecting malaoxon using Ag-GO nanohybrid. The synthesized nanomaterials (GO, Ag-GO) were evaluated with multiple characterization methods to confirm their elemental composition, morphology, and crystalline structure. The fabricated biosensor works by utilizing AChE to catalyze the substrate acetylthiocholine (ATCh), which generates positively charged thiocholine (TCh) and triggers citrate-coated AgNP aggregation on the GO sheet, leading to an increase in fluorescence emission at 423 nm. However, the presence of malaoxon inhibits the AChE action and reduces the production of TCh, resulting in a decrease in fluorescence emission intensity. This mechanism allows the biosensor to detect a wide range of malaoxon concentrations with excellent linearity and low LOD and LOQ values of 0.001 pM to 1000 pM, 0.9 fM, and 3 fM, respectively. The biosensor also demonstrated superior inhibitory efficacy towards malaoxon compared to other OP pesticides, indicating its resistance to external influences. In practical sample testing, the biosensor displayed recoveries of over 98% with extremely low RSD% values. Based on the results obtained from the study, it can be concluded that the developed biosensor has the potential to be used in various real-world applications for detecting malaoxon in food, and water samples, with high sensitivity, accuracy, and reliability.
Collapse
Affiliation(s)
- Vinotha Alex A
- Centre for Nanobiotechnology, Vellore Institute of Technology Vellore 632014 India +91 416 2202620
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology Vellore 632014 India +91 416 2202620
| |
Collapse
|
18
|
Bains A, Sharma P, Kaur S, Yadav R, Kumar A, Sridhar K, Chawla P, Sharma M. Gum arabic/guar gum stabilized Hydnocarpus wightiana oil nanohydrogel: Characterization, antimicrobial, anti-inflammatory, and anti-biofilm activities. Int J Biol Macromol 2023; 239:124341. [PMID: 37030463 DOI: 10.1016/j.ijbiomac.2023.124341] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/25/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023]
Abstract
Hydnocarpus wightiana oil has proven to inhibit the growth of pathogenic microorganisms; however, the raw form is highly susceptible to oxidation, and thus it becomes toxic when uptake is in high amounts. Therefore, to minimize the deterioration, we formulated Hydnocarpus wightiana oil-based nanohydrogel and studied its characteristics as well biological activity. The low energy-assisted hydrogel was formulated by including gelling agent, connective linker, and cross-linker and it resulted in internal micellar polymerization of the milky white emulsion. The oil showed the presence of octanoic acid, n-tetradecane, methyl 11-(2-cyclopenten-1-yl) undecanoate (methyl hydnocarpate), 13-(2-cyclopenten-1-yl) tridecanoic acid (methyl chaulmoograte), and 10,13-eicosadienoic acid. The amount of caffeic acid was 0.0636 mg/g, which was higher than the amount of gallic acid (0.0076 mg/g) in the samples. The formulated nanohydrogel showed an average droplet size of 103.6 nm with a surface charge of -17.6 mV. The minimal inhibitory bactericidal, and fungicidal concentrations of nanohydrogel against pathogenic bacteria and fungi were ranging from 0.78 to 1.56 μl/mL with 70.29-83.62 % antibiofilm activity. Also, nanohydrogel showed a significantly (p < 0.05) higher killing rate for Escherichia coli (7.89 log CFU/mL) than Staphylococcus aureus (7.81 log CFU/mL) with comparable anti-inflammatory activity than commercial standard (49.28-84.56 %). Therefore, it can be concluded that being hydrophobic, and having the capability of target-specific drug absorption as well as biocompatibility nanohydrogels can be utilized to cure various pathogenic microbial infections.
Collapse
Affiliation(s)
- Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Priyanka Sharma
- Department of Biotechnology, CT Institute of Pharmaceutical Sciences, South Campus, Jalandhar 144020, Punjab, India
| | - Sukhdeep Kaur
- Department of Biotechnology, CT Institute of Pharmaceutical Sciences, South Campus, Jalandhar 144020, Punjab, India
| | - Rahul Yadav
- Shoolini Life Sciences Pvt. Ltd., Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Anil Kumar
- Department of Food Science Technology and Processing, Amity University, Mohali, Punjab 140306, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Prince Chawla
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India.
| | - Minaxi Sharma
- Department of Applied Biology, University of Science and Technology, Meghalaya 793101, India.
