1
|
Petit P, Vuillerme N. Leveraging Administrative Health Databases to Address Health Challenges in Farming Populations: Scoping Review and Bibliometric Analysis (1975-2024). JMIR Public Health Surveill 2025; 11:e62939. [PMID: 39787587 PMCID: PMC11757986 DOI: 10.2196/62939] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/08/2024] [Accepted: 11/07/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Although agricultural health has gained importance, to date, much of the existing research relies on traditional epidemiological approaches that often face limitations related to sample size, geographic scope, temporal coverage, and the range of health events examined. To address these challenges, a complementary approach involves leveraging and reusing data beyond its original purpose. Administrative health databases (AHDs) are increasingly reused in population-based research and digital public health, especially for populations such as farmers, who face distinct environmental risks. OBJECTIVE We aimed to explore the reuse of AHDs in addressing health issues within farming populations by summarizing the current landscape of AHD-based research and identifying key areas of interest, research gaps, and unmet needs. METHODS We conducted a scoping review and bibliometric analysis using PubMed and Web of Science. Building upon previous reviews of AHD-based public health research, we conducted a comprehensive literature search using 72 terms related to the farming population and AHDs. To identify research hot spots, directions, and gaps, we used keyword frequency, co-occurrence, and thematic mapping. We also explored the bibliometric profile of the farming exposome by mapping keyword co-occurrences between environmental factors and health outcomes. RESULTS Between 1975 and April 2024, 296 publications across 118 journals, predominantly from high-income countries, were identified. Nearly one-third of these publications were associated with well-established cohorts, such as Agriculture and Cancer and Agricultural Health Study. The most frequently used AHDs included disease registers (158/296, 53.4%), electronic health records (124/296, 41.9%), insurance claims (106/296, 35.8%), population registers (95/296, 32.1%), and hospital discharge databases (41/296, 13.9%). Fifty (16.9%) of 296 studies involved >1 million participants. Although a broad range of exposure proxies were used, most studies (254/296, 85.8%) relied on broad proxies, which failed to capture the specifics of farming tasks. Research on the farming exposome remains underexplored, with a predominant focus on the specific external exposome, particularly pesticide exposure. A limited range of health events have been examined, primarily cancer, mortality, and injuries. CONCLUSIONS The increasing use of AHDs holds major potential to advance public health research within farming populations. However, substantial research gaps persist, particularly in low-income regions and among underrepresented farming subgroups, such as women, children, and contingent workers. Emerging issues, including exposure to per- and polyfluoroalkyl substances, biological agents, microbiome, microplastics, and climate change, warrant further research. Major gaps also persist in understanding various health conditions, including cardiovascular, reproductive, ocular, sleep-related, age-related, and autoimmune diseases. Addressing these overlooked areas is essential for comprehending the health risks faced by farming communities and guiding public health policies. Within this context, promoting AHD-based research, in conjunction with other digital data sources (eg, mobile health, social health data, and wearables) and artificial intelligence approaches, represents a promising avenue for future exploration.
Collapse
Affiliation(s)
- Pascal Petit
- Laboratoire AGEIS, Université Grenoble Alpes, La Tronche Cedex, France
| | - Nicolas Vuillerme
- Laboratoire AGEIS, Université Grenoble Alpes, La Tronche Cedex, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
2
|
Lei J, Zhao S, Huang J, Tao K, Dang Q, Peng J, Zhao Y, Zhang L. A Novel Array-Based Fluorescent Sensing Approach for the Identification and Quantification of Pesticides with High Sensitivity Based on Distinguishable Cross-response Algorithm. J Fluoresc 2025:10.1007/s10895-024-04120-x. [PMID: 39777593 DOI: 10.1007/s10895-024-04120-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025]
Abstract
The presence of excessive residues of pesticides poses a great threat to ecology and human health. Herein, a novel, low-cost, simple and precise quantification sensing platform was established for differentiating and monitoring four common pesticides in China. Particularly, the array-based ratio fluorescent sensor array detector (ARF-SAD) based on cross-reaction characteristics of porphyrins and other porphyrin derivative was successfully constructed and integrated into the platform. Via acquiring the fluorescent data before and after the reaction of the ARF-SAD with pesticides, a novel, unique, and recognizable pattern of fluorescence changes was developed and utilized for the rapid characterization of pesticides. In addition, after raw data processed through the intervention of machine learning algorithms (hierarchical cluster analysis, principal component analysis, fitting of a polynomial), the selected pesticides and their mixture can be accurately distinguished via the constructed fluorescence fingerprint map by the platform in terms of category. By use of ratio fluorescence strategy, the platform and fluorescent sensor array can provide good sensitivity and selectivity for the monitoring of selected pesticides with LODs less than 10 ppb. Furthermore, the reproducibility, stability and practicability analysis of real sample have been thoroughly validated simultaneously. The findings indicated that the standard recovery rates of the six categories of blended pesticides in Jialing River water samples ranged from 86.13% to 114.84%, with the lowest relative standard deviation (RSD) reaching a remarkable level of only 3.04%. All representations consistently demonstrate that the detector serves as a prompt and viable sensing platform for discriminating and quantitatively analyzing pesticides, thereby showcasing its potential in the fields of pesticide differentiation and detection.
Collapse
Affiliation(s)
- Jincan Lei
- Chongqing Engineering and Technology Research Center of Intelligent Rehabilitation and Eldercare, Chongqing City Management College, 401331, Chongqing, China
| | - Shixian Zhao
- Chongqing Engineering and Technology Research Center of Intelligent Rehabilitation and Eldercare, Chongqing City Management College, 401331, Chongqing, China.
| | - Jing Huang
- Chongqing Engineering and Technology Research Center of Intelligent Rehabilitation and Eldercare, Chongqing City Management College, 401331, Chongqing, China.
- Chongqing Shanwaishan Blood Purification Technology Co., LTD, 401120, Chongqing, China.
| | - Ke Tao
- Chongqing Engineering and Technology Research Center of Intelligent Rehabilitation and Eldercare, Chongqing City Management College, 401331, Chongqing, China
| | - Qi Dang
- Chongqing Engineering and Technology Research Center of Intelligent Rehabilitation and Eldercare, Chongqing City Management College, 401331, Chongqing, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 400044, Chongqing, China
| | - Junxi Peng
- Chongqing Engineering and Technology Research Center of Intelligent Rehabilitation and Eldercare, Chongqing City Management College, 401331, Chongqing, China
| | - Yun Zhao
- Chongqing Polytechnic University of Electronic Technology, 401120, Chongqing, China
| | - Lili Zhang
- Chongqing Engineering and Technology Research Center of Intelligent Rehabilitation and Eldercare, Chongqing City Management College, 401331, Chongqing, China
| |
Collapse
|
3
|
Yin H, Zheng Y, Chen M, Ding M, Zhang L, Wang R, Wang C, Jia J, Liu X. Pesticide avermectin B1a exerts cytotoxicity by blocking the interaction between mini-chromosome maintenance 6 protein (MCM6) and chromatin licensing and DNA replication factor 1 (CDT1). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 364:125377. [PMID: 39579921 DOI: 10.1016/j.envpol.2024.125377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/06/2024] [Accepted: 11/21/2024] [Indexed: 11/25/2024]
Abstract
Avermectin B1a, a widely used pesticide, has recently raised safety concerns since it possesses potential cytotoxicity toward mammalian cells. Nevertheless, the exact mechanisms that underlie the cytotoxicity induced by avermectin B1a remain elusive. The loading of the mini-chromosome maintenance 6 protein (MCM6) onto chromatin at replication origins by chromatin licensing and DNA replication factor 1 (CDT1) is an essential step for licensing DNA for replication. Here, we first report that avermectin B1a occupies the CDT1-binding domain (CBD) of MCM6 to block the interaction between MCM6 and CDT1 and thus inhibits the licensing for DNA replication. Avermectin B1a inhibits the proliferation with IC50 being 15.1 μM and induces cell cycle arrest at the G0/G1 phase in MEF cells. Moreover, abnormal replication licensing induced by avermectin B1a causes replication stress and DNA double strand breaks, which in turn leads to apoptosis in MEF cells. Further molecular docking uncovers that four residues Glu763, Ile760, Arg771, and Glu774 are vital for the formation of hydrogen bonds in avermectin B1a-CBD interaction. Furthermore, the upregulation of MCM6 or/and CDT1 reverses the avermectin B1a-induced decrease in cell viability and normalizes the cell cycle, indicating that the blockage of MCM6-CDT1 interaction is one of the mechanisms underlying avermectin B1a-induced cytotoxicity. This study not only provides new insights into the mechanism of avermectin B1a-induced cytotoxicity but also offers a useful molecular tool for the investigation of MCM6-CDT1 interaction.
Collapse
Affiliation(s)
- Hao Yin
- Level Three Laboratory of Traditional Chinese Medicine Preparation of National Administration of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China; Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China; Laboratory for Molecular Identification and Biological Evaluation of Chinese Herbal Pieces, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Yaoyao Zheng
- Level Three Laboratory of Traditional Chinese Medicine Preparation of National Administration of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China; Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China; Laboratory for Molecular Identification and Biological Evaluation of Chinese Herbal Pieces, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Menghan Chen
- Level Three Laboratory of Traditional Chinese Medicine Preparation of National Administration of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China; Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China; Laboratory for Molecular Identification and Biological Evaluation of Chinese Herbal Pieces, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Ming Ding
- Level Three Laboratory of Traditional Chinese Medicine Preparation of National Administration of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China; Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China; Laboratory for Molecular Identification and Biological Evaluation of Chinese Herbal Pieces, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Lin Zhang
- Level Three Laboratory of Traditional Chinese Medicine Preparation of National Administration of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Roujia Wang
- Level Three Laboratory of Traditional Chinese Medicine Preparation of National Administration of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Chunyu Wang
- Level Three Laboratory of Traditional Chinese Medicine Preparation of National Administration of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Jing Jia
- Laboratory for Molecular Identification and Biological Evaluation of Chinese Herbal Pieces, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China.
| | - Xiaoqian Liu
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China.
| |
Collapse
|
4
|
Ben Khadda Z, Bungau SG, El Balkhi S, Ezrari S, Radu AF, Houssaini TS, Achour S. Urinary biomonitoring of exposure to glyphosate and its metabolite amino-methyl phosphonic acid among farmers and non-farmers in Morocco. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 113:104620. [PMID: 39716525 DOI: 10.1016/j.etap.2024.104620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/25/2024]
Abstract
Glyphosate, a widely used herbicide in global agriculture, poses potential health risks due to environmental and dietary exposure. This study evaluated urinary concentrations of glyphosate and its metabolite, amino-methyl phosphonic acid (AMPA), among farmers and non-farmers in Morocco's Fez-Meknes region, using liquid chromatography-tandem mass spectrometry. Glyphosate was detected in 57.14 % of farmers, 35.41 % of indirectly exposed residents, and 24 % of controls, while AMPA was present in 5.35 % of farmers only. Average glyphosate levels were 0.176 μg/L in farmers, 0.098 μg/L in indirectly exposed individuals, and 0.069 μg/L in controls, with AMPA averaging 0.253 μg/L in farmers. Sociodemographic factors, such as education level, farm residence, and herbicide storage, significantly influenced glyphosate levels, while reusing pesticide containers strongly correlated with elevated glyphosate and AMPA concentrations. Estimated daily intakes (EDIs), hazard quotients (HQs), and a hazard index (HI) were calculated to analyze the obtained data from a health risk perspective. Farmers had higher EDIGM values for AMPA (0.303 µg/d/kg) and Glyphosate (0.140 µg/d/kg) compared to the control group, which had significantly lower values of 0.110 µg/d/kg for AMPA and 0.080 µg/d/kg for Glyphosate. The HQs were calculated considering 0.5 mg/kg BW/day as an acceptable daily intake (ADI), which EFSA has established as a health-based reference value for both analytes. The values obtained were lower than 1, indicating that the health risk from Glyphosate and AMPA exposure was considered acceptable for the studied population.
Collapse
Affiliation(s)
- Zineb Ben Khadda
- Laboratory of Epidemiology and Research in Health Sciences, Faculty of Medicine and Pharmacy, Sidi Mohammed Ben Abdellah University, Fez 30070, Morocco.
| | - Simona Gabriela Bungau
- Doctoral School of Biomedical Sciences, University of Oradea, Oradea 410087, Romania; Department of Pharmacy, University of Oradea, Oradea 410028, Romania.
| | - Souleiman El Balkhi
- Department of Pharmacology, toxicology and pharmacovigilance, CHU Limoges, France.
| | - Said Ezrari
- Microbiology Unit, Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Medicine and Pharmacy Oujda, University Mohammed Premier, Oujda 60000, Morocco.
| | - Andrei-Flavius Radu
- Doctoral School of Biomedical Sciences, University of Oradea, Oradea 410087, Romania; Department of Preclinical Disciplines, University of Oradea, Oradea 410073, Romania.
| | - Tarik Sqalli Houssaini
- Laboratory of Epidemiology and Research in Health Sciences, Faculty of Medicine and Pharmacy, Sidi Mohammed Ben Abdellah University, Fez 30070, Morocco; Department of Nephrology, University of Hospital Hassan II, Fez, Morocco.
| | - Sanae Achour
- Laboratory of Pharmacology and Toxicology, University Hospital Hassan II, Fez, Morocco; Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy of the Fez, University of Sidi Mohamed Ben Abdellah, Fez, Morocco.
| |
Collapse
|
5
|
Ahmed N, Tu P, Deng L, Chachar S, Chachar Z, Deng L. Optimizing the dual role of biochar for phosphorus availability and arsenic immobilization in soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177810. [PMID: 39616926 DOI: 10.1016/j.scitotenv.2024.177810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/17/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024]
Abstract
Soil Phosphorus (P) fixation and Arsenic (As) contamination pose significant challenges to agriculture and environmental health. Biochar has emerged as a promising soil amendment capable of enhancing P availability while immobilizing As. This review explored the mechanisms by which biochar influences P dynamics and As sequestration. Biochar enhances P availability by reducing fixation, stimulating P-solubilizing microorganisms, and gradually releasing the adsorbed P. Specific biochars, such as Mg-modified and La-modified types, demonstrate high P adsorption capacities, reaching up to 263 mg/g, while cerium and iron-modified biochars show As adsorption efficiencies up to 99 % under certain conditions. Biochar's surface functional groups are essential for P and As adsorption through mechanisms such as surface adsorption, ligand exchange, and inner-sphere complexation. The competitive adsorption between P and As is influenced by pH, biochar modification, and co-existing anions. Under acidic conditions, As shows a higher affinity for biochar, forming stable complexes with metal oxides like iron and aluminum. Biochars modified with calcium, magnesium, lanthanum, zinc, cerium, and iron demonstrate enhanced adsorption capacities. In neutral to alkaline conditions, calcium- and magnesium-modified biochars benefit P retention, while iron-modified biochar is preferable for As adsorption. Additionally, biochar promotes microbial activity and enzymatic processes that facilitate As transformation and P mineralization, enhancing overall soil health. These findings underscore biochar's dual role in increasing nutrient availability and reducing contaminant risks, making it a valuable tool for sustainable agriculture. Field-scale applications should be prioritized in future research to optimize biochar's impact on soil fertility and environmental remediation.
