1
|
Urbańska M. Optimization of Liquid Crystalline Mixtures Enantioseparation on Polysaccharide-Based Chiral Stationary Phases by Reversed-Phase Chiral Liquid Chromatography. Int J Mol Sci 2024; 25:6477. [PMID: 38928182 PMCID: PMC11203475 DOI: 10.3390/ijms25126477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Enantioseparation of nineteen liquid crystalline racemic mixtures obtained based on (R,S)-2-octanol was studied in reversed-phase mode on an amylose tris(3-chloro-5-methylphenylcarbamate) (ReproSil Chiral-MIG) and a cellulose tris(3,5-dichlorophenylcarbamate) (ReproSil Chiral-MIC). These polysaccharide-based chiral stationary phase (CSP) columns for High-Performance Liquid Chromatography (HPLC) were highly effective in recognizing isomers of minor structural differences. The mobile phase (MP), which consists of acetonitrile (ACN)/water (H2O) at different volume ratios, was used. The mobile phases were pumped at a flow rate of 0.3, 0.5, or 1 mL·min-1 with a column temperature of 25 °C, using a UV detector at 254 nm. The order of the elution was also determined. The chromatographic parameters, such as resolution (Rs), selectivity (α), and the number of theoretical plates, i.e., column efficiency (N), were determined. The polysaccharide-based CSP columns have unique advantages in separation technology, and this study has shown the potential usefulness of the CSP columns in separating liquid crystalline racemic mixtures belonging to the same homologous series.
Collapse
Affiliation(s)
- Magdalena Urbańska
- Institute of Chemistry, Military University of Technology, ul. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
| |
Collapse
|
2
|
Lu J, Wu W, Colombari FM, Jawaid A, Seymour B, Whisnant K, Zhong X, Choi W, Chalmpes N, Lahann J, Vaia RA, de Moura AF, Nepal D, Kotov NA. Nano-achiral complex composites for extreme polarization optics. Nature 2024; 630:860-865. [PMID: 38811736 DOI: 10.1038/s41586-024-07455-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/22/2024] [Indexed: 05/31/2024]
Abstract
Composites from 2D nanomaterials show uniquely high electrical, thermal and mechanical properties1,2. Pairing their robustness with polarization rotation is needed for hyperspectral optics in extreme conditions3,4. However, the rigid nanoplatelets have randomized achiral shapes, which scramble the circular polarization of photons with comparable wavelengths. Here we show that multilayer nanocomposites from 2D nanomaterials with complex textured surfaces strongly and controllably rotate light polarization, despite being nano-achiral and partially disordered. The intense circular dichroism (CD) in nanocomposite films originates from the diagonal patterns of wrinkles, grooves or ridges, leading to an angular offset between axes of linear birefringence (LB) and linear dichroism (LD). Stratification of the layer-by-layer (LBL) assembled nanocomposites affords precise engineering of the polarization-active materials from imprecise nanoplatelets with an optical asymmetry g-factor of 1.0, exceeding those of typical nanomaterials by about 500 times. High thermal resilience of the composite optics enables operating temperature as high as 250 °C and imaging of hot emitters in the near-infrared (NIR) part of the spectrum. Combining LBL engineered nanocomposites with achiral dyes results in anisotropic factors for circularly polarized emission approaching the theoretical limit. The generality of the observed phenomena is demonstrated by nanocomposite polarizers from molybdenum sulfide (MoS2), MXene and graphene oxide (GO) and by two manufacturing methods. A large family of LBL optical nanocomponents can be computationally designed and additively engineered for ruggedized optics.
Collapse
Affiliation(s)
- Jun Lu
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Center for Complex Particle Systems (COMPASS), University of Michigan, Ann Arbor, MI, USA
| | - Wenbing Wu
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Center for Complex Particle Systems (COMPASS), University of Michigan, Ann Arbor, MI, USA
| | - Felippe Mariano Colombari
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Ali Jawaid
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH, USA
- UES, Inc., Dayton, OH, USA
| | | | - Kody Whisnant
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Center for Complex Particle Systems (COMPASS), University of Michigan, Ann Arbor, MI, USA
| | - Xiaoyang Zhong
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Wonjin Choi
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Nikolaos Chalmpes
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Joerg Lahann
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Center for Complex Particle Systems (COMPASS), University of Michigan, Ann Arbor, MI, USA
| | - Richard A Vaia
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH, USA.
| | | | - Dhriti Nepal
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH, USA.
| | - Nicholas A Kotov
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
- Center for Complex Particle Systems (COMPASS), University of Michigan, Ann Arbor, MI, USA.
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Ožegović A, Knežević A, Novak J, Šegota S, Davidson P, Lesac A. The Interplay of Spacer Chirality and Parity in Mesogenic Dimers. Chemphyschem 2024; 25:e202400065. [PMID: 38406969 DOI: 10.1002/cphc.202400065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 02/27/2024]
Abstract
Introducing chirality into soft materials, including liquid crystals (LCs), profoundly impacts their self-organization and physical properties. In this study, we synthesized a novel series of LC dimers with a chiral center as part of their flexible spacer. The dimers were prepared in racemic and enantiomerically pure forms. Their spacer length and parity were varied to investigate the effect of spacer chirality and parity on mesomorphic behavior and on chiral induction in the nematic phase of achiral mesogens. Our results show that the even-membered chiral dimers only have chiral nematic phases. In contrast, the odd-membered dimers display rich mesomorphism, including the intriguing blue phase (BP) and chiral form of the twist-bend nematic phase (N*TB). The observed significant difference in the 3D surface morphology between the racemic and chiral forms of the N*TB phase suggests that the chiral moiety in the spacer promotes a chiral hierarchy. Furthermore, the chiral dimers show a prominent odd-even effect in the helical twisting power in nematic hosts. These findings highlight the importance of the position of the chiral group within the dimeric molecule and provide new insights into how intrinsic chirality in the spacer affects the overall structural chirality.
Collapse
Affiliation(s)
| | | | - Jurica Novak
- University of Rijeka, Center for Artificial Intelligence and Cyber Security, Radmile Matejčić 2, 51000, Rijeka, Croatia
| | - Suzana Šegota
- Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| | - Patrick Davidson
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, 91405, Orsay, France
| | - Andreja Lesac
- Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| |
Collapse
|
4
|
Aya S, Xu H, Long H, Yiliu M, Zou Y, Huang M. Response of helielectric nematics under an in-plane electric field. Phys Chem Chem Phys 2024; 26:12422-12432. [PMID: 38619386 DOI: 10.1039/d4cp00588k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
In traditional chiral nematic liquid crystals, the apolar cholesterics, the dielectric effect is the main driving force for responding to an electric field. The emerging polar chiral nematics, dubbed helielectric nematics, are the polar counterparts of the cholesterics. The head-to-tail symmetry breaking of the new matter state enables it to respond sensitively to the polarity of an electric field. Here, we report on the observation of a sequential polar winding/unwinding process of polarization helices under an electric field applied perpendicular to the helical axes, which behaves distinctly from the unwinding of the apolar cholesteric helices. Understanding the helix-unwinding behaviors provides insights for developing switchable devices based on helielectric nematics.
