1
|
Thépaut E, Tebby C, Bisson M, Brochot C, Ratier A, Zaros C, Personne S, Chardon K, Zeman F. Prenatal exposure to chlorpyrifos of French children from the Elfe cohort. Int J Hyg Environ Health 2025; 263:114480. [PMID: 39423757 DOI: 10.1016/j.ijheh.2024.114480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/19/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND The organophosphate pesticide chlorpyrifos was widely used in the European Union before its ban in 2020 and was associated with neurodevelopmental disorders. However, within the concept of Developmental Origins of Health and Disease, in utero exposure to chlorpyrifos can lead to neurodevelopmental effects in developing children. OBJECTIVE The aim of this study was to estimate fetal exposure to chlorpyrifos using biomonitoring data measured in Elfe pregnant women and a physiologically based pharmacokinetic (PBPK) approach and compare exposure to toxicological reference values. METHODS A pregnancy-PBPK model was developed based on an existing adult chlorpyrifos model and a new toxicological reference value was proposed for neurodevelopmental effects. The pregnant women exposure was estimated based on dialkylphosphate (DAP) levels in urine assuming constant exposure to chlorpyrifos and compared to both the existing toxicological reference value and the new proposed draft toxicological reference value. Fetal internal concentrations in target tissues were then predicted using the developed pregnancy-PBPK model. Urinary concentrations of the chlorpyrifos-specific metabolite (TCPy) were also predicted for comparison with other biomonitoring data. RESULTS The median daily exposure to chlorpyrifos for the French pregnant women from the Elfe cohort was estimated at 6.3x10-4 μg/kg body weight/day. The predicted urinary excretion of TCPy, the chlorpyrifos-specific metabolite, is in the same range as observed in other European cohorts (mean: 2.13 μg/L). Predicted brain chlorpyrifos levels were similar in pregnant women and their fetus and were 10-fold higher than the predicted blood chlorpyrifos levels. It was estimated that 6% and 20% of the pregnant women population had been exposed to levels exceeding the general population and draft toxicological reference values, respectively. CONCLUSIONS Prenatal exposure to chlorpyrifos was estimated for the French population based on data from the Elfe cohort. Internal chlorpyrifos concentrations in target tissues (brain and blood) were predicted for fetuses at the end of the pregnancy. Under a conservative assumption, a small percentage of the population was identified as being exposed to levels exceeding the toxicological reference values.
Collapse
Affiliation(s)
- Elisa Thépaut
- Unité Toxicologie ExpérimentAle et Modélisation, INERIS, Institut National de l'Environnement Industriel et des Risques, 60550 Verneuil-en-Halatte, France; Péritox (UMR_I 01), UPJV, Université de Picardie Jules Verne, 80025, Amiens, France
| | - Cleo Tebby
- Unité Toxicologie ExpérimentAle et Modélisation, INERIS, Institut National de l'Environnement Industriel et des Risques, 60550 Verneuil-en-Halatte, France
| | - Michèle Bisson
- Unité expertise en toxicologie / écotoxicologie des substances chimiques, INERIS, Institut National de l'Environnement Industriel et des Risques, 60550 Verneuil-en-Halatte, France
| | - Céline Brochot
- Unité Toxicologie ExpérimentAle et Modélisation, INERIS, Institut National de l'Environnement Industriel et des Risques, 60550 Verneuil-en-Halatte, France; Certara UK Ltd, Simcyp Division, Sheffield, UK
| | - Aude Ratier
- Unité Toxicologie ExpérimentAle et Modélisation, INERIS, Institut National de l'Environnement Industriel et des Risques, 60550 Verneuil-en-Halatte, France; Péritox (UMR_I 01), UPJV, Université de Picardie Jules Verne, 80025, Amiens, France
| | - Cécile Zaros
- INED French Institute for Demographic Studies, ELFE Joint Unit Campus Condorcet 9, 93322 Aubervilliers CEDEX, France
| | - Stéphane Personne
- Péritox (UMR_I 01), UPJV, Université de Picardie Jules Verne, 80025, Amiens, France
| | - Karen Chardon
- Péritox (UMR_I 01), UPJV, Université de Picardie Jules Verne, 80025, Amiens, France
| | - Florence Zeman
- Unité Toxicologie ExpérimentAle et Modélisation, INERIS, Institut National de l'Environnement Industriel et des Risques, 60550 Verneuil-en-Halatte, France; Péritox (UMR_I 01), UPJV, Université de Picardie Jules Verne, 80025, Amiens, France.
| |
Collapse
|
2
|
Purece A, Thomsen ST, Plass D, Spyropoulou A, Machera K, Palmont P, Crépet A, Benchrih R, Devleesschauwer B, Wieland N, Scheepers P, Deepika D, Kumar V, Sanchez G, Bessems J, Piselli D, Buekers J. A preliminary estimate of the environmental burden of disease associated with exposure to pyrethroid insecticides and ADHD in Europe based on human biomonitoring. Environ Health 2024; 23:91. [PMID: 39443952 PMCID: PMC11515492 DOI: 10.1186/s12940-024-01131-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
Human biomonitoring (HBM) data indicate that exposure to pyrethroids is widespread in Europe, with significantly higher exposure observed in children compared to adults. Epidemiological, toxicological, and mechanistic studies raise concerns for potential human health effects, particularly, behavioral effects such as attention deficit hyperactivity disorder (ADHD) in children at low levels of exposure. Based on an exposure-response function from a single European study and on available quality-assured and harmonized HBM data collected in France, Germany, Iceland, Switzerland, and Israel, a preliminary estimate of the environmental burden of disease for ADHD associated with pyrethroid exposure was made for individuals aged 0-19 years. The estimated annual number of prevalence-based disability-adjusted life years (DALYs) per million inhabitants were 27 DALYs for Israel, 21 DALYs for France, 12 DALYs for both Switzerland and Iceland, and 3 DALYs for Germany; while the annual ADHD cases per million inhabitants attributable to pyrethroids were 2189 for Israel, 1710 for France, 969 for Iceland, 944 for Switzerland, and 209 for Germany. Direct health costs related to ADHD ranged between 0.3 and 2.5 million EUR yearly per million inhabitants for the five countries. Additionally, a substantial number of ADHD cases, on average 18%, were associated with pyrethroid exposure. Yet, these figures should be interpreted with caution given the uncertainty of the estimation. A sensitivity analysis showed that by applying a different exposure-response function from outside the EU, the population attributable fraction decreased from an average of 18 to 7%. To ensure more robust disease burden estimates and adequate follow-up of policy measures, more HBM studies are needed, along with increased efforts to harmonize the design of epidemiological studies upfront to guarantee meta-analysis of exposure-response functions. This is particularly important for pyrethroids as evidence of potential adverse health effects is continuously emerging.