Collapse
Affiliation(s)
- Nazir Ahmed
- South China Agricultural University, Guangzhou 510642, China; College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510550, China
| | - Panfeng Tu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510550, China
| | - Lansheng Deng
- South China Agricultural University, Guangzhou 510642, China
| | - Sadaruddin Chachar
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510550, China
| | - Zaid Chachar
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510550, China
| | - Lifang Deng
- South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
6
|
Teixeira AM, De Queiroz MELR, Rodrigues AAZ, de Oliveira AF, Libardi VM, de Freitas JF. Determination of pesticide residues in oat flour using low-temperature partition extraction and GC-MS analysis. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:2402-2410. [PMID: 39431188 PMCID: PMC11486861 DOI: 10.1007/s13197-024-06006-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 10/22/2024]
Abstract
A simple method based on solid-liquid extraction with a low-temperature partition (SLE/LTP) and analysis by gas chromatography coupled to mass spectrometry (GC-MS) was optimized and validated for determining residues of the pesticides triadimenol, flutriafol, λ-cyhalothrin, difenoconazole, and azoxystrobin in oat flour. A factorial design was employed to optimize the technique and establish the best conditions for the simultaneous extraction of the analytes. Acetonitrile-sample extraction and its 4 h freezing made it possible to recover the pesticides and clean the extracts in a single step. The limit of detection ranged from 1.72 to 12.9 μg kg-1, and the limit of quantification from 5.73 to 43.0 μg kg-1. These values are below the maximum residue limit (MRL) permitted by National legislation. The recovery percentage fell between 91.7 and 108%, with coefficients of variation under 12%. The validated method was applied to oat flour samples randomly acquired from the local market of Viçosa (Minas Gerais, Brazil) and no residues were detected. The SLE/LTP-GC-MS method proved simple, efficient, selective, and sensitive for determining pesticide residues from oat flour samples, offering a more simplified approach compared to techniques described in the literature. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-06006-z.
Collapse
Affiliation(s)
| | | | - Alessandra A. Z. Rodrigues
- Department of Chemistry, Universidade Federal de Viçosa, Viçosa, MG Brazil
- Department of Agricultural Engineering, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | | | | | | |
Collapse
|
7
|
Shekhar C, Khosya R, Thakur K, Mahajan D, Kumar R, Kumar S, Sharma AK. A systematic review of pesticide exposure, associated risks, and long-term human health impacts. Toxicol Rep 2024; 13:101840. [PMID: 39717852 PMCID: PMC11664077 DOI: 10.1016/j.toxrep.2024.101840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/25/2024] Open
Abstract
Pesticides are widely used to control pests, but their widespread use raises concerns regarding potential health risks for humans. There are several routes through which pesticides can be ingested, inhaled, and absorbed, resulting in acute and long-term health consequences. This systematic review synthesizes the available evidence regarding the health risks and long-term effects of pesticide exposure, with a particular focus on epidemiological and toxicological studies. A systematic review was conducted by searching scientific databases i.e. Scopus, and Web of Science for peer-reviewed articles published between 2000 and 2024. Studies were selected based on their focus on pesticide exposure, health risks, and long-term effects. Meta-analysis was conducted where sufficient homogeneity of outcomes allowed. This review identified consistent associations between chronic pesticide exposure and non-communicable diseases, including cancer, neurological disorders, and endocrine disruptions. An increased incidence of respiratory issues and neurodegenerative diseases was often associated with occupational exposure to pesticides. People exposed for a prolonged or high intensity time period, particularly agricultural workers, were more likely to experience long-term health effects. There are a number of factors that influences the ability to draw definitive conclusions, including variations in pesticide types, exposure levels, and health outcomes. Chronic exposure to pesticides presents significant health risks, particularly for individuals in high-exposure environments like agriculture. While evidence indicates strong associations with several long-term health conditions, additional research is necessary to elucidate dose-response relationships and mechanisms of action. This review underscores the necessity for enhanced regulatory measures and improved safety protocols to mitigate pesticide-related health risks.
Collapse
Affiliation(s)
- Chander Shekhar
- Department of Animal Sciences, Central University of Himachal Pradesh Shahpur Campus, Kangra 176206, India
| | - Reetu Khosya
- Department of Animal Sciences, Central University of Himachal Pradesh Shahpur Campus, Kangra 176206, India
| | - Kushal Thakur
- Department of Animal Sciences, Central University of Himachal Pradesh Shahpur Campus, Kangra 176206, India
| | - Danish Mahajan
- Department of Animal Sciences, Central University of Himachal Pradesh Shahpur Campus, Kangra 176206, India
| | - Rakesh Kumar
- Department of Animal Sciences, Central University of Himachal Pradesh Shahpur Campus, Kangra 176206, India
| | - Sunil Kumar
- Department of Animal Sciences, Central University of Himachal Pradesh Shahpur Campus, Kangra 176206, India
| | - Amit Kumar Sharma
- Correspondence to: Department of Animal Sciences, Central University of Himachal Pradesh Shahpur Campus-176206, Kangra, India.
| |
Collapse
|
8
|
Hefner CE, Aryal P, Brack E, Alexander T, Henry CS. Capillary-flow driven microfluidic sensor based on tyrosinase for fast user-friendly assessment of pesticide exposures. Analyst 2024; 149:5684-5692. [PMID: 39495064 DOI: 10.1039/d4an01203h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Pesticides are primarily used in agriculture to protect crops and extend their longevity. However, pesticide exposure has been linked to various acute and chronic health effects, raising significant environmental concerns. Current detection methods are often expensive and time-consuming, relying on complex instruments. Although enzyme-inhibition-based microfluidic paper-based analytical device (mPAD) platforms offer an easier alternative, they suffer from slow analyte transport and analyte adsorption issues in microchannels. Consequently, there is a need for a fast, simple, and cost-effective point-of-need platform for pesticide sensing. In this study, we present a rapid microfluidic platform for on-site pesticide residue detection. Unlike traditional mPAD platforms, our system transports pesticide samples through hollow capillary channels within seconds without adsorption of pesticides in the microchannels. While much research has focused on acetylcholinesterase inhibition on paper, this study is the first to introduce a tyrosinase inhibition-based assay on a paper platform for pesticide detection. Ziram, a representative dithiocarbamate pesticide, was detected using a colorimetric enzymatic inhibition assay. A limit of detection (LoD) of 1.5 ppm was obtained. In this study, we optimized the fast-flow device, assessed its stability and susceptibility to various interferences, and conducted real-sample tests using glove extraction to evaluate its capability in real-world settings. Spike recovery analysis revealed an extraction efficiency of 82.5% to 87.5% for leather gloves and 68.9% to 71.9% for nitrile gloves. This platform demonstrates strong selectivity against interferences, with the enzyme retaining 90% activity even after a week under the established storage protocols with room for further investigation. While primarily a proof of concept, this device shows promise as an additional tool for pesticide detection, with potential future integration into multiplexed devices.
Collapse
Affiliation(s)
- Claire E Hefner
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
| | - Prakash Aryal
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
| | - Eric Brack
- U.S. Army Combat Capabilities Development Command (DEVCOM)-Soldier Center, 10 General Greene Avenue, Natick, Massachusetts 01760, USA
| | - Todd Alexander
- U.S. Army Combat Capabilities Development Command (DEVCOM)-Soldier Center, 10 General Greene Avenue, Natick, Massachusetts 01760, USA
| | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
9
|
Zhang J, Chen Y, Ni M, Hou C, Qiao X, Wang T. A novel halloysite nanotubes-based hybrid monolith for in-tube solid-phase microextraction of polar cationic pesticides. Food Chem 2024; 458:140205. [PMID: 38943962 DOI: 10.1016/j.foodchem.2024.140205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 06/13/2024] [Accepted: 06/22/2024] [Indexed: 07/01/2024]
Abstract
The accurate determination of polar cationic pesticides in food poses a challenge due to their high polarity and trace levels in complex matrices. This study hypothesized that the use of halloysite nanotubes (HNTs) can significantly enhance the extraction efficiency and sensitivity of these analytes because of their rich hydroxyl groups and cation exchange sites. Therefore, we chemically incorporated HNTs with organic polymer monoliths for in-tube solid-phase microextraction (SPME). This novel hybrid monolith extended service life, improved adsorption capacity, and exhibited excellent extraction performance for polar cationic pesticides. Based on these advancements, a robust and sensitive in-tube SPME-HILIC-MS/MS method was constructed to determine trace levels of polar cationic pesticides in complex food matrices. The method achieved limits of detection of 1.9, 2.1, and 0.1 μg/kg for maleic hydrazide, amitrole, and cyromazine, respectively. The spiked recoveries in five food samples ranged from 80.2 to 100.8%, with relative standard deviations below 10.7%.
Collapse
Affiliation(s)
- Jinhan Zhang
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, PR China
| | - Yihui Chen
- Ningbo Customs Technology Center, Ningbo 315040, PR China.
| | - Meilin Ni
- Ningbo Customs Technology Center, Ningbo 315040, PR China
| | - Chunyan Hou
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Xiaoqiang Qiao
- College of Pharmaceutical Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding 071002, PR China
| | - Tingting Wang
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, PR China.
| |
Collapse
|
10
|
Luo X, Xu T, Ngan DK, Xia M, Zhao J, Sakamuru S, Simeonov A, Huang R. Prediction of chemical-induced acute toxicity using in vitro assay data and chemical structure. Toxicol Appl Pharmacol 2024; 492:117098. [PMID: 39251042 PMCID: PMC11563913 DOI: 10.1016/j.taap.2024.117098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/31/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Exposure to various chemicals found in the environment and in the context of drug development can cause acute toxicity. To provide an alternative to in vivo animal toxicity testing, the U.S. Tox21 consortium developed in vitro assays to test a library of approximately 10,000 drugs and environmental chemicals (Tox21 10K compound library) in a quantitative high-throughput screening (qHTS) approach. In this study, we assessed the utility of Tox21 assay data in comparison with chemical structure information in predicting acute systemic toxicity. Prediction models were developed using four machine learning algorithms, namely Random Forest, Naïve Bayes, eXtreme Gradient Boosting, and Support Vector Machine, and their performance was assessed using the area under the receiver operating characteristic curve (AUC-ROC). The chemical structure-based models as well as the Tox21 assay data demonstrated good predictive power for acute toxicity, achieving AUC-ROC values ranging from 0.83 to 0.93 and 0.73 to 0.79, respectively. We applied the models to predict the acute toxicity potential of the compounds in the Tox21 10K compound library, most of which were found to be non-toxic. In addition, we identified the Tox21 assays that contributed the most to acute toxicity prediction, such as acetylcholinesterase (AChE) inhibition and p53 induction. Chemical features including organophosphates and carbamates were also identified to be significantly associated with acute toxicity. In conclusion, this study underscores the utility of in vitro assay data in predicting acute toxicity.
Collapse
Affiliation(s)
- Xi Luo
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Tuan Xu
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Deborah K Ngan
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Menghang Xia
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Jinghua Zhao
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Srilatha Sakamuru
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Anton Simeonov
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Ruili Huang
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD 20850, USA.
| |
Collapse
|
11
|
Samareh A, Pourghadamyari H, Nemtollahi MH, Ebrahimi Meimand HA, Norouzmahani ME, Asadikaram G. Pesticide Exposure and Its Association with Parkinson's Disease: A Case-Control Analysis. Cell Mol Neurobiol 2024; 44:73. [PMID: 39485576 PMCID: PMC11530492 DOI: 10.1007/s10571-024-01501-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024]
Abstract
Parkinson's disease (PD) is a complex disorder that arises from genetic and environmental factors. The current investigation endeavors to investigate the role of exposure to organochlorine (OCPs) and organophosphate pesticides (OPPs), recognized as the main environmental elements, in the genesis of PD. In this case-control study, 29 PD patients and 51 healthy subjects were involved. Gas chromatography was performed to measure the serum levels of organochlorine chemicals (2,4-DDT, 4,4-DDT, 2,4-DDE, 4,4-DDE, α-HCH, β-HCH, and γ-HCH). Furthermore, acetylcholinesterase (AChE) activity, arylesterase activity of paraoxonase-1 (PON-1), and several oxidative stress (OS) markers were assessed. The levels of OCPs in the PD patients were significantly higher than in the control subjects. In addition, AChE activity, arylesterase activity of PON-1, catalase activity, and superoxide dismutase 3 activity in PD patients were significantly less than controls. However, the levels of carbonyl protein, total antioxidant capacity, malondialdehyde, and nitric oxide in PD patients were higher than the controls. The findings of this investigation have indicated that OCPs and OPPs exposure could contribute to the development of Parkinson's disease. This potential linkage could either be established through the direct impact of these pesticides on the nervous system, leading to neurotoxicity, or via an indirect route through the triggering of OS.
