1
|
Yu Y, Li Y, Liao Y, Huang X, Huang M. Preparation of phenol-formaldehyde composite modified with chitosan for the simultaneous removal of antibiotics and heavy metal ions in waters. Int J Biol Macromol 2024; 281:136467. [PMID: 39419157 DOI: 10.1016/j.ijbiomac.2024.136467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
In current study, a new adsorbent based on aminated phenol-formaldehyde composite was prepared using chitosan as modifier. Various techniques were adopted to characterize the morphology and structure of the prepared adsorbent. Due to the abundant amino groups, the obtained adsorbent presented satisfactory adsorption performance towards fluoroquinolones (FQs) and heavy metal ions (including Cu2+, Cd2+ and Pb2+) by means of multiple forces including electrostatic, H-bonding, π-π stacking interactions (for FQs) and chelating force (for heavy metal ions). Studies about the adsorption kinetics, isotherm and thermodynamics were performed to inspect the adsorption behaviors of studied FQs and heavy metal ions on the new adsorbent. After optimizing the adsorption parameters, the obtained adsorbent were employed to remove FQs, Cu2+, Cd2+ and Pb2+ in various environmental waters. The removal rates for FQs and heavy metal ions were 91.8-98.6 % and 94.4-98.5 %, respectively, which were significantly higher than that obtained on unmodified phenol-formaldehyde resin (20.7-49.0 % for FQs and 35.1-43.0 % for heavy metal ions). At the same time, the adsorbent exhibited good preparation repeatability in different batches, acceptable stability and reusability. The current study well demonstrated the potential application of the new adsorbent in the simultaneous removal of organic and inorganic pollutants from aqueous waters.
Collapse
Affiliation(s)
- Yilin Yu
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Yanyun Li
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yingmin Liao
- Department of Environmental Science & Engineering, Tan Kah Kee College, Zhangzhou 363105, China
| | - Xiaojia Huang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China.
| | - Mingzhi Huang
- Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology, South China Normal University, Guangzhou 510006, China; SCNU (NAN'AN) Green and Low-carbon Innovation Center, Nan'an SCNU Institute of Green and Low-carbon Research, Quanzhou 362300, China
| |
Collapse
|
2
|
Sheta B, El-Zahed M, Nawareg M, Elkhiary Z, Sadek S, Hyder A. Nanoremediation of tilapia fish culture using iron oxide nanoparticles biosynthesized by Bacillus subtilis and immobilized in a free-floating macroporous cryogel. BMC Vet Res 2024; 20:455. [PMID: 39385161 PMCID: PMC11462889 DOI: 10.1186/s12917-024-04292-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/18/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND AND AIM Contamination from increased anthropogenic activities poses a threat to human health as well as the ecosystem. To develop a nanotechnological approach to improve aqua fisheries, we synthesized magnetic hematite nanoparticle-based gel and evaluated its efficacy in a cadmium-polluted closed system to decontaminate water and improve tilapia fish health. METHODS Green iron oxide nanoparticles were biosynthesized by the metabolite of bacillus subtilis and incorporated into polyvinyl alcohol to construct a hydrogel by cryogelation. KEY FINDINGS The cryogel had interconnected macropores with diameters widely ranging between 20 and 200 μm and could be free-floating in water. When applied in cadmium-polluted tilapia culture, this nanogel reduced turbidity and ammonia in the aquarium, adsorbed cadmium from the water with a larger quantity on the gel's outer surface than in its center., and reduced cadmium concentration in tilapia's liver, gills, and muscles. Application of this nano-based cryogel reduced the toxic effects of cadmium on tilapia fish. It maintained hepatic and renal cell nuclear integrity as determined by comet assay. This nano-treatment also reversed the cadmium-induced elevations of plasma lipids, glucose, stress marker cortisol, the hepatic enzymes AST and ALT, and the kidney function marker urea, and improved the lymphocytopenia and other hematological functions in tilapia fish intoxicated by cadmium.
Collapse
Affiliation(s)
- Basma Sheta
- Zoology departments, Faculty of Science, Damietta University, New Damietta, 34517, Egypt
| | - Mohammed El-Zahed
- Botany & microbiology departments, Faculty of Science, Damietta University, New Damietta, 34517, Egypt
| | - Mona Nawareg
- Zoology departments, Faculty of Science, Damietta University, New Damietta, 34517, Egypt
| | - Zeinab Elkhiary
- Zoology departments, Faculty of Science, Damietta University, New Damietta, 34517, Egypt
| | - Salahuddin Sadek
- Zoology departments, Faculty of Science, Damietta University, New Damietta, 34517, Egypt
| | - Ayman Hyder
- Zoology departments, Faculty of Science, Damietta University, New Damietta, 34517, Egypt.
| |
Collapse
|
3
|
Refaat A, Ibrahim MA, Shehata D, Elhaes H, Ibrahim A, Mamatkulov K, Arzumanyan G. Design, characterization and implementation of cost-effective sodium alginate/water hyacinth microspheres for remediation of lead and cadmium from wastewater. Int J Biol Macromol 2024; 277:133765. [PMID: 38992549 DOI: 10.1016/j.ijbiomac.2024.133765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/30/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
The aquatic plant water hyacinth was dried then cross-linked with sodium alginate to produce ionic cross-linked microspheres. The mechanism of controlling cadmium (Cd) and lead (Pb) in wastewater was tested by DFT at B3LYP level using LANL2DZ basis set. Modeling results indicated that the hydrated metals could interact with sodium alginate (SA)/water hyacinth (WH) microspheres through hydrogen bonding. Adsorption energies showed comparable results while total dipole moment and HOMO/LUMO band gap energy showed slight selectivity towards the remediation of Pb. FTIR spectra of cross-linked microspheres indicated that WH is forming a composite with SA to change its structure into a microsphere to remove Cd and Pb from water. Raman mapping revealed that the active sites along the surface of the microspheres enable for possible adsorption of metals through its surface. This finding is supported by molecular electrostatic potential and optical confocal microscopy. Atomic absorption spectroscopy results confirmed that the microspheres are more selective for Pb than Cd. It could be concluded that WH cross-linked with SA showed the potential to remove heavy metals through its unique active surface as confirmed by both molecular modeling and experimental findings.
Collapse
Affiliation(s)
- Ahmed Refaat
- Spectroscopy Department, National Research Centre, 33 El-Bohouth St., 12622 Dokki, Giza, Egypt; Molecular Modeling and Spectroscopy Laboratory, Centre of Excellence for Advanced Science, National Research Centre, 33 El-Bohouth St., 12622 Dokki, Giza, Egypt
| | - Medhat A Ibrahim
- Spectroscopy Department, National Research Centre, 33 El-Bohouth St., 12622 Dokki, Giza, Egypt; Molecular Modeling and Spectroscopy Laboratory, Centre of Excellence for Advanced Science, National Research Centre, 33 El-Bohouth St., 12622 Dokki, Giza, Egypt.
| | - Dina Shehata
- Physics Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo 11757, Egypt
| | - Hanan Elhaes
- Physics Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo 11757, Egypt
| | - Asmaa Ibrahim
- Physics Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo 11757, Egypt
| | - Kahramon Mamatkulov
- Department of Raman Spectroscopy, Frank Lab. of Neutron Physics, Joint Institute for Nuclear Research, Russia
| | - Grigory Arzumanyan
- Department of Raman Spectroscopy, Frank Lab. of Neutron Physics, Joint Institute for Nuclear Research, Russia
| |
Collapse
|
4
|
Fatima K, Mohsin H, Afzal M. Revisiting biochemical pathways for lead and cadmium tolerance by domain bacteria, eukarya, and their joint action in bioremediation. Folia Microbiol (Praha) 2024:10.1007/s12223-024-01198-5. [PMID: 39327398 DOI: 10.1007/s12223-024-01198-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024]
Abstract
With the advent rise is in urbanization and industrialization, heavy metals (HMs) such as lead (Pb) and cadmium (Cd) contamination have increased considerably. It is among the most recalcitrant pollutants majorly affecting the biotic and abiotic components of the ecosystem like human well-being, animals, soil health, crop productivity, and diversity of prokaryotes (bacteria) and eukaryotes (plants, fungi, and algae). At higher concentrations, these metals are toxic for their growth and pose a significant environmental threat, necessitating innovative and sustainable remediation strategies. Bacteria exhibit diverse mechanisms to cope with HM exposure, including biosorption, chelation, and efflux mechanism, while fungi contribute through mycorrhizal associations and hyphal networks. Algae, especially microalgae, demonstrate effective biosorption and bioaccumulation capacities. Plants, as phytoremediators, hyperaccumulate metals, providing a nature-based approach for soil reclamation. Integration of these biological agents in combination presents opportunities for enhanced remediation efficiency. This comprehensive review aims to provide insights into joint action of prokaryotic and eukaryotic interactions in the management of HM stress in the environment.