Collapse
Affiliation(s)
- Anthony Purece
- Flemish Institute for Technological Research (VITO), Boeretang 200, Mol, 2400, Belgium.
| | - Sofie Theresa Thomsen
- Technical University of Denmark, DTU, Henrik Dams Allé, 201, Kgs. Lyngby, 2800, Denmark
| | - Dietrich Plass
- German Environment Agency, Corrensplatz 1, 14195, Berlin, Germany
| | - Anastasia Spyropoulou
- Laboratory of Toxicological Control of Pesticides, Scientific Directorate of Pesticides' Control and Phytopharmacy, Benaki Phytopathological Institute, Attica, 145 61, Greece
| | - Kyriaki Machera
- Laboratory of Toxicological Control of Pesticides, Scientific Directorate of Pesticides' Control and Phytopharmacy, Benaki Phytopathological Institute, Attica, 145 61, Greece
| | - Philippe Palmont
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 rue Pierre et Marie Curie, Maisons-Alfort, 94701, France
| | - Amélie Crépet
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 rue Pierre et Marie Curie, Maisons-Alfort, 94701, France
| | - Rafiqa Benchrih
- Department of Epidemiology and Public Health, Sciensano, Juliette Wytsmanstraat 14, Brussels, 1050, Belgium
| | - Brecht Devleesschauwer
- Department of Epidemiology and Public Health, Sciensano, Juliette Wytsmanstraat 14, Brussels, 1050, Belgium
- Department of Translational Physiology, Infectiology and Public Health, Ghent University, Salisburylaan 133, Merelbeke, 9820, Belgium
| | - Nina Wieland
- Radboud Institute for Biological and Environmental Science, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Paul Scheepers
- Radboud Institute for Biological and Environmental Science, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Deepika Deepika
- IISPV, Hospital Universitari Sant Joan de Reus, Universitat Rovira i Virgili, Reus, Spain
| | - Vikas Kumar
- IISPV, Hospital Universitari Sant Joan de Reus, Universitat Rovira i Virgili, Reus, Spain
| | - Gerardo Sanchez
- European Environmental Agency (EEA), Kongens Nytorv 6, København K, 1050, Denmark
| | - Jos Bessems
- Flemish Institute for Technological Research (VITO), Boeretang 200, Mol, 2400, Belgium
| | - Dario Piselli
- European Environmental Agency (EEA), Kongens Nytorv 6, København K, 1050, Denmark
| | - Jurgen Buekers
- Flemish Institute for Technological Research (VITO), Boeretang 200, Mol, 2400, Belgium
| |
Collapse
|
3
|
Côté J, Bouchard M. Toxicokinetic model of the pyrethroid pesticide lambda-cyhalothrin, main exposure route and dose reconstruction predictions in agricultural workers. PLoS One 2024; 19:e0309803. [PMID: 39441847 PMCID: PMC11498739 DOI: 10.1371/journal.pone.0309803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/20/2024] [Indexed: 10/25/2024] Open
Abstract
A toxicokinetic model of the pyrethroid insecticide lambda-cyhalothrin (LCT) was developed to relate absorbed doses to urinary cis-3-(2-chloro-3,3,3-trifluoroprop-1-en-1-yl)-2,2-dimethylcyclopropanecarboxylic acid (CFMP) metabolite levels used as a biomarker of exposure. The model then served to reconstruct absorbed doses in agricultural workers and their probability of exceeding the EFSA Acceptable occupational Exposure Level (AOEL). The toxicokinetic model was able to reproduce the temporal profiles of CFMP in the urine of operators spraying pesticides using the optimized model parameters (adjusted to human volunteer data). Modeling also showed that simulation of an inadvertent oral exposure mainly was the exposure scenario giving the best fit to CFMP urinary time-course data in applicators. With the dermal model parameters optimized from data in volunteers, simulation of a dermal exposure in applicators did not allow to reproduce the observed peak excretions and urinary metabolite levels; extremely high applied dermal doses would be required but still simulated dermal penetration rate would remain too slow. Simulation of an inhalation exposure allowed to reproduce the observed time-courses, but with unrealistic air concentrations. For applicators with the highest urinary concentrations, there was a probability of exceeding the AOEL at some points during the biomonitoring period [>50% probability of exceeding for 27% of 24-h samples]; for non-applicator workers the probability of exceeding the AOEL value was very low [corresponding value of 5%]. Furthermore, the median [95% CI] estimates of 10 000 Monte Carlo simulations led to a biological reference value corresponding to the AOEL of 116 [113-119] ng/kg bw/d and 7.5 [7.3-7.7] μg/L. Overall, 7% of applicators and 1% of workers performing weeding and strawberry picking had a probability of exceeding this biological reference value. As a next step, it would be interesting to apply these methods to multiple exposure to various contaminants.