| |
Collapse
|
19
|
Ang PC, Perumal V, Ibrahim MNM, Adnan R, Mohd Azman DK, Gopinath SCB, Raja PB. Electrochemical biosensor detection on respiratory and flaviviruses. Appl Microbiol Biotechnol 2023; 107:1503-1513. [PMID: 36719432 PMCID: PMC9887245 DOI: 10.1007/s00253-023-12400-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 02/01/2023]
Abstract
Viruses have spread throughout the world and cause acute illness or death among millions of people. There is a growing concern about methods to control and combat early-stage viral infections to prevent the significant public health problem. However, conventional detection methods like polymerase chain reaction (PCR) requires sample purification and are time-consuming for further clinical diagnosis. Hence, establishing a portable device for rapid detection with enhanced sensitivity and selectivity for the specific virus to prevent further spread becomes an urgent need. Many research groups are focusing on the potential of the electrochemical sensor to become a key for developing point-of-care (POC) technologies for clinical analysis because it can solve most of the limitations of conventional diagnostic methods. Herein, this review discusses the current development of electrochemical sensors for the detection of respiratory virus infections and flaviviruses over the past 10 years. Trends in future perspectives in rapid clinical detection sensors on viruses are also discussed. KEY POINTS: • Respiratory related viruses and Flavivirus are being concerned for past decades. • Important to differentiate the cross-reactivity between the virus in same family. • Electrochemical biosensor as a suitable device to detect viruses with high performance.
Collapse
Affiliation(s)
- Phaik Ching Ang
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Veeradasan Perumal
- Centre of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS (UTP), Seri Iskandar, Perak, Malaysia
- Mechanical Engineering Department, Universiti Teknologi PETRONAS (UTP), Seri Iskandar, Perak, Malaysia
| | | | - Rohana Adnan
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Daruliza Kernain Mohd Azman
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Penang, Gelugor, Malaysia
| | - Subash C B Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000, Kangar, Perlis, Malaysia
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia
- Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Pauh Campus, 02600, Arau, Perlis, Malaysia
| | - Pandian Bothi Raja
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia.
| |
Collapse
|
20
|
Felicia WXL, Rovina K, ‘Aqilah NMN, Vonnie JM, Yin KW, Huda N. Assessing Meat Freshness via Nanotechnology Biosensors: Is the World Prepared for Lightning-Fast Pace Methods? BIOSENSORS 2023; 13:217. [PMID: 36831985 PMCID: PMC9954215 DOI: 10.3390/bios13020217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
In the rapidly evolving field of food science, nanotechnology-based biosensors are one of the most intriguing techniques for tracking meat freshness. Purine derivatives, especially hypoxanthine and xanthine, are important signs of food going bad, especially in meat and meat products. This article compares the analytical performance parameters of traditional biosensor techniques and nanotechnology-based biosensor techniques that can be used to find purine derivatives in meat samples. In the introduction, we discussed the significance of purine metabolisms as analytes in the field of food science. Traditional methods of analysis and biosensors based on nanotechnology were also briefly explained. A comprehensive section of conventional and nanotechnology-based biosensing techniques is covered in detail, along with their analytical performance parameters (selectivity, sensitivity, linearity, and detection limit) in meat samples. Furthermore, the comparison of the methods above was thoroughly explained. In the last part, the pros and cons of the methods and the future of the nanotechnology-based biosensors that have been created are discussed.