Collapse
Affiliation(s)
- Kaneez Fatima
- Department of Life Sciences, School of Science, University of Management and Technology, Lahore, Pakistan.
| | - Hareem Mohsin
- Department of Life Sciences, School of Science, University of Management and Technology, Lahore, Pakistan
| | - Maryam Afzal
- School of Chemical Engineering, Aalto University, Otakaari 24, 02150, Espoo, Finland
| |
Collapse
|
5
|
Niu S, Wang R, Jiang Y. Quantification of heavy metal contamination and source in urban water sediments using a statistically determined geochemical baseline. ENVIRONMENTAL RESEARCH 2024; 263:120080. [PMID: 39343342 DOI: 10.1016/j.envres.2024.120080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/12/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Geochemical baselines (GBs) play a crucial role in discerning natural variability from anthropogenic impacts on elemental composition within the environment. However, their applicability in quantifying the contribution of pollution sources to heavy metal contamination in sediments remains understudied. This research aimed to assess the degree of contamination and local pollution source attribution by leveraging geochemical baselines derived from statistical techniques, specifically the relative cumulative frequency (RCF) and 2σ-iterative (2σ-I) methods. In the urban water systems of Ma'anshan City, the major iron ore centre in eastern China, we observed concentration ranges of Cr, Cu, Ni, Pb and Zn in 36 sediment samples ranging from 66.89 to 352.08 mg/kg, 22.01 to 133.37 mg/kg, 22.66 to 50.80 mg/kg, 14.66to 264.37 mg/kg and 73.30 to 2707.46 mg/kg, respectively. RCF and 2σ-I techniques yielded similar GBs with no significant differences (p > 0.05). The geo-accumulation index and contamination factor analysis showed a sediment heavy metal accumulation rank of Zn > Pb > Cr > Cu > Ni. The contribution percentage of pollution sources varied with land functional type of watershed. For industry-influenced sediments, the contribution of local sources to Cr, Cu, Pb and Zn was significant, with shares of 43%-88%. Overall, this study highlights the valuable insights provided by GBs for effective management of urban aquatic environments.
Collapse
Affiliation(s)
- Siping Niu
- Department of Environmental Science and Engineering, School of Energy and Environment, Anhui University of Technology, Ma'ansh, 243002, PR China.
| | - Ruiqi Wang
- Department of Environmental Science and Engineering, School of Energy and Environment, Anhui University of Technology, Ma'ansh, 243002, PR China
| | - Yun Jiang
- Department of Environmental Science and Engineering, School of Energy and Environment, Anhui University of Technology, Ma'ansh, 243002, PR China
| |
Collapse
|
6
|
Mohan I, Mohan R, Bhau BS, Dhar S, Shivgotra VK, Pathania D. Quantitative analysis of soil quality around brick kilns using pollution indices and ANOVA in Jammu district of Jammu and Kashmir, India. ENVIRONMENTAL RESEARCH 2024; 262:119851. [PMID: 39208969 DOI: 10.1016/j.envres.2024.119851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/31/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
The study investigated soil quality around brick kilns in the Jammu district of Jammu and Kashmir, analyzing 200 samples from 50 sites for selected parameters such as pH, electrical conductiv1ity, soil temperature, organic carbon content, organic matter, macronutrients, and heavy metals. The findings revealed that soil electrical conductivity ranged from 0.33 to 0.63 dS/m, with significant differences observed at varying distances from the kilns. Copper concentrations were highest at 5.32 mg/kg near the kilns, while iron and lead levels also varied significantly, indicating potential contamination. The mean soil temperature was recorded to be 27.69°C.The pH values ranged from 6.5 to 7.8, and the average pH of 8.22 indicated the slightly alkaline nature of the soil around the brick kilns. The organic carbon ranged from 0.34% to 1.02%.Soil temperature and electrical conductivity decreased with increasing distance from the kilns, with temperature showing positive correlations with organic carbon, organic matter, nitrogen, potassium, manganese, and iron and negative correlations with pH, phosphorus, zinc, copper, lead, and cadmium. A perfect positive correlation was noted among nitrogen, organic carbon, and organic matter. Heavy metals, except for zinc and manganese, showed positive correlations with each other. The average Zn, Cu, Mn, Fe, Pb and Cd concentration was recorded as 1.07, 1.03, 6.71, 10.30, 37.04 and 1.91 ppm, respectively. The contamination factor indicated moderate contamination with lead and cadmium, while the geo-accumulation index also suggested moderate contamination. The pollution load index reflected unpolluted soil and enrichment factor values for heavy metals ranked as Cd > Pb > Cu > Zn > Mn > Fe.ANOVA results revealed significant variations in electrical conductivity, copper, iron, and lead, underscoring the potential environmental impacts at different distances from the kilns. However, no significant differences were found between agricultural and non-agricultural sites in other physicochemical parameters. These variations highlight the considerable impact of brick kilns on soil health, emphasizing the need for enhanced environmental management and further research to mitigate these effects.
Collapse
Affiliation(s)
- Indica Mohan
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, District Samba, Jammu and Kashmir, 181143, India
| | - Ritica Mohan
- Department of Environmental Sciences, University of Jammu, Baba Saheb Ambedkar Road, Jammu, Jammu and Kashmir, 180006, India
| | - B S Bhau
- Department of Botany, Central University of Jammu, Rahya-Suchani, District Samba, Jammu and Kashmir, 181143, India
| | - Sunil Dhar
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, District Samba, Jammu and Kashmir, 181143, India
| | - V K Shivgotra
- Department of Statistics, University of Jammu, Baba Saheb Ambedkar Road, Jammu, Jammu and Kashmir, 180006, India
| | - Deepak Pathania
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, District Samba, Jammu and Kashmir, 181143, India.
| |
Collapse
|
7
|
Okail HA, Anjum S, Emam NM, Abdel‐Gaber R, Dkhil MA, El‐Ashram S, Ibrahim MA. Ameliorative effect of aqueous avocado seed extract against chromium-induced oxidative stress and cellular damage in rabbit kidney. Food Sci Nutr 2024; 12:5799-5814. [PMID: 39139953 PMCID: PMC11317667 DOI: 10.1002/fsn3.4210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/14/2024] [Accepted: 04/26/2024] [Indexed: 08/15/2024] Open
Abstract
The accumulation of chromium in renal tissues promotes the generation of reactive oxygen species (ROS), leading to oxidative stress, genomic and cellular harm, and ultimately necrotic and apoptotic cell death induced by free radicals. Hence, the utilization of antioxidant phytochemicals becomes crucial for cellular defense against oxidative damage. This study endeavors to explore the potential protective effects of an aqueous avocado seed extract (ASE) on rabbit kidneys exposed to chromium-induced damage. Fifteen adult rabbits were distributed into three groups: Group 1 was kept as the control. The second and third groups received a daily dose of K2Cr2O7 (5 mg/kg) intraperitoneally for 2 weeks. While the third group was given an oral dose of ASE (400 mg/kg). In rabbits administered with Cr (VI), kidney homogenates showed a marked increase in Malondialdehyde (MDA) (69.3 ± 4.1 nmol/g) along with a decrease in glutathione (59 ± 5.8 nmol/mg) content and the activity superoxide dismutase (SOD) (0.5 ± 0.05 U/mg protein), glutathione peroxidase (GPx) (16.7 ± 1.1 μmol/mg protein), and catalase (CAT) (73.8 ± 3.9 U/g protein) compared to the levels in control group. Also, the gene expression data for the enzymes SOD, GPx, and CAT dropped dramatically in kidney tissue following Cr (VI) injection. Additionally, Bowman's capsule and glomerulus showed degenerative alterations in the kidney's histopathology and immunohistochemistry. ASE treatment when administered along with Cr (VI) enhanced the activity and gene expression of antioxidant enzymes and improved histopathological conditions. The findings of this study unequivocally show that avocado seed extract, which is rich in phenolic derivatives, is a potent nephroprotective agent that inhibits nephrotoxicity induced by Cr (VI) in rabbits.
Collapse
Affiliation(s)
- Hanan A. Okail
- Department of Zoology, Faculty of ScienceSohag UniversitySohagEgypt
| | - Sadia Anjum
- Biology Department, Faculty of ScienceHail UniversityHailSaudi Arabia
| | - Nahed M. Emam
- Department of Zoology, Faculty of ScienceAl‐Arish UniversityArishEgypt
| | - Rewaida Abdel‐Gaber
- Department of Zoology, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Mohamed A. Dkhil
- Department of Zoology, Faculty of ScienceHelwan UniversityCairoEgypt
- Applied Science Research CenterApplied Science Private UniversityAmmanJordan
| | - Saeed El‐Ashram
- College of Life Science and EngineeringFoshan UniversityFoshanGuangdong ProvinceChina
| | - Mona A. Ibrahim
- Department of Zoology, Faculty of ScienceHelwan UniversityCairoEgypt
| |
Collapse
|
8
|
Mahmood S, Parwez H, Siddique YH, Amir M, Javed S. Assessing the multi-dimensional impact of lead-induced toxicity on collembola found in maize fields: From oxidative stress to genetic disruptions. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 898:503789. [PMID: 39147442 DOI: 10.1016/j.mrgentox.2024.503789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/26/2024] [Accepted: 06/12/2024] [Indexed: 08/17/2024]
Abstract
The prolonged exposure of agricultural soils to heavy metals from wastewater, particularly in areas near industrial facilities, poses a significant threat to the well-being of living organisms. The World Health Organization (WHO) has established standard permissible limits for heavy metals in agricultural soils to mitigate potential health hazards. Nevertheless, some agricultural fields continue to be irrigated with wastewater containing industrial effluents. This study aimed to assess the concentration of lead in soil samples collected from agricultural fields near industrial areas. Subsequently, we determined the lethal concentration (LC50) of lead (Pb) and other heavy metals for two Collembola species, namely Folsomia candida, a standard organism for soil ecotoxicity tests, and comparing it with Proisotoma minuta. The research further examined the toxic effects of lead exposure on these two species, revealing depletion in the energy reservoirs and alterations in the tissue histology of both organisms. The study revealed that lead can induce genotoxic damage as it evidently has moderate binding affinity with the ct-DNA and hence can cause DNA fragmentation and the formation of micronuclei. Elevated lipid peroxidation (LPO) levels and protein carbonylation levels were observed, alongside a reduction in antioxidant enzymes (CAT, SOD & GPx). These findings suggest that lead disrupts the balance between oxidants and the antioxidant enzyme system, impairing defense mechanisms and consequential derogatory damage within microarthropods. The investigation elucidates a complex network of various signaling pathways compromised as a result of lead toxicity. Hence, it presents a novel perspective that underscores the pressing necessity for implementing an integrated risk assessment framework at the investigated site.
