1
|
Elhaj Baddar Z, Bier R, Spencer B, Xu X. Microbial Community Changes across Time and Space in a Constructed Wetland. ACS ENVIRONMENTAL AU 2024; 4:307-316. [PMID: 39582758 PMCID: PMC11583098 DOI: 10.1021/acsenvironau.4c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 11/26/2024]
Abstract
Constructed wetlands are artificial ecosystems designed to replicate natural wetland processes. Microbial communities play a pivotal role in cycling essential elements, particularly sulfur, which is crucial for trace metal fixation and remobilization in these ecosystems. By their response to their environment, microbial communities act as biological indicators of the wetland performance. To address knowledge gaps pertinent to the changes in trace metal bioavailability in relation to microbial activities in the H-02 constructed wetland, we performed this study to investigate temporal and spatial variations in microbial communities by using molecular biology tools. Quantitative polymerase chain reaction and next generation sequencing techniques were employed to analyze archaeal and bacterial groups associated with sulfur and methane cycling. Alpha diversity indices were used to assess species richness, evenness, and dominance. Results indicated high gene abundance of Desulfuromonas (5.37 × 106 g.cell-1), methane oxidizing bacteria (6.92 × 106 g.cell-1), and methanogenic microorganisms (3.02 × 105 g.cell-1) during cool months. Warm months were marked by sulfate reducing bacteria dominance (3.31 × 106 g.cell-1), potentially due to competitive interactions and environmental conditions, higher temperatures, and lower redox potential. Spatial variability among microbial groups was insignificant, but trends in gene abundance indicated complex factors influencing these groups. Next generation sequencing data demonstrated Firmicutes as the most abundant phylum with over 50% regardless of the season or sampling location. Cool months exhibited higher alpha diversity than warm months. Overall, this study showed that seasonal changes significantly impacted the microbial communities in the H-02 constructed wetland that are associated with the sulfur cycle and eventually trace metal biogeochemistry, revealing two distinct mechanisms of the sulfur cycle between the two main seasons, whereas spatial variability effects were not conclusive.
Collapse
Affiliation(s)
- Zeinah Elhaj Baddar
- Savannah
River Ecology Lab, University of Georgia, PO Drawer E, Aiken, South
Carolina 29802, United States
| | - Raven Bier
- Savannah
River Ecology Lab, University of Georgia, PO Drawer E, Aiken, South
Carolina 29802, United States
| | - Breann Spencer
- Savannah
River Ecology Lab, University of Georgia, PO Drawer E, Aiken, South
Carolina 29802, United States
| | - Xiaoyu Xu
- Savannah
River Ecology Lab, University of Georgia, PO Drawer E, Aiken, South
Carolina 29802, United States
- Warnell
School of Forestry and Natural Resources, University of Georgia, University of Georgia, Athens, Georgia 30605, United States
| |
Collapse
|
2
|
Zhao F, Zhang X, Xu Z, Feng C, Pan W, Lu L, Luo W. Review of hydraulic conditions optimization for constructed wetlands. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122377. [PMID: 39243655 DOI: 10.1016/j.jenvman.2024.122377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/01/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Hydraulic conditions exert a comprehensive and vital influence on constructed wetlands (CWs). However, research on this subject is relatively limited. Hydraulic parameters can be categorized into design and operational parameters based on their properties. The design parameters are represented by the hydraulic gradient, substrate porosity, and aspect ratio, while operational parameters are represented by the hydraulic retention time, hydraulic loading rate, and water depth. These parameters directly or indirectly affect the operational lifespan and pollutant removal performance of CWs. Currently, the primary measures for optimizing the hydraulic conditions of CWs involve hydraulic structure and numerical simulation optimization methods. In this review, we aimed to elucidate the impact of hydraulic conditions on CW performance and summarize current optimization strategies. By highlighting the significance of hydraulic parameters in enhancing pollutant removal and extending operational lifespan, this review provides valuable insights for improving CW design and management. The findings will be useful for researchers and practitioners seeking to optimize CW systems and advance the application of nature-based solutions for wastewater treatment.
Collapse
Affiliation(s)
- Fangxing Zhao
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Xinwen Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| | - Zhenghe Xu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| | - Chengye Feng
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Weiyan Pan
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Le Lu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Wancheng Luo
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| |
Collapse
|
3
|
Bafrani AH, Mirbagheri SA, Shafiepour E, Kinsley C, Stefanakis A. Investigating the effect of hydraulic residence time, artificial aeration and plants presence on different constructed wetland designs treating oil industry effluent. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122348. [PMID: 39244923 DOI: 10.1016/j.jenvman.2024.122348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/31/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024]
Abstract
Constructed Wetlands (CW) have gained popularity over the last decades due to their cost-effectiveness, easy and simple operation and environmental compatibility in wastewater treatment. This ecological engineering technology appears particularly ideal for low-income regions. In this study, three widely used CW types (horizontal flow, vertical flow, and hybrid CW) were constructed and evaluated for their effectiveness in removing various pollution parameters (BOD5, COD, TSS, NH4-N, NO3-N, and TP) from an industrial effluent. Different configurations were tested such as CW type, hydraulic residence time, plants presence, and artificial aeration. Results showed that the hybrid CW configuration (i.e., vertical flow CW followed by horizontal subsurface flow CW) achieved the highest removal rates of all pollutants, i.e., more than 90% of BOD5, COD, TSS, and NH4-N. The single horizontal flow and vertical flow CW designs showed variations in the removal of NO3-N and TP (less than 30%), which were significantly improved (50% and 70%, respectively) by using the hybrid CW system. Artificial aeration significantly improves the performance of the CW system, especially for ammonia nitrogen and organic matter removal, while plants presence is also beneficial in the treatment performance. An 8-days HRT seems to be adequate for high removal rates in passive CW designs, though in aerated wetlands a lower HRT of 4 days seems sufficient. These findings suggest that the hybrid CW system could be a promising option for efficient wastewater treatment in developing regions.
Collapse
Affiliation(s)
- Ali Hasani Bafrani
- Department of Environmental Engineering, Faculty of Civil Engineering, K. N. Toosi University of Technology, Tehran, Iran.
| | - Seyed Ahmad Mirbagheri
- Department of Environmental Engineering, Faculty of Civil Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Ehsan Shafiepour
- Department of Civil Engineering, University of Ottawa, ON, Canada
| | | | - Alexandros Stefanakis
- Laboratory of Environmental Engineering and Management, School of Chemical and Environmental Engineering, Technical University of Crete, 73100, Chania, Greece.
| |
Collapse
|
4
|
Kiran PS, Mandal P, Jain M, Ghosal PS, Gupta AK. A comprehensive review on the treatment of pesticide-contaminated wastewater with special emphasis on organophosphate pesticides using constructed wetlands. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122163. [PMID: 39182378 DOI: 10.1016/j.jenvman.2024.122163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/29/2024] [Accepted: 08/07/2024] [Indexed: 08/27/2024]
Abstract
Pesticides pose a significant threat to aquatic ecosystems due to their persistent nature and adverse effects on biota. The increased detection of pesticides in various water bodies has prompted research into their toxicological impacts and potential remediation strategies. However, addressing this issue requires the establishment of robust regulatory frameworks to determine safe thresholds for pesticide concentrations in water and the development of effective treatment methods. This assessment underscores the complex ecological risks associated with organophosphate pesticides (OPPs) and emphasizes the urgent need for strategic management and regulatory measures. This study presents a detailed examination of the global prevalence of OPPs and their potential adverse effects on aquatic and human life. A comprehensive risk assessment identifies azinphos-methyl, chlorpyrifos, and profenfos as posing considerable ecological hazard to fathead minnow, daphnia magna, and T. pyriformis. Additionally, this review explores the potential efficacy of constructed wetlands (CWs) as a sustainable approach for mitigating wastewater contamination by diverse pesticide compounds. Furthermore, the review assess the effectiveness of CWs for treating wastewater contaminated with pesticides by critically analyzing the removal mechanism and key factors. The study suggests that the optimal pH range for CWs is 6-8, with higher temperatures promoting microbial breakdown and lower temperatures enhancing pollutant removal through adsorption and sedimentation. The importance of wetland vegetation in promoting sorption, absorption, and degradation processes is emphasized. The study emphasizes the importance of hydraulic retention time (HRT) in designing, operating, and maintaining CWs for pesticide-contaminated water treatment. The removal efficiency of CWs ranges from 38% to 100%, depending on factors like pesticide type, substrate materials, reactor setup, and operating conditions.