Collapse
Affiliation(s)
- Satoshi Aya
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| | - Hao Xu
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| | - Huaqian Long
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| | - Muhan Yiliu
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| | - Yu Zou
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| | - Mingjun Huang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
5
|
Kim J, Jeong J. Confinement twists achiral liquid crystals and causes chiral liquid crystals to twist in the opposite handedness: cases in and around sessile droplets. SOFT MATTER 2024; 20:1361-1368. [PMID: 38252544 DOI: 10.1039/d3sm01283b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
We study the chiral symmetry breaking and metastability of confined nematic lyotropic chromonic liquid crystals (LCLCs) with and without chiral dopants. The isotropic-nematic coexistence phase of the LCLC renders two confining geometries: sessile isotropic (I) droplets surrounded by the nematic (N) phase and sessile nematic droplets immersed in the isotropic background. In the achiral system with no dopants, LCLC's elastic anisotropy and topological defects induce a spontaneous twist deformation to lower the energetic penalty of splay deformation, resulting in spiral optical textures under crossed polarizers both in the I-in-N and N-in-I systems. While the achiral system exhibits both handednesses with an equal probability, a small amount of the chiral dopant breaks the balance. Notably, in contrast to the homochiral configuration of a chirally doped LCLC in the bulk, the spiral texture of the disfavored handedness appears with a finite probability both in the I-in-N and N-in-I systems. We propose director field models explaining how chiral symmetry breaking arises by the energetics and the opposite-twist configurations exist as meta-stable structures in the energy landscape. These findings help us create and control chiral structures using confined LCs with large elastic anisotropy.
Collapse
Affiliation(s)
- Jungmyung Kim
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.
| | - Joonwoo Jeong
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.
| |
Collapse
|
6
|
Money J, Munguia-Fernández JG, Norouzi S, Esmaeili M, Martínez-González JA, Sadati M. Photonic features of blue phase liquid crystals under curved confinement. Chem Commun (Camb) 2023; 59:12231-12247. [PMID: 37750291 DOI: 10.1039/d3cc03284a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Blue phase (BP) liquid crystals represent a fascinating state of soft matter that showcases unique optical and electro-optical properties. Existing between chiral nematic and isotropic phases, BPs are characterized by a three-dimensional cubic lattice structure resulting in selective Bragg reflections of light and consequent vivid structural colors. However, the practical realization of these material systems is hampered by their narrow thermal stability and multi-domain crystalline nature. This feature article provides an overview of the efforts devoted to stabilizing these phases and creating monodomain structures. In particular, it delves into the complex relationship between geometrical confinement, induced curvature, and the structural stability and photonic features of BPs. Understanding the interaction of curved confinement and structural stability of BPs proves crucially important for the integration of these materials into flexible and miniaturized devices. By shedding light on these critical aspects, this feature review aims to highlight the significance of understanding the coupling effects of physical and mechanical forces on the structural stability of these systems, which can pave the way for the development of efficient and practical devices based on BP liquid crystals.
Collapse
Affiliation(s)
- Jeremy Money
- Department of Chemical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC, 29208, USA.
| | - Juan G Munguia-Fernández
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Av. Parque Chapultepec 1570, San Luis Potosí 78210, SLP, México
| | - Sepideh Norouzi
- Department of Chemical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC, 29208, USA.
| | - Mohsen Esmaeili
- Department of Chemical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC, 29208, USA.
| | - José A Martínez-González
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Av. Parque Chapultepec 1570, San Luis Potosí 78210, SLP, México
| | - Monirosadat Sadati
- Department of Chemical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
7
|
Zhang Z, Yang X, Zhao Y, Ye F, Shang L. Liquid Crystal Materials for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300220. [PMID: 37235719 DOI: 10.1002/adma.202300220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/04/2023] [Indexed: 05/28/2023]
Abstract
Liquid crystal is a state of matter being intermediate between solid and liquid. Liquid crystal materials exhibit both orientational order and fluidity. While liquid crystals have long been highly recognized in the display industry, in recent decades, liquid crystals provide new opportunities into the cross-field of material science and biomedicine due to their biocompatibility, multifunctionality, and responsiveness. In this review, the latest achievements of liquid crystal materials applied in biomedical fields are summarized. The start is made by introducing the basic concepts of liquid crystals, and then shifting to the components of liquid crystals as well as functional materials derived therefrom. After that, the ongoing and foreseeable applications of liquid crystal materials in the biomedical field with emphasis put on several cutting-edge aspects, including drug delivery, bioimaging, tissue engineering, implantable devices, biosensing, and wearable devices are discussed. It is hoped that this review will stimulate ingenious ideas for the future generation of liquid crystal-based drug development, artificial implants, disease diagnosis, health status monitoring, and beyond.
Collapse
Affiliation(s)
- Zhuohao Zhang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Xinyuan Yang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yuanjin Zhao
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering Southeast University, Nanjing, 210096, China
| | - Fangfu Ye
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Luoran Shang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering Southeast University, Nanjing, 210096, China
| |
Collapse
|
8
|
Wu Y, Li M, Zheng ZG, Yu ZQ, Zhu WH. Liquid Crystal Assembly for Ultra-dissymmetric Circularly Polarized Luminescence and Beyond. J Am Chem Soc 2023. [PMID: 37276078 DOI: 10.1021/jacs.3c01122] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Circularly polarized luminescence (CPL) is attracting much interest because it can carry extensive optical information. CPL shows left- or right-handedness and can be regarded as part of high-level visual perception to supply an extra dimension of information with regard to regular light. A key to meeting the needs for practical applications is to develop the emerging field of ultra-dissymmetric CPL. Chiral liquid crystal (LC) assemblies─otherwise referred to as cholesteric liquid crystals (CLCs)─are essentially organized helical superstructures with a highly ordered one-dimensional orientation, and distinctly superior to regular helical supramolecules. CLCs can achieve a perfect equilibrium of molecular short-range interaction and long-range orientational order, enabling molecule-scale chirality on a helical pitch and observable scale. LC assembly could be an ideal strategy for amplifying chirality, making it accessible to ultra-dissymmetric CPL. Herein, we focused on some basic but important issues regarding CPL: (i) How can CPL be created from chiral dyes? (ii) Is the chirality of luminescent dyes an essential factor for the generation of CPL? That is, can all chiral dyes emit CPL and vice versa? (iii) How can CPL be transferred within intermolecular systems, and what principles of CPL transmission should be followed? Given these queries and our work, in this Perspective we discuss the generation, transmission, and modulation of CPL with chiral LC assembly, aiming to design and build up novel chiroptical materials. Recent applications of CPL-active LC microstructures in three-dimensional displays, circularly polarized lasers, and asymmetric catalysis are also discussed.
Collapse
Affiliation(s)
- Yue Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518037, China
| | - Mengqi Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhi-Gang Zheng
- School of Physics, East China University of Science and Technology, Shanghai 200237, China
| | - Zhen-Qiang Yu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518037, China
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
9
|
Conformational and Supramolecular Aspects in Chirality of Flexible Camphor-Containing Schiff Base as an Inducer of Helical Liquid Crystals. Molecules 2023; 28:molecules28052388. [PMID: 36903637 PMCID: PMC10005677 DOI: 10.3390/molecules28052388] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The experimental and theoretical study of influence of the conformational state and association on the chirality of the stereochemically nonrigid biologically active bis-camphorolidenpropylenediamine (CPDA) and its ability to induce the helical mesophase of alkoxycyanobiphenyls liquid-crystalline binary mixture was carried out. On the basis of quantum-chemical simulation of the CPDA structure, four relatively stable conformers were detected. A comparison of the calculated and experimental electronic circular dichroism (ECD) and 1H, 13C, 15N NMR spectra, as well as specific optical rotation and dipole moments, allowed to establish the most probable trans-gauche conformational state (tg) of dicamphorodiimine and CPDA dimer with a predominantly mutually parallel arrangement of molecular dipoles. The induction of helical phases in LC mixtures based on cyanobiphenyls and bis-camphorolidenpropylenediamine was studied by polarization microscopy. The clearance temperatures and the helix pitch of the mesophases were measured. The helical twisting power (HTP) was calculated. The decrease in HTP with increasing dopant concentration was shown to be connected with the CPDA association process in the LC phase. The effect of camphor-containing chiral dopants of various structures on nematic LCs was compared. The values of the permittivity and birefringence components of the CPDA solutions in CB-2 were measured experimentally. A strong effect of this dopant on the anisotropic physical properties of the induced chiral nematic was established. A significant decrease in the dielectric anisotropy was associated with the 3D compensation of the LC dipoles during the formation of the helix.