Collapse
Affiliation(s)
- Samar Mahmood
- Insect Toxicology and Biodiversity Lab, Section of Entomology, Department of Zoology, Aligarh Muslim University, Aligarh 202001, India
| | - Hina Parwez
- Insect Toxicology and Biodiversity Lab, Section of Entomology, Department of Zoology, Aligarh Muslim University, Aligarh 202001, India.
| | - Yasir Hasan Siddique
- Laboratory of Alternative Animal Models, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202001, India
| | - Mohd Amir
- Department of Biochemistry, Aligarh Muslim University, Aligarh 202001, India
| | - Saleem Javed
- Department of Biochemistry, Aligarh Muslim University, Aligarh 202001, India
| |
Collapse
|
9
|
Hasanvand S, Hashami Z, Zarei M, Merati S, Bashiry M, Nag R. Is the milk we drink safe from elevated concentrations of prioritised heavy metals/metalloids? - A global systematic review and meta-analysis followed by a cursory risk assessment reporting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:175011. [PMID: 39053561 DOI: 10.1016/j.scitotenv.2024.175011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/09/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Milk has been globally recognised as a comprehensive and vital food source for centuries. However, the presence of heavy metals and metalloids (metal(loid)s) in milk is a global problem. As metal(loid)s are present in the soil due to natural geogenic and various anthropogenic activities, these metal(loid)s are bio-transferred into animal feed, which further results in the presence of metal(loid)s in milk due to bio transfer/accumulation. This systematic review collated information from published literature between 2000 and 2021. It focused on the global issue of metal(loid)s in milk, posing potential health risks. These contaminants enter the food chain through the bio-transfer/accumulation process from soil to animal feed to milk. The key metal(loid)s examined are arsenic (As), mercury (Hg), lead (Pb), and cadmium (Cd). A meta-analysis of 66 selected papers revealed the widespread presence of these contaminants in milk samples globally, with Pb being the most studied (43 %). This research estimated metal(loid)s levels or concentrations as 12.71 (95 % Confidence Interval (CI) = 0.16-25.26), 16.09 (95 % CI = 4.31-27.70), 197.04 (95 % CI = 75.28-318.18), 31.67 (95 % CI = 20.14-43.20) μg/kg (ppb) for As, Hg, Pb, and Cd, respectively using Stata™. The metal(loid) concentrations in milk were within the threshold limits other than Pb and Cd. Some studies in America, Africa, and Asia reported elevated Pb and Cd concentrations, raising health concerns. The simulated Risk Quotients (RQ) and Integrated Risk Quotient (IRQ) values generally remain above one, indicating potential human health risks. Notably, the IRQ value increases with more metal(loid)s consideration. Subgroup analysis indicates low-fat milk contains higher metal(loid)s concentrations. While metal(loid)s concentrations in milk largely comply with safety limits, some regions exhibit concerning concentrations. Therefore, continued surveillance to address potential health risks associated with metal(loid)s in milk is necessary to ensure dairy products' safety.
Collapse
Affiliation(s)
- Sara Hasanvand
- Student Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Zahra Hashami
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahshid Zarei
- Pharmaceutical Sciences Research Center, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Shiva Merati
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Iran
| | - Moein Bashiry
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Rajat Nag
- UCD School of Biosystems and Food Engineering, Agriculture and Food Science Centre, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
10
|
Zdunek-Zastocka E, Michniewska B, Pawlicka A, Grabowska A. Cadmium Alters the Metabolism and Perception of Abscisic Acid in Pisum sativum Leaves in a Developmentally Specific Manner. Int J Mol Sci 2024; 25:6582. [PMID: 38928288 PMCID: PMC11203977 DOI: 10.3390/ijms25126582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Abscisic acid (ABA) plays a crucial role in plant defense mechanisms under adverse environmental conditions, but its metabolism and perception in response to heavy metals are largely unknown. In Pisum sativum exposed to CdCl2, an accumulation of free ABA was detected in leaves at different developmental stages (A, youngest, unexpanded; B1, youngest, fully expanded; B2, mature; C, old), with the highest content found in A and B1 leaves. In turn, the content of ABA conjugates, which was highest in B2 and C leaves under control conditions, increased only in A leaves and decreased in leaves of later developmental stages after Cd treatment. Based on the expression of PsNCED2, PsNCED3 (9-cis-epoxycarotenoid dioxygenase), PsAO3 (aldehyde oxidase) and PsABAUGT1 (ABA-UDP-glucosyltransferase), and the activity of PsAOγ, B2 and C leaves were found to be the main sites of Cd-induced de novo synthesis of ABA from carotenoids and ABA conjugation with glucose. In turn, β-glucosidase activity and the expression of genes encoding ABA receptors (PsPYL2, PsPYL4, PsPYL8, PsPYL9) suggest that in A and B1 leaves, Cd-induced release of ABA from inactive ABA-glucosyl esters and enhanced ABA perception comes to the forefront when dealing with Cd toxicity. The distinct role of leaves at different developmental stages in defense against the harmful effects of Cd is discussed.
Collapse
Affiliation(s)
- Edyta Zdunek-Zastocka
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland (A.P.)
| | | | | | | |
Collapse
|
11
|
Olanipekun OO, Olanipekun OS, Idowu GA, Aiyesanmi AF. Impacts of solid waste management site on some toxic elements contamination of the surrounding soil in Akure, Nigeria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172450. [PMID: 38615774 DOI: 10.1016/j.scitotenv.2024.172450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
The distribution of potentially toxic elements (PTEs) such as zinc (Zn), copper (Cu), lead (Pb), nickel (Ni), cadmium (Cd), and chromium (Cr), their potential bioavailability, extent of contamination and potential risk of dumpsite and surrounding soil samples were appraised. Three (3) soil samples were collected randomly from within the dumpsite and three (3) soil samples were also obtained 50 m away from the perimeter fence of the dumpsite. PTEs in the bulk and fractionated portions were determined using inductively coupled plasma - optical emission spectrometry (ICP-OES). The results showed that the concentrations of all the PTEs analysed were higher in the dumpsite soil samples than the surrounding samples, suggesting an impact of the dumpsite activities on the soil. The distribution of PTEs varied significantly within the different fractions of both the surrounding and dumpsite soils and their presence were more of anthropogenic than geogenic. The calculated contamination factor/pollution load index (CF/PLI) revealed that the surrounding soil samples fell within the range of moderate contamination, except for Cu and Cr which showed very high contamination. Cd showed the highest value (60.4) for potential ecological risk index (PERI) at the surrounding area. However, the value of Cd in the surrounding soil samples indicated a low ecological risk. The total concentrations of the PTEs were lower than their corresponding target values for both national and international standards, except for Cd (0.15 mg/kg) and Cu (37.3 mg/kg). The study concluded that the dumping of various wastes at the dumpsite was found to be a contributing factor to PTEs contamination of soil at the study area. Hence, an engineered landfill for Akure metropolis is recommended to replace the existing practice.
Collapse
Affiliation(s)
| | | | - Gideon Aina Idowu
- Department of Chemistry, Federal University of Technology, PMB 704, Akure, Nigeria
| | | |
Collapse
|
12
|
Rout AK, Dixit S, Tripathy PS, Rout SS, Parida SN, Parida PK, Sarkar DJ, Kumar Das B, Singh AK, Behera BK. Metagenomic landscape of sediments of river Ganga reveals microbial diversity, potential plastic and xenobiotic degradation enzymes. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134377. [PMID: 38663298 DOI: 10.1016/j.jhazmat.2024.134377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 05/12/2024]
Abstract
The Ganga is the largest river in India, serves as a lifeline for agriculture, drinking water, and religious rites. However, it became highly polluted due to the influx of industrial wastes and untreated sewages, leading to the decline of aquatic biodiversity. This study investigated the microbial diversity and plastic-xenobiotic degrading enzymes of six sediment metagenomes of river Ganga at Prayagraj (RDG, TSG, SDG) and Devprayag (KRG, BNG, BRG). The water quality parameters, higher values of BOD (1.8-3.7 ppm), COD (23-29.2 ppm) and organic carbon (0.18-0.51%) were recorded at Prayagraj. Comparative analysis of microbial community structure between Prayagraj and Devprayag revealed significant differences between Bacteroidetes and Firmicutes, which emerging as the predominant bacterial phyla across six sediment samples. Notably, their prevalence was highest in the BRG samples. Furthermore, 25 OTUs at genus level were consistent across all six samples. Alpha diversity exhibited minimal variation among samples, while beta diversity indicated an inverse relationship between species richness and diversity. Co-occurrence network analysis established that genera from the same and different groups of phyla show positive co-relations with each other. Thirteen plastic degrading enzymes, including Laccase, Alkane-1 monooxygenase and Alkane monooxygenase, were identified from six sediment metagenomes of river Ganga, which can degrade non-biodegradable plastic viz. Polyethylene, Polystyrene and Low-density Polyethelene. Further, 18 xenobiotic degradation enzymes were identified for the degradation of Bisphenol, Xylene, Toluene, Polycyclic aromatic hydrocarbon, Styrene, Atrazene and Dioxin etc. This is the first report on the identification of non-biodegradable plastic degrading enzymes from sediment metagenomes of river Ganga, India. The findings of this study would help in pollution abatement and sustainable management of riverine ecosystem.