Collapse
Affiliation(s)
- Pilla Sai Kiran
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Pubali Mandal
- Department of Civil Engineering, Birla Institute of Technology and Science Pilani, Pilani, 333031, Rajasthan, India.
| | - Mahak Jain
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Partha Sarathi Ghosal
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
5
|
Jucherski A, Walczowski A, Bugajski P, Operacz A. Reliability of organic and biogenic pollutant removal in selected technologies used in domestic wastewater treatment plants: A comparative analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120381. [PMID: 38359626 DOI: 10.1016/j.jenvman.2024.120381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/03/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
The results of a comparative study of two different technological solutions applicable to decentralised domestic wastewater treatment systems are presented. A hybrid reactor with activated sludge and mobile biofilm carriers moving in wastewater is one of them, and an innovative quasi-technical combination of a biological reactor with a sprinkled bed filled with sintered clay granules, followed in the process line by an innovative slope type filtration bed, is the other one. The study has shown a significant advantage of filter bed installations in functional quality, expressed in low values of indicators and pollutant concentrations. In the comparison of technological reliability and probability of exceeding the requirement values of BOD5 = 40 mg/L, Facility 1 achieved technological reliability of 70% and probability of exceeding was 23%. Technological reliability of Facility 2 in this component was 100% and P = 0%. Both facilities presented 100% technological reliability in the COD indicators, with zero probability of exceeding the required value of 150 mg/L. The reliability of TSS removal was similarly high in both facilities: 91% and 100%. The higher functional quality of Facility 2 was evident in TN and PO4-P parameters, where the period of its operation with exceeded values did not exceed 20% and 13%, respectively, with a low probability of exceeding the value of 18% and 2.5%, respectively. However, Facility 1 was unreliable in this regard in 90% and 84%, with a very high probability of exceeding the required values of these parameters: 88% and 72%. This facility does not meet the required criteria in this respect and may cause a risk to the aquatic environment if wastewater is discharged directly into open watercourses, or if it enters shallow groundwater. The use of a suitable, biologically active soil-plant receiver can eliminate this risk.
Collapse
Affiliation(s)
- Andrzej Jucherski
- Mountain Centre of Research, Implementations and Education in Tylicz, Institute of Technology and Life Sciences - National Research Institute in Falenty, 25A Pułaski Str., 33-383, Tylicz, Poland.
| | - Andrzej Walczowski
- Mountain Centre of Research, Implementations and Education in Tylicz, Institute of Technology and Life Sciences - National Research Institute in Falenty, 25A Pułaski Str., 33-383, Tylicz, Poland.
| | - Piotr Bugajski
- Department of Sanitary Engineering and Water Management, Faculty of Environmental Engineering and Geodesy, University of Agriculture in Kraków, Al. Mickiewicza 21, 31-120, Kraków, Poland.
| | - Agnieszka Operacz
- Department of Sanitary Engineering and Water Management, Faculty of Environmental Engineering and Geodesy, University of Agriculture in Kraków, Al. Mickiewicza 21, 31-120, Kraków, Poland.
| |
Collapse
|
6
|
Beltrán-Flores E, Sarrà M, Blánquez P. A review on the management of rinse wastewater in the agricultural sector. CHEMOSPHERE 2024; 352:141283. [PMID: 38280647 DOI: 10.1016/j.chemosphere.2024.141283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 01/15/2024] [Accepted: 01/21/2024] [Indexed: 01/29/2024]
Abstract
Pesticides have become indispensable compounds to sustain global food production. However, a series of sustainable agricultural practices must be ensured to minimize health and environmental risks, such as eco-friendly cultivation techniques, the transition to biopesticides, appropriate hygiene measures, etc. Hygiene measures should include the management of rinse wastewater (RWW) produced when cleaning agricultural equipment and machinery contaminated with pesticides (among other pollutants), such as sprayers or containers. Although some technical guidelines encourage the reuse of RWW in agricultural fields, in many cases the application of specialized treatments is a more environmentally friendly option. Solar photocatalysis was found to be the most widely studied physical-chemical method, especially in regions with intense solar radiation, generally using catalysts such as TiO2, Na2S2O8, and H2O2, operating for relatively short treatment periods (usually from 10 min to 9 h) and requiring accumulated radiation levels typically ranging from 3000 to 10000 kJ m-2. Biological treatments seem to be particularly suitable for this application. Among them, biobed is a well-established and robust technology for the treatment of pesticide-concentrated water in some countries, with operating periods that typically range from 1 to 24 months, and with temperatures preferably close to 20 °C; but further research is required for its implementation in other regions and/or conditions. Solar photocatalysis and biobeds are the only two systems that have been tested in full-scale treatments. Alternatively, fungal bioremediation using white rot fungi has shown excellent efficiencies in the degradation of pesticides from agricultural wastewater. However, greater efforts should be invested in gathering more information to consolidate these technologies and expand their use in the agricultural sector.
Collapse
Affiliation(s)
- Eduardo Beltrán-Flores
- Departament d'Enginyeria Química Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Montserrat Sarrà
- Departament d'Enginyeria Química Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
| | - Paqui Blánquez
- Departament d'Enginyeria Química Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| |
Collapse
|
7
|
Soldo C, Wilson RS, Walpole H, Shaffer-Morrison CD. Farmer willingness to implement constructed wetlands in the Western Lake Erie Basin. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115928. [PMID: 35985262 DOI: 10.1016/j.jenvman.2022.115928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 07/29/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Harmful algal blooms (HABs) remain a persistent issue that threatens both the physical and economic health of the Western Lake Erie basin (WLEB). Edge-of-field conservation practices are recommended to help manage agricultural runoff and reach phosphorus reduction targets in freshwater systems like the Great Lakes (in the USA). Constructed wetlands (CWs) are a specific edge-of-field practice that could prove critical to these efforts. While we know less about why wetlands are installed or implemented than many other private lands conservation practices, prior research does indicate that offsetting the costs of land taken out of production, or targeting land that is not suitable for production will be critical. Our research builds on these findings by assessing how the perceived productivity of the land moderates the relationship between other potential motivating factors and willingness to install wetlands. We also assess how these critical motivations may vary by the conservation-mindedness of the farmer. Our results indicate that the decision to install a constructed wetland is not entirely dependent on the productivity of the land. Associated beneficial functions (e.g., aesthetics, hunting opportunities) positively influence willingness, even on productive land for those farmers who value conservation. We suggest that program providers emphasize the diverse benefits of constructed wetlands, and target farmers who exhibit stronger conservation identities as they may be more likely to consider wetlands regardless of the productivity of their land.
Collapse
Affiliation(s)
- Cole Soldo
- School of Environment and Natural Resources, The Ohio State University, Kottman Hall, 2021 Coffey Road, Columbus, OH, 43210, USA
| | - Robyn S Wilson
- School of Environment and Natural Resources, The Ohio State University, Kottman Hall, 2021 Coffey Road, Columbus, OH, 43210, USA.
| | - Hugh Walpole
- School of Environment and Natural Resources, The Ohio State University, Kottman Hall, 2021 Coffey Road, Columbus, OH, 43210, USA
| | - C Dale Shaffer-Morrison
- School of Environment and Natural Resources, The Ohio State University, Kottman Hall, 2021 Coffey Road, Columbus, OH, 43210, USA
| |
Collapse
|
8
|
Singh B, Venkatramanan V, Deshmukh B. Monitoring of land use land cover dynamics and prediction of urban growth using Land Change Modeler in Delhi and its environs, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:71534-71554. [PMID: 35597835 PMCID: PMC9124063 DOI: 10.1007/s11356-022-20900-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/12/2022] [Indexed: 05/30/2023]
Abstract
In the recent decades, cities have been expanding at a great pace which changes the landscape rapidly as a result of inflow of people from rural areas and economic progression. Therefore, understanding spatiotemporal dynamics of human induced land use land cover changes has become an important issue to deal with the challenges for making sustainable cities. This study aims to determine the rate of landscape transformations along with its causes and consequences as well as predicting urban growth pattern in Delhi and its environs. Landsat satellite images of 1989, 2000, 2010 and 2020 were used to determine the changes in land use land cover using supervised maximum likelihood classification. Subsequently, Land Change Modeler (LCM) module of TerrSet software was used to generate future urban growth for the year 2030 based on 2010 and 2020 dataset. Validation was carried out by overlaying the actual and simulated 2020 maps. The change detection results showed that urban and open areas increased by 13.44% and 2.40%, respectively, with a substantial decrease in crop land (10.88%) from 1989 to 2020 and forest area increased by 3.48% in 2020 due to restoration programmes. Furthermore, the simulated output of 2030 predicted an increase of 24.30% in urban area and kappa coefficient 0.96. Thus, knowledge of the present and predicted changes will help decision-makers and planners during the process of formulating new sustainable policies, master plans and economic strategies for rapidly growing cities with urban blue-green infrastructures.