Collapse
|
10
|
Acoplanarity, Aromaticity, Chirality, and Helical Twisting Power of Chlorin e6 13(N)-Methylamide-15,17-dimethyl Ester Complexes: Effect of a Metal. INORGANICS 2023. [DOI: 10.3390/inorganics11010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The experimental and theoretical study of the influence of metal complexing on geometry, aromaticity, chirality, and the ability to twist the nematic phase by complexes based on modified natural chlorin e6 was carried out. The geometry optimization of the chlorin e6 13(N)-methylamide-15,17-dimethyl ester (MADMECl) and its Zn, Cu, and Ni complexes by DFT (CAM-B3LYP/6–31 G(d,p) functional) method was performed. Based on these calculations, the acoplanarity degree of the macrocyclic ligand and the distortion energy of its dianion were estimated, which allowed the arrangement of the MADMECl complexes in the series Ni > Cu > Zn. Aromaticity was evaluated using the NICS criterion (nuclear independent chemical shift). An increase in the degree of aromaticity of the macrocycle upon complex formation was established. At the same time, the aromaticity of the inner conjugation contour corresponds to the same series as the acoplanarity, while the outer π-delocalization is characterized by the reverse sequence. An experimental evaluation of the electron circular dichroism of the Soret and the Q-bands, as well as the g-factor of dissymmetry, was carried out. The growth of these parameters with an increase in the degree of acoplanarity and aromaticity of the internal conjugation contour was determined. The induction of helical phases in mixtures of nematic liquid crystals (LCs) based on cyanobiphenyls and MADMECl macrocyclic metal complexes was studied by polarization microscopy, and the clearance temperatures and helix pitch of the mesophases were measured. A strong effect of the metal on the phase transition temperature and helical twisting power was established.
Collapse
|
11
|
Rajendra D, Mandal J, Hatwalne Y, Maiti PK. Packing and emergence of the ordering of rods in a spherical monolayer. SOFT MATTER 2022; 19:137-146. [PMID: 36477473 DOI: 10.1039/d2sm00799a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Spatially ordered systems confined to surfaces such as spheres exhibit interesting topological structures because of curvature induced frustration in orientational and translational order. The study of these structures is important for investigating the interplay between the geometry, topology, and elasticity, and for their potential applications in materials science, such as engineering directionally binding particles. In this work, we numerically simulate a spherical monolayer of soft repulsive spherocylinders (SRSs) and study the packing of rods and their ordering transition as a function of the packing fraction. In the model that we study, the centers of mass of the spherocylinders (situated at their geometric centers) are constrained to move on a spherical surface. The spherocylinders are free to rotate about any axis that passes through their respective centers of mass. We show that, up to moderate packing fractions, a two dimensional liquid crystalline phase is formed whose orientational ordering increases continuously with increasing density. This monolayer of orientationally ordered SRS particles at medium densities resembles a hedgehog-long axes of the SRS particles are aligned along the local normal to the sphere. At higher packing fractions, the system undergoes a transition to the solid phase, which is riddled with topological point defects (disclinations) and grain boundaries that divide the whole surface into several domains.
Collapse
Affiliation(s)
- Dharanish Rajendra
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bengaluru 560012, India.
| | - Jaydeep Mandal
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bengaluru 560012, India.
| | | | - Prabal K Maiti
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bengaluru 560012, India.
| |
Collapse
|
12
|
Sanchez-Martinez P, Diaz-Herrera E, Salgado-Blanco D, Hernandez SI, Mendoza CI. Isobars and pitch of cholesteric phases for a chiral Gay-Berne fluid by molecular dynamic simulations. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2154715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Enrique Diaz-Herrera
- Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, CDMX, México
| | - Daniel Salgado-Blanco
- Cátedras CONACyT – Centro Nacional de Supercómputo, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, México
| | - S. I. Hernandez
- Unidad Multidisciplinaria de Docencia e Investigación-Juriquilla, Facultad de Ciencias, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico
| | - Carlos I. Mendoza
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
13
|
Sun C, Lu J. Optical Filters Based on Cholesteric, Blue and Sphere Mesophases. Polymers (Basel) 2022; 14:4898. [PMID: 36433026 PMCID: PMC9694172 DOI: 10.3390/polym14224898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
An optical filter is one of the indispensable devices in massive and high-speed communication, optical signal processing, and display. Twist-structure liquid crystals, cholesteric liquid crystals, blue-phase liquid crystals, and sphere-phase liquid crystals show potential application in optical filters originating from the periodic nanostructures. Wavelength and bandwidth tuning can be controlled via temperature, electric fields, light, angle, spatial control, and templating technology. In this review, we discuss the recent developments of twist-structure liquid crystal filters.
Collapse
Affiliation(s)
| | - Jiangang Lu
- National Engineering Lab for TFT-LCD Materials and Technologies, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
14
|
Paul T, Saha J. Domain formation in model lipid–cholesterol liquid-crystalline aggregation. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2134567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- T. Paul
- Department of Physics, University of Calcutta, Kolkata, India
| | - J. Saha
- Department of Physics, University of Calcutta, Kolkata, India
| |
Collapse
|
15
|
Sahoo R, Maity D, Shankar Rao DS, Chakrabarty S, Yelamaggad CV, Prasad SK. Dimer-parity-dependent odd-even effects in photoinduced transitions to cholesteric and twist grain boundary smectic-C^{*} mesophases: Experiments and simulations. Phys Rev E 2022; 106:044702. [PMID: 36397543 DOI: 10.1103/physreve.106.044702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
We describe investigations on the influence of the flexible spacer parity and length of the guest photoactive liquid-crystalline dimers in guest-host mixtures exhibiting photoinduced transitions involving isotropic (I), cholesteric (N^{*}), and twist grain boundary smectic-C^{*} (TGBC^{*}) phases. Despite a small concentration (3 wt. %) of the guest molecules, the transition temperatures and their photodriven shift (δT) show a strong odd-even parity (of the dimer) dependent effect, with the even-parity systems having a larger value than their odd-parity counterparts; δT is larger for the N^{*}-TGBC^{*} transition than for the I-N^{*} one. The photocalorimetric measurements corroborate these features in addition to showing that, in comparison with the absence-of-ultraviolet (UV) case, the transition enthalpy (ΔH) of the I-N^{*} transition in the UV-on case is diminished by 33 and 12% for the mixtures with even- and odd-parity dimers, respectively. The duration for relaxation from the isothermal photodriven transition also exhibits general features of an odd-even influence. Molecular dynamics simulations demonstrate the presence of significant conformational heterogeneity and associated shift in the conformational space on photostimulation of the guest molecules. The change in the effective shape and nematic order parameter is more pronounced in the even-parity system.
Collapse
Affiliation(s)
- Rajalaxmi Sahoo
- Centre for Nano and Soft Matter Sciences, Shivanapura 562162, India
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Dibyendu Maity
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Salt Lake, Kolkata 700106, India
| | - D S Shankar Rao
- Centre for Nano and Soft Matter Sciences, Shivanapura 562162, India
| | - Suman Chakrabarty
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Salt Lake, Kolkata 700106, India
| | - C V Yelamaggad
- Centre for Nano and Soft Matter Sciences, Shivanapura 562162, India
| | - S Krishna Prasad
- Centre for Nano and Soft Matter Sciences, Shivanapura 562162, India
| |
Collapse
|
16
|
Zhang P, de Haan LT, Debije MG, Schenning APHJ. Liquid crystal-based structural color actuators. LIGHT, SCIENCE & APPLICATIONS 2022; 11:248. [PMID: 35931672 PMCID: PMC9356073 DOI: 10.1038/s41377-022-00937-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/25/2022] [Accepted: 07/17/2022] [Indexed: 05/08/2023]
Abstract
Animals can modify their body shape and/or color for protection, camouflage and communication. This adaptability has inspired fabrication of actuators with structural color changes to endow soft robots with additional functionalities. Using liquid crystal-based materials for actuators with structural color changes is a promising approach. In this review, we discuss the current state of liquid crystal-based actuators with structural color changes and the potential applications of these structural color actuators in soft robotic devices.