Collapse
Affiliation(s)
- Ali Samareh
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Neuroscience Research Center, School of Medicine, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Clinical Biochemistry, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Pourghadamyari
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Clinical Biochemistry, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Hadi Nemtollahi
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Clinical Biochemistry, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Mohammad Erfan Norouzmahani
- Department of Clinical Biochemistry, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University Medical Sciences, Kerman, Iran
| | - Gholamreza Asadikaram
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Clinical Biochemistry, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
12
|
Kornher K, Gould CF, Manzano JM, Baines K, Kayser G, Tu X, Suarez-Torres J, Martinez D, Suarez-Lopez JR. Associations of PFASs and Pesticides with Lung Function Changes from Adolescence to Young Adulthood in the ESPINA study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.09.24315189. [PMID: 39417100 PMCID: PMC11483001 DOI: 10.1101/2024.10.09.24315189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) and pesticides are ubiquitous environmental exposures with increasingly recognized adverse health outcomes; however, their impact on lung function, particularly in combination, remains poorly understood. We included 381 adolescent participants from a prospective cohort study in Ecuador who underwent measurements of serum PFAS (perfluorooctanoic acid [PFOA], perfluorooctanesulfonic acid [PFOS] and perfluorononanoic acid [PFNA]) and urinary herbicides (glyphosate, 2,4D) and fungicides (ethylene thiourea) and had spirometric measurements in either 2016 or 2022. We characterized the association between each PFAS or pesticide and each lung function measure in log-log models estimated via ordinary least squares regression. We used quantile g-computation to assess the association of the mixture of PFAS and pesticides with lung function outcomes. After accounting for multiple hypothesis testing, and in models adjusting for household income, parental education, and exposure to tobacco, we found that, individually, PFOA, glyphosate, and ETU were associated with slight increases in FEV1/FVC between 2016 and 2022. No other individual associations were significant. In mixtures analyses, a one quartile increase in all PFASs and pesticides simultaneously was also not associated with statistically significant changes in lung function outcomes after accounting for multiple hypothesis testing. In large part, we do not provide evidence for associations of PFAS and herbicide and fungicide pesticides with lung function among adolescents in moderate-to-high-altitude agricultural communities in Ecuador.
Collapse
Affiliation(s)
- Kayleigh Kornher
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Carlos F Gould
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jomel Meeko Manzano
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Katie Baines
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Georgia Kayser
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Xin Tu
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | | | - Jose R Suarez-Lopez
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
13
|
Asefa EM, Damtew YT, Ober J. Pesticide water pollution, human health risks, and regulatory evaluation: A nationwide analysis in Ethiopia. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135326. [PMID: 39116746 DOI: 10.1016/j.jhazmat.2024.135326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
Despite the growing concerns about pesticide pollution, a comprehensive global understanding continues to be hampered by a lack of data from less developed countries. Ethiopia, being a typical agricultural country, is one of the top consumers of pesticides in sub-Saharan Africa. This study conducted a nationwide analysis to assess pesticide water pollution and human health risks in Ethiopia based on the available data. Additionally, the study evaluated the effectiveness of the Pesticide Risks in the Tropics for Man, Environment, and Trade (PRIMET) model, which is currently used for pesticide regulatory risk assessment in Ethiopia. The scoring approach was employed to map the site-specific pollution status based on clearly defined individual pesticide concentrations, excluding mixtures (n = 99). The pollution scores varied significantly among sites, with higher scores observed in the Rift Valley region. Acute and chronic health risks were identified for some commonly detected pesticides at their maximum concentrations. Epidemiological studies conducted in Ethiopia also demonstrated that pesticide exposure is associated with acute poisoning, respiratory health problems, neurobehavioral symptoms, and breast cancer. Furthermore, the study found that the existing regulatory framework likely underestimates pesticide risks in 35 % of the cases, raising concerns about the reliability of the PRIMET model in its current version. Overall, the results emphasize the need for increased attention to pesticide regulation and management in Ethiopia and other countries with similar scenarios, including regular monitoring, implementation of residue limits, post-application evaluations, and recalibration of the PRIMET model. This study provides valuable scientific information and insights into pesticide pollution and can serve as a baseline for ensuring agricultural and environmental sustainability.
Collapse
Affiliation(s)
- Elsai Mati Asefa
- School of Environmental Health, College of Health and Medical Sciences, Haramaya University, 235, Harar, Ethiopia.
| | - Yohannes Tefera Damtew
- School of Environmental Health, College of Health and Medical Sciences, Haramaya University, 235, Harar, Ethiopia; School of Public Health, The University of Adelaide, Adelaide 5005, Australia
| | - Józef Ober
- Department of Applied Social Sciences, Faculty of Organization and Management, Silesian University of Technology, Roosevelta 26-28, 41-800 Zabrze, Poland
| |
Collapse
|
14
|
Bhuiya A, Yasmin S, Mustafa MG, Shaikh MAA, Saima J, Moniruzzaman M, Kabir MH. Spatiotemporal distribution, ecological risk assessment, and human health implications of currently used pesticide (CUP) residues in the surface water of Feni River, Bangladesh. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173857. [PMID: 38871333 DOI: 10.1016/j.scitotenv.2024.173857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/23/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Spatiotemporal monitoring of pesticide residues in river water is urgently needed due to its negative environmental and human health consequences. The present study is to investigate the occurrence of multiclass pesticide residue in the surface water of the Feni River, Bangladesh, using an optimized salting-out assisted liquid-liquid microextraction (SALLME) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS). The optimized SALLME method was developed and validated following the SANTE/11312/2021 guidelines. A total of 42 water samples were collected and analyzed to understand the spatiotemporal distribution of azoxystrobin (AZ), buprofezin (BUP), carbofuran (CAR), pymetrozine (PYM), dimethoate (DMT), chlorantraniliprole (CLP), and difenoconazole (DFN). At four spike levels (n = 5) of 20, 40, 200, and 400 μg/L, the recovery percentages were satisfactory, ranging between 71.1 % and 107.0 % (RSD ≤13.8 %). The residues ranged from below the detection level (BDL) to 14.5 μg/L. The most frequently detected pesticide was DMT (100 %), followed by CLP (52.3809-57.1429), CAR (4.7619-14.2867), and PYM (4.7619-9.5238). However, AZ and BUP were below the detection limit in the analyzed samples of both seasons. Most pesticides and the highest concentrations were detected in March 2023, while the lowest concentrations were present in August 2023.Furthermore, ecological risk assessment based on the general-case scenario (RQm) and worst-case scenario (RQex) indicated a high (RQ > 1) risk to aquatic organisms, from the presence of PYM and CLP residue in river water. Human health risk via dietary exposure was estimated using the hazard quotient (HQ). Based on the detected residues, the HQ (<1) value indicated no significant health risk. This report provides the first record of pesticide residue occurrences scenario and their impact on the river environment of Bangladesh.
Collapse
Affiliation(s)
- Ananya Bhuiya
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr. Kudrat-i-Khuda Road, Dhanmondi, Dhaka 1205, Bangladesh; Department of Oceanography, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Sabina Yasmin
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr. Kudrat-i-Khuda Road, Dhanmondi, Dhaka 1205, Bangladesh.
| | - M Golam Mustafa
- Department of Oceanography, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Aftab Ali Shaikh
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr. Kudrat-i-Khuda Road, Dhanmondi, Dhaka 1205, Bangladesh; Department of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - Jerin Saima
- Department of Oceanography, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Mohammad Moniruzzaman
- Central Analytical and Research Facilities (CARF), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr. Kudrat-i-Khuda Road, Dhanmondi, Dhaka 1205, Bangladesh
| | - Md Humayun Kabir
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr. Kudrat-i-Khuda Road, Dhanmondi, Dhaka 1205, Bangladesh.
| |
Collapse
|
15
|
Chang C, Dai Y, Zhang J, Wu Z, Li S, Zhou Z. Associations between exposure to pesticides mixture and semen quality among the non-occupationally exposed males: Four statistical models. ENVIRONMENTAL RESEARCH 2024; 257:119400. [PMID: 38866311 DOI: 10.1016/j.envres.2024.119400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/04/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
Most epidemiological studies on the associations between pesticides exposure and semen quality have been based on a single pesticide, with inconsistent major results. In contrast, there was limited human evidence on the potential effect of pesticides mixture on semen quality. Our study aimed to investigate the relationship of pesticide profiles with semen quality parameters among 299 non-occupationally exposed males aged 25-50 without any clinical abnormalities. Serum concentrations of 21 pesticides were quantified by gas chromatography-tandem mass spectrometry (GC-MS/MS). Semen quality parameters were abstracted from medical records. Generalized linear regression models (GLMs) and three mixture approaches, including weighted quantile sum regression (WQS), elastic net regression (ENR) and Bayesian kernel machine regression (BKMR), were applied to explore the single and mixed effects of pesticide exposure on semen quality. In GLMs, as the serum levels of Bendiocarb, β-BHC, Clomazone, Dicrotophos, Dimethenamid, Paclobutrazole, Pentachloroaniline and Pyrimethanil increased, the straight-line velocity (VSL), linearity (LIN) and straightness (STR) decreased. This negative association also occurred between the concentration of β-BHC, Pentachloroaniline, Pyrimethanil and progressive motility, total motility. In the WQS models, pesticides mixture was negatively associated with total motility and several sperm motility parameters (β: -3.07∼-1.02 per decile, FDR-P<0.05). After screening the important pesticides derived from the mixture by ENR model, the BKMR models showed that the decreased qualities for VSL, LIN, and STR were also observed when pesticide mixtures were at ≥ 70th percentiles. Clomazone, Dimethenamid, and Pyrimethanil (Posterior inclusion probability, PIP: 0.2850-0.8900) were identified as relatively important contributors. The study provides evidence that exposure to single or mixed pesticide was associated with impaired semen quality.
Collapse
Affiliation(s)
- Chunxin Chang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No. 130 Dong'an Road, Shanghai 200032, China; The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
| | - Yiming Dai
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No. 130 Dong'an Road, Shanghai 200032, China
| | - Jiming Zhang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No. 130 Dong'an Road, Shanghai 200032, China
| | - Zhengmu Wu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
| | - Shuyuan Li
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China.
| | - Zhijun Zhou
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No. 130 Dong'an Road, Shanghai 200032, China.
| |
Collapse
|
16
|
Patil MM, Doddihal CR, Sinha A, Kumar Bm P. Unwashed grapes as a cause of organophosphate poisoning in a child in rural India. BMJ Case Rep 2024; 17:e260702. [PMID: 39174048 DOI: 10.1136/bcr-2024-260702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
This report describes the symptoms of pesticide poisoning in a previously healthy teenage girl. After consuming unwashed grapes for several days, the girl developed the following symptoms: drowsiness, vomiting, truncal weakness and fasciculations in the tongue and hands. Blood tests confirmed exposure to a small amount of the organophosphate (OP) compound, a type of chemical found in certain pesticides. The girl was treated with supportive care and cholinesterase reactivators, which minimised the damage caused by OP poisoning. Within 48 hours, the girl's symptoms improved and she made a full recovery. This case highlights that OP poisoning can present without classic cholinergic crisis symptoms (SLUDGING), including miosis. Fasciculations, as observed in this case, are a significant clue to the diagnosis.
Collapse
Affiliation(s)
| | | | - Anwita Sinha
- Pediatrics, BLDE Deemed to be University, Vijayapura, Karnataka, India
| | - Prasanna Kumar Bm
- Health Informatics, BLDE Deemed to be University, Vijayapura, Karnataka, India
| |
Collapse
|
17
|
Galloux M, Bastiat G, Lefrancois C, Apaire-Marchais V, Deshayes C. Nanoencapsulated deltamethrin combined with indoxacarb: An effective synergistic association against aphids. JOURNAL OF PESTICIDE SCIENCE 2024; 49:168-178. [PMID: 39398501 PMCID: PMC11464272 DOI: 10.1584/jpestics.d24-003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/03/2024] [Indexed: 10/15/2024]
Abstract
Widespread pesticide use for decades has caused environmental damage, biodiversity loss, serious human and animal health problems, and resistance to insecticides. Innovative strategies are needed to reduce treatment doses in pest management and to overcome insecticide resistance. In the present study, combinations of indoxacarb, an oxadiazine insecticide, with sublethal concentrations of deltamethrin encapsulated in lipid nanocapsules, have been tested on the crop pest Acyrthosiphon pisum. In vivo toxicological tests on A. pisum larvae have shown a synergistic effect of nanoencapsulated deltamethrin with a low dose of indoxacarb. Furthermore, the stability of deltamethrin nanoparticles has been demonstrated in vitro under different mimicking environmental conditions. In parallel, the integrity and stability of lipid nanoparticles in the digestive system of aphid larvae over time have been observed by Förster Resonance Energy Transfer (FRET) imaging. Thus, the deltamethrin nanocapsules/indoxacarb synergistic association is promising for the development of future formulations against pest insects to reduce insecticide doses.
Collapse
Affiliation(s)
- Marine Galloux
- Univ Angers, INRAE, SIFCIR, SFR QUASAV
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT
| | | | | | | | | |
Collapse
|
18
|
Majumder R. Comparative Acute Toxicity Studies of Chlorpyrifos Technical Grade with its Emulsifiable Concentrate (20% EC) on Labeo rohita, a Freshwater Major Carp, and Mystus vittatus, a Freshwater Catfish. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 113:27. [PMID: 39141094 DOI: 10.1007/s00128-024-03936-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024]
Abstract
Chlorpyrifos is widely used across the world as an organophosphate insecticide and frequently contaminates freshwater bodies through runoff from agricultural fields. In the laboratory, static bioassays were undertaken to examine differences in acute toxicity caused by exposure to the technical grade (94% a.i.) and an emulsifiable concentrate (20% EC) of chlorpyrifos to two species of freshwater fish, Labeo rohita and Mystus vittatus. The recovery of actual chlorpyrifos concentrations varied from 83% (technical grade, T) to 89% (emulsifiable concentrate, F) after two hours in water. The susceptibilities of the two fish species to the two types of chlorpyrifos varied. The 96-h LC50 values for T and F chlorpyrifos in L. rohita were 68 and 36 µg/L, respectively, and 120 and 62 µg/L in M. vittatus, respectively. As the exposure period was extended, the LC50 values gradually decreased. LC50 values between the technical grade and formulation were compared following the criteria of Mayer et al. (1986), Schmuck et al. (1994), APHA (1995), and Demetrio et al. (2014). It was concluded from the study that the emulsifiable concentrate (20% EC) of chlorpyrifos was more toxic than technical-grade chlorpyrifos.