Collapse
Affiliation(s)
- Bhavna Singh
- School of Inter-Disciplinary and Trans-Disciplinary Studies, Indira Gandhi National Open University Maidan Garhi, Delhi, 110068, India.
| | - Veluswamy Venkatramanan
- School of Inter-Disciplinary and Trans-Disciplinary Studies, Indira Gandhi National Open University Maidan Garhi, Delhi, 110068, India
| | - Benidhar Deshmukh
- School of Sciences, Indira Gandhi National Open University, Maidan Garhi, Delhi, 110068, India
| |
Collapse
|
9
|
Drzymała J, Kalka J, Sochacki A, Felis E. Towards Sustainable Wastewater Treatment: Bioindication as a Technique for Supporting Treatment Efficiency Assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11859. [PMID: 36231168 PMCID: PMC9565086 DOI: 10.3390/ijerph191911859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/07/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Constructed wetlands (CWs) are a promising alternative for conventional methods of wastewater treatment. However, the biggest challenge in wastewater treatment is the improvement of the technology used so that it is possible to remove micropollutants without additional costs. The impact of wastewater treatment in CWs on toxicity towards Aliivibrio fischeri, Daphnia magna and Lemna minor was investigated. The effects of feeding regime (wastewater fed in five batches per week at a batch volume of 1 L, or twice per week at a batch volume of 2.5 L) and the presence of pharmaceuticals (diclofenac and sulfamethoxazole), as well as the presence of Miscantus giganteus plants in CW columns (twelve of the 24 columns that were planted) were analyzed. A reduction in toxicity was observed in all experimental setups. The effluents from constructed wetlands were classified as moderately toxic (average TU for A. fischeri, D. magna and L. minor was 0.9, 2.5 and 5.5, respectively). The feeding regime of 5 days of feeding/2 days of resting resulted in a positive impact on the ecotoxicological and chemical parameters of wastewater (removal of TOC, N-NH4 and pharmaceuticals). Extended exposure of Miscantus giganteus to the wastewater containing pharmaceuticals resulted in elevated activity of antioxidant enzymes (catalase and superoxide dismutase) in leaf material.
Collapse
Affiliation(s)
- Justyna Drzymała
- The Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Joanna Kalka
- Environmental Biotechnology Department, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Akademicka str 2A, 44-100 Gliwice, Poland
| | - Adam Sochacki
- Environmental Biotechnology Department, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Akademicka str 2A, 44-100 Gliwice, Poland
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic
| | - Ewa Felis
- Environmental Biotechnology Department, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Akademicka str 2A, 44-100 Gliwice, Poland
| |
Collapse
|
10
|
The Impact of Sustainable Management Strategies of Sports Apparel Brands on Brand Reliability and Purchase Intention through Single Person Media during COVID-19 Pandemic: A Path Analysis. SUSTAINABILITY 2022. [DOI: 10.3390/su14127076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Recently, a variety of efforts have been taken to convey sustainable management strategies of sports apparel brands through single-person media. However, there is a lack of theoretical information on the path that leads these corporate marketing activities to brand reliability and purchase intention of consumers. Therefore, this study aims to analyze the path through which the sustainable management strategy established by a sports apparel brand affects the brand awareness and reliability, as well as the purchase intention of consumers when experiencing this strategy through single-person media. The results are summarized as follows: Firstly, the sustainable management strategies of a sports apparel brand carried out through single-person media had statistically significant positive impacts on the benevolence reliability perceived by single-person media viewers. Secondly, benevolence also had a statistically significant positive impact on the consumers’ purchase intention. It is expected that the results of this study will serve as an important resource for the methods of utilizing sustainable management strategies among sports apparel brands in the future.
Collapse
|
11
|
Comparative Efficiency of Two Different Constructed Wetlands for Wastewater Treatment of Small Populations in Mediterranean Continental Climate. SUSTAINABILITY 2022. [DOI: 10.3390/su14116511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The treatment of wastewater from small towns supposes problems of economic efficiency, leading to very high environmental costs in areas with low population density. Constructed wetlands (CW) seems to be the more suitable solution for this kind of situation, but further investigations are needed regarding their efficiency under different climatic conditions. This work presents the results concerning urban wastewater treatment by means of two different constructed wetlands using macrophytes: horizontal subsurface flow (HSSF) and free water surface (FWS). The systems are located in a Mediterranean continental climate area and are fed by a by-pass at the entrance of a wastewater treatment plant. A four-year sampling campaign at the outlet of the CW allowed verifying their relative effectiveness in removing pollutants in the different seasons of the year. BOD5, COD, and TSS were significantly removed (with average reductions of 55%, 60%, and 57%, respectively) by these natural phytodepuration systems, with HSSF being more efficient during plants’ dormancy than FWS, but the concentrations of nutrients indicated that cumulative effects occur in CW with the need of adequate annual maintenance. It was found that the main factors controlling the efficiency of such systems throughout the year are the period of vegetative development, the presence/absence of a solid substrate, and the pollutant load of the wastewater inlet.
Collapse
|
12
|
Pellizzaro A, Dal Ferro N, Fant M, Zerlottin M, Borin M. Emerged macrophytes to the rescue: Perfluoroalkyl acid removal from wastewater and spiked solutions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 309:114703. [PMID: 35168130 DOI: 10.1016/j.jenvman.2022.114703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
This study evaluated the potential for three emergent aquatic macrophytes to remove perfluoroalkyl acids (PFAAs) from contaminated waters in constructed wetland systems. Three plants (Iris pseudacorus L., Phragmites australis (Cav.) Trin. Ex Steud., and Typha latifolia L.) were exposed to an effluent from a tannery wastewater treatment plant (WWTP) that contained residual PFAAs, and to three spiked solutions with increasing concentrations of 11 perfluorocarboxylic acids (PFCAs) and three perfluorosulfonic acids (PFSAs) (500, 2500, and 5000 ng L-1, each). Thirty-six lightweight expanded clay aggregate- and vegetation-filled tanks (0.35 × 0.56 × 0.31 m) were exposed to the tested solutions at the Acque del Chiampo SpA WWTP in Arzignano (NE Italy). Throughout the experiment, PFAA concentrations and physicochemical water parameters were monitored via measures of the clay material, plastic tank inner surfaces, and below- and above-ground biomasses (after harvest). Vegetation growth was shown to be unaffected by increased PFAA levels in the spiked solutions. Alternatively, total biomass was significantly reduced when WWTP water was used, although we attribute this finding to the relatively high salinity that mainly restricted Typha and Iris development. The tested macrophytes were found to remove a significant PFAA mass from the contaminated waters (36% to ca. 80%, on average) when Phragmites was subjected to the highest PFAA concentrations. Such large accumulations were primarily associated with long C-chain PFAA stabilization in belowground biomass (26%, on average). Most PFAA translocations were observed in Typha, which accumulated mostly short perfluorinated C-chain PFBA, PFPeA, and PFHxA in the aboveground biomass (16%, on average). Despite some growth limitations, Iris was still the most efficient macrophyte for translocating PFBS under WWTP.