Collapse
Affiliation(s)
- Wen Xia Ling Felicia
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Kobun Rovina
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Nasir Md Nur ‘Aqilah
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Joseph Merillyn Vonnie
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Koh Wee Yin
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Nurul Huda
- Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, Locked Bag No. 3, Sandakan 90509, Sabah, Malaysia
| |
Collapse
|
21
|
He J, Zhu S, Zhou J, Jiang W, Yin L, Su L, Zhang X, Chen Q, Li X. Rapid detection of SARS-CoV-2: The gradual boom of lateral flow immunoassay. Front Bioeng Biotechnol 2023; 10:1090281. [PMID: 36704307 PMCID: PMC9871317 DOI: 10.3389/fbioe.2022.1090281] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is still in an epidemic situation, which poses a serious threat to the safety of people and property. Rapid diagnosis and isolation of infected individuals are one of the important methods to control virus transmission. Existing lateral flow immunoassay techniques have the advantages of rapid, sensitive, and easy operation, and some new options have emerged with the continuous development of nanotechnology. Such as lateral flow immunoassay test strips based on colorimetric-fluorescent dual-mode and gold nanoparticles, Surface Enhanced Raman Scattering, etc., these technologies have played an important role in the rapid diagnosis of COVID-19. In this paper, we summarize the current research progress of lateral flow immunoassay in the field of Severe Acute Respiratory Syndrome Coronavirus 2 infection diagnosis, analyze the performance of Severe Acute Respiratory Syndrome Coronavirus 2 lateral flow immunoassay products, review the advantages and limitations of different detection methods and markers, and then explore the competitive CRISPR-based nucleic acid chromatography detection method. This method combines the advantages of gene editing and lateral flow immunoassay and can achieve rapid and highly sensitive lateral flow immunoassay detection of target nucleic acids, which is expected to be the most representative method for community and clinical point-of-care testing. We hope that researchers will be inspired by this review and strive to solve the problems in the design of highly sensitive targets, the selection of detection methods, and the enhancement of CRISPR technology, to truly achieve rapid, sensitive, convenient, and specific detection of novel coronaviruses, thus promoting the development of novel coronavirus diagnosis and contributing our modest contribution to the world's fight against epidemics.
Collapse
|
22
|
Outcome of Newborns with Confirmed or Possible SARS-CoV-2 Vertical Infection-A Scoping Review. Diagnostics (Basel) 2023; 13:diagnostics13020245. [PMID: 36673058 PMCID: PMC9858608 DOI: 10.3390/diagnostics13020245] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/27/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Severe acute respiratory syndrome virus 2 (SARS-CoV-2), the virus that causes 2019 coronavirus disease (COVID-19), has been isolated from various tissues and body fluids, including the placenta, amniotic fluid, and umbilical cord of newborns. In the last few years, much scientific effort has been directed toward studying SARS-CoV-2, focusing on the different features of the virus, such as its structure and mechanisms of action. Moreover, much focus has been on developing accurate diagnostic tools and various drugs or vaccines to treat COVID-19. However, the available evidence is still scarce and consistent criteria should be used for diagnosing vertical transmission. Applying the PRISMA ScR guidelines, we conducted a scoping review with the primary objective of identifying the types, and examining the range, of available evidence of vertical transmission of SARS-CoV-2 from mother to newborn. We also aimed to clarify the key concepts and criteria for diagnosis of SARS-CoV-2 vertical infection in neonates and summarize the existing evidence and advance the awareness of SARS-CoV-2 vertical infection in pregnancy. Most studies we identified were case reports or case series (about 30% of poor quality and inconsistent reporting of the findings). Summarizing the existing classification criteria, we propose an algorithm for consistent diagnosis. Registration: INPLASY2022120093.
Collapse
|
23
|
Byakodi M, Shrikrishna NS, Sharma R, Bhansali S, Mishra Y, Kaushik A, Gandhi S. Emerging 0D, 1D, 2D, and 3D nanostructures for efficient point-of-care biosensing. BIOSENSORS & BIOELECTRONICS: X 2022; 12:100284. [PMID: 36448023 PMCID: PMC9691282 DOI: 10.1016/j.biosx.2022.100284] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 04/12/2023]
Abstract
The recent COVID-19 infection outbreak has raised the demand for rapid, highly sensitive POC biosensing technology for intelligent health and wellness. In this direction, efforts are being made to explore high-performance nano-systems for developing novel sensing technologies capable of functioning at point-of-care (POC) applications for quick diagnosis, data acquisition, and disease management. A combination of nanostructures [i.e., 0D (nanoparticles & quantum dots), 1D (nanorods, nanofibers, nanopillars, & nanowires), 2D (nanosheets, nanoplates, nanopores) & 3D nanomaterials (nanocomposites and complex hierarchical structures)], biosensing prototype, and micro-electronics makes biosensing suitable for early diagnosis, detection & prevention of life-threatening diseases. However, a knowledge gap associated with the potential of 0D, 1D, 2D, and 3D nanostructures for the design and development of efficient POC sensing is yet to be explored carefully and critically. With this focus, this review highlights the latest engineered 0D, 1D, 2D, and 3D nanomaterials for developing next-generation miniaturized, portable POC biosensors development to achieve high sensitivity with potential integration with the internet of medical things (IoMT, for miniaturization and data collection, security, and sharing), artificial intelligence (AI, for desired analytics), etc. for better diagnosis and disease management at the personalized level.