Collapse
Affiliation(s)
- Rajib Majumder
- Department of Zoology, Vivekananda Mahavidyalaya, Haripal, Hooghly, 712405, West Bengal, India.
| |
Collapse
|
19
|
Almenhali AZ, Eissa S. Aptamer-based biosensors for the detection of neonicotinoid insecticides in environmental samples: A systematic review. Talanta 2024; 275:126190. [PMID: 38703483 DOI: 10.1016/j.talanta.2024.126190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/29/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Neonicotinoids, sometimes abbreviated as neonics, represent a class of neuro-active insecticides with chemical similarities to nicotine. Neonicotinoids are the most widely adopted group of insecticides globally since their discovery in the late 1980s. Their physiochemical properties surpass those of previously established insecticides, contributing to their popularity in various sectors such as agriculture and wood treatment. The environmental impact of neonicotinoids, often overlooked, underscores the urgency to develop tools for their detection and understanding of their behavior. Conventional methods for pesticide detection have limitations. Chromatographic techniques are sensitive but expensive, generate waste, and require complex sample preparation. Bioassays lack specificity and accuracy, making them suitable as preliminary tests in conjunction with instrumental methods. Aptamer-based biosensor is recognized as an advantageous tool for neonicotinoids detection due to its rapid response, user-friendly nature, cost-effectiveness, and suitability for on-site detection. This comprehensive review represents the inaugural in-depth analysis of advancements in aptamer-based biosensors targeting neonicotinoids such as imidacloprid, thiamethoxam, clothianidin, acetamiprid, thiacloprid, nitenpyram, and dinotefuran. Additionally, the review offers valuable insights into the critical challenges requiring prompt attention for the successful transition from research to practical field applications.
Collapse
Affiliation(s)
- Asma Zaid Almenhali
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Shimaa Eissa
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Center for Catalysis and Separations, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates.
| |
Collapse
|
20
|
Wang Y, Nie D, Shao K, Zhang S, Wang Q, Han Z, Chen L. Mechanistic insights into the parental co-exposure of T-2 toxin and epoxiconazole on the F1 generation of zebrafish (Danio rerio). CHEMOSPHERE 2024; 361:142388. [PMID: 38777202 DOI: 10.1016/j.chemosphere.2024.142388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/09/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Mycotoxins and pesticides frequently coexist in agricultural commodities on a global scale. The potential transgenerational consequences induced by these substances pose a significant threat to human health. However, there is a lack of data concerning the effects of co-contamination by these chemicals in the F1 generation following parental exposure. This investigation delved into the mixture effects of T-2 toxin (T-2) and epoxiconazole (EPO) on the offspring of zebrafish (Danio rerio). The findings revealed that exposure across generations to a combination of T-2 and EPO resulted in toxicity in the larvae of the F1 generation. This was demonstrated by a significant increase in the levels or activities of malondialdehyde (MDA), thyroxine (T4), Caspase3, and cas9, along with a decrease in the levels of cyp19a, ERα, and ERβ. These outcomes suggested that cross-generational exposure to T-2 and EPO in D. rerio disrupted oxidative balance, induced cell apoptosis, and affected the endocrine system. Moreover, these effects were magnified when the F1 generation was continuously exposed to these compounds. Notably, these adverse effects could persist in subsequent generations without additional exposure. This study underscored the potential dangers associated with the simultaneous presence of T-2 and EPO on the development of fish offspring and the resulting environmental hazards to aquatic ecosystems. These findings emphasized the significant health risks posed by cross-generational exposure and highlighted the need for additional legislative measures to address these concerns.
Collapse
Affiliation(s)
- Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Dongxia Nie
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Kan Shao
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, 47405, USA
| | - Shuai Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Zheng Han
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
| | - Liezhong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
21
|
Yadav S, Sewariya S, Singh P, Chandra R, Jain P, Kumari K. Analytic and In Silico Methods to Understand the Interactions between Dinotefuran and Haemoglobin. Chem Biodivers 2024; 21:e202400495. [PMID: 38838069 DOI: 10.1002/cbdv.202400495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
This work lies in the growing concern over the potential impacts of pesticides on human health and the environment. Pesticides are extensively used to protect crops and control pests, but their interaction with essential biomolecules like haemoglobin (Hb) remains poorly understood. Spectrofluorometric, electrochemical, and in silico investigations have been chosen as potential methods to delve into this issue, as they offer valuable insights into the molecular-level interactions between pesticides and haemoglobin. The research aims to address the gaps in knowledge and contribute to developing safer and more sustainable pesticide practices. The interaction was studied by spectroscopic techniques (UV-Visible & Fluorescence), in silico studies (molecular docking & molecular dynamics simulations) and electrochemical techniques (cyclic voltammetry and tafel). The studies showed effective binding of dinotefuran with the Hb which will cause toxicity to human. The formation of a stable molecular complex between ofloxacin and Haemoglobin was shown via molecular docking and the binding energy was found to be -5.37 kcal/mol. Further, molecular dynamics simulations provide an insight for the stability of the complex (Hb-dinotefuran) for a span of 250 ns with a binding free energy of -53.627 kJ/mol. Further, cyclic voltammetry and tafel studies show the interaction of dinotefuran with Hb effectively.
Collapse
Affiliation(s)
- Sandeep Yadav
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India
- Department of Chemistry, SRM Institute of Science & Technology, Delhi-NCR Campus, Modinagar, Ghaziabad, India
| | - Shubham Sewariya
- Department of Chemistry, University of Delhi, Delhi, India
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, United Kingdom
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India
- Department of Chemistry, SRM Institute of Science & Technology, Delhi-NCR Campus, Modinagar, Ghaziabad, India
| | - Ramesh Chandra
- Department of Chemistry, University of Delhi, Delhi, India
| | - Pallavi Jain
- Department of Chemistry, SRM Institute of Science & Technology, Delhi-NCR Campus, Modinagar, Ghaziabad, India
| | - Kamlesh Kumari
- Department of Zoology, University of Delhi, Delhi, India
| |
Collapse
|
22
|
Hosni H, Segovia M, Zhao S, Palma MA, Skevas T. Improving consumer understanding of pesticide toxicity labels: experimental evidence. Sci Rep 2024; 14:17291. [PMID: 39068270 PMCID: PMC11283515 DOI: 10.1038/s41598-024-68288-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
Consumers often inadvertently misperceive the health hazards associated with over-the-counter pesticides under the current textual labeling policy, potentially leading to improper use. We conducted an incentivized framed field experiment with eye tracking to evaluate the effectiveness of the current pesticide labels that convey risk using signal words (Caution, Warning, Danger) compared to two visually focused label alternatives: traffic light colors and skull intensity symbols. A total of 166 participants were randomly assigned to one of three label formats and asked to rank toxicity levels and make purchasing decisions within multiple price lists. Results show that signal words fail to adequately communicate toxicity levels. Specifically, participants' correct assessment of toxicity level dramatically improves from 54% under the existing signal word label to 95% under the traffic light and 83% under the skull intensity symbol labels. We also find that participants are more likely to choose the less toxic alternatives under the new labels, suggesting the current labeling system may affect choice and have unintended adverse effects on human health.
Collapse
|
23
|
Hamrouni R, Regus F, Farnet Da Silva AM, Orsiere T, Boudenne JL, Laffont-Schwob I, Christen P, Dupuy N. Current status and future trends of microbial and nematode-based biopesticides for biocontrol of crop pathogens. Crit Rev Biotechnol 2024:1-20. [PMID: 38987982 DOI: 10.1080/07388551.2024.2370370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/26/2024] [Indexed: 07/12/2024]
Abstract
The increasing public demand to avoid the use of synthetic pesticides and fertilizers in agricultural production systems, causing serious environmental damages, has challenged industry to develop new and effective solutions to manage and control phytopathogens. Biopesticides, particularly microbial-based biopesticides, are a promising new alternative with high biodegradability, specificity, suitability for incorporation into integrated pest management practices, low likelihood of resistance development, and practically no known human health risks. However: expensive production methods, narrow action spectra, susceptibility to environmental conditions, short shelf life, poor storage stability, legislation registry constraints, and general lack of knowledge are slowing down their adoption. In addition to regulatory framework revisions and improved training initiatives, improved preservation methods, thoughtfully designed formulations, and field test validations are needed to offer new microbial- and nematode-based biopesticides with improved efficacy and increased shelf-life. During the last several years, substantial advancements in biopesticide production have been developed. The novelty part of this review written in 2023 is to summarize (i) mechanisms of action of beneficial microorganisms used to increase crop performance and (ii) successful formulation including commercial products for the biological control of phytopathogens based on microorganisms, nematode and/or metabolites.
Collapse
Affiliation(s)
- Rayhane Hamrouni
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France
- Aix Marseille Univ, CNRS, LCE UMR 7376, 13331, Marseille, France
| | - Flor Regus
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France
- Aix Marseille Univ, IRD, LPED, Marseille, France
| | | | - Thierry Orsiere
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France
| | | | | | - Pierre Christen
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France
| | - Nathalie Dupuy
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France
| |
Collapse
|
24
|
Kumar D, Sinha SN. Chronic exposures to cholinesterase-inhibiting pesticides adversely affects the health of agricultural workers in India. ENVIRONMENTAL RESEARCH 2024; 252:118961. [PMID: 38642639 DOI: 10.1016/j.envres.2024.118961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
Biomonitoring of pesticide exposure has become a public concern because of its potential health effects. The present study investigated the acetylcholinesterase (AChE) inhibitory levels and their associated health effects in agricultural areas in Telangana, India. This cross-sectional included 341 exposed participants and 152 control participants from agricultural areas. A structured questionnaire was completed and blood and urine samples were collected to measure pesticides, dialkyle phosphate (DAP) metabolites, and AChE activity using liquid chromatography-tandem mass spectrometry and reversed-phase high-performance liquid chromatography. twenty-eight pesticides were detected in blood samples at concentrations ranging 0.42-45.77 ng/mL. Six DAP metabolites were also measured in urine, and all DAP metabolites were significantly higher in the exposed group. AChE activity is significantly reduced in individuals exposed for >10 years, raising concerns regarding possible neurological disorders. These results emphasise the urgent need to investigate the health effects of pesticides exposure, especially in agriculture.
Collapse
Affiliation(s)
- Dileshwar Kumar
- Division of Food Safety, Indian Council of Medical Research - National Institute of Nutrition, Jamai-Osmania, Hyderabad, 500007, India; Department of Biochemistry Osmania University, Hyderabad, 500007, India.
| | - Sukesh Narayan Sinha
- Division of Food Safety, Indian Council of Medical Research - National Institute of Nutrition, Jamai-Osmania, Hyderabad, 500007, India.
| |
Collapse
|
25
|
Hoisington AJ, Stearns-Yoder KA, Kovacs EJ, Postolache TT, Brenner LA. Airborne Exposure to Pollutants and Mental Health: A Review with Implications for United States Veterans. Curr Environ Health Rep 2024; 11:168-183. [PMID: 38457036 DOI: 10.1007/s40572-024-00437-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 03/09/2024]
Abstract
PURPOSE OF REVIEW Inhalation of airborne pollutants in the natural and built environment is ubiquitous; yet, exposures are different across a lifespan and unique to individuals. Here, we reviewed the connections between mental health outcomes from airborne pollutant exposures, the biological inflammatory mechanisms, and provide future directions for researchers and policy makers. The current state of knowledge is discussed on associations between mental health outcomes and Clean Air Act criteria pollutants, traffic-related air pollutants, pesticides, heavy metals, jet fuel, and burn pits. RECENT FINDINGS Although associations between airborne pollutants and negative physical health outcomes have been a topic of previous investigations, work highlighting associations between exposures and psychological health is only starting to emerge. Research on criteria pollutants and mental health outcomes has the most robust results to date, followed by traffic-related air pollutants, and then pesticides. In contrast, scarce mental health research has been conducted on exposure to heavy metals, jet fuel, and burn pits. Specific cohorts of individuals, such as United States military members and in-turn, Veterans, often have unique histories of exposures, including service-related exposures to aircraft (e.g. jet fuels) and burn pits. Research focused on Veterans and other individuals with an increased likelihood of exposure and higher vulnerability to negative mental health outcomes is needed. Future research will facilitate knowledge aimed at both prevention and intervention to improve physical and mental health among military personnel, Veterans, and other at-risk individuals.
Collapse
Affiliation(s)
- Andrew J Hoisington
- Veterans Affairs Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMR VAMC), Aurora, CO, 80045, USA.
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, 80045, USA.
- Department of Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
- Department of Systems Engineering and Management, Air Force Institute of Technology, Wright-Patterson AFB, Dayton, OH, 45333, USA.
| | - Kelly A Stearns-Yoder
- Veterans Affairs Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMR VAMC), Aurora, CO, 80045, USA
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, 80045, USA
- Department of Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Elizabeth J Kovacs
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, and Burn Research Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Veterans Affairs Research Service, RMR VAMC, Aurora, CO, 80045, USA
| | - Teodor T Postolache
- Veterans Affairs Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMR VAMC), Aurora, CO, 80045, USA
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, 80045, USA
- Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Veterans Affairs, VISN 5 MIRECC, Baltimore, MD, 21201, USA
| | - Lisa A Brenner
- Veterans Affairs Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMR VAMC), Aurora, CO, 80045, USA
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, 80045, USA
- Department of Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Departments of Psychiatry & Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
26
|
Huang L, Xu J, Jia K, Wu Y, Yuan W, Liao Z, Cheng B, Luo Q, Tian G, Lu H. Butylparaben induced zebrafish (Danio rerio) kidney injury by down-regulating the PI3K-AKT pathway. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134129. [PMID: 38565019 DOI: 10.1016/j.jhazmat.2024.134129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/24/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024]
Abstract
Butylparaben, a common endocrine disruptor in the environment, is known to be toxic to the reproductive system, heart, and intestines, but its nephrotoxicity has rarely been reported. In order to study the nephrotoxicity and mechanism of butylparaben, we examined the acute and chronic effects on human embryonic kidney cells (HEK293T) and zebrafish. Additionally, we assessed the potential remedial effects of salidroside against butylparaben-induced nephrotoxicity. Our in vitro findings demonstrated oxidative stress and cytotoxicity to HEK293T cells caused by butylparaben. In the zebrafish model, the concentration of butylparaben exposure ranged from 0.5 to 15 μM. An assortment of experimental techniques was employed, including the assessment of kidney tissue morphology using Hematoxylin-Eosin staining, kidney function analysis via fluorescent dextran injection, and gene expression studies related to kidney injury, development, and function. Additionally, butylparaben caused lipid peroxidation in the kidney, thereby damaging glomeruli and renal tubules, which resulted from the downregulation of the PI3K-AKT signaling pathway. Furthermore, salidroside ameliorated butylparaben-induced nephrotoxicity through the PI3K-AKT signaling pathway. This study reveals the seldom-reported kidney toxicity of butylparaben and the protective effect of salidroside against toxicological reactions related to nephrotoxicity. It offers valuable insights into the risks to kidney health posed by environmental toxins.