Collapse
Affiliation(s)
- Pei Zhang
- Stimuli-responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5600 MB, Eindhoven, The Netherlands
| | - Laurens T de Haan
- Stimuli-responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Michael G Debije
- Stimuli-responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5600 MB, Eindhoven, The Netherlands.
| | - Albert P H J Schenning
- Stimuli-responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5600 MB, Eindhoven, The Netherlands.
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
17
|
Wang H, Chen Z, Yuan Y, Zhang H. The preparation and properties of circularly polarized luminescent liquid crystal physical gels with self-supporting performance. SOFT MATTER 2022; 18:5483-5491. [PMID: 35838375 DOI: 10.1039/d2sm00705c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In recent years, great progress has been made in the preparation methods and performance regulation of host-guest doped CPL liquid crystal materials. However, there still exist some basic problems to be solved, such as complex packaging and unstable CPL properties. With the consideration of the above problems, in this study, we introduced gelators into the host-guest doped CPL liquid crystal materials to prepare CPL liquid crystal physical gels. The gelators can be assembled to form a nanofiber physical gel network, which limits the movement of the liquid crystals and enhances the stability of the CPL properties. Meanwhile, liquid crystal physical gels show self-supporting ability and the gel-sol phase transition temperature can reach 136 °C. The amplification of the glum value is achieved by self-assembly of chiral liquid crystals, and the glum value can reach -0.31. The phase structure changes with electric field and temperature, and the CPL properties can be regulated by changing the temperature and electric field. With the increasing applied voltage or the temperature, the glum value decreases. Therefore, we have successfully prepared a new type of CPL liquid crystal physical gels with self-supporting performance, stimulus response performance and large glum values.
Collapse
Affiliation(s)
- Hanrong Wang
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan Province, China.
| | - Zhong Chen
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Instrumentation and Service Center for Molecular Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.
| | - Yongjie Yuan
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan Province, China.
| | - Hailiang Zhang
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan Province, China.
| |
Collapse
|
18
|
Zhang X, Xu Y, Valenzuela C, Zhang X, Wang L, Feng W, Li Q. Liquid crystal-templated chiral nanomaterials: from chiral plasmonics to circularly polarized luminescence. LIGHT, SCIENCE & APPLICATIONS 2022; 11:223. [PMID: 35835737 PMCID: PMC9283403 DOI: 10.1038/s41377-022-00913-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/14/2022] [Accepted: 06/23/2022] [Indexed: 05/15/2023]
Abstract
Chiral nanomaterials with intrinsic chirality or spatial asymmetry at the nanoscale are currently in the limelight of both fundamental research and diverse important technological applications due to their unprecedented physicochemical characteristics such as intense light-matter interactions, enhanced circular dichroism, and strong circularly polarized luminescence. Herein, we provide a comprehensive overview of the state-of-the-art advances in liquid crystal-templated chiral nanomaterials. The chiroptical properties of chiral nanomaterials are touched, and their fundamental design principles and bottom-up synthesis strategies are discussed. Different chiral functional nanomaterials based on liquid-crystalline soft templates, including chiral plasmonic nanomaterials and chiral luminescent nanomaterials, are systematically introduced, and their underlying mechanisms, properties, and potential applications are emphasized. This review concludes with a perspective on the emerging applications, challenges, and future opportunities of such fascinating chiral nanomaterials. This review can not only deepen our understanding of the fundamentals of soft-matter chirality, but also shine light on the development of advanced chiral functional nanomaterials toward their versatile applications in optics, biology, catalysis, electronics, and beyond.
Collapse
Affiliation(s)
- Xuan Zhang
- School of Materials Science and Engineering, Tianjin University, 300350, Tianjin, China
| | - Yiyi Xu
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, China
| | - Cristian Valenzuela
- School of Materials Science and Engineering, Tianjin University, 300350, Tianjin, China
| | - Xinfang Zhang
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, 44242, USA
| | - Ling Wang
- School of Materials Science and Engineering, Tianjin University, 300350, Tianjin, China.
| | - Wei Feng
- School of Materials Science and Engineering, Tianjin University, 300350, Tianjin, China.
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, China.
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
19
|
Cholesteric Liquid Crystal Photonic Hydrogel Films Immobilized with Urease Used for the Detection of Hg2+. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10040140] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mercury ion is one of the most widespread heavy metal contaminants which can accumulate in the body through multiple channels, posing a detrimental impact on human health. We demonstrate a simple and low-cost method for the detection of Hg2+ assisted by a cholesteric liquid crystal photonic hydrogel (polyacrylic acid (PAA)) film with immobilized urease (CLC-PAAurease film). In the absence of Hg2+, a significant change in color and an obvious red shift in the reflected light wavelength of the prepared film were observed, since urease can hydrolyze urea to produce NH3, resulting in an increasing pH value of the microenvironment of CLC-PAAurease film. Hg2+ can inhibit the activity of urease so that the color change of the film is not obvious, corresponding to a relatively small variation of the reflected light wavelength. Therefore, Hg2+ can be quantitatively detected by measuring the displacement of the reflected light wavelength of the film. The detection limit of Hg2+ is about 10 nM. This approach has a good application prospect in the monitoring of heavy metal ions in environmental water resources.
Collapse
|
20
|
Vaňkátová P, Kubíčková A, Kalíková K. Enantioseparation of liquid crystals and their utilization as enantiodiscrimination materials. J Chromatogr A 2022; 1673:463074. [DOI: 10.1016/j.chroma.2022.463074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 11/28/2022]
|
21
|
Chen ZQ, Sun YW, Zhu YL, Li ZW, Sun ZY. A chiral smectic phase induced by an alternating external field. SOFT MATTER 2022; 18:2569-2576. [PMID: 35293929 DOI: 10.1039/d2sm00093h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Using simple achiral building blocks modulated by an external field to achieve chiral liquid crystal phases remains a challenge. In this study, a chiral helix liquid crystal phase is obtained for a simple Gay-Berne ellipsoid model under an alternating external field by using molecular dynamics simulations. Our results show that the chiral helix liquid crystal phase can be observed in a wide range of external field strengths when the oscillation period is smaller than the rotational characteristic diffusion timescale of ellipsoids. In addition, we find that the pitch and tilt angle of the helix structure can also be adjusted by changing the strength and oscillation period of the applied alternating external field. This may provide a feasible route for the regulation of chiral liquid crystal phases by an alternating external field.
Collapse
Affiliation(s)
- Zi-Qin Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Science and Technology of China, Hefei, 230026, China
| | - Yu-Wei Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Science and Technology of China, Hefei, 230026, China
| | - You-Liang Zhu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Science and Technology of China, Hefei, 230026, China
| | - Zhan-Wei Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Science and Technology of China, Hefei, 230026, China
| | - Zhao-Yan Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Science and Technology of China, Hefei, 230026, China
- Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matters, College of Physical Science and Technology, Yili Normal University, Yining, 835000, China
| |
Collapse
|
22
|
Janeczek H, Duale K, Sikorska W, Godzierz M, Kordyka A, Marcinkowski A, Hercog A, Musioł M, Kowalczuk M, Christova D, Rydz J. Poly(l-Lactide) Liquid Crystals with Tailor-Made Properties Toward a Specific Nematic Mesophase Texture. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:3323-3334. [PMID: 35310687 PMCID: PMC8924921 DOI: 10.1021/acssuschemeng.1c08282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/18/2022] [Indexed: 05/13/2023]
Abstract
This paper presents the liquid crystal (LC) properties of poly(l-lactide) (PLLA). Mesophase behavior is investigated using polarized optical microscopy, X-ray diffraction, and differential scanning calorimetry. The performed analyses confirm that pressed PLLA films exhibit the unique capability of self-assembling into a nematic mesophase under the influence of mechanical pressure, temperature, and time. It was originally demonstrated that the chiral nematic mesophase can be obtained by introducing fine powders into the polymer. Based on the research conducted, it was proved that the pressed PLLA films have a chiral nematic mesophase with a nematic-to-isotropic phase transition and a large mesophase stability range overlapping the temperature of the human body, which can persist for years at ambient temperature. The obtained films show tailor-made properties toward a nematic mesophase with a specific texture, including colored planar texture of the chiral nematic mesophase and blue-phase (BP) LC texture. The BP, described for the first time in plain PLLA, occurred over a wider than usual temperature range of stability between isotropic and chiral nematic thermotropic phases (ΔT ≈ 9 °C), which is an advantage of the obtained polymer material, in addition to ease of preparation. This opens up new prospects for advanced photonic green applications.