Collapse
Affiliation(s)
- Ajaya Kumar Rout
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120 Kolkata, West Bengal, India; Department of Biosciences and Biotechnology, Fakir Mohan University, Balasore 756089, Odisha, India
| | - Sangita Dixit
- Center for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar 751003, India
| | - Partha Sarathi Tripathy
- Faculty of Biosciences and Aquaculture, Nord University, Universitetsalléen 11, 8026 Bodø, Norway; Rani Lakshmi Bai Central Agricultural University, Jhansi 284003, Uttar Pradesh, India
| | - Sushree Swati Rout
- Department of Biosciences and Biotechnology, Fakir Mohan University, Balasore 756089, Odisha, India
| | - Satya Narayan Parida
- Rani Lakshmi Bai Central Agricultural University, Jhansi 284003, Uttar Pradesh, India
| | - Pranaya Kumar Parida
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120 Kolkata, West Bengal, India
| | - Dhruba Jyoti Sarkar
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120 Kolkata, West Bengal, India
| | - Basanta Kumar Das
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120 Kolkata, West Bengal, India
| | - Ashok Kumar Singh
- Rani Lakshmi Bai Central Agricultural University, Jhansi 284003, Uttar Pradesh, India
| | - Bijay Kumar Behera
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120 Kolkata, West Bengal, India; Rani Lakshmi Bai Central Agricultural University, Jhansi 284003, Uttar Pradesh, India.
| |
Collapse
|
13
|
Gwenzi W, Gufe C, Alufasi R, Makuvara Z, Marumure J, Shanmugam SR, Selvasembian R, Halabowski D. Insects to the rescue? Insights into applications, mechanisms, and prospects of insect-driven remediation of organic contaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171116. [PMID: 38382596 DOI: 10.1016/j.scitotenv.2024.171116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Traditional and emerging contaminants pose significant human and environmental health risks. Conventional physical, chemical, and bioremediation techniques have been extensively studied for contaminant remediation. However, entomo- or insect-driven remediation has received limited research and public attention. Entomo-remediation refers to the use of insects, their associated gut microbiota, and enzymes to remove or mitigate organic contaminants. This novel approach shows potential as an eco-friendly method for mitigating contaminated media. However, a comprehensive review of the status, applications, and challenges of entomo-remediation is lacking. This paper addresses this research gap by examining and discussing the evidence on entomo-remediation of various legacy and emerging organic contaminants. The results demonstrate the successful application of entomo-remediation to remove legacy organic contaminants such as persistent organic pollutants. Moreover, entomo-remediation shows promise in removing various groups of emerging contaminants, including microplastics, persistent and emerging organic micropollutants (e.g., antibiotics, pesticides), and nanomaterials. Entomo-remediation involves several insect-mediated processes, including bio-uptake, biotransfer, bioaccumulation, and biotransformation of contaminants. The mechanisms underlying the biotransformation of contaminants are complex and rely on the insect gut microbiota and associated enzymes. Notably, while insects facilitate the remediation of contaminants, they may also be exposed to the ecotoxicological effects of these substances, which is often overlooked in research. As an emerging field of research, entomo-remediation has several knowledge gaps. Therefore, this review proposes ten key research questions to guide future perspectives and advance the field. These questions address areas such as process optimization, assessment of ecotoxicological effects on insects, and evaluation of potential human exposure and health risks.
Collapse
Affiliation(s)
- Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, 380 New Adylin, Marlborough, Harare, Zimbabwe; Alexander von Humboldt Fellow and Guest Professor, Grassland Science and Renewable Plant Resources, Faculty of Organic Agricultural Sciences, Universität Kassel, Steinstraße 19, D-37213 Witzenhausen, Germany; Alexander von Humboldt Fellow and Guest Professor, Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB), Max-Eyth-Allee 100, D-14469 Potsdam, Germany.
| | - Claudious Gufe
- Department of Veterinary Technical Services, Central Veterinary Laboratories, 18A Bevan Building, Borrowdale Road, Harare, Zimbabwe
| | - Richwell Alufasi
- Biological Sciences Department, Bindura University of Science Education, 741 Chimurenga Road, Off Trojan Road, P. Bag 1020, Bindura, Zimbabwe
| | - Zakio Makuvara
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe; Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, South Africa
| | - Jerikias Marumure
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe; Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, South Africa
| | | | - Rangabhashiyam Selvasembian
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| | - Dariusz Halabowski
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Ecology and Vertebrate Zoology, Lodz, Poland
| |
Collapse
|
14
|
Xu Y, Shui X, Gao M, Zhang Y, Zhang Z, Zhu Z, Zhao B, Sun D. Toxicological effects and mechanisms of lithium on growth, photosynthesis and antioxidant system in the freshwater microalga Chromochloris zofingiensis. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133898. [PMID: 38422737 DOI: 10.1016/j.jhazmat.2024.133898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/02/2024] [Accepted: 02/24/2024] [Indexed: 03/02/2024]
Abstract
The growing prevalence of lithium (Li) batteries has drawn public attention to Li as an emerging pollutant. The present study investigates the toxicity of Li+ on Chromochloris zofingiensis, examining physiological, biochemical and omics aspects. Results reveal hormesis effects of Li+ on C. zofingiensis growth. At Li+ concentrations below 5 mg L-1, Li+ can enhance chlorophyll content, mitochondrial activity, and antioxidant capacity, leading to increased dry cell weight and cell number. Conversely, when it exceeded 10 mg L-1, Li+ can reduce chlorophyll content, induce oxidative stress, and disrupt chloroplast and mitochondria structure and function, ultimately impeding cell growth. In addition, under 50 mg L-1 Li+ stress, microalgae optimize absorbed light energy use (increasing Fv/Fm and E TR ) and respond to stress by up-regulating genes in starch and lipid biosynthesis pathways, promoting the accumulation of storage components. Weighted gene co-expression network analysis indicates that peptidylprolyl cis/trans isomerase, GTPase and L-ascorbate oxidase might be the key regulators in response to Li+ stress. This research marks the toxic effects and molecular mechanisms of Li+ on freshwater microalga, which would improve our understanding of Li's toxicology and contributing to the establishment of Li pollution standards.
Collapse
Affiliation(s)
- Yaqi Xu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Xiaoxi Shui
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Min Gao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Yushu Zhang
- School of Life Sciences, Hebei University, Baoding 071000, China
| | - Zhao Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhengge Zhu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Baohua Zhao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Dongzhe Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China.
| |
Collapse
|
15
|
Maranata GJ, Megantara S, Hasanah AN. An Update in Computational Methods for Environmental Monitoring: Theoretical Evaluation of the Molecular and Electronic Structures of Natural Pigment-Metal Complexes. Molecules 2024; 29:1680. [PMID: 38611959 PMCID: PMC11013237 DOI: 10.3390/molecules29071680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Metals are beneficial to life, but the presence of these elements in excessive amounts can harm both organisms and the environment; therefore, detecting the presence of metals is essential. Currently, metal detection methods employ powerful instrumental techniques that require a lot of time and money. Hence, the development of efficient and effective metal indicators is essential. Several synthetic metal detectors have been made, but due to their risk of harm, the use of natural pigments is considered a potential alternative. Experiments are needed for their development, but they are expensive and time-consuming. This review explores various computational methods and approaches that can be used to investigate metal-pigment interactions because choosing the right methods and approaches will affect the reliability of the results. The results show that quantum mechanical methods (ab initio, density functional theory, and semiempirical approaches) and molecular dynamics simulations have been used. Among the available methods, the density functional theory approach with the B3LYP functional and the LANL2DZ ECP and basis set is the most promising combination due to its good accuracy and cost-effectiveness. Various experimental studies were also in good agreement with the results of computational methods. However, deeper analysis still needs to be carried out to find the best combination of functions and basis sets.
Collapse
Affiliation(s)
- Gabriella Josephine Maranata
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, 5, Jatinangor, Sumedang 45363, Indonesia (S.M.)
| | - Sandra Megantara
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, 5, Jatinangor, Sumedang 45363, Indonesia (S.M.)
- Drug Development Study Centre, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Aliya Nur Hasanah
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, 5, Jatinangor, Sumedang 45363, Indonesia (S.M.)