Collapse
Affiliation(s)
- Lirong Huang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Jiaxin Xu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Kun Jia
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Yulin Wu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Wei Yuan
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Zhipeng Liao
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Bo Cheng
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Qiang Luo
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Guiyou Tian
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Huiqiang Lu
- Center for Clinical Medicine Research, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi Province, China.
| |
Collapse
|
27
|
Habib SS, Fazio F, Masud S, Ujan JA, Saeed MQ, Ullah M, Khan K, Khayyam K, Mohany M, Milošević M, Al-Rejaie SS, Cravana C. Analyzing the impact of pesticides on the indus river: contamination levels in water, sediment, fish, and associated human health risks. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:191. [PMID: 38696024 DOI: 10.1007/s10653-024-01975-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/02/2024] [Indexed: 06/17/2024]
Abstract
Pesticides are frequently used to protect crop yields and manage malaria vectors; however, their inadvertent transport into aquatic habitats poses a significant concern. Various anthropogenic activities influence the Indus River in Pakistan. This study aimed to assess the presence of eight pesticide residues at three different sites (Kalabagh, Kundian, and Chashma) in water, sediment, and the fish species (Labeo rohita) during both dry and wet seasons to measure the intensity of this pressure. Pesticide analysis was carried out using gas chromatography equipped with an electron capture detector. The results revealed the highest concentrations of pesticides during both dry and wet seasons at all sites, measuring 0.83 and 0.62 μg/l (water), 12.37 and 9.20 μg/g/dw (sediment), and 14.27 and 11.29 μg/g/ww (L. rohita), respectively. Overall, pesticide concentrations were higher in the dry season than in the wet season across all study sites. Based on detection frequency and concentration in both seasons at all sites, dominant pesticides included cypermethrin and carbofuran (in water), as well as endosulfan and cypermethrin (in sediment and fish tissue). Levels of endosulfan and cypermethrin exceeded standard limits. Moreover, principal component analysis (PCA) indicated no correlation among pesticides in fish tissue, sediment, and water. However, pesticides exhibited different behavior in different seasons. Furthermore, endosulfan and triazophos impose great human health risk, as indicated by the THQ value (> 1). The overall HI value was greater for site 1 in the dry season (8.378). The study concluded that the presence of agricultural pesticides in the Indus River poses a risk to aquatic life and has the potential to disrupt the entire food chain. This highlights the importance of sustainable practices for the study area and Pakistan overall agricultural and environmental sustainability. It is further recommended to strengthen regulations for reduced pesticide use and promote eco-friendly pest management.
Collapse
Affiliation(s)
- Syed Sikandar Habib
- Department of Zoology, University of Sargodha, Sargodha, Punjab, 40100, Pakistan
| | - Francesco Fazio
- Department of Veterinary Sciences, University of Messina, Via Palatucci, N. 13, 98168, Messina, Italy.
| | - Samrah Masud
- Institute of Zoology, Bahauddin Zakariya University, Multan, Punjab, 60800, Pakistan
| | - Javed Ahmed Ujan
- Department of Animal Sciences, University of Florida, Gainesville, FL, 32608, USA
| | - Muhammad Qamar Saeed
- Department of Microbiology and Molecular Genetics, Bahauddin Zakariya University, Multan, Punjab, 60800, Pakistan
| | - Mujeeb Ullah
- Department of Zoology, Islamia College University Peshawar, Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Khalid Khan
- Department of Zoology, Islamia College University Peshawar, Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Khayyam Khayyam
- Department of Zoology, Islamia College University Peshawar, Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, 11451, Riyadh, Saudi Arabia
| | - Marija Milošević
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Kragujevac, 34000, Serbia
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, 11451, Riyadh, Saudi Arabia
| | - Cristina Cravana
- Department of Veterinary Sciences, University of Messina, Via Palatucci, N. 13, 98168, Messina, Italy
| |
Collapse
|
28
|
Zhang J, Li Y, Zhang T, Zheng Z, Jing H, Liu C. Improving pesticide residue detection: Immobilized enzyme microreactor embedded in microfluidic paper-based analytical devices. Food Chem 2024; 439:138179. [PMID: 38091789 DOI: 10.1016/j.foodchem.2023.138179] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/26/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024]
Abstract
Orientationally immobilized enzyme microreactors (OIMERs), embedded in microfluidic paper-based analytical devices (μPADs) were developed for improved detection of pesticide residues in food. Acetylcholinesterase (AChE) was orientationally immobilized on the reusable Part I of the μPADs, using the specific affinity binding of concanavalin A (Con A) to a glycosyl group on AChE. Using the disposable Part II, facile colorimetric quantification was performed with a smartphone and software, or qualitative detection by a naked-eye visual test. The AChE immobilized in OIMERs not only had improved activity and stability, but also high sensitivity, with a limit of detection as low as (0.007 ± 0.003) μg/mL. The method was used to detect pesticides residues in real vegetable samples; the recovery (88.6-102.7%) showed high reliability for pesticide residues detection in foods. A molecular docking study and an enzyme kinetic analysis were conducted to characterize the mechanism of action of the OIMERs.
Collapse
Affiliation(s)
- Jian Zhang
- School of Pharmacy, Xi'an Medical University, Xi'an 710021, China; Institute of Medicine, Xi'an Medical University, Xi'an 710021, China
| | - Yibing Li
- School of Pharmacy, Xi'an Medical University, Xi'an 710021, China
| | - Ting Zhang
- School of Pharmacy, Xi'an Medical University, Xi'an 710021, China
| | - Zhihong Zheng
- School of Pharmacy, Xi'an Medical University, Xi'an 710021, China; Institute of Medicine, Xi'an Medical University, Xi'an 710021, China
| | - Hui Jing
- School of Pharmacy, Xi'an Medical University, Xi'an 710021, China; Institute of Medicine, Xi'an Medical University, Xi'an 710021, China
| | - Chunye Liu
- School of Pharmacy, Xi'an Medical University, Xi'an 710021, China; Institute of Medicine, Xi'an Medical University, Xi'an 710021, China.
| |
Collapse
|
29
|
Huang Y, Li Z. Assessing pesticides in the atmosphere: A global study on pollution, human health effects, monitoring network and regulatory performance. ENVIRONMENT INTERNATIONAL 2024; 187:108653. [PMID: 38669719 DOI: 10.1016/j.envint.2024.108653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024]
Abstract
Pesticides are widely used in agriculture, but their impact on the environment and human health is a major concern. While much attention has been given to their presence in soil, water, and food, there have been few studies on airborne pesticide pollution on a global scale. This study aimed to assess the extent of atmospheric pesticide pollution in countries worldwide and identify regional differences using a scoring approach. In addition to analyzing the health risks associated with pesticide pollution, we also examined agricultural practices and current air quality standards for pesticides in these countries. The pollution scores varied significantly among the countries, particularly in Europe. Asian and Oceanic countries generally had higher scores compared to those in the Americas, suggesting a relatively higher level of air pollution caused by pesticides in these regions. It is worth noting that the current pollution levels, as assessed theoretically, pose minimal health risks to humans. However, studies in the literature have shown that excessive exposure to pesticides present in the atmosphere has been associated with various health problems, such as cancer, neuropsychiatric disorders, and other chronic diseases. Interestingly, European countries had the highest overall pesticide application intensities, but this did not necessarily correspond to higher atmospheric pesticide pollution scores. Only a few countries have established air quality standards specifically for pesticides. Furthermore, pollution scores across states in the USA were investigated and the global sampling sites were mapped. The findings revealed that the scores varied widely in the USA and the current sampling sites were limited or unevenly distributed in some countries, particularly the Nordic countries. These findings can help global relevant environmental agencies to set up comprehensive monitoring networks. Overall, the present research highlights the need to create a pesticide monitoring system and increase efforts to enhance pesticide regulation, ensure consistency in standards, and promote international cooperation.
Collapse
Affiliation(s)
- Yabi Huang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
30
|
Xiong Y, Ma X, He B, Zhi J, Liu X, Wang P, Zhou Z, Liu D. Multifaceted Effects of Subchronic Exposure to Chlorfenapyr in Mice: Implications from Serum Metabolomics, Hepatic Oxidative Stress, and Intestinal Homeostasis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7423-7437. [PMID: 38502791 DOI: 10.1021/acs.jafc.3c09682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
As chlorfenapyr is a commonly used insecticide in agriculture, the health risks of subchronic exposure to chlorfenapyr remained unclear. This study aimed to extensively probe the health risks from subchronic exposure to chlorfenapyr at the NOAEL and 10-fold NOAEL dose in mice. Through pathological and biochemical examinations, the body metabolism, hepatic toxicity, and intestinal homeostasis were systematically assessed. After 12 weeks, a 10-fold NOAEL dose of chlorfenapyr resulted in weight reduction, increased daily food intake, and blood lipid abnormalities. Concurrently, this dosage induced hepatotoxicity and amplified oxidative stress in hepatocytes, a finding further supported in HepG2 cells. Moreover, chlorfenapyr resulted in intestinal inflammation, evidenced by increased inflammatory factors (IL-17a, IL-10, IL-1β, IL-6, IL-22), disrupted immune cells (RORγt, Foxp3), and compromised intestinal barriers (ZO-1 and occludin). By contrast, the NOAEL dose presented less toxicity in most evaluations. Serum metabolomic analyses unveiled widespread disruptions in pathways related to hepatotoxicity and intestinal inflammation, including NF-κB signaling, Th cell differentiation, and bile acid metabolism. Microbiomic analysis showed an increase in Lactobacillus, a decrease in Muribaculaceae, and diminished anti-inflammatory microbes, which further propelled the inflammatory response and leaded to intestinal inflammation. These findings revealed the molecular mechanisms underlying chlorfenapyr-induced hepatotoxicity and intestinal inflammation, highlighting the significant role of the gut microbiota.
Collapse
Affiliation(s)
- Yabing Xiong
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xiaoran Ma
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Bingying He
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Jianwen Zhi
- Department of Proctology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xueke Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Peng Wang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Donghui Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|
31
|
Pereira V, Figueira O, Castilho PC. Flavonoids as Insecticides in Crop Protection-A Review of Current Research and Future Prospects. PLANTS (BASEL, SWITZERLAND) 2024; 13:776. [PMID: 38592833 PMCID: PMC10975847 DOI: 10.3390/plants13060776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 04/11/2024]
Abstract
Pesticide overuse in agricultural systems has resulted in the development of pest resistance, the impoverishment of soil microbiota, water pollution, and several human health issues. Nonetheless, farmers still depend heavily on these agrochemicals for economically viable production, given the high frequency at which crops are affected by pests. Phytopathogenic insects are considered the most destructive pests on crops. Botanical pesticides have gained attention as potential biopesticides and complements to traditional pesticides, owing to their biodegradability and low toxicity. Plant-based extracts are abundant in a wide variety of bioactive compounds, such as flavonoids, a class of polyphenols that have been extensively studied for this purpose because of their involvement in plant defense responses. The present review offers a comprehensive review of current research on the potential of flavonoids as insecticides for crop protection, addressing the modes and possible mechanisms of action underlying their bioactivity. The structure-activity relationship is also discussed. It also addresses challenges associated with their application in pest and disease management and suggests alternatives to overcome these issues.
Collapse
Affiliation(s)
| | | | - Paula C. Castilho
- CQM—Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9200-105 Funchal, Portugal
| |
Collapse
|
32
|
Zhu D, Liu Y, Gong L, Si M, Wang Q, Feng J, Jiang T. The Consumption and Diversity Variation Responses of Agricultural Pests and Their Dietary Niche Differentiation in Insectivorous Bats. Animals (Basel) 2024; 14:815. [PMID: 38473199 DOI: 10.3390/ani14050815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024] Open
Abstract
Insectivorous bats are generalist predators and can flexibly respond to fluctuations in the distribution and abundance of insect prey. To better understand the effects of bats on arthropod pests, the types of pests eaten by bats and the response of bats to insect prey need to be determined. In this study, we performed DNA metabarcoding to examine prey composition and pest diversity in the diets of four insectivorous species of bats (Hipposideros armiger, Taphozous melanopogon, Aselliscus stoliczkanus, and Miniopterus fuliginosus). We evaluated the correlation between bat activity and insect resources and assessed dietary niche similarity and niche breadth among species and factors that influence prey consumption in bats. We found that the diets of these bats included arthropods from 23 orders and 200 families, dominated by Lepidoptera, Coleoptera, and Diptera. The proportion of agricultural pests in the diet of each of the four species of bats exceeded 40% and comprised 713 agricultural pests, including those that caused severe economic losses. Bats responded to the availability of insects. For example, a higher abundance of insects, especially Lepidoptera, and a higher insect diversity led to an increase in the duration of bat activity. In areas with more abundant insects, the number of bat passes also increased. The dietary composition, diversity, and niches differed among species and were particularly significant between H. armiger and T. melanopogon; the dietary niche width was the greatest in A. stoliczkanus and the narrowest in H. armiger. The diet of bats was correlated with their morphological and echolocation traits. Larger bats preyed more on insects in the order Coleoptera, whereas the proportion of bats consuming insects in the order Lepidoptera increased as the body size decreased. Bats that emitted echolocation calls with a high peak frequency and duration preyed more on insects in the order Mantodea. Our results suggest that dietary niche differentiation promotes the coexistence of different bat species and increases the ability of bats to consume insect prey and agricultural pests. Our findings provide greater insights into the role of bats that prey on agricultural pests and highlight the importance of combining bat conservation with integrated pest management.
Collapse
Affiliation(s)
- Dan Zhu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
| | - Yingying Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
| | - Lixin Gong
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
| | - Man Si
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
| | - Qiuya Wang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
- College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
- College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, China
| | - Tinglei Jiang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
| |
Collapse
|
33
|
Lee DY, Song JW, An JY, Kim YJ, Seo JS, Kim JH. Exposure and risk assessment for agricultural workers during chlorothalonil and flubendiamide treatments in pepper fields. Sci Rep 2024; 14:5338. [PMID: 38438437 PMCID: PMC10912086 DOI: 10.1038/s41598-024-55172-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/21/2024] [Indexed: 03/06/2024] Open
Abstract
Pesticides are indispensable tools in modern agriculture for enhancing crop productivity. However, the inherent toxicity of pesticides raises significant concerns regarding human exposure, particularly among agricultural workers. This study investigated the exposure and associated risks of two commonly used pesticides in open-field pepper cultivation, namely, chlorothalonil and flubendiamide, in the Republic of Korea. We used a comprehensive approach, encompassing dermal and inhalation exposure measurements in agricultural workers during two critical scenarios: mixing/loading and application. Results revealed that during mixing/loading, dermal exposure to chlorothalonil was 3.33 mg (0.0002% of the total active ingredient [a.i.]), while flubendiamide exposure amounted to 0.173 mg (0.0001% of the a.i.). Conversely, dermal exposure increased significantly during application to 648 mg (chlorothalonil) and 93.1 mg (flubendiamide), representing 0.037% and 0.065% of the total a.i., respectively. Inhalation exposure was also evident, with chlorothalonil and flubendiamide exposure levels varying across scenarios. Notably, the risk assessment using the Risk Index (RI) indicated acceptable risk of exposure during mixing/loading but raised concerns during application, where all RIs exceeded 1, signifying potential risk. We suggest implementing additional personal protective equipment (PPE) during pesticide application, such as gowns and lower-body PPE, to mitigate these risks.