Collapse
Affiliation(s)
- Jonathan Côté
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Montreal, Quebec, Canada
| | - Michèle Bouchard
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Macheka LR, Palazzi P, Iglesias-González A, Zaros C, Appenzeller BMR, Zeman FA. Exposure to pesticides, persistent and non - persistent pollutants in French 3.5-year-old children: Findings from comprehensive hair analysis in the ELFE national birth cohort. ENVIRONMENT INTERNATIONAL 2024; 190:108881. [PMID: 39002332 DOI: 10.1016/j.envint.2024.108881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/26/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
INTRODUCTION Exposure to endocrine disruptors during early childhood poses significant health risks. This study examines the exposure levels of French 3.5-year-old children to various persistent and non-persistent pollutants and pesticides using hair analysis as part of the ELFE national birth cohort. Differences in sex and geographical location among the children were investigated as ppossible determinants of exposure. METHODS Exposure biomarkers from 32 chemical families were analyzed using LC-MS/MS and GC-MS/MS in 222 hair samples from children in the ELFE cohort. Of these, 46 mother-child pairs from the same cohort provided unique insight into prenatal and postnatal exposure. Regressions, correlations and discriminate analysis were used to assess relationships between exposure and possible confounding factors. RESULTS AND DISCUSSION Among the biomarkers tested in children's hair samples, 69 had a detection frequency of ≥ 50 %, with 20 showing a 100 % detection rate. The most detected biomarkers belonged to the bisphenol, organochlorine and organophosphate families. Sex-specific differences were observed for 26 biomarkers, indicating the role of the child's sex in exposure levels. Additionally, regional differences were noted, with Hexachlorobenzene varying significantly across the different French regions. Nicotine presented both the highest concentration (16303 pg/mg) and highest median concentration (81 pg/mg) measured in the children's hair. Statistically significant correlations between the levels of biomarkers found in the hair samples of the mothers and their respective children were observed for fipronil (correlation coefficient = 0.32, p = 0.03), fipronil sulfone (correlation coefficient = 0.34, p = 0.02) and azoxystrobin (correlation coefficient = 0.29, p = 0.05). CONCLUSIONS The study highlights the elevated exposure levels of young children to various pollutants, highlighting the influence of sex and geography. Hair analysis emerges as a crucial tool for monitoring endocrine disruptors, offering insights into exposure risks and reinforcing the need for protective measures against these harmful substances.
Collapse
Affiliation(s)
- Linda R Macheka
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Paul Palazzi
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Alba Iglesias-González
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Cécile Zaros
- Ined-Inserm-EFS - Unité mixte Elfe (Campus Condorcet), 9, cours des Humanités, 93322 Aubervilliers, France
| | - Brice M R Appenzeller
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Florence A Zeman
- Unité Toxicologie Expérimentale et Modélisation, Ineris, Institut National de l'Environnement Industriel et des Risques, Verneuil-en-Halatte, France; PériTox, UMR_I 01, CURS, Université de Picardie Jules Verne, Chemin du Thil, Amiens, France.
| |
Collapse
|
5
|
Thépaut E, Bisson M, Brochot C, Personne S, Appenzeller BMR, Zaros C, Chardon K, Zeman F. PBPK modeling to support risk assessment of pyrethroid exposure in French pregnant women. ENVIRONMENTAL RESEARCH 2024; 251:118606. [PMID: 38460660 DOI: 10.1016/j.envres.2024.118606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND Pyrethroids are widely used pesticides and are suspected to affect children's neurodevelopment. The characterization of pyrethroid exposure during critical windows of development, such as fetal development and prenatal life, is essential to ensure a better understanding of pyrethroids potential effects within the concept of Developmental Origins of Health and Disease. OBJECTIVE The aim of this study was to estimate maternal exposure of French pregnant women from biomonitoring data and simulate maternal and fetal internal concentrations of 3 pyrethroids (permethrin, cypermethrin and deltamethrin) using a multi-substance pregnancy-PBPK (physiologically based pharmacokinetics) model. The estimated maternal exposures were compared to newly proposed toxicological reference values (TRV) children specific also called draft child-specific reference value to assess pyrethroid exposure risk during pregnancy i.e. during the in utero exposure period. METHODS A pregnancy-PBPK model was developed based on an existing adult pyrethroids model. The maternal exposure to each parent compound of pregnant women of the Elfe (French Longitudinal Study since Childhood) cohort was estimated by reverse dosimetry based on urinary biomonitoring data. To identify permethrin and cypermethrin contribution to their common urinary biomarkers of exposure, an exposure ratio based on biomarkers in hair was tested. Finally, exposure estimates were compared to current and draft child-specific reference values derived from rodent prenatal and postnatal exposure studies. RESULTS The main contributor to maternal pyrethroid diet intake is cis-permethrin. In blood, total internal concentrations main contributor is deltamethrin. In brain, the major contributors to internal pyrethroid exposure are deltamethrin for fetuses and cis-permethrin for mothers. Risk is identified only for permethrin when referring to the draft child-specific reference value. 2.5% of the population exceeded permethrin draft child-specific reference value. CONCLUSIONS A new reverse dosimetry approach using PBPK model combined with human biomonitoring data in urine and hair was proposed to estimate Elfe pregnant population exposure to a pyrethroids mixture with common metabolites.