- Drug Development Study Centre, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
16
|
Bubl M, Heinz P, Wanek W, Schagerl M, Hofmann T, Lintner M. Impact of heavy metals (Cu, Fe, Pb, Zn) on carbon and nitrogen uptake of the diatom-bearing benthic foraminifera Heterosteginadepressa. Heliyon 2024; 10:e27229. [PMID: 38496866 PMCID: PMC10944190 DOI: 10.1016/j.heliyon.2024.e27229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/13/2023] [Accepted: 02/26/2024] [Indexed: 03/19/2024] Open
Abstract
Foraminifera are protists primarily living in benthic marine and estuarine environments. We studied uptake of inorganic carbon (C) and nitrogen (N) of the photosymbiont-bearing benthic coral reef foraminifera Heterostegina depressa in the presence of heavy metals. Incubation experiments were accomplished with artificial seawater enriched with copper, iron, lead and zinc at two different concentration levels (10 and 100 fold enriched in contrast to the usual culture medium). Additionally, isotopically labelled 13C-sodium bicarbonate and 15N-ammonium chloride were added to trace their assimilation over time (1 d, 3 d, 5 d, 7 d). Pulse-amplified modulated fluorescence measurements were performed to measure the potential impacts of heavy metals on chlorophyll fluorescence of the photosymbiont. Increased levels of copper (430.5 μg Cu/l) exhibited the greatest toxicity, while for low levels no effect on the overall metabolism of the foraminifera and the fluorescence activity of the photosymbiont could be detected. Iron (III) increased the symbiont activity, independent of concentration applied (44.5 and 513.3 μg Fe/l), which indicates Fe-limitation of the algal symbiont. Lead enrichment showed no detectable effect even at high concentration. Low concentrations of zinc (35.1 μg Zn/l) promoted the metabolism of the foraminifera, while high concentrations (598.4 μg Zn/l) were toxic. At low levels, two metals (Fe and Zn) promoted symbiont activity, at high levels, iron still boosted photosynthesis, but Zn and Cu had a negative impact on the obligatory photosynthetic symbionts.
Collapse
Affiliation(s)
- Mario Bubl
- Department of Palaeontology, University of Vienna, Vienna, Austria
| | - Petra Heinz
- Department of Palaeontology, University of Vienna, Vienna, Austria
| | - Wolfgang Wanek
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Michael Schagerl
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Thilo Hofmann
- Department of Environmental Geosciences, University of Vienna, Vienna, Austria
| | - Michael Lintner
- Department of Palaeontology, University of Vienna, Vienna, Austria
- ING PAN - Institute of Geological Sciences, Polish Academy of Sciences, Research Centre in Kraków, Poland
| |
Collapse
|
17
|
Marin NM. A New Approach of Complexing Polymers Used for the Removal of Cu 2+ Ions. Polymers (Basel) 2024; 16:920. [PMID: 38611177 PMCID: PMC11013685 DOI: 10.3390/polym16070920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
This study presents two modified polymers for Cu2+ ion removal from aqueous media. Shredded maize stalk (MC) and a strong-base anionic resin (SAX) were modified with indigo carmine (IC) in order to obtain two different complexing polymers, i.e., IC-MC and SAX-IC. Initially, the complex reaction between IC and Cu2+ in the solution was studied. Additionally, the complex formation Cu2+-IC in liquid solutions was evaluated at different pH ranges of 1.5, 4.0, 6.0, 8.0, and 10.0, respectively. For Cu2+ ions, adsorption onto the IC-MC and IC-SAX batch experiments were conducted. The contact time for evaluating the optimum adsorption for Cu2+ ions on the complexing materials was established at 1 h. Efficient Cu2+ ion adsorption on the IC-MC and SAX-IC at pH = 10 was achieved. The adsorption of Cu2+ ions depends on the quantity of IC retained on MC and SAX. At 2.63 mg IC/g MC(S4) and 22 mg IC/g SAX(SR2), a high amount of Cu2+ ion adsorption was reported. The highest adsorption capacity (Qe) of IC-MC was obtained at 0.73 mg/g, and for IC-SAX, it was attained at 10.8 mg/g. Reusability experiments were performed using the HCl (0.5 M) solution. High regeneration and reusability studies of IC-MC and IC-SAX were confirmed, suggesting that they can be used many times to remove Cu2+ ions from aqueous matrices. Therefore, the development of complexing materials could be suitable for Cu2+ ion removal from wastewater.
Collapse
Affiliation(s)
- Nicoleta Mirela Marin
- National Research and Development Institute for Industrial Ecology ECOIND, Street Podu Dambovitei No. 57-73, District 6, 060652 Bucharest, Romania;
- Department of Oxide Materials Science and Engineering, National University of Science and Technology Politehnica Bucharest, 1–7 Gh. Polizu, 060042 Bucharest, Romania
| |
Collapse
|
18
|
Zhu Z, Zhou C, Zhou D, Kou HQ, Zhang TE, Peng WM, Wu ZY. Performance and mechanism of amphiphilic polymeric chelator for enhanced removal of high concentrations of Cu(II) from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21869-21880. [PMID: 38400973 DOI: 10.1007/s11356-024-32545-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/15/2024] [Indexed: 02/26/2024]
Abstract
An amphiphilic polymeric chelator (APC16-g-SX) grafted with sodium xanthate (SX) groups was successfully prepared for the efficient removal of high concentrations of Cu(II) from wastewater. The ordinary polymeric chelator (PAM-g-SX) based on linear polyacrylamide (PAM) was also prepared for comparative studies. The polymeric chelators were characterized by Fourier transform infrared spectroscopy (FT-IR), solid-state nuclear magnetic resonance (13C-NMR), gel permeation chromatography (GPC), elemental analyzer, and scanning electron microscope (SEM). The chelating performance of these polymeric chelators was investigated, and the mechanism of APC16-g-SX for enhanced removal of Cu(II) from wastewater was proposed based on fluorescence spectroscopy, cryo-scanning electron microscope (Cryo-SEM), energy-dispersive spectrometer (EDS), and X-ray photoelectron spectroscopy (XPS) tests. The results show that as the initial Cu(II) concentration in the wastewater increases, APC16-g-SX shows more excellent chelating performance than ordinary PAM-g-SX. For the wastewater with an initial Cu(II) concentration of 200 mg/L, the removal rate of Cu(II) was 99.82% and 89.34% for both 500 mg/L APC16-g-SX and PAM-g-SX, respectively. The pH of the system has a very great influence on the chelating performance of the polymeric chelators, and the increase in pH of the system helps to improve the chelating performance. The results of EDS and XPS tests also show that N, O, and S atoms in APC16-g-SX were involved in the chelation of Cu(II). The mechanism of enhanced removal of Cu(II) by APC16-g-SX can be attributed to the spatial network structure constructed by the self-association of hydrophobic groups that enhances the utilization of chelation sites.
Collapse
Affiliation(s)
- Zhou Zhu
- School of Ecology and Environment, Yuzhang Normal University, Nanchang, 330103, People's Republic of China.
- Key Laboratory of Nanchang City for Green New Materials and Industrial Wastewater Treatment, Yuzhang Normal University, Nanchang, 330103, People's Republic of China.
| | - Chen Zhou
- School of Ecology and Environment, Yuzhang Normal University, Nanchang, 330103, People's Republic of China
- Key Laboratory of Nanchang City for Green New Materials and Industrial Wastewater Treatment, Yuzhang Normal University, Nanchang, 330103, People's Republic of China
| | - Dan Zhou
- School of Ecology and Environment, Yuzhang Normal University, Nanchang, 330103, People's Republic of China
- Key Laboratory of Nanchang City for Green New Materials and Industrial Wastewater Treatment, Yuzhang Normal University, Nanchang, 330103, People's Republic of China
| | - Hai-Qun Kou
- School of Ecology and Environment, Yuzhang Normal University, Nanchang, 330103, People's Republic of China
- Key Laboratory of Nanchang City for Green New Materials and Industrial Wastewater Treatment, Yuzhang Normal University, Nanchang, 330103, People's Republic of China
| | - Tian-En Zhang
- School of Ecology and Environment, Yuzhang Normal University, Nanchang, 330103, People's Republic of China
| | - Wen-Ming Peng
- School of Ecology and Environment, Yuzhang Normal University, Nanchang, 330103, People's Republic of China
| | - Zi-Ying Wu
- School of Ecology and Environment, Yuzhang Normal University, Nanchang, 330103, People's Republic of China
| |
Collapse
|
19
|
Svobodová E, Tišler Z, Peroutková K, Strejcová K, Abrham J, Šimek J. Adsorption of Heavy Metals on Alkali-Activated Zeolite Foams. MATERIALS (BASEL, SWITZERLAND) 2024; 17:685. [PMID: 38591543 PMCID: PMC10856749 DOI: 10.3390/ma17030685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 04/10/2024]
Abstract
Elevated concentrations of heavy metals in natural waters can cause significant ecological problems. It is therefore essential to ensure their removal from any water discharged into the environment immediately, especially in case of an accident, where there is a risk of releasing large quantities or high concentrations. The aim of this paper is to test a newly developed adsorbent for the removal of heavy metals from aqueous solutions-in particular, it is very fast adsorption, and thus efficiency, during clean-ups. The alkali-activated foamed zeolite adsorbent was laboratory-prepared and -tested in both batch and flow-through arrangements on single and multi-component solutions and compared with natural zeolite. The experimental setup for batch adsorption consisted of a set of samples and solutions containing iron, cobalt, manganese, zinc and nickel. The samples were put on a horizontal shaker with a 500 mg adsorbent loading in a 50 mL solution. The column adsorption experimental setup consisted of a glass column with an inside diameter of 15 mm and a bed length of 165 mm. A measured amount of each adsorbent was added to the column to achieve a filter fixed-bed height of 160 mm. The high efficiency of the tested adsorbent on various heavy metals was confirmed. The adsorbent has a high potential for use in decontamination processes, water protection and landscape revitalization. Due to its rapid precipitation and subsequent fixation of metal cations in the form of insoluble oxide or hydroxide, it can be used as an emergency adsorbent, the great advantage of which is its low production cost and natural origin.