Collapse
Affiliation(s)
- Deuk-Yeong Lee
- Environmental Safety-Assessment Center, Korea Institute of Toxicology (KIT), Jinju, 52834, Republic of Korea
| | - Jong-Wook Song
- Environmental Safety-Assessment Center, Korea Institute of Toxicology (KIT), Jinju, 52834, Republic of Korea
| | - Ji-Young An
- Environmental Safety-Assessment Center, Korea Institute of Toxicology (KIT), Jinju, 52834, Republic of Korea
| | - Yeong-Jin Kim
- Environmental Safety-Assessment Center, Korea Institute of Toxicology (KIT), Jinju, 52834, Republic of Korea
| | - Jong-Su Seo
- Environmental Safety-Assessment Center, Korea Institute of Toxicology (KIT), Jinju, 52834, Republic of Korea
| | - Jong-Hwan Kim
- Environmental Safety-Assessment Center, Korea Institute of Toxicology (KIT), Jinju, 52834, Republic of Korea.
| |
Collapse
|
34
|
Petit P, Gondard E, Gandon G, Moreaud O, Sauvée M, Bonneterre V. Agricultural activities and risk of Alzheimer's disease: the TRACTOR project, a nationwide retrospective cohort study. Eur J Epidemiol 2024; 39:271-287. [PMID: 38195954 PMCID: PMC10995077 DOI: 10.1007/s10654-023-01079-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 11/02/2023] [Indexed: 01/11/2024]
Abstract
Data regarding Alzheimer's disease (AD) occurrence in farming populations is lacking. This study aimed to investigate whether, among the entire French farm manager (FM) workforce, certain agricultural activities are more strongly associated with AD than others, using nationwide data from the TRACTOR (Tracking and monitoring occupational risks in agriculture) project. Administrative health insurance data (digital electronic health/medical records and insurance claims) for the entire French agricultural workforce, over the period 2002-2016, on the entire mainland France were used to estimate the risk of AD for 26 agricultural activities with Cox proportional hazards model. For each analysis (one for each activity), the exposed group included all FMs that performed the activity of interest (e.g. crop farming), while the reference group included all FMs who did not carry out the activity of interest (e.g. FMs that never farmed crops between 2002 and 2016). There were 5067 cases among 1,036,069 FMs who worked at least one year between 2002 and 2016. Analyses showed higher risks of AD for crop farming (hazard ratio (HR) = 3.72 [3.47-3.98]), viticulture (HR = 1.29 [1.18-1.42]), and fruit arboriculture (HR = 1.36 [1.15-1.62]). By contrast, lower risks of AD were found for several animal farming types, in particular for poultry and rabbit farming (HR = 0.29 [0.20-0.44]), ovine and caprine farming (HR = 0.50 [0.41-0.61]), mixed dairy and cow farming (HR = 0.46 [0.37-0.57]), dairy farming (HR = 0.67 [0.61-0.73]), and pig farming (HR = 0.30 [0.18-0.52]). This study shed some light on the association between a wide range of agricultural activities and AD in the entire French FMs population.
Collapse
Affiliation(s)
- Pascal Petit
- CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, Univ. Grenoble Alpes, 38000, Grenoble, France.
- Centre Régional de Pathologies Professionnelles et Environnementales, CHU Grenoble Alpes, 38000, Grenoble, France.
- AGEIS, Univ. Grenoble Alpes, 38000, Grenoble, France.
| | - Elise Gondard
- CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, Univ. Grenoble Alpes, 38000, Grenoble, France
| | - Gérald Gandon
- Centre Régional de Pathologies Professionnelles et Environnementales, CHU Grenoble Alpes, 38000, Grenoble, France
| | - Olivier Moreaud
- Centre Mémoire de Ressources et de Recherche, CHU Grenoble Alpes, 38000, Grenoble, France
- Laboratoire de Psychologie et Neurocognition, UMR 5105, CNRS, LPNC, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, 38000, Grenoble, France
| | - Mathilde Sauvée
- Centre Mémoire de Ressources et de Recherche, CHU Grenoble Alpes, 38000, Grenoble, France
- Laboratoire de Psychologie et Neurocognition, UMR 5105, CNRS, LPNC, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, 38000, Grenoble, France
| | - Vincent Bonneterre
- CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, Univ. Grenoble Alpes, 38000, Grenoble, France
- Centre Régional de Pathologies Professionnelles et Environnementales, CHU Grenoble Alpes, 38000, Grenoble, France
| |
Collapse
|
35
|
Karthick Rajan D, Mohan K, Rajarajeswaran J, Divya D, Thanigaivel S, Zhang S. Toxic effects of organophosphate pesticide monocrotophos in aquatic organisms: A review of challenges, regulations and future perspectives. ENVIRONMENTAL RESEARCH 2024; 244:117947. [PMID: 38109962 DOI: 10.1016/j.envres.2023.117947] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
In recent times, usage of pesticide, herbicides and synthetic fertilizers in farming lands has made the environment worse. The pesticide residues and toxic byproducts from agricultural lands were found to contaminate the aquatic ecosystem. The misuse of synthetic pesticide not only affects the environment, but also affects the health status of aquatic organisms. The organophosphate pesticide pollutants are emerging contaminants, which threatens the terrestrial and aquatic ecosystem. Monocrotophos (MCP) is an organophosphate insecticide, utilized on crops including rice, maize, sugarcane, cotton, soybeans, groundnuts and vegetables. MCP is hydrophilic in nature and their solubilizing properties reduce the soil sorption which leads to groundwater contamination. The half-life period of MCP is 17-96 and the half-life period of technical grade MCP is 2500 days if held stable at 38 °C in a container. MCP causes mild to severe confusion, anxiety, hyper-salivation, convulsion and respiratory distress in mammals as well as aquatic animals. The MCP induced toxicity including survival rate, behavioural changes, reproductive toxicity and genotoxicity in different aquatic species have been discussed in this review. Furthermore, the ultimate aim of this review is to highlight the international regulations, future perspectives and challenges involved in using the MCP.
Collapse
Affiliation(s)
- Durairaj Karthick Rajan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, 410013, PR China.
| | - Kannan Mohan
- PG and Research Department of Zoology, Sri Vasavi College, Erode, Tamil Nadu, 638 316, India.
| | - Jayakumar Rajarajeswaran
- Department of Nanobiomaterials, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, Tamil Nadu, India
| | - Dharmaraj Divya
- Department of Animal Health and Management, Alagappa University, Karaikudi, Tamilnadu, 630003, India
| | - Sundaram Thanigaivel
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur Campus, 603 203, Tamilnadu, India
| | - Shubing Zhang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, 410013, PR China
| |
Collapse
|
36
|
Aryal P, Hefner C, Martinez B, Henry CS. Microfluidics in environmental analysis: advancements, challenges, and future prospects for rapid and efficient monitoring. LAB ON A CHIP 2024; 24:1175-1206. [PMID: 38165815 DOI: 10.1039/d3lc00871a] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Microfluidic devices have emerged as advantageous tools for detecting environmental contaminants due to their portability, ease of use, cost-effectiveness, and rapid response capabilities. These devices have wide-ranging applications in environmental monitoring of air, water, and soil matrices, and have also been applied to agricultural monitoring. Although several previous reviews have explored microfluidic devices' utility, this paper presents an up-to-date account of the latest advancements in this field for environmental monitoring, looking back at the past five years. In this review, we discuss devices for prominent contaminants such as heavy metals, pesticides, nutrients, microorganisms, per- and polyfluoroalkyl substances (PFAS), etc. We cover numerous detection methods (electrochemical, colorimetric, fluorescent, etc.) and critically assess the current state of microfluidic devices for environmental monitoring, highlighting both their successes and limitations. Moreover, we propose potential strategies to mitigate these limitations and offer valuable insights into future research and development directions.
Collapse
Affiliation(s)
- Prakash Aryal
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
| | - Claire Hefner
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
| | - Brandaise Martinez
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
| | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
37
|
Noomnual S, Konthonbut P, Kongtip P, Woskie SR. Mental Health Disorders among Thai Farmers: Occupational and Non-Occupational Stressors. HUMAN AND ECOLOGICAL RISK ASSESSMENT : HERA 2024; 30:180-200. [PMID: 38828009 PMCID: PMC11139011 DOI: 10.1080/10807039.2024.2310810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/21/2024] [Indexed: 06/05/2024]
Abstract
This cross-sectional study aimed to identify occupational and non-occupational factors that impact levels of stress, depression, and anxiety among farmers located in the northern part of Thailand, including the potential psychological impacts of pesticide use. The participants (N=270) were interviewed with a survey adopted and modified from peer-reviewed articles and questionnaires. The survey consists of four parts, including demographic information and pesticide exposure; perceived farm stressors employing Farm Stressor Survey (FSS); mental health disorder utilizing Srithanya Stress Scale (ST5), Nine-Questions Depression- Rating Scale (9Q), and Depression Anxiety Stress Scale 21 (DASS21); in addition to COVID-related stress utilizing COVID Stress Scale (CSS). The participants were categorized into two groups i.e., Spray and No Spray based on their self-reported occupational use of pesticide spraying within the past year. No significant associations were observed between occupational pesticide exposures and mental health disorder scores. Being female, having a second job besides a farmer, having applied pesticides for greater than 20 years, and having a higher farm stressor perception showed a significant positive association with self-reported mental health disorders; while having a good agricultural practice and PPE use showed a significant negative association with those outcomes. This pilot study scrutinized expanded sources of stress in farm work and provided information for the development of more effective mental disorder intervention programs for Thai farmers.
Collapse
Affiliation(s)
- Saisattha Noomnual
- Department of Occupational Health and Safety, Faculty of Public Health, Mahidol University, 420/1 Rajvithi Road, Bangkok 10400, Thailand
| | - Pajaree Konthonbut
- Department of Occupational Health and Safety, Faculty of Public Health, Mahidol University, 420/1 Rajvithi Road, Bangkok 10400, Thailand
| | - Pornpimol Kongtip
- Department of Occupational Health and Safety, Faculty of Public Health, Mahidol University, 420/1 Rajvithi Road, Bangkok 10400, Thailand
| | - Susan R. Woskie
- Department of Public Health, University of Massachusetts Lowell, Zuckerberg College of Health Sciences, O’Leary Library Room 540, 61 Wilder St., Lowell, MA 01854, U.S.A
| |
Collapse
|
38
|
Hu Y, Xiao R, Wang Y, Li J, Guo C, Bai J, Zhang L, Zhang K, Jorquera MA, Manquian J, Pan W. Distribution of organophosphorus pesticides and its potential connection with probiotics in sediments of a shallow freshwater lake. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 261:104306. [PMID: 38244424 DOI: 10.1016/j.jconhyd.2024.104306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/22/2024]
Abstract
Despite the serious health threats due to wide use of organophosphorus pesticides (OPPs) have been experimentally claimed to be remediated by probiotic microorganisms in various food and organism models, the interactions between OPPs and probiotics in the natural wetland ecosystem was rarely investigated. This study delves into the spatial and temporal distribution, contamination levels of OPPs in the Baiyangdian region, the diversity of probiotic communities in varying environmental contexts, and the potential connection with OPPs on these probiotics. In typical shallow lake wetland ecosystem-Baiyangdian lake in north China, eight OPPs were identified in the lake sediments, even though their detection rates were generally low. Malathion exhibited the highest average content among these pesticides (9.51 ng/g), followed by fenitrothion (6.70 ng/g). Conversely, chlorpyrifos had the lowest detection rate at only 2.14%. The region near Nanliu Zhuang (F10), significantly influenced by human activities, displayed the highest concentration of total OPPs (136.82 ng/g). A total of 145 probiotic species spanning 78 genera were identified in Baiyangdian sediments. Our analysis underscores the relations of environmental factors such as phosphatase activity, pH, and electrical conductivity (EC) with probiotic community. Notably, several high-abundance probiotics including Pseudomonas chlororaphis, Clostridium sp., Lactobacillus fermentum, and Pseudomonas putida, etc., which were reported to exhibit significant potential for the degradation of OPPs, showed strongly correlations with OPPs in the Baiyangdian lake sediments. The outcomes of this research offer valuable insights into the spatiotemporal dynamics of OPPs in natural large lake wetland and the probability of their in-situ residue bioremediation through the phosphatase pathway mediated by probiotic such as Lactic acid bacteria in soils/sediments contaminated with OPPs.