Collapse
Affiliation(s)
- Manisha Byakodi
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, 500032, Telangana, India
| | - Narlawar Sagar Shrikrishna
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, 500032, Telangana, India
- DBT-Regional Centre for Biotechnology (RCB), Faridabad, 121001, Haryana (NCR Delhi), India
| | - Riya Sharma
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, 500032, Telangana, India
| | - Shekhar Bhansali
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL, 33174, USA
| | - Yogendra Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL, USA
| | - Sonu Gandhi
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, 500032, Telangana, India
- DBT-Regional Centre for Biotechnology (RCB), Faridabad, 121001, Haryana (NCR Delhi), India
| |
Collapse
|
24
|
Shirvaliloo M, Sheervalilou R, Ahmadpour E, Safiri S, Bannazadeh Baghi H. Diagnostic accuracy of clinically applied nanoparticle-based biosensors at detecting SARS-CoV-2 RNA and surface proteins in pharyngeal swabs compared to RT-PCR as a reference test. Expert Rev Mol Diagn 2022; 22:881-894. [PMID: 36224104 DOI: 10.1080/14737159.2022.2135434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Nanoparticle-based biosensors (NPBs) are point-of-care diagnostic platforms that can be used for detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with high accuracy. AREAS COVERED EBSCOhost Web, Embase, ProQuest, PubMed/MEDLINE, Scopus, Web of Science, and WHO Global Literature on Coronavirus Disease 2019 (COVID-19) were searched for relevant records published from 1 November 2019 to 30 April 2022. Records reporting original data on the accuracy of clinically applied nanoparticle-based biosensors at detecting SARS-CoV-2 RNA and surface proteins from pharyngeal swab specimens were considered. Findings were reported based on the PRISMA 2020 statement. The QUADAS-2 tool was used for assessment of quality and risk of bias among the included studies. EXPERT OPINION A total of 50 relevant records were identified, of which 13 were included. The included studies explored the diagnostic performance of 13 clinically applied distinct nanoparticle-based biosensors in a total of 789 pharyngeal swabs collected from 376 COVID-19 patients and 413 otherwise healthy individuals. The mean sensitivity, specificity, and accuracy were 97.07%, 94.43%, and 96.91%, respectively, in comparison to RT-qPCR as the reference test. Considering their ease-of-operation, portability, low-cost manufacturing, NPBs could be considered suitable candidate diagnostic platforms for substituting RT-qPCR.
Collapse
Affiliation(s)
- Milad Shirvaliloo
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Future Science Group, Unitec House, 2 Albert Place, London, N3 1QB, UK
| | | | - Ehsan Ahmadpour
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeid Safiri
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
25
|
Abstract
A fast and highly specific detection of COVID-19 infections is essential in managing the virus dissemination networks. The most relevant technologies developed for SARS-CoV-2 detection, along with their advantages and limitations, will be presented and fully explored. Additionally, some of the newest and emerging COVID-19 diagnosis tools, such as biosensing platforms, will also be introduced. Considering the extreme relevance that all these technologies assume in pandemic control, it is of the utmost relevance to have an intrinsic knowledge of the parameters that need to be taken into consideration before choosing the most adequate test for a particular situation. Moreover, the new variants of the virus and their potential impact on the detection method’s effectiveness will be discussed. In order to better manage the pandemic, it is essential to maintain continuous research into the SARS-CoV-2 genome and updated genomic surveillance at the global level. This will allow for timely detection of new mutations and viral variants, which may affect the performance of COVID-19 detection tests.