Collapse
Affiliation(s)
- Eliška Svobodová
- Orlen UniCRE, a.s., Revoluční 1521/84, 400 01 Ústí nad Labem, Czech Republic; (Z.T.); (K.P.); (K.S.); (J.A.); (J.Š.)
| | | | | | | | | | | |
Collapse
|
20
|
Alwutayd KM, Alghanem SMS, Alwutayd R, Alghamdi SA, Alabdallah NM, Al-Qthanin RN, Sarfraz W, Khalid N, Naeem N, Ali B, Saleem MH, Javed S, Gómez-Oliván LM, Abeed AHA. Mitigating chromium toxicity in rice (Oryza sativa L.) via ABA and 6-BAP: Unveiling synergistic benefits on morphophysiological traits and ASA-GSH cycle. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168208. [PMID: 37914115 DOI: 10.1016/j.scitotenv.2023.168208] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
In recent years, the use of plant hormones, such as abscisic acid (ABA) and 6-benzylaminopurine (6-BAP), has gained significant attention for their role in mitigating abiotic stresses across various plant species. These hormones have been shown to play a vital role in enhancing the ascorbate-glutathione cycle and eliciting a wide range of plant growth and biomass, photosynthetic efficiency, oxidative stress and response of antioxidants and other physiological responses. While previous research has been conducted on the individual impact of ABA and 6-BAP in metal stress resistance among various crop species, their combined effects in the context of heavy metal-stressed conditions remain underexplored. The current investigation is to assess the beneficial effects of single and combined ABA (5 and 10 μM L-1) and 6-BAP (5 and 10 μM L-1) applications in rice (Oryza sativa L.) cultivated in chromium (Cr)-contaminated soil (100 μM). Our results showed that the Cr toxicity in the soil showed a significant declined in the growth, gas exchange attributes, sugars, AsA-GSH cycle, cellular fractionation, proline metabolism in O. sativa. However, Cr toxicity significantly increased oxidative stress biomarkers, organic acids, enzymatic and non-enzymatic antioxidants including their gene expression in O. sativa seedlings. Although, the application of ABA and 6-BAP showed a significant increase in the plant growth and biomass, gas exchange characteristics, enzymatic and non-enzymatic compounds and their gene expression and also decreased the oxidative stress, And Cr uptake. In addition, individual or combined application of ABA and 6-BAP enhanced the cellular fractionation and decreases the proline metabolism and AsA-GSH cycle in rice plants. These results open new insights for sustainable agriculture practices and hold immense promise in addressing the pressing challenges of heavy metal contamination in agricultural soils.
Collapse
Affiliation(s)
- Khairiah Mubarak Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia.
| | | | - Rahaf Alwutayd
- Department of Information of Technology, College of Computer and Information Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Sameera A Alghamdi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Nadiyah M Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, 31441 Dammam, Saudi Arabia; Basic & Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia.
| | - Rahmah N Al-Qthanin
- Department of Biology, College of Sciences, King Khalid University, Abha 61413, Saudi Arabia; Prince Sultan Bin Abdelaziz for Environmental Research and Natural Resources Sustainability Center, King Khalid University, Abha 61421, Saudi Arabia.
| | - Wajiha Sarfraz
- Department of Botany, Government College Women University, Sialkot, Pakistan.
| | - Noreen Khalid
- Department of Botany, Government College Women University, Sialkot, Pakistan.
| | - Nayab Naeem
- Department of Botany, Government College Women University, Sialkot, Pakistan
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Muhammad Hamzah Saleem
- Office of Academic Research, Office of VP for Research & Graduate Studies, Qatar University, Doha 2713, Qatar.
| | - Sadia Javed
- Department of Biochemistry, Government College University, Faisalabad 38000, Pakistan.
| | - Leobardo Manuel Gómez-Oliván
- Universidad Autónoma del Estado de México, Paseo Colón, intersección Paseo Tollocan Col. Universidad, CP 50120 Toluca, Estado de México, México.
| | - Amany H A Abeed
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut 71516, Egypt.
| |
Collapse
|
21
|
Malafaia G, Rahman MM, Islam ARMT, Arias AH, Da-Silva-Júnior FMR. Do human pathogens represent a threat to aquatic organisms? A question with few ecotoxicological answers. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 266:106805. [PMID: 38145608 DOI: 10.1016/j.aquatox.2023.106805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 12/27/2023]
Affiliation(s)
- Guilherme Malafaia
- Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil; Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil.
| | - Md Mostafizur Rahman
- Department of Environmental Sciences, Jahangirnagar University, Dhaka-1342, Bangladesh
| | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur, Bangladesh; Department of Development Studies, Daffodil International University, Dhaka, Bangladesh
| | - Andrés Hugo Arias
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Camino La Carrindanga Km 7.5, B8000FWB, Bahía Blanca, Argentina; Departamento de Química, Universidad Nacional del Sur (UNS), Av. Alem 1253, Bahía Blanca 8000, Argentina
| | - Flávio Manoel Rodrigues Da-Silva-Júnior
- Laboratório de Ensaios Farmacológicos e Toxicológicos - LEFT, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Rio Grande-RS, Brazil; Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Rio Grande (FURG), Rio Grande-RS, Brazil
| |
Collapse
|
22
|
Ye Y, Hao R, Shan B, Zhang J, Li J, Lu A. Mechanism of Cr(VI) removal by efficient Cr(VI)-resistant Bacillus mobilis CR3. World J Microbiol Biotechnol 2023; 40:21. [PMID: 37996766 DOI: 10.1007/s11274-023-03816-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023]
Abstract
Cr(VI) is a hazardous environmental pollutant that poses significant risks to ecosystems and human health. We successfully isolated a novel strain of Bacillus mobilis, strain CR3, from Cr(VI)-contaminated soil. Strain CR3 showed 86.70% removal capacity at 200 mg/L Cr(VI), and a good Cr(VI) removal capacity at different pH, temperature, coexisting ions, and electron donor conditions. Different concentrations of Cr(VI) affected the activity of CR3 cells and the removal rate of Cr(VI), and approximately 3.46% of total Cr was immobilized at the end of the reaction. The combination of SEM-EDS and TEM-EDS analysis showed that Cr accumulated both on the cell surface and inside the cells after treatment with Cr(VI). XPS analysis showed that both Cr(III) and Cr(VI) were present on the cell surface, and FTIR results indicated that the presence of Cr on the cell surface was mainly related to functional groups, such as O-H, phosphate, and -COOH. The removal of Cr(VI) was mainly achieved through bioreduction, which primarily occurred outside the cell. Metabolomics analysis revealed the upregulation of five metabolites, including phenol and L-carnosine, was closely associated with Cr(VI) reduction, heavy metal chelation, and detoxification mechanisms. In addition, numerous metabolites were linked to cellular homeostasis exhibited differential expression. Cr(VI) exerted inhibitory effects on the division rate and influenced critical pathways, including energy metabolism, nucleotide metabolism, and amino acid synthesis and catabolism. These findings reveal the molecular mechanism of Cr(VI) removal by strain CR3 and provide valuable insights to guide the remediation of Cr(VI)-contaminated sites.
Collapse
Affiliation(s)
- Yubo Ye
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing, 100871, People's Republic of China
| | - Ruixia Hao
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing, 100871, People's Republic of China.
| | - Bing Shan
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing, 100871, People's Republic of China
| | - Junman Zhang
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing, 100871, People's Republic of China
| | - Jiani Li
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing, 100871, People's Republic of China
| | - Anhuai Lu
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing, 100871, People's Republic of China
| |
Collapse
|
23
|
Hajri AK, Hamdi N, Alharbi AA, Alsherari SA, Albalawi DA, Kelabi E, Ghnaya T. Evaluation of the potential of two halophytes to extract Cd and Zn from contaminated saltwater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:114525-114534. [PMID: 37861829 DOI: 10.1007/s11356-023-30391-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/07/2023] [Indexed: 10/21/2023]
Abstract
The contamination of saltwater by toxic heavy metals has become a worldwide problem. The application of phytoextraction to remove these pollutants seems to be more efficient and cheaper compared to physicochemical methods. In this work, we evaluated the potential of two halophyte species to accumulate cadmium and zinc from contaminated water. Seedlings of Carpobrotus edulis L. and Sesuvium portulacastrum L. were cultivated during 1 month on pots filled with saltwater (200 mM NaCl) containing different concentrations of Cd2+ (0, 50, 100 μM) and of Zn2+ (0, 200, and 400 μM) applied separately. Results showed that both halophytes were more resistant to Zn2+ than Cd2+ and that Sesuvium better tolerates the two metals. Zn2+ and Cd2+ concentrations in the shoot as well as the values of translocation factors suggest that these species are able to absorb and to concentrate Cd2+ and Zn2+ in their roots and shoots. Hence, after 1 month of culture on 50 μM Cd2+, plants were able to extract 31% and 21% of Cd, respectively, in S. portulacastrum and C. edulis. The Zn-extraction efficiency was less important and reached 18 and 19%, respectively, in S. portulacastrum and C. edulis cultivated under 200 μM Zn2+. Given together, data demonstrate the efficiency of the use of halophytes, especially S. portulacastrum, to extract Zn2+ and Cd2+ from salt wastewater.