Collapse
Affiliation(s)
- Elisa Thépaut
- Unité Toxicologie ExpérimentAle et Modélisation / Péritox (UMR_I 01), INERIS/UPJV, Institut National de l'Environnement Industriel et des Risques, 60550, Verneuil-en-Halatte, France
| | - Michèle Bisson
- Unité Expertise en Toxicologie / écotoxicologie des Substances Chimiques, INERIS, Institut National de l'Environnement Industriel et des Risques, 60550, Verneuil-en-Halatte, France
| | - Céline Brochot
- Unité Toxicologie ExpérimentAle et Modélisation / Péritox (UMR_I 01), INERIS/UPJV, Institut National de l'Environnement Industriel et des Risques, 60550, Verneuil-en-Halatte, France; Current affiliation: Certara UK Ltd, Simcyp Division, Sheffield, UK
| | - Stéphane Personne
- Péritox (UMR_I 01), UPJV/INERIS, Université de Picardie Jules Verne, 80025, Amiens, France
| | - Brice M R Appenzeller
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, L-1445, Strassen, Luxembourg
| | - Cécile Zaros
- UMS Elfe, INED French Institute for Demographic Studies, 93322, Aubervilliers CEDEX, France
| | - Karen Chardon
- Péritox (UMR_I 01), UPJV/INERIS, Université de Picardie Jules Verne, 80025, Amiens, France
| | - Florence Zeman
- Unité Toxicologie ExpérimentAle et Modélisation / Péritox (UMR_I 01), INERIS/UPJV, Institut National de l'Environnement Industriel et des Risques, 60550, Verneuil-en-Halatte, France.
| |
Collapse
|
6
|
Debad S, Allen D, Bandele O, Bishop C, Blaylock M, Brown P, Bunger MK, Co JY, Crosby L, Daniel AB, Ferguson SS, Ford K, Gamboa da Costa G, Gilchrist KH, Grogg MW, Gwinn M, Hartung T, Hogan SP, Jeong YE, Kass GE, Kenyon E, Kleinstreuer NC, Kujala V, Lundquist P, Matheson J, McCullough SD, Melton-Celsa A, Musser S, Oh I, Oyetade OB, Patil SU, Petersen EJ, Sadrieh N, Sayes CM, Scruggs BS, Tan YM, Thelin B, Nelson MT, Tarazona JV, Wambaugh JF, Yang JY, Yu C, Fitzpatrick S. Trust your gut: Establishing confidence in gastrointestinal models - An overview of the state of the science and contexts of use. ALTEX 2024; 41:402-424. [PMID: 38898799 PMCID: PMC11413798 DOI: 10.14573/altex.2403261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Indexed: 06/21/2024]
Abstract
The webinar series and workshop titled “Trust Your Gut: Establishing Confidence in Gastrointestinal Models – An Overview of the State of the Science and Contexts of Use” was co-organized by NICEATM, NIEHS, FDA, EPA, CPSC, DoD, and the Johns Hopkins Center for Alternatives to Animal Testing (CAAT) and hosted at the National Institutes of Health in Bethesda, MD, USA on October 11-12, 2023. New approach methods (NAMs) for assessing issues of gastrointestinal tract (GIT)- related toxicity offer promise in addressing some of the limitations associated with animal-based assessments. GIT NAMs vary in complexity, from two-dimensional monolayer cell line-based systems to sophisticated 3-dimensional organoid systems derived from human primary cells. Despite advances in GIT NAMs, challenges remain in fully replicating the complex interactions and processes occurring within the human GIT. Presentations and discussions addressed regulatory needs, challenges, and innovations in incorporating NAMs into risk assessment frameworks; explored the state of the science in using NAMs for evaluating systemic toxicity, understanding absorption and pharmacokinetics, evaluating GIT toxicity, and assessing potential allergenicity; and discussed strengths, limitations, and data gaps of GIT NAMs as well as steps needed to establish confidence in these models for use in the regulatory setting.
Collapse
Affiliation(s)
| | | | - Omari Bandele
- Center for Food Safety and Applied Nutrition, College Park, MD, USA
| | - Colin Bishop
- Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, USA
| | | | - Paul Brown
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | | | - Julia Y Co
- Complex in vitro Systems, Genentech Inc, South San Francisco, CA, USA
| | - Lynn Crosby
- Center for Food Safety and Applied Nutrition, College Park, MD, USA
| | | | - Steve S Ferguson
- Mechanistic Toxicology Branch, Division of Translational Toxicology, NIEHS, National Institutes of Health, Bethesda, MD, USA
| | - Kevin Ford
- Office of Clinical Pharmacology, US Food and Drug Administration, Silver Spring, MD, USA
| | - Gonçalo Gamboa da Costa
- FDA National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| | - Kristin H Gilchrist
- 4D Bio³ Center for Biotechnology, Uniformed Services University, Bethesda, MD, USA
| | - Matthew W Grogg
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, OH, USA
| | - Maureen Gwinn
- U.S. Environmental Protection Agency, Office of Research and Development, RTP, NC, USA
| | - Thomas Hartung
- Johns Hopkins University, Bloomberg School of Public Health and Whiting School of Engineering, Doerenkamp-Zbinden-Chair for Evidence-based Toxicology, Center for Alternatives to Animal Testing (CAAT), Baltimore, MD, USA
- University of Konstanz, CAAT-Europe, Konstanz, Germany
| | - Simon P Hogan
- Mary H. Weiser Food Allergy Center, Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Ye Eun Jeong
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | | | - Elaina Kenyon
- U.S. Environmental Protection Agency, Office of Research and Development, RTP, NC, USA
| | | | | | | | | | | | - Angela Melton-Celsa
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | - Steven Musser
- Center for Food Safety and Applied Nutrition, College Park, MD, USA
| | - Ilung Oh
- Toxicology Research Division, Ministry of Food and Drug Safety, National Institute of Food and Drug Safety Evaluation, Republic of Korea
| | | | - Sarita U Patil
- Divisions of Allergy and Clinical Immunology, Departments of Medicine and Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Elijah J Petersen
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Nakissa Sadrieh
- Center for Food Safety and Applied Nutrition, College Park, MD, USA
| | - Christie M Sayes
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | | | - Yu-Mei Tan
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Research Triangle Park, NC, USA
| | - Bill Thelin
- Altis Biosystems, Inc. Research Triangle Park, NC, USA
| | - M Tyler Nelson
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, OH, USA
| | - José V Tarazona
- Spanish National Environmental Health Centre, Instituto de Salud Carlos III. Madrid, Spain
| | - John F Wambaugh
- U.S. Environmental Protection Agency, Office of Research and Development, RTP, NC, USA
| | - Jun-Young Yang
- Toxicology Research Division, Ministry of Food and Drug Safety, National Institute of Food and Drug Safety Evaluation, Cheongju, Republic of Korea
| | - Changwoo Yu