Collapse
Affiliation(s)
- Henryk Janeczek
- Centre
of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-800 Zabrze, Poland
| | - Khadar Duale
- Centre
of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-800 Zabrze, Poland
| | - Wanda Sikorska
- Centre
of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-800 Zabrze, Poland
| | - Marcin Godzierz
- Centre
of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-800 Zabrze, Poland
| | - Aleksandra Kordyka
- Centre
of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-800 Zabrze, Poland
| | - Andrzej Marcinkowski
- Centre
of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-800 Zabrze, Poland
| | - Anna Hercog
- Centre
of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-800 Zabrze, Poland
| | - Marta Musioł
- Centre
of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-800 Zabrze, Poland
| | - Marek Kowalczuk
- Centre
of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-800 Zabrze, Poland
- School
of Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna St., Wolverhampton WV1 1LY, U.K.
| | - Darinka Christova
- Institute
of Polymers, Bulgarian Academy of Sciences, Akad. Georgi Bonchev Str., Bl. 103A, 1113 Sofia, Bulgaria
| | - Joanna Rydz
- Centre
of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-800 Zabrze, Poland
| |
Collapse
|
23
|
Abstract
Smart soft materials are envisioned to be the building blocks of the next generation of advanced devices and digitally augmented technologies. In this context, liquid crystals (LCs) owing to their responsive and adaptive attributes could serve as promising smart soft materials. LCs played a critical role in revolutionizing the information display industry in the 20th century. However, in the turn of the 21st century, numerous beyond-display applications of LCs have been demonstrated, which elegantly exploit their controllable stimuli-responsive and adaptive characteristics. For these applications, new LC materials have been rationally designed and developed. In this Review, we present the recent developments in light driven chiral LCs, i.e., cholesteric and blue phases, LC based smart windows that control the entrance of heat and light from outdoor to the interior of buildings and built environments depending on the weather conditions, LC elastomers for bioinspired, biological, and actuator applications, LC based biosensors for detection of proteins, nucleic acids, and viruses, LC based porous membranes for the separation of ions, molecules, and microbes, living LCs, and LCs under macro- and nanoscopic confinement. The Review concludes with a summary and perspectives on the challenges and opportunities for LCs as smart soft materials. This Review is anticipated to stimulate eclectic ideas toward the implementation of the nature's delicate phase of matter in future generations of smart and augmented devices and beyond.
Collapse
Affiliation(s)
- Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242, United States
| | - Quan Li
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242, United States.,Institute of Advanced Materials, School of Chemistry and Chemical Engineering, and Jiangsu Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| |
Collapse
|
24
|
Wang X, He J, Wei Q, Zhang Y, Li Y, Zhang Z, Zhao W, Zhou G. Influence of molecular weight on helical twisting power of oligomer chiral dopants. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Bhat S V, Raghunathan V, Kumar S. Synthesis and mesomorphic characterization of some novel steroidal mesogens: A structure–property correlation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Eichler JC, Skutnik RA, Mazza MG, Schoen M. Flow-assisted self-healing of the helical structure in a cholesteric liquid crystal. J Chem Phys 2021; 155:054903. [PMID: 34364338 DOI: 10.1063/5.0058745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We employ nonequilibrium molecular dynamics simulations to investigate the structure and dynamics of a cholesteric liquid crystal confined between atomically corrugated solid walls. By choosing walls normal to the helical axis, we can study systems with an arbitrary cholesteric pitch without exposing the cholesteric helix to a spurious stress. We investigate the effects of local heating and flow and their joint effects. A steady-state laminar Poiseuille flow is initiated by means of an external body force. Flow alone (i.e., without local heating) in a direction normal to the helical axis does not affect the cholesteric pitch. If the liquid crystal is heated in a small region, the cholesteric helix becomes unstable and melts locally. However, if local heating and flow are combined, a nontrivial synergistic effect is observed in that the helical structure recuperates the better, the higher the speed of the flow is.
Collapse
Affiliation(s)
- Jan-Christoph Eichler
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Fakultät für Mathematik und Naturwissenschaften, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| | - Robert A Skutnik
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Fakultät für Mathematik und Naturwissenschaften, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| | - Marco G Mazza
- Interdisciplinary Centre for Mathematical Modelling and Department of Mathematical Sciences, Loughborough University, University Road, Loughborough LE11 3TU, United Kingdom
| | - Martin Schoen
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Fakultät für Mathematik und Naturwissenschaften, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| |
Collapse
|
27
|
Shete A, Nadaf S, Doijad R, Killedar S. Liquid Crystals: Characteristics, Types of Phases and Applications in Drug Delivery. Pharm Chem J 2021. [DOI: 10.1007/s11094-021-02396-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Kanakala M, Yelamaggad CV. Exceptionally Wide Thermal Range Enantiotropic Existence of a Highly Complex Twist Grain Boundary Phase in a Pure, Single-Component Liquid Crystal Chiral Dimer. ACS OMEGA 2021; 6:11556-11562. [PMID: 34056311 PMCID: PMC8154034 DOI: 10.1021/acsomega.1c00768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/06/2021] [Indexed: 05/12/2023]
Abstract
Twist grain boundary (TGB) phases exhibiting highly frustrated and complex liquid crystal structures have aroused enormous interest because of their close resemblance to superconductors. The remarkable experimental demonstration of their occurrence by Goodby and co-workers paved the way for developing new research endeavors. However, of the several genuine concerns associated with these intriguing structures, their temperature range has been challenging. In this communication, we report the occurrence of the TGB phase with smectic C* blocks (TGBC*) over a vast, unprecedented thermal range of ∼170 °C in a newly synthesized chiral dimer derived from cholesterol. Detailed investigations covering synthesis, characterization, and evaluation of liquid crystallinity with the aid of optical, calorimetric, and X-ray diffraction are presented.
Collapse
Affiliation(s)
- Madhu
Babu Kanakala
- Centre
for Nano and Soft Matter Sciences (CeNS) Arkavathi Campus, Shivanapura, Dasanapura Hobli, Bangalore 562162, India
- Department
of Chemistry, Mangalore University, Mangalagangotri, Mangalore 574199, India
| | | |
Collapse
|
29
|
Szwaczko K, Miroslaw B, Demchuk OM, Wójciuk G, Mazur L, Pietrusiewicz KM. Metathetic approach to new NORPHOS-related bisphosphanes: facile synthesis and application in asymmetric hydrogenation. PURE APPL CHEM 2021. [DOI: 10.1515/pac-2020-1205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
A highly efficient synthesis of new chiral bisphosphanes derived from the renowned NORPHOS ligand is presented. The synthesis involves ring-opening metathesis of NORPHOS dioxide with an external olefin, followed by saturation of the new double bonds and adjustment of the oxidation level of phosphorus centers oxidation level. The synthesized bisphosphanes retain the configuration and enantiomeric purity of the starting NORPHOS. Their utility as ligands in asymmetric catalysis is exemplified using an open-NORPHOS ligand in some benchmark Rh-catalyzed hydrogenations of enamides where excellent chemical yields and enantiomeric purities of the products have been secured. The proposed protocol demonstrated the possibility of a straightforward synthesis of new chiral catalysts to be utilized in the asymmetric synthesis of pharmaceutically important compounds, such as amino acid derivatives.