Collapse
Affiliation(s)
- Amira K Hajri
- Department of Chemistry, Alwajh College, University of Tabuk, Tabuk, Saudi Arabia
| | - Noureddine Hamdi
- Higher Institute of Water Sciences and Techniques of Gabes, University of Gabes, Gabes, Tunisia
- Laboratory of Composite Materials and Clay Minerals, National Center of Research in Materials Sciences (CNRSM), B.P. 73-8020, Soliman, Tunisia
| | - Amnah A Alharbi
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Sahr A Alsherari
- Department of Chemistry, Alwajh College, University of Tabuk, Tabuk, Saudi Arabia
| | - Doha A Albalawi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Eman Kelabi
- Department of Chemistry, Alwajh College, University of Tabuk, Tabuk, Saudi Arabia
| | - Tahar Ghnaya
- Higher Institute of Arts and Crafts of Tataouine, University of Gabes, Rue Omarr Eben Khattab, 6029, Gabes, Zerig, Tunisia.
- Laboratory of Pastoral Ecosystems and Promotion of Spontaneous Plants and Associated Micro-Organisms, Institute of Arid Land, University of Gabes, 4100, Medenine, Tunisia.
| |
Collapse
|
24
|
Zhang P, Yang M, Lan J, Huang Y, Zhang J, Huang S, Yang Y, Ru J. Water Quality Degradation Due to Heavy Metal Contamination: Health Impacts and Eco-Friendly Approaches for Heavy Metal Remediation. TOXICS 2023; 11:828. [PMID: 37888679 PMCID: PMC10611083 DOI: 10.3390/toxics11100828] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/09/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023]
Abstract
Water quality depends on its physicochemical and biological parameters. Changes in parameters such as pH, temperature, and essential and non-essential trace metals in water can render it unfit for human use. Moreover, the characteristics of the local environment, geological processes, geochemistry, and hydrological properties of water sources also affect water quality. Generally, groundwater is utilized for drinking purposes all over the globe. The surface is also utilized for human use and industrial purposes. There are several natural and anthropogenic activities responsible for the heavy metal contamination of water. Industrial sources, including coal washery, steel industry, food processing industry, plastic processing, metallic work, leather tanning, etc., are responsible for heavy metal contamination in water. Domestic and agricultural waste is also responsible for hazardous metallic contamination in water. Contaminated water with heavy metal ions like Cr (VI), Cd (II), Pb (II), As (V and III), Hg (II), Ni (II), and Cu (II) is responsible for several health issues in humans, like liver failure, kidney damage, gastric and skin cancer, mental disorders and harmful effects on the reproductive system. Hence, the evaluation of heavy metal contamination in water and its removal is needed. There are several physicochemical methods that are available for the removal of heavy metals from water, but these methods are expensive and generate large amounts of secondary pollutants. Biological methods are considered cost-effective and eco-friendly methods for the remediation of metallic contaminants from water. In this review, we focused on water contamination with toxic heavy metals and their toxicity and eco-friendly bioremediation approaches.
Collapse
Affiliation(s)
- Peng Zhang
- School of Hydraulic Engineering, Wanjiang University of Technology, Ma’anshan 243031, China; (M.Y.); (J.L.); (Y.H.); (J.Z.); (S.H.); (Y.Y.)
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Mingjie Yang
- School of Hydraulic Engineering, Wanjiang University of Technology, Ma’anshan 243031, China; (M.Y.); (J.L.); (Y.H.); (J.Z.); (S.H.); (Y.Y.)
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Jingjing Lan
- School of Hydraulic Engineering, Wanjiang University of Technology, Ma’anshan 243031, China; (M.Y.); (J.L.); (Y.H.); (J.Z.); (S.H.); (Y.Y.)
| | - Yan Huang
- School of Hydraulic Engineering, Wanjiang University of Technology, Ma’anshan 243031, China; (M.Y.); (J.L.); (Y.H.); (J.Z.); (S.H.); (Y.Y.)
| | - Jinxi Zhang
- School of Hydraulic Engineering, Wanjiang University of Technology, Ma’anshan 243031, China; (M.Y.); (J.L.); (Y.H.); (J.Z.); (S.H.); (Y.Y.)
| | - Shuangshuang Huang
- School of Hydraulic Engineering, Wanjiang University of Technology, Ma’anshan 243031, China; (M.Y.); (J.L.); (Y.H.); (J.Z.); (S.H.); (Y.Y.)
| | - Yashi Yang
- School of Hydraulic Engineering, Wanjiang University of Technology, Ma’anshan 243031, China; (M.Y.); (J.L.); (Y.H.); (J.Z.); (S.H.); (Y.Y.)
| | - Junjie Ru
- School of Hydraulic Engineering, Wanjiang University of Technology, Ma’anshan 243031, China; (M.Y.); (J.L.); (Y.H.); (J.Z.); (S.H.); (Y.Y.)
| |
Collapse
|
25
|
Ribeiro EB, Lima IMA, Carvalho-Neto FCM, Bezerra ICS, Sodré LC, Carvalho-Neta RNF. Gill and hepatic histological alterations in Sciades herzbergii resulting from trace element contamination in the Port of São Luiz, Brazil. BRAZ J BIOL 2023; 83:e274069. [PMID: 37729212 DOI: 10.1590/1519-6984.274069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/17/2023] [Indexed: 09/22/2023] Open
Abstract
The objective of this study was to evaluate, through changes in the gills and livers of Sciades herzbergii, the environmental contamination to which estuarine organisms are exposed in two areas in São Marcos Bay - MA. Two collection areas located in São Marcos Bay were selected for this study: A1, an area close to the Port Complex, and A2, an area on Caranguejos Island (included in the Environmental Protection Area of Baixada Maranhense). Collections were carried out during rainy and dry periods. Sediments (for trace element analyses), surface water (for physico-chemical analyses), and specimens of S. herzbergii (for biometric measurements and identification of branchial and hepatic histopathology) were collected. Physico-chemical parameters (pH, dissolved oxygen, temperature and salinity) were within limits established by Brazilian legislation. Arsenic (in A1) and nickel (in A1 and A2) were above the legal standards in both periods. The highest percentage of histological alterations in the gills (aneurysms, lamellar fusion and detachment of the epithelium) occurred in the port area, in the rainy (93%) and dry (74%) periods. Liver alterations (melanomacrophage centers and necrosis) occurred only in specimens from the same area, in the rainy (41%) and dry (36%) periods. The highest histological indices of gill and liver changes were recorded in A1. This result was further supported by the total HI value of the lesions, which was higher in the port area compared to A2 (less impacted area), suggesting that the environmental conditions in that location are less favorable for the well-being of these organisms. Permanent environmental monitoring of the area is necessary to control environmental impacts efficiently.
Collapse
Affiliation(s)
- E B Ribeiro
- Universidade Estadual do Maranhão - UEMA, Programa de Pós-graduação em Biodiversidade e Biotecnologia - BIONORTE, São Luís, MA, Brasil
- Universidade Estadual do Maranhão - UEMA, Laboratório de Biomarcadores em Organismos Aquáticos, São Luís, MA, Brasil
| | - I M A Lima
- Universidade Estadual do Maranhão - UEMA, Laboratório de Biomarcadores em Organismos Aquáticos, São Luís, MA, Brasil
- Universidade Federal do Maranhão - UFMA, Programa de Pós-graduação em Biodiversidade e Biotecnologia - BIONORTE, São Luís, MA, Brasil
| | - F C M Carvalho-Neto
- Universidade Estadual do Maranhão - UEMA, Laboratório de Biomarcadores em Organismos Aquáticos, São Luís, MA, Brasil
| | - I C S Bezerra
- Universidade Estadual do Maranhão - UEMA, Laboratório de Biomarcadores em Organismos Aquáticos, São Luís, MA, Brasil
| | - L C Sodré
- Universidade Estadual do Maranhão - UEMA, Laboratório de Biomarcadores em Organismos Aquáticos, São Luís, MA, Brasil
| | - R N F Carvalho-Neta
- Universidade Estadual do Maranhão - UEMA, Programa de Pós-graduação em Biodiversidade e Biotecnologia - BIONORTE, São Luís, MA, Brasil
- Universidade Estadual do Maranhão - UEMA, Laboratório de Biomarcadores em Organismos Aquáticos, São Luís, MA, Brasil
| |
Collapse
|
26
|
Danial AW, Dardir FM. Copper biosorption by Bacillus pumilus OQ931870 and Bacillus subtilis OQ931871 isolated from Wadi Nakheil, Red Sea, Egypt. Microb Cell Fact 2023; 22:152. [PMID: 37573310 PMCID: PMC10422821 DOI: 10.1186/s12934-023-02166-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023] Open
Abstract
BACKGROUND Despite being necessary, copper is a toxic heavy metal that, at high concentrations, harms the life system. The parameters that affect the bioreduction and biosorption of copper are highly copper-resistant bacteria. RESULTS In this work, the ability of the bacterial biomass, isolated from black shale, Wadi Nakheil, Red Sea, Egypt, for Cu2+ attachment, was investigated. Two Cu2+ resistance Bacillus species were isolated; Bacillus pumilus OQ931870 and Bacillus subtilis OQ931871. The most tolerant bacterial isolate to Cu2+ was B. pumilus. Different factors on Cu2+ biosorption were analyzed to estimate the maximum conditions for Cu biosorption. The qmax for Cu2+ by B. pumilus and B. subtilis determined from the Langmuir adsorption isotherm was 11.876 and 19.88 mg. g-1, respectively. According to r2, the biosorption equilibrium isotherms close-fitting with Langmuir and Freundlich model isotherm. Temkin isotherm fitted better to the equilibrium data of B. pumilus and B. subtilis adsorption. Additionally, the Dubinin-Radushkevich (D-R) isotherm suggested that adsorption mechanism of Cu2+ is predominately physisorption. CONCLUSION Therefore, the present work indicated that the biomass of two bacterial strains is an effective adsorbent for Cu2+ removal from aqueous solutions.