- Toxicology Research Division, Ministry of Food and Drug Safety, National Institute of Food and Drug Safety Evaluation, Cheongju, Republic of Korea
| | | |
Collapse
|
7
|
Nijssen R, Lommen A, van den Top H, van Dam R, Meuleman-Bot C, Tienstra M, Zomer P, Sunarto S, van Tricht F, Blokland M, Mol H. Assessment of exposure to pesticides: residues in 24 h duplicate diets versus their metabolites in 24 h urine using suspect screening and target analysis. Anal Bioanal Chem 2024; 416:635-650. [PMID: 37736840 PMCID: PMC10766712 DOI: 10.1007/s00216-023-04918-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023]
Abstract
Human biomonitoring can add value to chemical risk assessment by reducing the assumptions regarding consumption rates, residue occurrence, and processing effects and by integrating exposures from different sources (diet, household use, environmental). However, the relationship between exposure and concentration in human matrices is unknown for most pesticides. Therefore, we conducted a pilot study to gain more insight into the qualitative and quantitative relationship between dietary intake of pesticides (external exposure) and urinary excretion (reflecting internal exposure). In this cross-sectional observational study, 35 healthy consumers aged 18-65 years from the region of Wageningen, Netherlands, collected an exact duplicate portion of their diets during 24 h. On the same day, they also collected all their urine. The duplicate diets were analyzed using target screening by GC- and LC-HRMS; each duplicate diet contained at least five, up to 21, pesticide residues. The 24 h urine samples were analyzed using LC-HRMS in a suspect screening workflow. Metabolites were tentatively detected in all 24 h urine samples, ranging from six metabolites corresponding to four pesticides up to 40 metabolites originating from 16 pesticides in a single urine sample. In total, 65 metabolites originating from 28 pesticides were tentatively detected. After prioritization and additional confirmation experiments, 28 metabolites originating from 10 pesticides were identified with confidence level 1 or 2b. Next, quantitative analysis was performed for a selection of pesticides in duplicate diets and their metabolites in 24 h urine to assess quantitative relationships. In the quantitative comparisons between duplicate diet and 24 h urine, it was found that some metabolites were already present in the duplicate diet, which may give an overestimation of exposure to the parent pesticide based on measurement of the metabolites in urine. Additionally, the quantitative comparisons suggest a background exposure through other exposure routes. We conclude that suspect screening of 24 h urine samples can disclose exposure to mixtures of pesticide on the same day in the general population. However, more research is needed to obtain quantitative relationships between dietary intake and exposure.
Collapse
Affiliation(s)
- R Nijssen
- Wageningen Food Safety Research, part of Wageningen University & Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands.
| | - A Lommen
- Wageningen Food Safety Research, part of Wageningen University & Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | - H van den Top
- Wageningen Food Safety Research, part of Wageningen University & Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | - R van Dam
- Wageningen Food Safety Research, part of Wageningen University & Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | - C Meuleman-Bot
- Wageningen Food Safety Research, part of Wageningen University & Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | - M Tienstra
- Wageningen Food Safety Research, part of Wageningen University & Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | - P Zomer
- Wageningen Food Safety Research, part of Wageningen University & Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | - S Sunarto
- Wageningen Food Safety Research, part of Wageningen University & Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | - F van Tricht
- Wageningen Food Safety Research, part of Wageningen University & Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | - M Blokland
- Wageningen Food Safety Research, part of Wageningen University & Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | - H Mol
- Wageningen Food Safety Research, part of Wageningen University & Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| |
Collapse
|
8
|
de Alba-Gonzalez M, González-Caballero MC, Tarazona JV. Applicability of Food Monitoring Data for Assessing Relative Exposure Contributions of Pyrethroids in Retrospective Human Biomonitoring Risk Estimations. TOXICS 2023; 12:24. [PMID: 38250980 PMCID: PMC10819063 DOI: 10.3390/toxics12010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024]
Abstract
The use of pyrethroids is very broad and shows increasing trends. Human biomonitoring studies represent the best approach for realistic risk estimations, but their interpretation requires a tiered approach. A previous HBM4EU study indicated levels in European children groups just around the threshold for concern, requiring further refinement. The main difficulty is that several pyrethroids with different toxicity potencies generate the same urinary metabolites. As diet is the main pyrethroid source for the general population, EU food monitoring data reported by EFSA have been used to estimate the relative contribution of each pyrethroid. The main contributors were cypermethrin for DCCA and 3-PBA and lambda-cyhalothrin for CFMP. Urinary levels predicted from food concentration according to the EFSA diets were mostly within the range of measured levels, except 3-PBA and CFMP levels in children, both below measured levels. The predicted lower levels for 3-PBA can be explained by the very low Fue value, initially proposed as conservative, but that seems to be unrealistic. The discrepancies for CFMP are mostly for the highest percentiles and require further assessments. The refined assessments included the revision of the previously proposed human biomonitoring guidance values for the general population, HBM-GV Gen Pop, following recent toxicological reevaluations, and the estimation of hazard quotients (HQs) for each individual pyrethroid and for the combined exposure to all pyrethroids. All HQs were below 1, indicating no immediate concern, but attention is required, particularly for children, with HQs in the range of 0.2-0.3 for the highly exposed group. The application of probabilistic methods offers assessments at the population level, addressing the variability in exposure and risk and providing relevant information for Public Health impact assessments and risk management prioritization.