Collapse
Affiliation(s)
- Alessandro Pellizzaro
- Acque Del Chiampo S.p.A, Servizio Idrico Integrato, Via Ferraretta 20, 36071, Arzignano, Italy
| | - Nicola Dal Ferro
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale Dell'Università 16, 35020, Legnaro, Italy.
| | - Massimo Fant
- Acque Del Chiampo S.p.A, Servizio Idrico Integrato, Via Ferraretta 20, 36071, Arzignano, Italy
| | - Mirco Zerlottin
- Acque Del Chiampo S.p.A, Servizio Idrico Integrato, Via Ferraretta 20, 36071, Arzignano, Italy
| | - Maurizio Borin
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale Dell'Università 16, 35020, Legnaro, Italy
| |
Collapse
|
13
|
Sharma R, Malaviya P. Constructed wetlands for textile wastewater remediation: A review on concept, pollutant removal mechanisms, and integrated technologies for efficiency enhancement. CHEMOSPHERE 2022; 290:133358. [PMID: 34929266 DOI: 10.1016/j.chemosphere.2021.133358] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/12/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Textile industries are among the ecologically unsustainable industries that release voluminous wastewater threatening ecosystem health. The constructed wetlands (CWs) are low-cost eco-technological interventions for the management of industrial wastewaters. The CWs are self-sustaining remediation systems that do not require an external source of energy and encompass simple operational mechanisms including biological (bioremediation and phytoremediation), chemical, and physical processes for pollutant removal. This review idiosyncratically scrutinizes the recent advances and developments in CWs, and their types employed for textile wastewater treatment. The major focus is on mechanisms involved during the removal of contaminants from textile wastewater in CWs and factors affecting the performance of the system. The article also discusses the State-of-the-Art integrated technologies e.g., CW-MFCs/algal ponds/sponge iron coupled systems, for the performance and sustainability enhancement of CWs. All the important aspects together with the technology amalgamation are critically synthesized for establishing suitable strategies for CW-based textile wastewater treatment systems.
Collapse
Affiliation(s)
- Rozi Sharma
- Department of Environmental Sciences, University of Jammu, Jammu, 180006, Jammu and Kashmir, India
| | - Piyush Malaviya
- Department of Environmental Sciences, University of Jammu, Jammu, 180006, Jammu and Kashmir, India.
| |
Collapse
|
14
|
Hitchcock DR, Bell NL, Strosnider W, Smith MC. Spatiotemporal water quality variability in a highly loaded surface flow wastewater treatment wetland. JOURNAL OF ENVIRONMENTAL QUALITY 2022; 51:101-111. [PMID: 34875100 DOI: 10.1002/jeq2.20309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
This study evaluates spatiotemporal relationships between water quality parameters (WQPs), nutrients, suspended solids, and biochemical oxygen demand (BOD) concentrations within an engineered wastewater treatment wetland system in the Georgia Piedmont, USA. We explored factors related to treatment efficiency within a heavily loaded 630-m2 surface flow wetland system over a 2-yr period. Relationships between temperature, dissolved oxygen (DO), and oxidation-reduction potential (ORP) were observed; relationships were also seen between these WQPs and nutrient concentrations. Because temperature, DO, and ORP affect nitrogen (N) cycling rates, seasonal trends in N forms were evident in the system. Organic N and inorganic/organic phosphorus concentrations correlated with solids concentrations in the vegetated system without exhibiting seasonal trends. Surface water within the vegetated section generally exhibited anoxic conditions, leading to removal of nitrate-N within the system; however, limited mineralization and nitrification occurred, which greatly limited overall N removal. Plant selection and lack of maintenance likely led to high solids and BOD contributions to treatment wetland surface water, which varied substantially between and along monitored transects. Because so few studies have investigated treatment dynamics within treatment wetland cells, focusing solely on influent/effluent characterization, radical spatiotemporal variability may be the norm as opposed to the commonly accepted assumptions of relatively uniform pollutant degradation across treatment wetland cells. This spatiotemporal variability in WQPs underscores the dynamic nature of treatment wetlands and the need for routine maintenance, including sludge removal and plant harvesting.
Collapse
Affiliation(s)
- Daniel R Hitchcock
- Belle W. Baruch Institute of Coastal Ecology and Forest Science, Clemson Univ., Georgetown, SC, 29440, USA
| | - Natasha L Bell
- Dep. of Engineering, Water Resources Center, East Carolina Univ., Greenville, NC, 27858, USA
| | - William Strosnider
- Baruch Marine Field Lab., Univ. of South Carolina, Georgetown, SC, 29440, USA
| | - Matt C Smith
- Pee Dee Research and Education Center, Clemson Univ., Florence, SC, 29506, USA
| |
Collapse
|
15
|
Omidinia-Anarkoli T, Shayannejad M. Improving the quality of stabilization pond effluents using hybrid constructed wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149615. [PMID: 34438151 DOI: 10.1016/j.scitotenv.2021.149615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/08/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Water shortage and excessive use of water resources in arid and semi-arid regions, such as Iran, highlights the importance of using treated wastewater, especially for the highly demanding agricultural sector. Constructed wetlands (CWs) are among green technologies that offer an efficient and cost-effective wastewater treatment. This study investigates the complementary treatment of effluent from the Fooladshahr wastewater treatment plant, Isfahan, Iran, using pilot-scale CWs with horizontal (H-CW) and horizontal-vertical flow (HV-CW). The performance of two substrates, pumice and gravel, and the effect of using plants (Phragmites australis) was compared. Maximum removal efficiencies of total suspended solids (TSS) and biochemical oxygen demand (BOD5) were observed in the case of unplanted and planted HV-CW with pumice bed, respectively. In the case of gravel bed, planted H-CWs demonstrated maximum chemical oxygen demand (COD) removal efficiency. The highest mean outflow concentrations for TSS, BOD5 and COD were obtained in unplanted H-CW with pumice bed, likely due to shorter retention times compared to HV-CWs, as well as due to the absence of plants providing the required physicochemical and biological conditions for high performance treatment. Phosphate (PO43-) removal efficiency demonstrated seasonal dependency, where the highest values were obtained in warm seasons. In the case of fecal coliforms (FC), no significant differences were observed between the studied HV-CWs during the whole study period. Based on our results, planted H-CW with gravel bed provided an optimum removal efficiency while requiring a smaller footprint and lower expenditure than HV-CWs. This study demonstrates the application of CWs as an affordable solution for treating domestic wastewater for various reuse application in developing countries with water crisis, such as Iran.
Collapse
Affiliation(s)
- Tayebeh Omidinia-Anarkoli
- Department of Water Engineering, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Mohammad Shayannejad
- Department of Water Engineering, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| |
Collapse
|
16
|
Patyal V, Jaspal D, Khare K. Materials in constructed wetlands for wastewater remediation: A review. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:2853-2872. [PMID: 34595802 DOI: 10.1002/wer.1648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
The wastewater treatment industry is constantly evolving to abate emerging contaminants and to meet stringent legislative requirements. The existing technologies need to be modified, or new innovative treatment techniques need to be developed to ensure environmental protection and secure sustainability in the future. Emphasis is mainly on nutrient recovery, energy-efficient systems, zero waste generation, and environmentally friendly techniques. Constructed wetlands (CWs) have evolved as natural, eco-friendly, economical, and low-maintenance alternatives for wastewater remediation. These wetlands employ several materials as adsorbents for the treatment, commonly known as media/substrate. This review paper presents an assessment of various materials that can be used as substrates in CWs for the efficient removal of organic and non-biodegradable pollutants in different types of wastewaters. The effect of pH, mineral composition, specific surface area, and porosity of various natural materials and agricultural and industrial wastes used as media in CWs for wastewater remediation was discussed. The study showed that different substrates like alum sludge, limestone, coal slags, rice husk, and sand had removal efficiency for chemical oxygen demand (COD): 71.8%-82%, total phosphorous (TP): 77%-80%, and total nitrogen (TN): 52%-82% for different types of wastewaters. It also highlights the challenges related to the long-term sustainability of these materials. PRACTITIONER POINTS: Physicochemical characteristics influence the removal efficiency of the materials Life of media is also important along with removal efficiency and cost The sustainability of materials is very crucial for the overall performance of the system.