Collapse
Affiliation(s)
- Yanping Hu
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Rong Xiao
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Yaping Wang
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Junming Li
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Congling Guo
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Junhong Bai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Ling Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Kegang Zhang
- Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
| | - Milko A Jorquera
- Department of Chemical Sciences and Natural Resources, University of La Frontera, Temuco 01145, Chile
| | - Javiera Manquian
- Department of Chemical Sciences and Natural Resources, University of La Frontera, Temuco 01145, Chile
| | - Wenbin Pan
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
39
|
Atteia HH. A combination of silymarin and garlic extract enhances thyroid hormone activation and body metabolism in orally intoxicated male rats with atrazine: Impact on hepatic iodothyronine deiodinase type 1. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 199:105801. [PMID: 38458692 DOI: 10.1016/j.pestbp.2024.105801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/31/2023] [Accepted: 01/19/2024] [Indexed: 03/10/2024]
Abstract
Atrazine is a widely applied herbicide to improve crop yield and maintain general health. It has been reported to impair thyroid function and architecture in experimental animals. Alterations in thyroid hormones disrupt normal body function and metabolism. Silymarin, a hepatoprotective flavonolignan, was found to improve thyroid function and body metabolism. Additionally, garlic displays several protective effects on body organs. Therefore, this study explored the prophylactic impact of natural compounds comprising silymarin and garlic extract on disrupted thyroid function, hepatic iodothyronine deiodinase type 1, and metabolic parameters in atrazine-intoxicated male rats. We found that daily pre- and co-treatment of atrazine-intoxicated male rats with silymarin (100 mg/kg, p.o) and/or garlic extract (10 mg/kg, p.o) significantly improved thyroid activation and hepatic functionality as evidenced by the re-establishment of T3, T3/T4, and TSH values as well as ALT and AST activities. Interestingly, individual or concurrent supplementation of the atrazine group with silymarin and garlic extract prevented the down-regulation in hepatic iodothyronine deiodinase type 1. These effects were coupled with the repletion of serum and hepatic antioxidants and the amelioration of lipid peroxidation. In addition, current natural products markedly alleviated weight gain, dyslipidemia, hyperglycemia, glucose intolerance, and insulin resistance. Notably, a cocktail of silymarin and garlic extract exerted superior protection against atrazine-triggered deterioration of thyroid, hepatic, and metabolic functioning to individual treatments. Present findings pinpoint the prophylactic and synergistic influence of silymarin and garlic extract combinatorial regimen on thyroid activation and body metabolism via enhancing antioxidant potential, maintaining hepatic function, and iodothyronine deiodinase type 1.
Collapse
Affiliation(s)
- Hebatallah Husseini Atteia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia; Department of Biochemistry, Faculty of Pharmacy, Zagazig University, 44519 Zagazig, Sharkia Gov., Egypt.
| |
Collapse
|
40
|
Swathy K, Vivekanandhan P, Yuvaraj A, Sarayut P, Kim JS, Krutmuang P. Biodegradation of pesticide in agricultural soil employing entomopathogenic fungi: Current state of the art and future perspectives. Heliyon 2024; 10:e23406. [PMID: 38187317 PMCID: PMC10770572 DOI: 10.1016/j.heliyon.2023.e23406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 09/27/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Pesticides play a pivotal role in agriculture for the effective production of various crops. The indiscriminate use of pesticides results in the significant bioaccumulation of pesticide residues in vegetables. This situation is beyond the control of consumers and poses a serious health issue for human beings. Occupational exposure to pesticides may occur for farmers, agricultural workers, and industrial producers of pesticides. This occupational exposure primarily causes food and water contamination that gets into humans and environmental pollution. Depending on the toxicity of pesticides, the causes and effects differ in the environment and in human health. The number of criteria used and the method of implementation employed to assess the effect of pesticides on humans and the environment have been increasing, as they may provide characterization of pesticides that are already on the market as well as those that are on the way. The biological control of pests has been increasing nowadays to combat all these effects caused by synthetic pesticides. Myco-biocontrol has received great attention in research because it has no negative impact on humans, the environment, or non-target species. Entomopathogenic fungi are microbes that have the ability to kill insect pests. Fungi also make enzymes like the lytic enzymes, esterase, oxidoreductase, and cytochrome P450, which react with chemical residues in the field and break them down into nontoxic substances. In this review, the authors looked at how entomopathogenic fungi break down insecticides in the environment and how their enzymes break down insecticides on farms.
Collapse
Affiliation(s)
- Kannan Swathy
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Perumal Vivekanandhan
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of General Pathology at Saveetha Dental College and Hospitals in the Saveetha Institute of Medical & Technical Sciences at Saveetha University in Chennai, Tamil Nadu, 600077, India
| | | | - Pittarate Sarayut
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jae Su Kim
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, South Korea
- Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, South Korea
| | - Patcharin Krutmuang
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
41
|
Mesnage R, Benbrook C. Use of the concept ‘environmentally relevant level’ in linking the results of pesticide toxicity studies to public health outcomes. ALL LIFE 2023. [DOI: 10.1080/26895293.2023.2167872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Robin Mesnage
- Gene Expression and Therapy Group, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, King's College London, London, UK
- Buchinger Wilhelmi Clinic, Überlingen, Germany
| | - Charles Benbrook
- Heartland Health Research Alliance and Benbrook Consulting Services, Port Orchard, WA, USA
| |
Collapse
|
42
|
Curl CL, Hyland C, Spivak M, Sheppard L, Lanphear B, Antoniou MN, Ospina M, Calafat AM. The Effect of Pesticide Spray Season and Residential Proximity to Agriculture on Glyphosate Exposure among Pregnant People in Southern Idaho, 2021. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:127001. [PMID: 38054699 PMCID: PMC10699167 DOI: 10.1289/ehp12768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 09/20/2023] [Accepted: 10/17/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND Glyphosate is one of the most heavily used pesticides in the world, but little is known about sources of glyphosate exposure in pregnant people living in agricultural regions. OBJECTIVE Our objective was to evaluate glyphosate exposure during pregnancy in relation to residential proximity to agriculture as well as agricultural spray season. METHODS We quantified glyphosate concentrations in 453 urine samples collected biweekly from a cohort of 40 pregnant people in southern Idaho from February through December 2021. We estimated each participant's glyphosate exposure as the geometric mean (GM) of glyphosate concentrations measured in all samples (average n = 11 samples/participant), as well as the GM of samples collected during the pesticide "spray season" (defined as those collected 1 May-15 August; average n = 5 samples/participant) and the "nonspray season" (defined as those collected before 1 May or after 15 August; average n = 6 samples/participant). We defined participants who resided < 0.5 km from an actively cultivated agriculture field to live "near fields" and those residing ≥ 0.5 km from an agricultural field to live "far from fields" (n = 22 and 18, respectively). RESULTS Among participants living near fields, urinary glyphosate was detected more frequently and at significantly increased GM concentrations during the spray season in comparison with the nonspray season (81% vs. 55%; 0.228 μ g / L vs. 0.150 μ g / L , p < 0.001 ). In contrast, among participants who lived far from fields, neither glyphosate detection frequency nor GMs differed in the spray vs nonspray season (66% vs. 64%; 0.154 μ g / L vs. 0.165 μ g / L , p = 0.45 ). Concentrations did not differ by residential proximity to fields during the nonspray season (0.154 μ g / L vs. 0.165 μ g / L , for near vs. far, p = 0.53 ). DISCUSSION Pregnant people living near agriculture fields had significantly increased urinary glyphosate concentrations during the agricultural spray season than during the nonspray season. They also had significantly higher urinary glyphosate concentrations during the spray season than those who lived far from agricultural fields at any time of year, but concentrations did not differ during the nonspray season. These findings suggest that agricultural glyphosate spray is a source of exposure for people living near fields. https://doi.org/10.1289/EHP12768.
Collapse
Affiliation(s)
- Cynthia L. Curl
- School of Public and Population Health, Boise State University, Boise, Idaho, USA
| | - Carly Hyland
- School of Public and Population Health, Boise State University, Boise, Idaho, USA
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, CA, USA
- Division of Agriculture and National Resources, University of California, Berkeley, CA, USA
| | - Meredith Spivak
- School of Public and Population Health, Boise State University, Boise, Idaho, USA
| | - Lianne Sheppard
- School of Public Health, University of Washington, Seattle, Washington, USA
| | - Bruce Lanphear
- Simon Fraser University, Vancouver, British Columbia, Canada
| | - Michael N. Antoniou
- Gene Expression and Therapy Group, Department of Medical and Molecular Genetics, King’s College London, London, UK
- Life Sciences and Medicine, Guy’s Hospital, London, UK
| | - Maria Ospina
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Antonia M. Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
43
|
Makame KR, Masese SN, Ádám B, Nagy K. Oxidative Stress and Cytotoxicity Induced by Co-Formulants of Glyphosate-Based Herbicides in Human Mononuclear White Blood Cells. TOXICS 2023; 11:976. [PMID: 38133378 PMCID: PMC10748038 DOI: 10.3390/toxics11120976] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
The use of genetically modified, glyphosate-resistant crops has led to the widespread application of glyphosate-based herbicides (GBHs), making them one of the most widely used herbicide formulations on the market. To enhance the efficacy of the active ingredient, GBHs used in practice often contain other ingredients marked as inert "adjuvants" or "co-formulants", the toxic properties of which are poorly understood. The objective of this study was to compare the cytotoxic effects of pure glyphosate, three GBHs (Roundup Mega, Fozat 480 and Glyfos) and two co-formulants commonly used in GBHs as assessed via CCK-8 assay, and the extent of their potential oxidative damage as assessed via superoxide dismutase (SOD) assay, in order to reveal the role of adjuvants in the toxicity of the formulations. Our results showed that glyphosate alone did not significantly affect cell viability. In contrast, GBHs and adjuvants induced a pronounced cytotoxic effect from a concentration of 100 μM. SOD activity of cells treated with GBHs or adjuvants was significantly lower compared to cells treated with glyphosate alone. This suggests that the adjuvants in GBHs are responsible for the cytotoxic effects of the formulations through the induction of oxidative stress.
Collapse
Affiliation(s)
- Khadija Ramadhan Makame
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (K.R.M.)
- Doctoral School of Health Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - Sylvia Nyambeki Masese
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (K.R.M.)
| | - Balázs Ádám
- Institute of Public Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Károly Nagy
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (K.R.M.)
| |
Collapse
|
44
|
Islam A, Chowdhury D, Palit PK, Sohel M, Mozibullah M, Islam MJ, Al Mamun A, Datta J, Dev A, Nath PK, Chowdhury MFF, Nath SK, Mujib ASM. Serum creatinine phosphokinase: A potential prognostic marker in assessing clinical severity with organophosphorus poisoning. J Clin Lab Anal 2023; 37:e24980. [PMID: 37908063 PMCID: PMC10749490 DOI: 10.1002/jcla.24980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 09/14/2023] [Accepted: 10/17/2023] [Indexed: 11/02/2023] Open
Abstract
INTRODUCTION Organophosphorus compound (OPC) poisoning undoubtedly being a major concern in cultivation sites of the developing world, including Bangladesh. Two potential biomarkers, for example, serum creatine phosphokinase (CPK) and lactate dehydrogenase (LDH), are widely used in OPC poisoning severity indicators in patients. In this study, we sought to correlate the severity score of acute OPC poisoning with CPK or LDH level and subsequently explore their prognostic value. METHODS This study was performed on a total of 70 patients with OPC poisoning admitted to the inpatient care unit at a territory-based hospital in Bangladesh. Sociodemographics and poison types were recorded, and severity was assessed according to Peradeniya Organophosphorus Poisoning (POP) scale. Serum CPK and LDH levels were measured and recorded. RESULTS A total of seventy OPC patients were included with male to female ratio of 1.33:1, respectively, with a mean age of 28.7 ± 12.8 years. Chlorpyrifos and methylparathion were the most commonly utilized OP compounds, accounting for 42.9% and 28.6%, respectively. Among the OPC patients, the majority were married homemakers from rural areas. According to POP score, 55.7% and 37.1% of patients were categorized as mild and moderate, whereas very few were found to be severe. The mean serum CPK and LDH of OPC-patients at admission time were 235.6 ± 79.8 IU/L and 348.3 ± 154.1 IU/L, respectively. Serum CPK, atropine dose and hospital stay strongly correlated with clinical severity. CONCLUSION We conclude that the serum CPK level strongly correlates with the degree of OPC poisoning and can be used as a predictor of the clinical intervention approaches.
Collapse
Affiliation(s)
- Ashekul Islam
- Department of Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Dhiman Chowdhury
- Department of Medicine, Chittagong Medical College HospitalChattogramBangladesh
| | - Pulak Kanti Palit
- Department of Medicine, Chittagong Medical College HospitalChattogramBangladesh
| | - Md Sohel
- Department of Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
- Department of Biochemistry and Molecular BiologyPrimeasia UniversityDhakaBangladesh
| | - Md. Mozibullah
- Department of Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Mohammod Johirul Islam
- Department of Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Abdullah Al Mamun
- Department of Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Joyonti Datta
- Department of Medicine, Chittagong Medical College HospitalChattogramBangladesh
| | - Annanya Dev
- Department of Medicine, Chittagong Medical College HospitalChattogramBangladesh
| | - Pradip Kumar Nath
- Department of Medicine, Chittagong Medical College HospitalChattogramBangladesh
| | | | - Sabuj Kanti Nath
- Department of Medicine, Chittagong Medical College HospitalChattogramBangladesh
| | | |
Collapse
|
45
|
Metwally AA, Khalafallah MM, Dawood MAO. Water quality, human health risk, and pesticides accumulation in African catfish and Nile tilapia from the Kitchener Drain-Egypt. Sci Rep 2023; 13:18482. [PMID: 37898697 PMCID: PMC10613270 DOI: 10.1038/s41598-023-45264-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023] Open
Abstract
Pesticides are toxic and could negatively impact humans and the ecosystem. The Kitchener Drain is among the longest drains in Egypt and carries a wide range of wastewater from the agriculture sector, which contains pesticides and may pollute the ecosystem. Thus, water quality, human health risk, and pesticide accumulation in African catfish and Nile tilapia from the Kitchener Drain-Egypt. The water and fish samples were collected from Kitchener Drain in Kafr Elsheikh Governorate, Egypt, during the four seasons. The results indicated that heptachlor and diazinon were undetected during the four seasons. However, endosulfan, chlorpyrifos, and dicofol were detected in winter and autumn. Only p,p'-DDT was detected during spring. Endosulfan, heptachlor, and aldrin were detected in Nile tilapia during winter. Only heptachlor and aldrin were detected during spring. Endosulfan, heptachlor, dicofol, p,p'-DDT, chlorpyrifos, and diazinon were detected in the autumn season. In summer, dicofol and p,p'-DDT were detected, while endosulfan, heptachlor p,p'-DDT, aldrin, chlorpyrifos, and diazinon were not detected. In African catfish, endosulfan, heptachlor, dicofol, and p,p'-DDT were detected during winter, while chlorpyrifos, aldrin, and chlorpyrifos, aldrin, and diazinon were not detected. In the spring season, endosulfan, heptachlor, and aldrin were detected. Endosulfan, heptachlor, dicofol, p,p'-DDT, aldrin, chlorpyrifos, and diazinon were detected in the autumn season. Similarly, in the summer season, endosulfan, heptachlor, dicofol, p,p'-DDT, aldrin, chlorpyrifos, and diazinon were detected. The sequence of estimated daily intake (EDI) in Nile tilapia during the four seasons is heptachlor > endosulfan > dicofol > p,p'-DDT > aldrin > diazinon > chlorpyrifos. The sequence of EDI in African catfish during the four seasons is endosulfan > p,p'-DDT > heptachlor > aldrin > dicofol > diazinon > chlorpyrifos. In conclusion, the results confirmed the absence of a hazard index for consuming Nile tilapia and African catfish collected from the Kitchener drain.