Collapse
|
26
|
A Review on Current Designation of Metallic Nanocomposite Hydrogel in Biomedical Applications. NANOMATERIALS 2022; 12:nano12101629. [PMID: 35630851 PMCID: PMC9146518 DOI: 10.3390/nano12101629] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 02/06/2023]
Abstract
In the past few decades, nanotechnology has been receiving significant attention globally and is being continuously developed in various innovations for diverse applications, such as tissue engineering, biotechnology, biomedicine, textile, and food technology. Nanotechnological materials reportedly lack cell-interactive properties and are easily degraded into unfavourable products due to the presence of synthetic polymers in their structures. This is a major drawback of nanomaterials and is a cause of concern in the biomedicine field. Meanwhile, particulate systems, such as metallic nanoparticles (NPs), have captured the interest of the medical field due to their potential to inhibit the growth of microorganisms (bacteria, fungi, and viruses). Lately, researchers have shown a great interest in hydrogels in the biomedicine field due to their ability to retain and release drugs as well as to offer a moist environment. Hence, the development and innovation of hydrogel-incorporated metallic NPs from natural sources has become one of the alternative pathways for elevating the efficiency of therapeutic systems to make them highly effective and with fewer undesirable side effects. The objective of this review article is to provide insights into the latest fabricated metallic nanocomposite hydrogels and their current applications in the biomedicine field using nanotechnology and to discuss the limitations of this technology for future exploration. This article gives an overview of recent metallic nanocomposite hydrogels fabricated from bioresources, and it reviews their antimicrobial activities in facilitating the demands for their application in biomedicine. The work underlines the fabrication of various metallic nanocomposite hydrogels through the utilization of natural sources in the production of biomedical innovations, including wound healing treatment, drug delivery, scaffolds, etc. The potential of these nanocomposites in relation to their mechanical strength, antimicrobial activities, cytotoxicity, and optical properties has brought this technology into a new dimension in the biomedicine field. Finally, the limitations of metallic nanocomposite hydrogels in terms of their methods of synthesis, properties, and outlook for biomedical applications are further discussed.
Collapse
|
27
|
Khizar S, Al-Dossary AA, Zine N, Jaffrezic-Renault N, Errachid A, Elaissari A. Contribution of magnetic particles in molecular diagnosis of human viruses. Talanta 2022; 241:123243. [PMID: 35121538 PMCID: PMC8779935 DOI: 10.1016/j.talanta.2022.123243] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/16/2022]
Abstract
Viral diseases are the primary source of death, making a worldwide influence on healthcare, social, and economic development. Thus, diagnosis is the vital approach to the main aim of virus control and elimination. On the other hand, the prompt advancement of nanotechnology in the field of medicine possesses the probability of being beneficial to diagnose infections normally in labs as well as specifically. Nanoparticles are efficiently in use to make novel strategies because of permitting analysis at cellular in addition to the molecular scale. Henceforth, they assist towards pronounced progress concerning molecular analysis at the nanoscale. In recent times, magnetic nanoparticles conjugated through covalent bonds to bioanalytes for instance peptides, antibodies, nucleic acids, plus proteins are established like nanoprobes aimed at molecular recognition. These modified magnetic nanoparticles could offer a simple fast approach for extraction, purification, enrichment/concentration, besides viruses' recognition precisely also specifically. In consideration of the above, herein insight and outlook into the limitations of conventional methods and numerous roles played by magnetic nanoparticles to extract, purify, concentrate, and additionally in developing a diagnostic regime for viral outbreaks to combat viruses especially the ongoing novel coronavirus (COVID-19).
Collapse
Affiliation(s)
- Sumera Khizar
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, F-69622, Lyon, France
| | - Amal A Al-Dossary
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 34212, Saudi Arabia
| | - Nadia Zine
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, F-69622, Lyon, France
| | | | - Abdelhamid Errachid
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, F-69622, Lyon, France
| | - Abdelhamid Elaissari
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, F-69622, Lyon, France.
| |
Collapse
|
28
|
Rohani Bastami T, Bayat M, Paolesse R. Naked-Eye Detection of Morphine by Au@Ag Nanoparticles-Based Colorimetric Chemosensors. SENSORS (BASEL, SWITZERLAND) 2022; 22:2072. [PMID: 35271219 PMCID: PMC8914838 DOI: 10.3390/s22052072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/18/2022] [Accepted: 03/04/2022] [Indexed: 05/12/2023]
Abstract
In this study, we report a novel and facile colorimetric assay based on silver citrate-coated Au@Ag nanoparticles (Au@AgNPs) as a chemosensor for the naked-eye detection of morphine (MOR). The developed optical sensing approach relied on the aggregation of Au@Ag NPs upon exposure to morphine, which led to an evident color variation from light-yellow to brown. Au@Ag NPs have been prepared by two different protocols, using high- and low-power ultrasonic irradiation. The sonochemical method was essential for the sensing properties of the resulting nanoparticles. This facile sensing method has several advantages including excellent stability, selectivity, prompt detection, and cost-effectiveness.