Collapse
Affiliation(s)
- Vandana Patyal
- Department of Civil Engineering, Symbiosis Institute of Technology (SIT), Symbiosis International (Deemed University) (SIU), Pune, India
| | - Dipika Jaspal
- Department of Applied Science, Symbiosis Institute of Technology (SIT), Symbiosis International (Deemed University) (SIU), Pune, India
| | - Kanchan Khare
- Department of Civil Engineering, Symbiosis Institute of Technology (SIT), Symbiosis International (Deemed University) (SIU), Pune, India
| |
Collapse
|
17
|
Yadav A, Jadhav DA, Ghangrekar MM, Mitra A. Effectiveness of constructed wetland integrated with microbial fuel cell for domestic wastewater treatment and to facilitate power generation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 29:51117-51129. [PMID: 34826088 DOI: 10.1007/s11356-021-17517-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/09/2021] [Indexed: 02/05/2023]
Abstract
Constructed wetlands (CWs) have gained a lot of attention for wastewater treatment due to robustness and natural pollutant mitigation characteristics. This widely acknowledged technology possesses enough merits to derive direct electricity in collaboration with microbial fuel cell (MFC), thus taking advantage of microbial metabolic activities in the anoxic zone of CWs. In the present study, two identical lab-scale CWs were selected, each having 56 L capacity. One of the CW integrated with MFC (CW-MFC) contains two pairs of electrodes, i.e., carbon felt and graphite plate. The first pair of CW-MFC consists of a carbon felt cathode with a graphite plate anode, and the second pair contains a graphite plate cathode with a carbon felt anode. The other CW was not integrated with MFC and operated as a traditional CW for evaluating the performance. CW-MFC and CW were operated in continuous up-flow mode with a hydraulic retention time of 3 days and at different organic loading rates (OLRs) per unit surface area, such as 1.45 g m-2 day-1 (OLR-1), 2.43 g m-2 day-1 (OLR-2), and 7.25 g m-2 day-1 (OLR-3). The CW-MFC was able to reduce the organic matter, phosphate, and total nitrogen by 92%, 93%, and 70%, respectively, at OLR of 1.45 g m-2 day-1, which was found to be higher than that obtained in conventional CW. With increase in electrochemical redox activities, the second pair of electrodes made way for 3 times higher power density of 16.33 mW m-2 as compared to the first pair of electrodes in CW-MFC (5.35 mW m-2), asserting carbon felt as a good anode material to be used in CW-MFC. The CW-MFC with carbon felt as an anode material is proposed to improve the electro-kinetic activities for scalable applications to achieve efficient domestic wastewater treatment and electricity production.
Collapse
Affiliation(s)
- Anamika Yadav
- Department of Agricultural Engineering, Triguna Sen School of Technology, Assam University Silchar, Assam, 788011, India
- Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur, 721302, India
| | - Dipak A Jadhav
- School of Water Resources, Indian Institute of Technology, Kharagpur, 721302, India.
- Department of Agricultural Engineering, Maharashtra Institute of Technology, Aurangabad, Maharashtra, 431010, India.
| | - Makarand M Ghangrekar
- Department of Civil Engineering, Indian Institute of Technology, Kharagpur, 721302, India.
| | - Arunabha Mitra
- Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur, 721302, India
| |
Collapse
|
18
|
Shen S, Li X, Lu X. Recent developments and applications of floating treatment wetlands for treating different source waters: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:62061-62084. [PMID: 34586569 DOI: 10.1007/s11356-021-16663-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Most water bodies around the world suffer from pollution to varying degrees. Floating treatment wetlands (FTWs) are a simple and efficient ecological treatment technology and have been widely studied and applied as a sustainable solution for different source waters. Based on the analysis of abundant literature in the last ten years, this paper systematically reviews the history and the latest development of FTWs. Meanwhile, the treatment performance and pollutant removal mechanisms of FTWs on the natural water, stormwater, domestic wastewater, industrial wastewater, and agricultural runoff are analyzed. In particular, very interesting information is provided, such as water depth, water surface coverage, the ratio of dissolved to total phosphorous (DRP/TP), the ratio of nitrogen to phosphorous (N/P), BOD/COD ratio, and its effects on the efficiency and removal mechanisms of FTWs. This information will provide useful references and guidance for optimizing the design of FTW and pollutant treatment efficiency of different source waters. This paper also provides an objective review of the limitations of FTWs. Subsequently, the enhancements of FTW technology which are recognized to be effective, including aeration, adding functional fillers or obligate degrading bacteria, and construction of hybrid FTWs, are summarized and recommendations are made for further research.
Collapse
Affiliation(s)
- Shuting Shen
- Sch Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China
| | - Xiang Li
- Sch Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China
| | - Xiwu Lu
- Sch Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China.
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China.
| |
Collapse
|
19
|
Elhaj Baddar Z, Peck E, Xu X. Temporal deposition of copper and zinc in the sediments of metal removal constructed wetlands. PLoS One 2021; 16:e0255527. [PMID: 34343201 PMCID: PMC8330884 DOI: 10.1371/journal.pone.0255527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/17/2021] [Indexed: 11/18/2022] Open
Abstract
The objective of this study was to explore the effects of time, seasons, and total carbon (TC) on Copper (Cu) and Zinc (Zn) deposition in the surface sediments. This study was performed at the H-02 constructed wetland on the Savannah River Site (Aiken, SC, USA). Covering both warm (April-September) and cool (October-March) seasons, several sediment cores were collected twice a year from the H-02 constructed wetland cells from 2007 to 2013. Total concentrations of Cu and Zn were measured in the sediments. Concentrations of Cu and Zn (mean ± standard deviation) in the surface sediments over 7 years of operation increased from 6.0 ± 2.8 and 14.6 ± 4.5 mg kg-1 to 139.6 ± 87.7 and 279.3 ± 202.9 mg kg-1 dry weight, respectively. The linear regression model explained the behavior and the variability of Cu deposition in the sediments. On the other hand, using the generalized least squares extension with the linear regression model allowed for unequal variance and thus produced a model that explained the variance properly, and as a result, was more successful in explaining the pattern of Zn deposition. Total carbon significantly affected both Cu (p = 0.047) and Zn (p < 0.001). Time effect on Cu deposition was statistically significant (p = 0.013), whereas Zn was significantly affected by the season (p = 0.009).
Collapse
Affiliation(s)
- Zeinah Elhaj Baddar
- Savannah River Ecology Laboratory, University of Georgia, Aiken, South Carolina, United States of America
- * E-mail:
| | - Erin Peck
- Savannah River Ecology Laboratory, University of Georgia, Aiken, South Carolina, United States of America
| | - Xiaoyu Xu
- Savannah River Ecology Laboratory, University of Georgia, Aiken, South Carolina, United States of America
| |
Collapse
|
20
|
Bianchi E, Coppi A, Nucci S, Antal A, Berardi C, Coppini E, Fibbi D, Del Bubba M, Gonnelli C, Colzi I. Closing the loop in a constructed wetland for the improvement of metal removal: the use of Phragmites australis biomass harvested from the system as biosorbent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:11444-11453. [PMID: 33123886 PMCID: PMC7886761 DOI: 10.1007/s11356-020-11291-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/18/2020] [Indexed: 06/01/2023]
Abstract
Among the numerous clean-up techniques for water treatment, sorption methods are widely used for the removal of trace metals. Phragmites australis is a macrophyte commonly used in constructed wetlands for water purification, and in the last decades, its use as biosorbent has attracted increasing attention. In view of a circularly economy approach, this study investigated improvement of trace metal removal by recycling the biomass of P. australis colonizing a constructed wetland, which operates as post-treatment of effluent wastewater from an activated sludge plant serving the textile industrial district of Prato (Italy). After the annual mowing of the reed plants, the biomass was dried and blended to derive a sustainable and eco-friendly biosorbent and its sorption capacity for Fe, Cu, and Zn was investigated comparing the batch system with the easier-to-handle column technique. The possibility of regeneration and reuse of the biosorbent was also evaluated. The biomaterial showed an interesting sorption capacity for Cu, Fe, and Zn, both in batch and in column experiments, especially for Fe ions. The immobilization of the biosorbent in column filters induced some improvement in the removal efficiency, and, in addition, this operation mode has the advantage of being much more suitable for practical applications than the batch process.