Collapse
Affiliation(s)
- Ahmed A Metwally
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafr El-Shaikh, 33516, Egypt.
| | - Malik M Khalafallah
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafr El-Shaikh, 33516, Egypt
| | - Mahmoud A O Dawood
- Animal Production Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Shaikh, 33516, Egypt
- The Center for Applied Research on the Environment and Sustainability, The American University in Cairo, Cairo, 11835, Egypt
| |
Collapse
|
46
|
Boonupara T, Udomkun P, Khan E, Kajitvichyanukul P. Airborne Pesticides from Agricultural Practices: A Critical Review of Pathways, Influencing Factors, and Human Health Implications. TOXICS 2023; 11:858. [PMID: 37888709 PMCID: PMC10611335 DOI: 10.3390/toxics11100858] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023]
Abstract
This critical review examines the release of pesticides from agricultural practices into the air, with a focus on volatilization, and the factors influencing their dispersion. The review delves into the effects of airborne pesticides on human health and their contribution to anthropogenic air pollution. It highlights the necessity of interdisciplinary research encompassing science, technology, public policy, and agricultural practices to effectively mitigate the risks associated with pesticide volatilization and spray dispersion. The text acknowledges the need for more research to understand the fate and transport of airborne pesticides, develop innovative application technologies, improve predictive modeling and risk assessment, and adopt sustainable pest management strategies. Robust policies and regulations, supported by education, training, research, and development, are crucial to ensuring the safe and sustainable use of pesticides for human health and the environment. By providing valuable insights, this review aids researchers and practitioners in devising effective and sustainable solutions for safeguarding human health and the environment from the hazards of airborne pesticides.
Collapse
Affiliation(s)
- Thirasant Boonupara
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand (P.U.)
| | - Patchimaporn Udomkun
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand (P.U.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Eakalak Khan
- Civil and Environmental Engineering and Construction Department, University of Nevada, Las Vegas, NV 89154-4015, USA
| | - Puangrat Kajitvichyanukul
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand (P.U.)
| |
Collapse
|
47
|
Alam MNE, Hosen MM, Ullah AKMA, Maksud MA, Khan SR, Lutfa LN, Choudhury TR, Quraishi SB. Pollution Characteristics, Source Identification, and Health Risk of Heavy Metals in the Soil-Vegetable System in Two Districts of Bangladesh. Biol Trace Elem Res 2023; 201:4985-4999. [PMID: 36639511 PMCID: PMC9839442 DOI: 10.1007/s12011-023-03558-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
The consequences of climate change, food security, and self-sufficiency goals are driving excessive human activity onto vegetable farms in Bangladesh, and harmful heavy metal exposure is spreading. So, the study assessed the toxic metals (Pb, Cd, and Cr) exposure, characteristics, and human health risk regarding the soil-vegetable system of two distinct locations in Bangladesh using atomic absorption spectrometry. The average concentration of metals in soil and fertilizer/pesticide samples followed the same order (Cr > Pb > Cd), but for vegetable samples, the order was Pb > Cr > Cd, with some extra Pb compared to the World Health Organization (WHO) allowable limit (0.3 mg/kg). Low levels of pollution with negligible ecological concerns were predicted for both locations by the soil quality indexing. But industrial influence boosted the Pb content in location B, and common sources (fertilizer/pesticide) for both locations might be responsible for a moderate level of Cd. The toxic metals transferred to vegetables followed the trend of Cd > Pb > Cr. However, the human health risks arising from harmful metals exposure at both locations were ineffective (< 1) in evaluating noncarcinogenic risk patterns through the target hazard quotient (THQ), total THQ, and hazard index (HI). Again, considering probable carcinogenic risk patterns, vegetable consumption with studied exposure levels of toxic metals followed within the acceptable range (between 1.0E-04 and 1.0E-06). Overall, location B is slightly more vulnerable than location A by considering metal exposure, pollution distribution, and risk evaluation in the study area (significant at p < 0.05). So, systematic monitoring and protective measures are required to ensure food safety and sustainable vegetable production.
Collapse
Affiliation(s)
- M. Nur E. Alam
- Analytical Chemistry Laboratory, Chemistry Division, Atomic Energy Centre, Bangladesh Atomic Energy Commission, Dhaka-1000 Dhaka, Bangladesh
| | - M. Mozammal Hosen
- Analytical Chemistry Laboratory, Chemistry Division, Atomic Energy Centre, Bangladesh Atomic Energy Commission, Dhaka-1000 Dhaka, Bangladesh
| | - A. K. M. Atique Ullah
- Analytical Chemistry Laboratory, Chemistry Division, Atomic Energy Centre, Bangladesh Atomic Energy Commission, Dhaka-1000 Dhaka, Bangladesh
| | - M. A. Maksud
- Analytical Chemistry Laboratory, Chemistry Division, Atomic Energy Centre, Bangladesh Atomic Energy Commission, Dhaka-1000 Dhaka, Bangladesh
| | - S. R. Khan
- Analytical Chemistry Laboratory, Chemistry Division, Atomic Energy Centre, Bangladesh Atomic Energy Commission, Dhaka-1000 Dhaka, Bangladesh
| | - L. N. Lutfa
- Analytical Chemistry Laboratory, Chemistry Division, Atomic Energy Centre, Bangladesh Atomic Energy Commission, Dhaka-1000 Dhaka, Bangladesh
| | - Tasrina Rabia Choudhury
- Analytical Chemistry Laboratory, Chemistry Division, Atomic Energy Centre, Bangladesh Atomic Energy Commission, Dhaka-1000 Dhaka, Bangladesh
| | - Shamshad B. Quraishi
- Analytical Chemistry Laboratory, Chemistry Division, Atomic Energy Centre, Bangladesh Atomic Energy Commission, Dhaka-1000 Dhaka, Bangladesh
| |
Collapse
|
48
|
Leri M, Vasarri M, Barletta E, Schiavone N, Bergonzi MC, Bucciantini M, Degl’Innocenti D. The Protective Role of Oleuropein Aglycone against Pesticide-Induced Toxicity in a Human Keratinocytes Cell Model. Int J Mol Sci 2023; 24:14553. [PMID: 37834001 PMCID: PMC10572371 DOI: 10.3390/ijms241914553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
The extensive use of agricultural pesticides to improve crop quality and yield significantly increased the risk to the public of exposure to small but repeated doses of pesticides over time through various routes, including skin, by increasing the risk of disease outbreaks. Although much work was conducted to reduce the use of pesticides in agriculture, little attention was paid to prevention, which could reduce the toxicity of pesticide exposure by reducing its impact on human health. Extra virgin olive oil (EVOO), a major component of the Mediterranean diet, exerts numerous health-promoting properties, many of which are attributed to oleuropein aglycone (OleA), the deglycosylated form of oleuropein, which is the main polyphenolic component of EVOO. In this work, three pesticides with different physicochemical and biological properties, namely oxadiazon (OXA), imidacloprid (IMID), and glyphosate (GLYPHO), were compared in terms of metabolic activity, mitochondrial function and epigenetic modulation in an in vitro cellular model of human HaCaT keratinocytes to mimic the pathway of dermal exposure. The potential protective effect of OleA against pesticide-induced cellular toxicity was then evaluated in a cell pre-treatment condition. This study showed that sub-lethal doses of OXA and IMID reduced the metabolic activity and mitochondrial functionality of HaCaT cells by inducing oxidative stress and altering intracellular calcium flux and caused epigenetic modification by reducing histone acetylation H3 and H4. GLYPHO, on the other hand, showed no evidence of cellular toxicity at the doses tested. Pretreatment of cells with OleA was able to protect cells from the damaging effects of the pesticides OXA and IMID by maintaining metabolic activity and mitochondrial function at a controlled level and preventing acetylation reduction, particularly of histone H3. In conclusion, the bioactive properties of OleA reported here could be of great pharmaceutical and health interest, as they could be further studied to design new formulations for the prevention of toxicity from exposure to pesticide use.
Collapse
Affiliation(s)
- Manuela Leri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.V.); (E.B.); (N.S.); (M.B.)
| | - Marzia Vasarri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.V.); (E.B.); (N.S.); (M.B.)
- Department of Chemistry, University of Florence, Via U. Schiff 6, 50519 Sesto Fiorentino, Italy;
| | - Emanuela Barletta
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.V.); (E.B.); (N.S.); (M.B.)
| | - Nicola Schiavone
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.V.); (E.B.); (N.S.); (M.B.)
| | - Maria Camilla Bergonzi
- Department of Chemistry, University of Florence, Via U. Schiff 6, 50519 Sesto Fiorentino, Italy;
| | - Monica Bucciantini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.V.); (E.B.); (N.S.); (M.B.)
| | - Donatella Degl’Innocenti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.V.); (E.B.); (N.S.); (M.B.)
| |
Collapse
|
49
|
Alokail MS, Abd-Alrahman SH, Alnaami AM, Hussain SD, Amer OE, Elhalwagy MEA, Al-Daghri NM. Regional Variations in Pesticide Residue Detection Rates and Concentrations in Saudi Arabian Crops. TOXICS 2023; 11:798. [PMID: 37755808 PMCID: PMC10537341 DOI: 10.3390/toxics11090798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/28/2023]
Abstract
There is a scarcity of evidence on the levels of pesticide residues among common crops grown in the different regions of the Kingdom of Saudi Arabia (KSA). The present study aims to fill this gap. We collected samples across four regions of KSA (N = 41 from the west, N = 146 from the central, N = 131 from the north and N = 74 samples from the east). Food samples were extracted and cleaned using the modified quick, easy, cheap, effective, rugged and safe (QuEChERS) methodology. Tandem mass (LC-MS/MS and GC-MS/MS) was used to detect pesticide residues. The highest pesticide residue detection rate was 89.7% in the central region, followed by 88.5% in the north, 83.8% in the east and 70.7% in the western region (p = 0.01). Pesticide residue detection rates were significantly higher in fruits than vegetables (p = 0.02). Cypermethrin detection was most common overall, particularly in the Western region (p = 0.002), and pyraclostrobin concentration was the highest among all residues investigated. In conclusion, high detection rates of moderately hazardous pesticide residues were found in various crops across regions in KSA. Routine biomonitoring programs across KSA regions should be implemented, as well as public health campaigns to decrease pesticide residue consumption and exposure.
Collapse
Affiliation(s)
- Majed S. Alokail
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sherif H. Abd-Alrahman
- Central Agricultural Pesticide Laboratory, Department of Pesticides Residues and Environmental Pollution, Agricultural Research Center (ARC), Dokki, Giza 12618, Egypt
| | - Abdullah M. Alnaami
- Chair for Biomarkers of Chronic Diseases, Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Syed D. Hussain
- Chair for Biomarkers of Chronic Diseases, Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Osama E. Amer
- Chair for Biomarkers of Chronic Diseases, Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Manal E. A. Elhalwagy
- Central Agricultural Pesticide Laboratory, Department of Mammalian Toxicology, Agricultural Research Center (ARC), Dokki, Giza 12618, Egypt
| | - Nasser M. Al-Daghri
- Chair for Biomarkers of Chronic Diseases, Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
50
|
Zhuo H, Ritz B, Warren JL, Liew Z. Season of Conception and Risk of Cerebral Palsy. JAMA Netw Open 2023; 6:e2335164. [PMID: 37738049 PMCID: PMC10517373 DOI: 10.1001/jamanetworkopen.2023.35164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/16/2023] [Indexed: 09/23/2023] Open
Abstract
Importance Cerebral palsy (CP) is the most prevalent neuromotor disability in childhood, but for most cases the etiology remains unexplained. Seasonal variation in the conception of CP may provide clues for their potential etiological risk factors that vary across seasons. Objective To evaluate whether the month or season of conception is associated with CP occurrence. Design, Setting, and Participants This statewide cohort study examined more than 4 million live births that were registered in the California birth records during 2007 to 2015 and were linked to CP diagnostic records (up to year 2021). Statistical analyses were conducted between March 2022 and January 2023. Exposures The month and season of conception were estimated based on the child's date of birth and the length of gestation recorded in the California birth records. Main Outcomes and Measures CP status was ascertained from the diagnostic records obtained from the Department of Developmental Services in California. Poisson regression was used to estimate the relative risk (RR) and 95% CI for CP according to the month or the season of conception, adjusting for maternal- and neighborhood-level factors. Stratified analyses were conducted by child's sex and neighborhood social vulnerability measures, and the mediating role of preterm birth was evaluated. Results Records of 4 468 109 children (51.2% male; maternal age: 28.3% aged 19 to 25 years, 27.5% aged 26 to 30 years; maternal race and ethnicity: 5.6% African American or Black, 13.5% Asian, 49.8% Hispanic or Latinx of any race, and 28.3% non-Hispanic White) and 4697 with CP (55.1% male; maternal age: 28.3% aged 19 to 25 years, 26.0% aged 26 to 30 years; maternal race and ethnicity: 8.3% African American or Black, 8.6% Asian, 54.3% Hispanic or Latinx of any race, and 25.8% non-Hispanic White) were analyzed. Children conceived in winter (January to March) or spring (April to June) were associated with a 9% to 10% increased risk of CP (winter: RR, 1.09 [95% CI, 1.01-1.19]; spring: RR, 1.10 [95% CI, 1.02-1.20]) compared with summer (July to September) conceptions. Analyses for specific months showed similar results with children conceived in January, February, and May being at higher risk of CP. The associations were slightly stronger for mothers who lived in neighborhoods with a high social vulnerability index, but no child sex differences were observed. Only a small portion of the estimated association was mediated through preterm birth. Conclusions and Relevance In this cohort study in California, children conceived in winter and spring had a small increase in CP risk. These findings suggest that seasonally varying environmental factors should be considered in the etiological research of CP.
Collapse
Affiliation(s)
- Haoran Zhuo
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut
- Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, Connecticut
| | - Beate Ritz
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles
- Department of Neurology, School of Medicine, University of California, Los Angeles
| | - Joshua L. Warren
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut
| | - Zeyan Liew
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut
- Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, Connecticut
| |
Collapse
|