Collapse
Affiliation(s)
- Mercedes de Alba-Gonzalez
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28220 Madrid, Spain; (M.C.G.-C.); (J.V.T.)
| | | | | |
Collapse
|
9
|
Tagne-Fotso R, Zeghnoun A, Saoudi A, Balestier A, Pecheux M, Chaperon L, Oleko A, Marchand P, Le Bizec B, Vattier L, Bouchart V, Limon G, Le Gléau F, Denys S, Fillol C. Exposure of the general French population to herbicides, pyrethroids, organophosphates, organochlorines, and carbamate pesticides in 2014-2016: Results from the Esteban study. Int J Hyg Environ Health 2023; 254:114265. [PMID: 37748265 DOI: 10.1016/j.ijheh.2023.114265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 09/27/2023]
Abstract
Esteban is a nationwide cross-sectional study conducted in France in 2014-2016, including 2503 adults aged 18-74 years old and 1104 children aged 6-17 years old, as part of the French Human Biomonitoring programme. The present paper describes the biological levels of five families of pesticides analysed on random sub-samples of 900 adults and 500 children for urine concentrations, and 759 adults and 255 children for serum concentrations, and the determinants of exposure. Organophosphates, carbamates and herbicides were measured in urine by UPLC-MS/MS; chlorophenols and pyrethroids were measured in urine by GC-MS/MS; specific organochlorines were measured in serum by GC-HRMS. Multivariate analyses were performed to identify the determinants of exposure using a generalized linear model. Pyrethroid metabolites were quantified in 99% of adults and children, with the exeption of F-PBA, which was quantified in 31% of adults and 27% of children, respectively. Carbamates and some specific organophosphates were barely or not quantified. DMTP was quantified in 82% of adults and 93% of children, and γ-HCH (lindane) was quantified in almost 50% of adults and children. Concentration levels of pesticide biomarkers were consistent with comparable international studies, except for β-HCH, DMTP, and the deltamethrin metabolite Br2CA, whose levels were sometimes higher in France. Household insecticide use and smoking were also associated with higher levels of pyrethroids. All pyrethroids concentration levels were below existing health-based HBM guidance values, HBM-GVsGenPop, except for 3-PBA, for which approximately 1% and 10% of children were above the lower and upper urine threshold values of 22 μg/L and 6.4 μg/L, respectively. Esteban provides a French nationwide description of 70 pesticide biomarkers for the first time in children. It also describes some pesticide biomarkers for the first time in adults, including glyphosate and AMPA. For the latter, urine concentration levels were overall higher in children than in adults. Our results highlight a possible beneficial impact of existing regulations on adult exposure to organochlorine and organophosphate pesticides between 2006 and 2016, as concentration levels decreased over this period.
Collapse
Affiliation(s)
- Romuald Tagne-Fotso
- Santé Publique France, The National Public Health Agency, 12 Rue Du Val D'Osne, Saint-Maurice Cedex, 94415, France.
| | - Abdelkrim Zeghnoun
- Santé Publique France, The National Public Health Agency, 12 Rue Du Val D'Osne, Saint-Maurice Cedex, 94415, France
| | - Abdessattar Saoudi
- Santé Publique France, The National Public Health Agency, 12 Rue Du Val D'Osne, Saint-Maurice Cedex, 94415, France
| | - Anita Balestier
- Santé Publique France, The National Public Health Agency, 12 Rue Du Val D'Osne, Saint-Maurice Cedex, 94415, France
| | - Marie Pecheux
- Santé Publique France, The National Public Health Agency, 12 Rue Du Val D'Osne, Saint-Maurice Cedex, 94415, France
| | - Laura Chaperon
- Santé Publique France, The National Public Health Agency, 12 Rue Du Val D'Osne, Saint-Maurice Cedex, 94415, France
| | - Amivi Oleko
- Santé Publique France, The National Public Health Agency, 12 Rue Du Val D'Osne, Saint-Maurice Cedex, 94415, France
| | | | | | | | | | | | | | - Sébastien Denys
- Santé Publique France, The National Public Health Agency, 12 Rue Du Val D'Osne, Saint-Maurice Cedex, 94415, France
| | - Clémence Fillol
- Santé Publique France, The National Public Health Agency, 12 Rue Du Val D'Osne, Saint-Maurice Cedex, 94415, France
| |
Collapse
|
10
|
Santonen T, Mahiout S, Alvito P, Apel P, Bessems J, Bil W, Borges T, Bose-O'Reilly S, Buekers J, Cañas Portilla AI, Calvo AC, de Alba González M, Domínguez-Morueco N, López ME, Falnoga I, Gerofke A, Caballero MDCG, Horvat M, Huuskonen P, Kadikis N, Kolossa-Gehring M, Lange R, Louro H, Martins C, Meslin M, Niemann L, Díaz SP, Plichta V, Porras SP, Rousselle C, Scholten B, Silva MJ, Šlejkovec Z, Tratnik JS, Joksić AŠ, Tarazona JV, Uhl M, Van Nieuwenhuyse A, Viegas S, Vinggaard AM, Woutersen M, Schoeters G. How to use human biomonitoring in chemical risk assessment: Methodological aspects, recommendations, and lessons learned from HBM4EU. Int J Hyg Environ Health 2023; 249:114139. [PMID: 36870229 DOI: 10.1016/j.ijheh.2023.114139] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 03/06/2023]
Abstract