Collapse
Affiliation(s)
- Elisabetta Bianchi
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121, Florence, Italy
| | - Andrea Coppi
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121, Florence, Italy
| | - Simone Nucci
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121, Florence, Italy
| | | | - Chiara Berardi
- GIDA S.p.A., via di Baciacavallo, 36, 59100, Prato, Italy
| | - Ester Coppini
- GIDA S.p.A., via di Baciacavallo, 36, 59100, Prato, Italy
| | | | - Massimo Del Bubba
- Department of Chemistry, Università degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Florence, Italy
| | - Cristina Gonnelli
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121, Florence, Italy
| | - Ilaria Colzi
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121, Florence, Italy.
| |
Collapse
|
21
|
Chen J, Liu SS, Wang YJ, Li J, Liu YS, Yang F, Ying GG. Optimized constructed wetlands enhance the removal and reduce the risks of steroid hormones in domestic wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143773. [PMID: 33234274 DOI: 10.1016/j.scitotenv.2020.143773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
Constructed wetland (CW) has been proved to be a reliable wastewater treatment technology for removal of various contaminants. However, the removal of specific contaminants such as steroid hormones by wetlands without optimized design parameters would be unstable. Here we investigated the removal mechanism of steroid hormones by constructed wetlands, and optimized various design parameters for the removal of these contaminants in wastewater. Four CW systems with different designs (artificial aeration or series wetland unit) were constructed outdoors to treat raw domestic sewage. The results showed that 9 steroid hormones were detected at concentrations from 7.13 ± 0.28 ng/L to 3040 ± 199 ng/L, with their removal rates ranged from 14.7 ± 3.04% to 100% by these CWs. It was also found that enhanced designs including aeration and series wetland unit can effectively improve the removal of steroid hormones. Combined with ecological risk assessment, CW4 (aerated VSSF CW and aerated HSSF CW combination) was the best design for removal of steroid hormones, but CW2 (VSSF CW with artificial aeration) may be better for urban areas with limited space. Based on mass balance calculation, biodegradation played a dominant role in removing steroid hormones by CWs, while substrate adsorption and plant uptake also played a limited role. The findings from this study suggest that CWs can be optimized to better remove steroid hormones in sewage before discharge into receiving environments.
Collapse
Affiliation(s)
- Jun Chen
- Guangdong Provincial Engineering Technology Research Center for Life and Health of River & Lake, Pearl River Hydraulic Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou 510611, China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
| | - Shuang-Shuang Liu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Yi-Jie Wang
- Guangdong Provincial Engineering Technology Research Center for Life and Health of River & Lake, Pearl River Hydraulic Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou 510611, China
| | - Jie Li
- Guangdong Provincial Engineering Technology Research Center for Life and Health of River & Lake, Pearl River Hydraulic Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou 510611, China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
| | - Fang Yang
- Guangdong Provincial Engineering Technology Research Center for Life and Health of River & Lake, Pearl River Hydraulic Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou 510611, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
22
|
Sustainable Production of Reclaimed Water by Constructed Wetlands for Combined Irrigation and Microalgae Cultivation Applications. HYDROLOGY 2021. [DOI: 10.3390/hydrology8010030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Considering the increasing pressure on freshwater resources due to the constant increase in water consumption and insufficient wastewater control and treatment, recovering wastewater is a path to overcoming water scarcity. The present work describes the potential of reusing treated wastewater (reclaimed water) for irrigation and production of microalgae biomass in an integrated way, through experimental evaluation of plant and microalgae growth, and creation of an application model. First, two parallel experiments were conducted to evaluate the use of reclaimed water produced by a constructed wetland filled with a mix of solid waste: the irrigation of a set of small pots filled with soil and planted with Tagetes patula L., and the cultivation of microalgae Chlorella sp. and a mixed microalgae population with predominant species of the genus Scenedesmus sp. in shaken flasks and tubular bubble column photobioreactors. Results indicated no negative effects of using the reclaimed water on the irrigated plants and in the cultivated microalgae. The growth indicators of plants irrigated with reclaimed water were not significantly different from plants irrigated with fertilized water. The growth indicators of the microalgae cultivated with reclaimed water are within the range of published data. Second, to apply the results to a case study, the seasonal variability of irrigation needs in an academic campus was used to propose a conceptual model for wastewater recovery. The simulation results of the model point to a positive combination of using reclaimed water for the irrigation of green spaces and microalgae production, supported by a water storage strategy. Water abstraction for irrigation purposes can be reduced by 89%, and 2074 kg dry weight microalgae biomass can be produced annually. Besides the need for future work to optimize the model and to add economical evaluation criteria, the model shows the potential to be applied to non-academic communities in the perspective of smarter and greener cities.
Collapse
|
23
|
Gupta S, Srivastava P, Patil SA, Yadav AK. A comprehensive review on emerging constructed wetland coupled microbial fuel cell technology: Potential applications and challenges. BIORESOURCE TECHNOLOGY 2021; 320:124376. [PMID: 33242686 DOI: 10.1016/j.biortech.2020.124376] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 05/09/2023]
Abstract
Constructed wetlands (CWs) integrated with bioelectrochemical systems (BESs) are being intensively researched with the names like constructed wetland-microbial fuel cell (CW-MFC), electro-wetlands, electroactive wetlands, and microbial electrochemical technologies-based constructed wetland since the last decade. The implantation of BES in CW facilitates the tuning of redox activities and electron flow balance in aerobic and anaerobic zones in the CW bed matrix, thereby alleviating the limitation associated with electron acceptor availability and increasing its operational controllability. The benefits of CW-MFC include high treatment efficiency, electricity generation, and recalcitrant pollutant abatement. This article presents CW-MFC technology's journey since its emergence to date, encompassing the research done so far, including the basic principle and functioning, bio-electrocatalysts as its machinery, influential factors for microbial interactions, and operational parameters controlling different processes. A few key challenges and potential applications are also discussed for the CW-MFC systems.
Collapse
Affiliation(s)
- Supriya Gupta
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, (CSIR-HRDC) Campus, Ghaziabad, India
| | - Pratiksha Srivastava
- Australian Maritime College, College of Sciences and Engineering, University of Tasmania, Launceston 7248, Australia
| | - Sunil A Patil
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Knowledge City, Sector 81, SAS Nagar, 140306, Punjab, India
| | - Asheesh Kumar Yadav
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India.
| |
Collapse
|
24
|
The Potential Role of Hybrid Constructed Wetlands Treating University Wastewater—Experience from Northern Italy. SUSTAINABILITY 2020. [DOI: 10.3390/su122410604] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
University wastewater is a type of wastewater with higher pollutants load and flow rate variability than typical domestic wastewater. Constructed wetlands (CW) could be used for university wastewater treatment and consequently for wastewater reuse. A hybrid CW pilot plant, at the University of Bologna (Italy), was monitored to assess its potential to be used at the university. Its treatment performance was monitored for one year and public acceptance explored through a survey. The pilot plant had two treatment lines, (1) a vertical flow CW (VFCW) and a planted horizontal flow CW (HFCW), and (2) the same VFCW and an unplanted horizontal flow filter (HFF). The HFCW achieved higher removals than the HFF, but it was also found to be prone to higher water losses. However, both treatment lines met the Italian limits for discharge in natural water bodies and some of the limits for wastewater reuse in Italy and the EU. The VFCW alone was not able to meet the same limits, demonstrating the advantages of hybrid over single stage CWs. A positive attitude towards CWs and wastewater reuse was found among the survey participants. Therefore, hybrid CWs (planted and unplanted) are considered a feasible technology for application at universities.
Collapse
|
25
|
Liao R, Jin Z, Chen M, Li S. An integrated approach for enhancing the overall performance of constructed wetlands in urban areas. WATER RESEARCH 2020; 187:116443. [PMID: 32979580 DOI: 10.1016/j.watres.2020.116443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/07/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
Constructed wetlands (CWs) are an important component of the urban matrix and play an essential role in the restoration of urban ecological environments. Although existing studies have mainly focused on the efficiency of technologies for removing pollutants in wastewater, efforts to intensify the overall performance of CWs have not been reported. Here, we propose a novel theoretical scheme for promoting optimal overall performance of CWs through the development of an integrated approach, entailing simulation, evaluation, and optimization strategies for their management. We successfully simulated the water distribution system of the Yanfangdian CW in Beijing, China, applying 42 hydrological parameters within the MIKE 21 software. We further evaluated our simulation results by performing an analytic hierarchy process to calculate performance scores. The back propagation neural network was well trained to quantify the relationship between the hydrological parameters and the overall performance of CW based on its water distribution characteristics and their corresponding scores. Subsequently, a genetic algorithm was applied to determine the hydrological solution. A strategy for optimizing the water level and flow was formulated for improving the ecological, purification and storage performances of the targeted CW along with a flexible strategy for ensuring its proper functioning. Our approach provides a robust and universal platform that can contribute significantly to the advancement of CWs that have a wide range of applications and could be extended to other ecosystems.