Collapse
Affiliation(s)
- Katarzyna Szwaczko
- Faculty of Chemistry , Maria Curie-Sklodowska University in Lublin , Pl. Marii Curie-Sklodowskiej 3, 20-031 Lublin , Poland
| | - Barbara Miroslaw
- Faculty of Chemistry , Maria Curie-Sklodowska University in Lublin , Pl. Marii Curie-Sklodowskiej 3, 20-031 Lublin , Poland
| | - Oleg M. Demchuk
- Faculty of Science and Health , The John Paul II Catholic University of Lublin , 1h-Konstantynów St., 20-708 Lublin , Poland
- SBŁ-Pharmaceutical Research Institute , 8-Rydygiera St., 01-793 Warsaw , Poland
| | - Grzegorz Wójciuk
- Faculty of Chemistry , Maria Curie-Sklodowska University in Lublin , Pl. Marii Curie-Sklodowskiej 3, 20-031 Lublin , Poland
| | - Liliana Mazur
- Faculty of Chemistry , Maria Curie-Sklodowska University in Lublin , Pl. Marii Curie-Sklodowskiej 3, 20-031 Lublin , Poland
| | - Kazimierz Michał Pietrusiewicz
- Faculty of Chemistry , Maria Curie-Sklodowska University in Lublin , Pl. Marii Curie-Sklodowskiej 3, 20-031 Lublin , Poland
| |
Collapse
|
30
|
Gupta D, Kula P, Bhattacharjee A. Detailed analysis of a room temperature antiferroelectric liquid crystalline material forming polar mesophases. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
Urbańska M, Morawiak P, Senderek M. Investigation of the tilt angle and spontaneous polarisation of antiferroelectric liquid crystals with a chiral centre based on (S)-(+)-3-octanol. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Zhao W, de Haan LT, Broer DJ, Zhang Y, Lv P, Zhou G. Photopolymerization-enforced stratification in liquid crystal materials. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
33
|
Vanishree Bhat S, Swamynathan K, Kumar S. Synthesis and mesomorphic characterization of novel liquid crystals derived from bioactive natural sterols. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Formulation of Novel Liquid Crystal (LC) Formulations with Skin-Permeation-Enhancing Abilities of Plantago lanceolata (PL) Extract and Their Assessment on HaCaT Cells. Molecules 2021; 26:molecules26041023. [PMID: 33672029 PMCID: PMC7919469 DOI: 10.3390/molecules26041023] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 11/24/2022] Open
Abstract
Exposure to reactive oxygen species can easily result in serious diseases, such as hyperproliferative skin disorders or skin cancer. Herbal extracts are widely used as antioxidant sources in different compositions. The importance of antioxidant therapy in inflammatory conditions has increased. Innovative formulations can be used to improve the effects of these phytopharmacons. The bioactive compounds of Plantago lanceolata (PL) possess different effects, such as anti-inflammatory, antioxidant, and bactericidal pharmacological effects. The objective of this study was to formulate novel liquid crystal (LC) compositions to protect Plantago lanceolata extract from hydrolysis and to improve its effect. Since safety is an important aspect of pharmaceutical formulations, the biological properties of applied excipients and blends were evaluated using assorted in vitro methods on HaCaT cells. According to the antecedent toxicity screening evaluation, three surfactants were selected (Gelucire 44/14, Labrasol, and Lauroglycol 90) for the formulation. The dissolution rate of PL from the PL-LC systems was evaluated using a Franz diffusion chamber apparatus. The antioxidant properties of the PL-LC systems were evaluated with 2,2-diphenyl-1-picrylhydrazyl (DPPH) and malondialdehyde (MDA) assessments. Our results suggest that these compositions use a nontraditional, rapid-permeation pathway for the delivery of drugs, as the applied penetration enhancers reversibly alter the barrier properties of the outer stratum corneum. These excipients can be safe and highly tolerable thus, they could improve the patient’s experience and promote adherence.
Collapse
|
35
|
Skutnik RA, Eichler JC, Mazza MG, Schoen M. The temperature dependence of the helical pitch in a cholesteric liquid crystal. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1881638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Robert A. Skutnik
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Fakulät für Mathematik und Naturwissenschaften, Technische Universität Berlin, Berlin, Germany
| | - Jan-Christoph Eichler
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Fakulät für Mathematik und Naturwissenschaften, Technische Universität Berlin, Berlin, Germany
| | - Marco G. Mazza
- Interdisciplinary Centre for Mathematical Modelling and Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire, UK
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Martin Schoen
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Fakulät für Mathematik und Naturwissenschaften, Technische Universität Berlin, Berlin, Germany
- Department of Chemical Engineering, Imperial College London, London, UK
| |
Collapse
|
36
|
Aleksandriiskii V, Burmistrov V, Novikov I, Konkova D, Koifman O. Chiral transfer from (1S, 2R, 5S)-(+)-menthol and its acetate to polar liquid crystal: Role of H-bond and dipole-dipole interaction. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Akiyoshi R, Ohtani R, Lindoy LF, Hayami S. Spin crossover phenomena in long chain alkylated complexes. Dalton Trans 2021; 50:5065-5079. [DOI: 10.1039/d1dt00004g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review presents a discussion of soft metal complexes with a focus on spin crossover behaviours that are associated with structural phase transition, including liquid crystal LC transition.
Collapse
Affiliation(s)
- Ryohei Akiyoshi
- Department of Chemistry
- Graduate School of Science and Technology
- Kumamoto University
- Kumamoto
- Japan
| | - Ryo Ohtani
- Department of Chemistry
- Faculty of Science
- Kyushu University
- Fukuoka 819-0395
- Japan
| | | | - Shinya Hayami
- Department of Chemistry
- Graduate School of Science and Technology
- Kumamoto University
- Kumamoto
- Japan
| |
Collapse
|
38
|
Drzewicz A, Juszyńska-Gałązka E, Zając W, Piwowarczyk M, Drzewiński W. Non-isothermal and isothermal cold crystallization of glass-forming chiral smectic liquid crystal (S)-4′-(1-methyloctyloxycarbonyl) biphenyl-4-yl 4-[7-(2,2,3,3,4,4,4-heptafluorobutoxy) heptyl-1-oxy]-benzoate. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114153] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
39
|
Wang L, Urbas AM, Li Q. Nature-Inspired Emerging Chiral Liquid Crystal Nanostructures: From Molecular Self-Assembly to DNA Mesophase and Nanocolloids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1801335. [PMID: 30160812 DOI: 10.1002/adma.201801335] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/17/2018] [Indexed: 05/22/2023]
Abstract
Liquid crystals (LCs) are omnipresent in living matter, whose chirality is an elegant and distinct feature in certain plant tissues, the cuticles of crabs, beetles, arthropods, and beyond. Taking inspiration from nature, researchers have recently devoted extensive efforts toward developing chiral liquid crystalline materials with self-organized nanostructures and exploring their potential applications in diverse fields ranging from dynamic photonics to energy and safety issues. In this review, an account on the state of the art of emerging chiral liquid crystalline nanostructured materials and their technological applications is provided. First, an overview on the significance of chiral liquid crystalline architectures in various living systems is given. Then, the recent significant progress in different chiral liquid crystalline systems including thermotropic LCs (cholesteric LCs, cubic blue phases, achiral bent-core LCs, etc.) and lyotropic LCs (DNA LCs, nanocellulose LCs, and graphene oxide LCs) is showcased. The review concludes with a perspective on the future scope, opportunities, and challenges in these truly advanced functional soft materials and their promising applications.