One of the aims of the European Human Biomonitoring Initiative, HBM4EU, was to provide examples of and good practices for the effective use of human biomonitoring (HBM) data in human health risk assessment (RA). The need for such information is pressing, as previous research has indicated that regulatory risk assessors generally lack knowledge and experience of the use of HBM data in RA. By recognising this gap in expertise, as well as the added value of incorporating HBM data into RA, this paper aims to support the integration of HBM into regulatory RA. Based on the work of the HBM4EU, we provide examples of different approaches to including HBM in RA and in estimations of the environmental burden of disease (EBoD), the benefits and pitfalls involved, information on the important methodological aspects to consider, and recommendations on how to overcome obstacles. The examples are derived from RAs or EBoD estimations made under the HBM4EU for the following HBM4EU priority substances: acrylamide, o-toluidine of the aniline family, aprotic solvents, arsenic, bisphenols, cadmium, diisocyanates, flame retardants, hexavalent chromium [Cr(VI)], lead, mercury, mixture of per-/poly-fluorinated compounds, mixture of pesticides, mixture of phthalates, mycotoxins, polycyclic aromatic hydrocarbons (PAHs), and the UV-filter benzophenone-3. Although the RA and EBoD work presented here is not intended to have direct regulatory implications, the results can be useful for raising awareness of possibly needed policy actions, as newly generated HBM data from HBM4EU on the current exposure of the EU population has been used in many RAs and EBoD estimations.
Collapse
Affiliation(s)
| | | | - Paula Alvito
- National Institute of Health Dr. Ricardo Jorge, 1649-016, Lisbon, Portugal; Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Petra Apel
- German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany
| | - Jos Bessems
- VITO-Flemish Institute for Technological Research, Mol, Belgium
| | - Wieneke Bil
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Teresa Borges
- General-Directorate of Health, Ministry of Health, 1049-005, Lisbon, Portugal
| | - Stephan Bose-O'Reilly
- Department of Public Health, Health Services Research and Health Technology Assessment, UMIT - Private University for Health Sciences, Medical Informations und Technology, Hall i.T., Austria
| | - Jurgen Buekers
- VITO-Flemish Institute for Technological Research, Mol, Belgium
| | | | - Argelia Castaño Calvo
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | - Marta Esteban López
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Antje Gerofke
- German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany
| | | | | | | | | | | | - Rosa Lange
- German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany
| | - Henriqueta Louro
- National Institute of Health Dr. Ricardo Jorge, 1649-016, Lisbon, Portugal; ToxOmics-Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal
| | - Carla Martins
- NOVA National School of Public Health, Public Health Research Centre, NOVA University Lisbon, 1600-560, Lisbon, Portugal; Comprehensive Health Research Center (CHRC), NOVA University Lisbon, 1600-560, Lisbon, Portugal
| | - Matthieu Meslin
- French Agency for Food, Environmental and Occupational Health & Safety, Anses, 14 rue Pierre et Marie Curie, 94701, Maisons-Alfort, France
| | - Lars Niemann
- German Federal Institute for Risk Assessment, Berlin, Germany
| | - Susana Pedraza Díaz
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Veronika Plichta
- Austrian Agency for Health and Food Safety, Department Risk Assessment, Spargelfeldstraße 191, 1220, Vienna, Austria
| | | | - Christophe Rousselle
- French Agency for Food, Environmental and Occupational Health & Safety, Anses, 14 rue Pierre et Marie Curie, 94701, Maisons-Alfort, France
| | - Bernice Scholten
- Research Group Risk Analysis for Products in Development, The Netherlands Organisation for Applied Scientific research (TNO), Utrecht, the Netherlands
| | - Maria João Silva
- National Institute of Health Dr. Ricardo Jorge, 1649-016, Lisbon, Portugal; ToxOmics-Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal
| | | | | | | | - Jose V Tarazona
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain; European Food Safety Authority (EFSA), Parma, Italy
| | - Maria Uhl
- Environment Agency Austria, Spittelauer Lände 5, 1090, Vienna, Austria
| | | | - Susana Viegas
- NOVA National School of Public Health, Public Health Research Centre, NOVA University Lisbon, 1600-560, Lisbon, Portugal; Comprehensive Health Research Center (CHRC), NOVA University Lisbon, 1600-560, Lisbon, Portugal
| | | | - Marjolijn Woutersen
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Greet Schoeters
- VITO-Flemish Institute for Technological Research, Mol, Belgium; University of Antwerp, Dept of Biomedical Sciences, Antwerp, Belgium
| |
Collapse
|
11
|
Apel P, Lamkarkach F, Lange R, Sissoko F, David M, Rousselle C, Schoeters G, Kolossa-Gehring M. Human biomonitoring guidance values (HBM-GVs) for priority substances under the HBM4EU initiative - New values derivation for deltamethrin and cyfluthrin and overall results. Int J Hyg Environ Health 2023; 248:114097. [PMID: 36577283 DOI: 10.1016/j.ijheh.2022.114097] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/27/2022]
Abstract
The European Initiative HBM4EU aimed to further establish human biomonitoring across Europe as an important tool for determining population exposure to chemicals and as part of health-related risk assessments, thus making it applicable for policy advice. Not only should analytical methods and survey design be harmonized and quality assured, but also the evaluation of human biomonitoring data. For the health-related interpretation of the data within HBM4EU, a strategy for deriving health-based human biomonitoring guidance values (HBM-GVs) for both the general population and workers was agreed on. On this basis, HBM-GVs for exposure biomarkers of 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH), phthalates (diethyl hexyl phthalate (DEHP), di-n-butyl phthalate (DnBP), diisobutyl phthalate (DiBP), butyl benzyl phthalate (BBzP), and bis-(2-propylheptyl) phthalate (DPHP)), bisphenols A and S, pyrethroids (deltamethrin and cyfluthrin), solvents (1-methyl-2-pyrrolidone (NMP), 1-ethylpyrrolidin-2-one (NEP), N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAC)), the heavy metal cadmium and the mycotoxin deoxynivalenol (DON) were developed and assigned a level of confidence. The approach to HBM-GV derivations, results, and limitations in data interpretation with special focus on the pyrethroids are presented in this paper.