Collapse
Affiliation(s)
- Renkuan Liao
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, PR China; Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Zhengyuan Jin
- College of Water Conservancy and Civil Engineering, China Agricultural University, Beijing 100083, PR China
| | - Minghong Chen
- College of Water Conservancy and Civil Engineering, China Agricultural University, Beijing 100083, PR China
| | - Shuqin Li
- College of Water Conservancy and Civil Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
26
|
Bianchi E, Biancalani A, Berardi C, Antal A, Fibbi D, Coppi A, Lastrucci L, Bussotti N, Colzi I, Renai L, Scordo C, Del Bubba M, Gonnelli C. Improving the efficiency of wastewater treatment plants: Bio-removal of heavy-metals and pharmaceuticals by Azolla filiculoides and Lemna minuta. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:141219. [PMID: 32768785 DOI: 10.1016/j.scitotenv.2020.141219] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
In this study, we investigated the removal of Fe(III), Cr(VI), Al(III), diclofenac, and levofloxacin from treated wastewater in the presence of the free-floating plants Azolla filiculoides and Lemna minuta, to understand whether these species can be effectively used in a surface flow constructed wetland as wastewater refining treatment. Fe and Al were selected owing to their wide use as coagulant agents in wastewater treatment plants for promoting clariflocculation processes, whilst Cr was chosen due to its common use in industry. Diclofenac and levofloxacin, two molecules belonging to the most widely used pharmaceutical classes in the world, were studied as representative anti-inflammatory drugs and antibiotics, respectively. The study was performed at laboratory scale, exposing the plants separately to each individual contaminant at the concentrations of 5 mg L-1 for the metals (i.e. 2.5-5 times higher than the European limits concerning discharge into surface water), and 1 μg L-1 for the pharmaceuticals (concentration levels commonly found in wastewater). Depending on the plant species and contaminant tested, the range of different effects observed included low toxicity (i.e. Cr, Fe and diclofenac in L. minuta) and even a stimulatory effect on plant growth (i.e. for A. filiculoides with Al and for L. minuta with Al and levofloxacin). Moreover, both species proved to be very effective in the removal of Fe, Al and levofloxacin, with A. filiculoides showing the best performance (removal efficiency of 92%, 96%, and 60%, respectively), whereas for Cr and diclofenac the removal was always less than 10%. The higher removal capacity of A. filiculoides compared to L. minuta can be attributed to its superior tolerance of the contaminants, probably in turn related to the presence of nitrogen-fixing microorganism in its fronds.
Collapse
Affiliation(s)
- Elisabetta Bianchi
- Department of Biology, University of Florence, Via Micheli 1, 50121 Florence, Italy
| | - Andrea Biancalani
- Department of Biology, University of Florence, Via Micheli 1, 50121 Florence, Italy
| | - Chiara Berardi
- GIDA S.p.A., via di Baciacavallo, 36, 59100 Prato, Italy
| | | | | | - Andrea Coppi
- Department of Biology, University of Florence, Via Micheli 1, 50121 Florence, Italy
| | - Lorenzo Lastrucci
- Natural History Museum, Botany, University of Florence, Via G. La Pira, 4, 50121 Florence, Italy
| | - Niccolò Bussotti
- Department of Biology, University of Florence, Via Micheli 1, 50121 Florence, Italy
| | - Ilaria Colzi
- Department of Biology, University of Florence, Via Micheli 1, 50121 Florence, Italy
| | - Lapo Renai
- Department of Chemistry, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Cristina Scordo
- Department of Chemistry, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Massimo Del Bubba
- Department of Chemistry, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy.
| | - Cristina Gonnelli
- Department of Biology, University of Florence, Via Micheli 1, 50121 Florence, Italy
| |
Collapse
|
27
|
Pinelli D, Zanaroli G, Rashed AA, Oertlé E, Wardenaar T, Mancini M, Vettore D, Fiorentino C, Frascari D. Comparative Preliminary Evaluation of 2 In-stream Water Treatment Technologies for the Agricultural Reuse of Drainage Water in the Nile Delta. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2020; 16:920-933. [PMID: 32239751 DOI: 10.1002/ieam.4277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/18/2019] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
In the Nile Delta, a complex network of canals collects drainage water from surface-irrigated fields but also from municipal wastewater. The goal of this work was to assess the technical, environmental, and financial feasibility of the upgrade of a drainage canal (DC) into either an in-stream constructed wetland (ICW) or a canalized facultative lagoon (CFL), in order to produce a water reusable in agriculture according to Egyptian law. The model-based design of the proposed technologies was derived from field experimental data for the ICW and laboratory data for the CFL. Both technologies, integrated by a sedimentation pond and a disinfection canal, led to the attainment of the water quality standards imposed by Egyptian Law 92/2013 for the reuse of drainage water. The life cycle assessment indicated that the upgrade of an existing DC to either an ICW or a CFL results in an extremely small environmental burden, ≤0.3% of that of a traditional activated sludge process. The cost-benefit analysis (CBA) was based on the assumptions that 1) farmers currently irrigate a nonfood crop (cotton) with the low-quality drainage water present in the DC, and 2) thanks to the upgrade to a ICW or CFL, farmers will irrigate a food crop characterized by a higher market price (rice). The CBA indicated that the DC upgrade to an ICW represents an attractive investment because it leads to a financial rate of return >10% over a wide range of cotton market prices. Conversely, the upgrade to a CFL is less attractive due to high investment costs. In conclusion, the upgrade of DCs to ICWs appears a promising option for the treatment of drainage canal water in the Nile Delta, thanks to the high pollutant removal performances, low cost, and negligible environmental burden. Integr Environ Assess Manag 2020;16:920-933. © 2020 SETAC.
Collapse
Affiliation(s)
- Davide Pinelli
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), University of Bologna, Bologna, Italy
| | - Giulio Zanaroli
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), University of Bologna, Bologna, Italy
| | - Ahmed Ali Rashed
- Research Institute for Ground Water, National Water Research Center, Cairo, Egypt
| | - Emmanuel Oertlé
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz
| | | | - Maurizio Mancini
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), University of Bologna, Bologna, Italy
| | - Dario Vettore
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), University of Bologna, Bologna, Italy
| | - Carmine Fiorentino
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), University of Bologna, Bologna, Italy
| | - Dario Frascari
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), University of Bologna, Bologna, Italy
| |
Collapse
|
28
|
Shen S, Li X, Cheng F, Zha X, Lu X. Review: recent developments of substrates for nitrogen and phosphorus removal in CWs treating municipal wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:29837-29855. [PMID: 32472508 DOI: 10.1007/s11356-020-08808-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Substrates are the main factor influencing the performance of constructed wetlands (CWs), and especially play an important role in enhancing the removal of nitrogen and phosphorus from CWs. In the recent 10 years, based on the investigation of emerged substrates used in CWs, this paper summarizes the removal efficiency and mechanism of nitrogen and phosphorus by a single substrate in detail. The simultaneous removal efficiency of nitrogen and phosphorus by different combined substrates is emphatically analyzed. Among them, the reuse of industrial and agricultural wastes as water treatment substrates is recommended due to the efficient pollutant removal efficiency and the principle of waste minimization, also more studies on the environmental impact and risk assessment of the application, and the subsequent disposal of saturated substrates are needed. This work serves as a basis for future screening and development of substrates utilized in CWs, which is helpful to enhance the synchronous removal of nitrogen and phosphorus, as well as improve the sustainability of substrates and CWs. Moreover, further studies on the interaction between different types of substrates in the wetland system are desperately needed.
Collapse
Affiliation(s)
- Shuting Shen
- School of Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China
| | - Xiang Li
- School of Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China
| | - Fangkui Cheng
- School of Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China
| | - Xiao Zha
- School of Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China
| | - Xiwu Lu
- School of Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China.