Collapse
Affiliation(s)
- Ling Wang
- Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, 44242, USA
| | - Augustine M Urbas
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH, 45433, USA
| | - Quan Li
- Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, 44242, USA
| |
Collapse
|
40
|
Lewandowski W, Vaupotič N, Pociecha D, Górecka E, Liz-Marzán LM. Chirality of Liquid Crystals Formed from Achiral Molecules Revealed by Resonant X-Ray Scattering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905591. [PMID: 32529663 DOI: 10.1002/adma.201905591] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 05/21/2023]
Abstract
Intensive research on chiral liquid crystals (LCs) has been fueled by their actively tunable physicochemical properties and structural complexity, comparable to those of sophisticated natural materials. Herein, recent progress in the discovery of new classes of chiral LCs, enabled by a combination of nano- and macroscale investigations is reviewed. First, an overview is provided of liquid crystalline phases, made of chiral and achiral low-weight molecules, that exhibit chiral structure and/or chiral morphology. Then, recent progress in the discovery of new classes of chiral LCs, particularly enabled by the application of resonant X-ray scattering is described. It is shown that the method is sensitive to modulations of molecular orientation and therefore provides information hardly accessible by means of other techniques, such as the sense of helical structures or chirality transfer across length scales. Finally, a perspective is presented on the future scope, opportunities, and challenges in the field of chiral LCs, in particular related to nanocomposites.
Collapse
Affiliation(s)
- Wiktor Lewandowski
- Faculty of Chemistry, University of Warsaw, Pasteura 1 St., Warsaw, 02-093, Poland
| | - Nataša Vaupotič
- Department of Physics, University of Maribor, Koroška 160, Maribor, 2000, Slovenia
- Jozef Stefan Institute, Jamova 39, Ljubljana, 1000, Slovenia
| | - Damian Pociecha
- Faculty of Chemistry, University of Warsaw, Pasteura 1 St., Warsaw, 02-093, Poland
| | - Ewa Górecka
- Faculty of Chemistry, University of Warsaw, Pasteura 1 St., Warsaw, 02-093, Poland
| | - Luis M Liz-Marzán
- CIC biomaGUNE and CIBER-BBN, Paseo de Miramón 182, Donostia-San Sebastián, 20014, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain
| |
Collapse
|
41
|
Mirror Symmetry Breaking in Liquids and Their Impact on the Development of Homochirality in Abiogenesis: Emerging Proto-RNA as Source of Biochirality? Symmetry (Basel) 2020. [DOI: 10.3390/sym12071098] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Recent progress in mirror symmetry breaking and chirality amplification in isotropic liquids and liquid crystalline cubic phases of achiral molecule is reviewed and discussed with respect to its implications for the hypothesis of emergence of biological chirality. It is shown that mirror symmetry breaking takes place in fluid systems where homochiral interactions are preferred over heterochiral and a dynamic network structure leads to chirality synchronization if the enantiomerization barrier is sufficiently low, i.e., that racemization drives the development of uniform chirality. Local mirror symmetry breaking leads to conglomerate formation. Total mirror symmetry breaking requires either a proper phase transitions kinetics or minor chiral fields, leading to stochastic and deterministic homochirality, respectively, associated with an extreme chirality amplification power close to the bifurcation point. These mirror symmetry broken liquids are thermodynamically stable states and considered as possible systems in which uniform biochirality could have emerged. A model is hypothesized, which assumes the emergence of uniform chirality by chirality synchronization in dynamic “helical network fluids” followed by polymerization, fixing the chirality and leading to proto-RNA formation in a single process.
Collapse
|
42
|
Abstract
Living tissues, heterogeneous at the microscale, usually scatter light. Strong scattering is responsible for the whiteness of bones, teeth, and brain and is known to limit severely the performances of biomedical optical imaging. Transparency is also found within collagen-based extracellular tissues such as decalcified ivory, fish scales, or cornea. However, its physical origin is still poorly understood. Here, we unveil the presence of a gap of transparency in scattering fibrillar collagen matrices within a narrow range of concentration in the phase diagram. This precholesteric phase presents a three-dimensional (3D) orientational order biomimetic of that in natural tissues. By quantitatively studying the relation between the 3D fibrillar network and the optical and mechanical properties of the macroscopic matrices, we show that transparency results from structural partial order inhibiting light scattering, while preserving mechanical stability, stiffness, and nonlinearity. The striking similarities between synthetic and natural materials provide insights for better understanding the occurring transparency.
Collapse
|
43
|
Lehmann A, Alaasar M, Poppe M, Poppe S, Prehm M, Nagaraj M, Sreenilayam SP, Panarin YP, Vij JK, Tschierske C. Stereochemical Rules Govern the Soft Self-Assembly of Achiral Compounds: Understanding the Heliconical Liquid-Crystalline Phases of Bent-Core Mesogens. Chemistry 2020; 26:4714-4733. [PMID: 31859404 PMCID: PMC7186843 DOI: 10.1002/chem.201904871] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/15/2019] [Indexed: 11/16/2022]
Abstract
A series of bent-shaped 4-cyanoresorcinol bisterephthalates is reported. Some of these achiral compounds spontaneously form a short-pitch heliconical lamellar liquid-crystalline phase with incommensurate 3-layer pitch and the helix axis parallel to the layer normal. It is observed at the paraelectric-(anti)ferroelectric transition, if it coincides with the transition from random to uniform tilt and with the transition from anticlinic to synclinic tilt correlation of the molecules in the layers of the developing tilted smectic phase. For compounds with long chains the heliconical phase is only field-induced, but once formed it is stable in a distinct temperature range, even after switching off the field. The presence of the helix changes the phase properties and the switching mechanism from the naturally preferred rotation around the molecular long axis, which reverses the chirality, to a precession on a cone, which retains the chirality. These observations are explained by diastereomeric relations between two coexisting modes of superstructural chirality. One is the layer chirality, resulting from the combination of tilt and polar order, and the other one is the helical twist evolving between the layers. At lower temperature the helical structure is replaced by a non-tilted and ferreoelectric switching lamellar phase, providing an alternative non-chiral way for the transition from anticlinic to synclinic tilt.
Collapse
Affiliation(s)
- Anne Lehmann
- Department of ChemistryMartin Luther University Halle-WittenbergKurt Mothes Str. 206120Halle (Saale)Germany
| | - Mohamed Alaasar
- Department of ChemistryMartin Luther University Halle-WittenbergKurt Mothes Str. 206120Halle (Saale)Germany
- Department of ChemistryCairo University12613GizaEgypt
| | - Marco Poppe
- Department of ChemistryMartin Luther University Halle-WittenbergKurt Mothes Str. 206120Halle (Saale)Germany
| | - Silvio Poppe
- Department of ChemistryMartin Luther University Halle-WittenbergKurt Mothes Str. 206120Halle (Saale)Germany
| | - Marko Prehm
- Department of ChemistryMartin Luther University Halle-WittenbergKurt Mothes Str. 206120Halle (Saale)Germany
| | - Mamatha Nagaraj
- Department of Electronic and Electrical EngineeringTrinity College, Dublin, The University of DublinDublin2Ireland
| | - Sithara P. Sreenilayam
- Department of Electronic and Electrical EngineeringTrinity College, Dublin, The University of DublinDublin2Ireland
| | - Yuri P. Panarin
- Department of Electronic and Electrical EngineeringTrinity College, Dublin, The University of DublinDublin2Ireland
| | - Jagdish K. Vij
- Department of Electronic and Electrical EngineeringTrinity College, Dublin, The University of DublinDublin2Ireland
| | - Carsten Tschierske
- Department of ChemistryMartin Luther University Halle-WittenbergKurt Mothes Str. 206120Halle (Saale)Germany
| |
Collapse
|
44
|
Influence of gold nanorods on the structure and photonic bandgap in a twist grain boundary phase with smectic C* blocks. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
Samoilov A, Minenko S, Sushynskyi O, Lisetski L, Lebovka N. Optical and calorimetric studies of quercetin-doped liquid crystals: Effects of molecular aggregation. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
46
|
Wensink HH. Polymeric Nematics of Associating Rods: Phase Behavior, Chiral Propagation, and Elasticity. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Henricus H. Wensink
- Laboratoire de Physique des Solides—UMR 8502, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
47
|
Veerabhadraswamy BN, Bhat SA, Hiremath US, Yelamaggad CV. Light-Emitting Chiral Nematic Dimers with Anomalous Odd-Even Effect. Chemphyschem 2019; 20:2836-2851. [PMID: 31517434 DOI: 10.1002/cphc.201900716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/12/2019] [Indexed: 11/06/2022]
Abstract
In this report, based on the results derived from the extensive study into the thermal and photophysical properties, an anomalous mesomorphic behavior of photoluminescent, chiral nematic (N*) liquid crystalline dimers, belonging to two different series has been revealed. They comprise cholesterol and fluorescent three-ring Schiff base or salicylaldimine core interlinked via an ω-oxyalkanoyloxy spacer of varying length and parity. The effect of molecular structure on the liquid crystal (LC) behavior and photophysical properties of both the series has been probed by varying the length of the terminal n-alkoxy tails for a fixed (odd or even) parity of the spacer. The detailed investigations using complementary techniques not only evidenced the existence of the N* phase in all the dimers synthesized but also the occurrence of an intriguing odd-even effect; blue phases (BPs) exist in all the dimers comprising even-membered spacer, which surprisingly remains totally absent in their odd-membered counterparts. While the results reported hitherto are exactly opposite to the aforesaid findings, this atypical behavior has been interpreted in terms of the over-all shape of the dimers rendered by the orientation of terminal tails. Photophysical studies carried out clearly revealed the intrinsic light emitting feature of the dimers not only in their dilute solutions but also in their three condensed states viz., solid, N* phase, and isotropic liquid state; the emission intensities of the N* phase varies with the change in temperature, as expected. CD spectra of the N* phase recorded as a function of temperature show bisignate CD band characteristically, signifying large chiral correlations in the molecular self-assembly, while the origin of bands from positive to negative region suggests a right-handed twist of the N* helix.