Collapse
Affiliation(s)
- P Apel
- German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany.
| | - F Lamkarkach
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 Rue Pierre et Marie Curie, 94701, Maisons-Alfort, Cedex, France
| | - R Lange
- German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany
| | - F Sissoko
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 Rue Pierre et Marie Curie, 94701, Maisons-Alfort, Cedex, France
| | - M David
- German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany
| | - C Rousselle
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 Rue Pierre et Marie Curie, 94701, Maisons-Alfort, Cedex, France
| | - G Schoeters
- VITO Health, Flemish Institute for Technological Research, 2400, Mol, Belgium; Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
| | - M Kolossa-Gehring
- German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany
| |
Collapse
|
12
|
Borowik A, Wyszkowska J, Zaborowska M, Kucharski J. The Impact of Permethrin and Cypermethrin on Plants, Soil Enzyme Activity, and Microbial Communities. Int J Mol Sci 2023; 24:ijms24032892. [PMID: 36769219 PMCID: PMC9917378 DOI: 10.3390/ijms24032892] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Pyrethroids are insecticides most commonly used for insect control to boost agricultural production. The aim of the present research was to determine the effect of permethrin and cypermethrin on cultured and non-cultivated bacteria and fungi and on the activity of soil enzymes, as well as to determine the usefulness of Zea mays in mitigating the adverse effects of the tested pyrethroids on the soil microbiome. The analyses were carried out in the samples of both soil not sown with any plant and soil sown with Zea mays. Permethrin and cypermethrin were found to stimulate the multiplication of cultured organotrophic bacteria (on average by 38.3%) and actinomycetes (on average by 80.2%), and to inhibit fungi growth (on average by 31.7%) and the enzymatic activity of the soil, reducing the soil biochemical fertility index (BA) by 27.7%. They also modified the number of operational taxonomic units (OTUs) of the Actinobacteria and Proteobacteria phyla and the Ascomycota and Basidiomycota phyla. The pressure of permethrin and cypermethrin was tolerated well by the bacteria Sphingomonas (clone 3214512, 1052559, 237613, 1048605) and Bacillus (clone New.ReferenceOTU111, 593219, 578257), and by the fungi Penicillium (SH1533734.08FU, SH1692798.08FU) and Trichocladium (SH1615601.08FU). Both insecticides disturbed the growth and yielding of Zea mays, as a result of which its yield and leaf greenness index decreased. The cultivation of Zea mays had a positive effect on both soil enzymes and soil microorganisms and mitigated the anomalies caused by the tested insecticides in the microbiome and activity of soil enzymes. Permethrin decreased the yield of its aerial parts by 37.9% and its roots by 33.9%, whereas respective decreases caused by cypermethrin reached 16.8% and 4.3%.
Collapse
|
13
|
Andersen HR, Rambaud L, Riou M, Buekers J, Remy S, Berman T, Govarts E. Exposure Levels of Pyrethroids, Chlorpyrifos and Glyphosate in EU-An Overview of Human Biomonitoring Studies Published since 2000. TOXICS 2022; 10:789. [PMID: 36548622 PMCID: PMC9788618 DOI: 10.3390/toxics10120789] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Currently used pesticides are rapidly metabolised and excreted, primarily in urine, and urinary concentrations of pesticides/metabolites are therefore useful biomarkers for the integrated exposure from all sources. Pyrethroid insecticides, the organophosphate insecticide chlorpyrifos, and the herbicide glyphosate, were among the prioritised substances in the HBM4EU project and comparable human biomonitoring (HBM)-data were obtained from the HBM4EU Aligned Studies. The aim of this review was to supplement these data by presenting additional HBM studies of the priority pesticides across the HBM4EU partner countries published since 2000. We identified relevant studies (44 for pyrethroids, 23 for chlorpyrifos, 24 for glyphosate) by literature search using PubMed and Web of Science. Most studies were from the Western and Southern part of the EU and data were lacking from more than half of the HBM4EU-partner countries. Many studies were regional with relatively small sample size and few studies address residential and occupational exposure. Variation in urine sampling, analytical methods, and reporting of the HBM-data hampered the comparability of the results across studies. Despite these shortcomings, a widespread exposure to these substances in the general EU population with marked geographical differences was indicated. The findings emphasise the need for harmonisation of methods and reporting in future studies as initiated during HBM4EU.
Collapse
Affiliation(s)
- Helle Raun Andersen
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public Health, University of Southern Denmark (SDU), 5000 Odense, Denmark
| | - Loïc Rambaud
- Santé Publique France, Environmental and Occupational Health Division, 94410 Saint-Maurice, France
| | - Margaux Riou
- Santé Publique France, Environmental and Occupational Health Division, 94410 Saint-Maurice, France
| | - Jurgen Buekers
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Sylvie Remy
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Tamar Berman
- Israel Ministry of Health (MOH-IL), Jerusalem 9446724, Israel
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| |
Collapse
|