Collapse
Affiliation(s)
- Tahereh Rohani Bastami
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan 94771-67335, Iran;
| | - Mansour Bayat
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan 94771-67335, Iran;
| | - Roberto Paolesse
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, 00133 Rome, Italy
| |
Collapse
|
29
|
Lin X, Zhao M, Li M, Long J, Zhang J, Yu F, Xu F, Sun L. Single-Molecule Detection of Nucleic Acids via Liposome Signal Amplification in Mass Spectrometry. SENSORS (BASEL, SWITZERLAND) 2022; 22:1346. [PMID: 35214249 PMCID: PMC8963037 DOI: 10.3390/s22041346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
A single-molecule detection method was developed for nucleic acids based on mass spectrometry counting single liposome particles. Before the appearance of symptoms, a negligible amount of nucleic acids and biomarkers for the clinical diagnosis of the disease were already present. However, it is difficult to detect extremely low concentrations of nucleic acids using the current methods. Hence, the establishment of an ultra-sensitive nucleic acid detection technique is urgently needed. Herein, magnetic beads were used to capture target nucleic acids, and liposome particles were employed as mass tags for single-particle measurements. Liposomes were released from magnetic beads via photocatalytic cleavage. Hence, one DNA molecule corresponded to one liposome particle, which could be counted using mass spectrometric measurement. The ultrasensitive detection of DNA (10-18 M) was achieved using this method.
Collapse
|
30
|
Alathari MJA, Al Mashhadany Y, Mokhtar MHH, Burham N, Bin Zan MSD, A Bakar AA, Arsad N. Human Body Performance with COVID-19 Affectation According to Virus Specification Based on Biosensor Techniques. SENSORS (BASEL, SWITZERLAND) 2021; 21:8362. [PMID: 34960456 PMCID: PMC8704003 DOI: 10.3390/s21248362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022]
Abstract
Life was once normal before the first announcement of COVID-19's first case in Wuhan, China, and what was slowly spreading became an overnight worldwide pandemic. Ever since the virus spread at the end of 2019, it has been morphing and rapidly adapting to human nature changes which cause difficult conundrums in the efforts of fighting it. Thus, researchers were steered to investigate the virus in order to contain the outbreak considering its novelty and there being no known cure. In contribution to that, this paper extensively reviewed, compared, and analyzed two main points; SARS-CoV-2 virus transmission in humans and detection methods of COVID-19 in the human body. SARS-CoV-2 human exchange transmission methods reviewed four modes of transmission which are Respiratory Transmission, Fecal-Oral Transmission, Ocular transmission, and Vertical Transmission. The latter point particularly sheds light on the latest discoveries and advancements in the aim of COVID-19 diagnosis and detection of SARS-CoV-2 virus associated with this disease in the human body. The methods in this review paper were classified into two categories which are RNA-based detection including RT-PCR, LAMP, CRISPR, and NGS and secondly, biosensors detection including, electrochemical biosensors, electronic biosensors, piezoelectric biosensors, and optical biosensors.
Collapse
Affiliation(s)
- Mohammed Jawad Ahmed Alathari
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia; (M.J.A.A.); (M.H.H.M.); (N.B.); (M.S.D.B.Z.); (A.A.A.B.)
| | - Yousif Al Mashhadany
- Department of Electrical Engineering, College of Engineering, University of Anbar, Anbar 00964, Iraq;
| | - Mohd Hadri Hafiz Mokhtar
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia; (M.J.A.A.); (M.H.H.M.); (N.B.); (M.S.D.B.Z.); (A.A.A.B.)
| | - Norhafizah Burham
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia; (M.J.A.A.); (M.H.H.M.); (N.B.); (M.S.D.B.Z.); (A.A.A.B.)
- School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Malaysia
| | - Mohd Saiful Dzulkefly Bin Zan
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia; (M.J.A.A.); (M.H.H.M.); (N.B.); (M.S.D.B.Z.); (A.A.A.B.)
| | - Ahmad Ashrif A Bakar
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia; (M.J.A.A.); (M.H.H.M.); (N.B.); (M.S.D.B.Z.); (A.A.A.B.)
| | - Norhana Arsad
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia; (M.J.A.A.); (M.H.H.M.); (N.B.); (M.S.D.B.Z.); (A.A.A.B.)
| |
Collapse
|