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China.
| |
Collapse
|
29
|
Gong L, Chen G, Li J, Zhu G. Utilization of rural domestic sewage tailwaters by Ipomoea aquatica in different hydroponic vegetable and constructed wetland systems. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:386-400. [PMID: 32941179 DOI: 10.2166/wst.2020.373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
For the utilization of nitrogen and phosphorus in rural sewage tailwaters after biological treatment, four systems were examined regarding their ability to purify tailwaters of rural domestic sewage: a hydroponic vegetable system (HV), a subsurface flow constructed wetland (SFCW), a compound system with HV followed by SFCW (HV-SFCW), and a compound system with SFCW followed by HV (SFCW-HV). Parameters of the four systems were optimized to maximize the utilization efficiency of nitrogen and phosphorus, and the characteristics and pollutant removal efficiency of the process were investigated. Moreover, the edible security of vegetables was also evaluated. Results showed that the optimal hydraulic loadings for the four systems were 0.2, 0.3, 0.3, and 0.3 m3/(m2·d) (the lowest being the HV), respectively. In the combined system of HV-SFCW, high contribution proportions of the HV unit to the removal of chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) were obtained, reaching 46.7%, 58.1%, and 53.7%. The heavy metal content of plants harvested met the standards of the National Food Safety Standard Limit of Pollutants in Food (GB 2762-2012). Overall, the compound HV-SFCW system achieved the best performance, ensuring that effluent water quality met national standards and realized the effective utilization of nitrogen and phosphorus.
Collapse
Affiliation(s)
- Liying Gong
- School of Energy and Environment, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210096, China E-mail:
| | - Guiding Chen
- School of Energy and Environment, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210096, China E-mail:
| | - Jialin Li
- School of Energy and Environment, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210096, China E-mail:
| | - Guangcan Zhu
- School of Energy and Environment, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210096, China E-mail:
| |
Collapse
|
30
|
Aragones DG, Sanchez-Ramos D, Calvo GF. SURFWET: A biokinetic model for surface flow constructed wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:137650. [PMID: 32229378 DOI: 10.1016/j.scitotenv.2020.137650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
Constructed wetlands are an alternative biotechnology for wastewater treatment that have several advantages over conventional systems. In this work, a biokinetic model for surface flow constructed wetlands is presented (SURFWET). SURFWET belongs to a class of models that are not only interesting from a theoretical viewpoint, as they allow to improve the understanding of the underlying processes; but also from a practical viewpoint, because they can be useful for optimal designs of constructed wetlands, complementing current empirical methods. The proposed model is centered on the intervening physical and biochemical processes involved in pollutant removal in wastewater (organic matter, nitrogen, phosphorus, suspended solids), capturing the interplay of the main agents on contaminant removal (bacteria, macrophytes and phytoplankton). Furthermore, the hydraulic model considers water volume as a variable depending on the outlet hydraulic capacity, and dissolved oxygen has also been introduced as a key driver of reaction kinetics of wetlands. Beyond putting forward a theoretical framework, SURFWET has been applied to simulate a specific case to demonstrate its robustness, in a 12-year-interval simulation. The results show the typical seasonality of this biotechnology, highlighting the importance of dissolved oxygen, which is a key limiting factor on a large number of biochemical processes.
Collapse
Affiliation(s)
- David G Aragones
- Department of Mathematics, School of Civil Engineering, Universidad de Castilla-La Mancha, Av. Camilo Jose Cela s/n, 13071 Ciudad Real, Spain
| | - David Sanchez-Ramos
- Research Group on Hydroecology, School of Civil Engineering, Universidad de Castilla-La Mancha, Av. Camilo Jose Cela s/n, 13071 Ciudad Real, Spain.
| | - Gabriel F Calvo
- Department of Mathematics, School of Civil Engineering, Universidad de Castilla-La Mancha, Av. Camilo Jose Cela s/n, 13071 Ciudad Real, Spain
| |
Collapse
|
31
|
Ji M, Hu Z, Hou C, Liu H, Ngo HH, Guo W, Lu S, Zhang J. New insights for enhancing the performance of constructed wetlands at low temperatures. BIORESOURCE TECHNOLOGY 2020; 301:122722. [PMID: 31983576 DOI: 10.1016/j.biortech.2019.122722] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/01/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
Constructed wetlands (CWs) have been widely utilized for various types of wastewater treatment due to their merits, including high cost-effectiveness and easy operation. However, a few intrinsic drawbacks have always restricted their application and long-term stability, especially their weak performance at temperatures under 10 °C (low temperatures) due to the deterioration of microbial assimilation and plant uptake processes. The existing modifications to improve CWs performance from the direct optimization of internal components to the indirect adjunction of external resources promoted the wastewater treatment efficiency to a certain degree, but the sustainability and sufficiency of pollutants removal remains a challenge. With the goal of optimizing CW components, the integrity of the CW ecosystem and the removal of emerging pollutants, future directions for research should include radiation plant breeding, improvements to CW ecosystems, and the combination or integration of certain treatment processes with CWs to enhance wastewater treatment effects at low temperatures.
Collapse
Affiliation(s)
- Mingde Ji
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China.
| | - Chenglin Hou
- North Design and Research Institute Co., Ltd., Shijiazhuang 050011, PR China
| | - Huaqing Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Wenshan Guo
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Shaoyong Lu
- Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
32
|
Raphael DO, Okunade DA, Ogedengbe K, Adekunle OA. Assessment of a batch-flow free water surface constructed wetland planted with Rhynchospora corymbosa (L.) Britton for campus greywater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:4275-4283. [PMID: 31832958 DOI: 10.1007/s11356-019-07095-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
A pilot-scale batch-flow free water surface (FWS) constructed wetland (CW) system planted with Rhynchospora corymbosa (L.) Britton was developed with a hydraulic retention time (HRT) of 2.5 days. The average porosity of the substrate was 0.55 and calculated hydraulic loading rate (HLR) was 3.96 (g BOD/m2-day). Quantitative and qualitative characterization of the greywater were done. The concentrations of pollutants in the greywater before and after it was fed into the FWS CWs were measured using standard sampling and analyses methods. The average daily per capita water use estimated was 162 L, out of which 72.5 L was greywater. The mean removal efficiencies (RE) of the CWs were 81% COD, 85% TN, 82% TK, 10% TP, 0.2% pH, 81% TSS, Zn 91%, 81% Al, 94% Mg, and 90% Fe. It was observed that the FWS with batch-flow configuration tested in the study was slightly different in terms of results reported on the conventional continuous flow system. R. corymbosa as a macrophyte has roots that can provide a surface area for microbial growth and oxygen exchange and can be used as emergent macrophytes in phytoremediation of greywater. The result provided information on the performance and pollutant removal efficiency of a batch-operated FWS CW system planted with R. corymbosa.
Collapse
Affiliation(s)
- Davids O Raphael
- Department of Agricultural and Biosystems Engineering, Landmark University, Omu-Aran, Nigeria.
| | - David A Okunade
- Department of Agricultural and Environmental Engineering, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Kola Ogedengbe
- Department of Agricultural and Environmental Engineering, University of Ibadan, Ibadan, Nigeria
| | | |
Collapse
|
33
|
Micromixing Efficiency of Particles in Heavy Metal Removal Processes under Various Inlet Conditions. WATER 2019. [DOI: 10.3390/w11061135] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Water quality problems are a persistent global issue since population growth has continually stressed hydrological resources. Heavy metals released into the environment from plating plants, mining, and alloy manufacturing pose a significant threat to the public health. A possible solution for water purification from heavy metals is to capture them by using nanoparticles in micromixers. In this method, conventionally heavy metal capture is achieved by effectively mixing two streams, a particle solution and the contaminated water, under the action of external magnetic fields. In the present study, we investigated the effective mixing of iron oxide nanoparticles and water without the use of external magnetic fields. For this reason, the mixing of particles and the contaminated water was studied for various inlet velocity ratios and inflow angles of the two streams using computational fluid dynamics techniques. The Navier-Stokes equations were solved for the water flow, the discrete motion of particles was evaluated by a Lagrangian method, while the flow of substances of the contaminated water was studied by a scalar transport equation. Results showed that as the velocity ratio between the inlet streams increased, the mixing of particles with the contaminated water was increased. Therefore, nanoparticles were more uniformly distributed in the duct and efficiently absorbed the substances of the contaminated water. On the other hand, the angle between two streams was found to play an insignificant role in the mixing process. Consequently, the results from this study could be used in the design of more compact and cost efficient micromixer devices.
Collapse
|