Collapse
Affiliation(s)
- B N Veerabhadraswamy
- Centre for Nano and Soft Matter Sciences, P. B. No. 1329, Prof. U. R. Rao Road, Jalahalli, Bengaluru, 560 013, INDIA
| | - Sachin A Bhat
- Centre for Nano and Soft Matter Sciences, P. B. No. 1329, Prof. U. R. Rao Road, Jalahalli, Bengaluru, 560 013, INDIA
| | - Uma S Hiremath
- Centre for Nano and Soft Matter Sciences, P. B. No. 1329, Prof. U. R. Rao Road, Jalahalli, Bengaluru, 560 013, INDIA
| | | |
Collapse
|
48
|
Scholz M, Morgenroth M, Cho MJ, Choi DH, Lenzer T, Oum K. Coherent acoustic phonon dynamics in chiral copolymers. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2019; 6:064502. [PMID: 31893213 PMCID: PMC6927817 DOI: 10.1063/1.5124438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Coherent phonon oscillations in the UV-Vis transient absorption and circular dichroism response of two chiral polyfluorene-based copolymer thin films are investigated. A slow oscillation in the hundred picosecond regime indicates the propagation of a longitudinal acoustic phonon with a frequency in the gigahertz range through cholesteric films of PFPh and PFBT, which allow for the optical determination of the longitudinal sound velocity in these polymers, with values of (2550 ± 140) and (2490 ± 150) m s-1, respectively. The oscillation is induced by a strain wave, resulting in a pressure-induced periodic shift of the electronic absorption bands, as extracted from a Fourier analysis of the transient spectra. The acoustic phonon oscillation is also clearly detected in the transient circular dichroism (TrCD) response of PFPh, indicating a transient pressure-induced shift of the CD spectrum and possibly also phonon-induced chirality changes via pitch length modulation of the cholesteric helical polymer stack.
Collapse
Affiliation(s)
- Mirko Scholz
- Physical Chemistry, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| | - Marius Morgenroth
- Physical Chemistry, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| | - Min Ju Cho
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 5 Anam-dong, Sungbuk-gu, Seoul 136-701, South Korea
| | - Dong Hoon Choi
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 5 Anam-dong, Sungbuk-gu, Seoul 136-701, South Korea
| | - Thomas Lenzer
- Physical Chemistry, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| | - Kawon Oum
- Physical Chemistry, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| |
Collapse
|
49
|
Deng Z, Zhou G, de Haan LT. Preparation of an Interpenetrating Network of a Poly(ampholyte) and a Cholesteric Polymer and Investigation of Its Hydrochromic Properties. ACS APPLIED MATERIALS & INTERFACES 2019; 11:36044-36051. [PMID: 31525959 DOI: 10.1021/acsami.9b10013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A new water-responsive photonic coating based on a hygroscopic amphoteric poly(ampholyte) has been developed. The material consists of an interpenetrating network between the poly(ampholyte) and a cholesteric liquid crystalline polymer that reflects light. Swelling of this hybrid material upon contact with water causes a red-shift of the reflection band. As both cation and anion are incorporated in the ionic network, this coating possesses a high stability of its water responsiveness after prolonged and/or repeated exposure to water, even if the water contains dissolved ions. In addition, optimization of the water response of the coatings is demonstrated by changing the composition of the base cholesteric mixture, and color patterns were prepared through selective UV exposure.
Collapse
Affiliation(s)
- Zixuan Deng
- SCNU-TUE Joint Laboratory of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics , South China Normal University , Guangzhou 510006 , Guangdong , China
| | - Guofu Zhou
- SCNU-TUE Joint Laboratory of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics , South China Normal University , Guangzhou 510006 , Guangdong , China
- Shenzhen Guohua Optoelectronics Tech. Co. Ltd. , Shenzhen 518110 , P. R. China
- Academy of Shenzhen Guohua Optoelectronics , Shenzhen 518110 , P. R. China
| | - Laurens T de Haan
- SCNU-TUE Joint Laboratory of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics , South China Normal University , Guangzhou 510006 , Guangdong , China
| |
Collapse
|
50
|
Scholz M, Morgenroth M, Cho MJ, Choi DH, Oum K, Lenzer T. Ultrafast Broadband Transient Absorption and Circular Dichroism Reveal Relaxation of a Chiral Copolymer. J Phys Chem Lett 2019; 10:5160-5166. [PMID: 31436421 DOI: 10.1021/acs.jpclett.9b02061] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We present a study of the photoinduced dynamics of the chiral polyfluorene-phenylene copolymer PFPh in THF and in cholesteric thin films. After photoexcitation at 370 nm in THF, ultraviolet-visible-near-infrared (UV-vis-NIR) transient absorption spectra show fast subpicosecond to picosecond intrachain migration of singlet excitons, solvation dynamics, and an exciton lifetime of 410 ps. The PFPh thin film features also interchain singlet exciton migration and exhibits shorter (2.1 and 240 ps) and longer lifetime components (2800 ps, interchain recombination). Furthermore, a setup for ultrafast UV-vis broadband transient circular dichroism (TrCD) spectroscopy has been developed. Fast supramolecular relaxation processes are observed, which are linked to changes in the anisotropic polarizability and pitch length of the cholesteric film. Such combined ultrafast transient CD and absorption experiments hold promise to reveal not only details of relaxation processes in supramolecular arrangements but also structural rearrangements of chiral molecular systems featuring CD signals in the UV-vis region.
Collapse
Affiliation(s)
- Mirko Scholz
- Physical Chemistry, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| | - Marius Morgenroth
- Physical Chemistry, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| | - Min Ju Cho
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 5 Anam-dong, Sungbuk-gu, Seoul 136-701, Korea
| | - Dong Hoon Choi
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 5 Anam-dong, Sungbuk-gu, Seoul 136-701, Korea
| | - Kawon Oum
- Physical Chemistry, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| | - Thomas Lenzer
- Physical Chemistry, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| |
Collapse
|