Collapse
Affiliation(s)
- Amal William Danial
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, Egypt.
| | | |
Collapse
|
27
|
Zhu X, Chen S, Liu H, Hu X, Wei C, Guo M, Yu Y, Mei C, Chen F, Zheng L, Li W. Study on the removal effect and mechanism of calcined pyrite powder on Cr(VI). INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:448-458. [PMID: 37565667 DOI: 10.1080/15226514.2023.2246591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Pyrite exhibits considerable potential as an adsorbent in wastewater treatment. However, few pyrite adsorbents are directly obtained from natural pyrite, as most are composite materials that require a complex preparation process. To develop a pyrite-based adsorbent with a simple preparation process, pyrite was processed by calcination at 400, 600, and 800 °C for 4 h and ball-milled into a fine powder. The adsorption properties of the pyrite powder were systematically explored. The calcined pyrite powder was characterized by SEM-EDS and XRD. The results revealed that the pyrite calcined at 600 °C exhibited excellent adsorption properties and was primarily composed of Fe7S8. The optimum conditions for Cr(VI) removal were a temperature of 45 °C, an adsorbent dosage of 1 g, an equilibration time of 60 min, and an initial pH of 3. Moreover, the calcined pyrite powder exhibited excellent reusability, and the Cr(VI) removal rate exceeded 65% after three cycles. The Cr(VI) adsorption on pyrite can be well described by the Freundlich model and pseudo-second-order kinetic equation. The calcination temperature is the main factor affecting the adsorption performance of pyrite. Therefore, the calcined pyrite powder is expected to be an excellent adsorbent for Cr(VI) in the wastewater treatment industry.
Collapse
Affiliation(s)
- Xingyu Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu College of Nursing, Huai'an, China
| | - Shuli Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huanjin Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaofang Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chenxu Wei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengyu Guo
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yinting Yu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunmei Mei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fugui Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Linyu Zheng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weidong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
28
|
Pooam M, El-Ballat EM, Jourdan N, Ali HM, Hano C, Ahmad M, El-Esawi MA. SNAC3 Transcription Factor Enhances Arsenic Stress Tolerance and Grain Yield in Rice ( Oryza sativa L.) through Regulating Physio-Biochemical Mechanisms, Stress-Responsive Genes, and Cryptochrome 1b. PLANTS (BASEL, SWITZERLAND) 2023; 12:2731. [PMID: 37514345 PMCID: PMC10383536 DOI: 10.3390/plants12142731] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023]
Abstract
Arsenic (As) is one of the toxic heavy metal pollutants found in the environment. An excess of As poses serious threats to plants and diminishes their growth and productivity. NAC transcription factors revealed a pivotal role in enhancing crops tolerance to different environmental stresses. The present study investigated, for the first time, the functional role of SNAC3 in boosting As stress tolerance and grain productivity in rice (Oryza sativa L.). Two SNAC3-overexpressing (SNAC3-OX) and two SNAC3-RNAi transgenic lines were created and validated. The wild-type and transgenic rice plants were exposed to different As stress levels (0, 25, and 50 µM). The results revealed that SNAC3 overexpression significantly improved rice tolerance to As stress and boosted grain yield traits. Under both levels of As stress (25 and 50 µM), SNAC3-OX rice lines exhibited significantly lower levels of oxidative stress biomarkers and OsCRY1b (cryptochrome 1b) expression, but they revealed increased levels of gas exchange characters, chlorophyll, osmolytes (soluble sugars, proteins, proline, phenols, and flavonoids), antioxidant enzymes (SOD, CAT, APX, and POD), and stress-tolerant genes expression (OsSOD-Cu/Zn, OsCATA, OsCATB, OsAPX2, OsLEA3, OsDREB2B, OsDREB2A, OsSNAC2, and OsSNAC1) in comparison to wild-type plants. By contrast, SNAC3 suppression (RNAi) reduced grain yield components and reversed the aforementioned measured physio-biochemical and molecular traits. Taken together, this study is the first to demonstrate that SNAC3 plays a vital role in boosting As stress resistance and grain productivity in rice through modulating antioxidants, photosynthesis, osmolyte accumulation, and stress-related genes expression, and may be a useful candidate for further genetic enhancement of stress resistance in many crops.
Collapse
Affiliation(s)
- Marootpong Pooam
- UMR CNRS 8256 (B2A), IBPS, Sorbonne Université, 75005 Paris, France
| | - Enas M El-Ballat
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Nathalie Jourdan
- UMR CNRS 8256 (B2A), IBPS, Sorbonne Université, 75005 Paris, France
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, Campus Eure et Loir, Orleans University, 45067 Orleans, France
| | - Margaret Ahmad
- UMR CNRS 8256 (B2A), IBPS, Sorbonne Université, 75005 Paris, France
| | - Mohamed A El-Esawi
- UMR CNRS 8256 (B2A), IBPS, Sorbonne Université, 75005 Paris, France
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
29
|
Marin NM, Dolete G, Motelica L, Trusca R, Oprea OC, Ficai A. Preparation of Eco-Friendly Chelating Resins and Their Applications for Water Treatment. Polymers (Basel) 2023; 15:polym15102251. [PMID: 37242827 DOI: 10.3390/polym15102251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
In the present study, two chelating resins were prepared and used for simultaneous adsorption of toxic metal ions, i.e., Cr3+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Pb2+ (MX+). In the first step, chelating resins were prepared starting with styrene-divinylbenzene resin, a strong basic anion exchanger Amberlite IRA 402(Cl-) with two chelating agents, i.e., tartrazine (TAR) and amido black 10B (AB 10B). Key parameters such as contact time, pH, initial concentration, and stability were evaluated for the obtained chelating resins (IRA 402/TAR and IRA 402/AB 10B). The obtained chelating resins show excellent stability in 2M HCl, 2M NaOH, and also in ethanol (EtOH) medium. The stability of the chelating resins decreased when the combined mixture (2M HCl:EtOH = 2:1) was added. The above-mentioned aspect was more evident for IRA 402/TAR compared to IRA 402/AB 10B. Taking into account the higher stability of the IRA 402/TAR and IRA 402/AB 10B resins, in a second step, adsorption studies were carried out on complex acid effluents polluted with MX+. The adsorption of MX+ from an acidic aqueous medium on the chelating resins was evaluated using the ICP-MS method. The following affinity series under competitive analysis for IRA 402/TAR was obtained: Fe3+(44 µg/g) > Ni2+(39.8 µg/g) > Cd2+(34 µg/g) > Cr3+(33.2 µg/g) > Pb2+(32.7 µg/g) > Cu2+ (32.5 µg/g) > Mn2+(31 µg/g) > Co2+(29 µg/g) > Zn2+ (27.5 µg/g). While for IRA 402/AB 10B, the following behavior was observed: Fe3+(58 µg/g) > Ni2+(43.5 µg/g) > Cd2+(43 µg/g) > Cu2+(38 µg/g) > Cr3+(35 µg/g) > Pb2+(34.5 µg/g) > Co2+(32.8 µg/g) > Mn2+(33 µg/g) > Zn2+(32 µg/g), consistent with the decreasing affinity of MX+ for chelate resin. The chelating resins were characterized using TG, FTIR, and SEM analysis. The obtained results showed that the chelating resins prepared have promising potential for wastewater treatment in the context of the circular economy approach.
Collapse
Affiliation(s)
- Nicoleta Mirela Marin
- National Research and Development Institute for Industrial Ecology ECOIND, Street Podu Dambovitei no. 57-73, District 6, 060652 Bucharest, Romania
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
| | - Georgiana Dolete
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Ludmila Motelica
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Roxana Trusca
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Ovidiu Cristian Oprea
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Anton Ficai
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| |
Collapse
|
30
|
Chen Y, Yang J, Abbas A. Enhanced Chromium (VI) Adsorption onto Waste Pomegranate-Peel-Derived Biochar for Wastewater Treatment: Performance and Mechanism. TOXICS 2023; 11:toxics11050440. [PMID: 37235254 DOI: 10.3390/toxics11050440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023]
Abstract
Surface chemical modification allows for the rational construction of biochar with desirable structures and functionalities for environment purification. Fruit-peel-derived adsorbing material has been well studied in the adsorption of heavy-metal removal due to its abundance and non-toxicity, but its precise mechanism in removing chromium-containing pollutants remains unclear. Herein, we explored the potential application of engineered biochar prepared from fruit waste via chemical modification to remove chromium (Cr) from an aqueous solution. By synthesizing two types of agricultural residue-derived adsorbents, including pomegranate peel adsorbent (PG) and its modified product, pomegranate-peel-derived biochar (PG-B), via chemical and thermal decomposition methods, we elucidated the adsorption property of Cr(VI) on the studied materials and identified the cation retention mechanism of the adsorption process. Batch experiments and varied characterizations demonstrated that superior activity was exhibited in PG-B, which can contribute to the porous surfaces caused by pyrolysis and effective active sites resulting from alkalization. The highest Cr(VI) adsorption capacity is obtained at pH 4, a dosage of 6.25 g L-1, and a contact time of 30 min. The maximum adsorption efficiency of 90.50% in a short period (30 min) was obtained on PG-B, while PG reached a removal performance of 78.01% at 60 min. The results from kinetic and isotherm models suggested that monolayer chemisorption dominated the adsorption process. The Langmuir maximum adsorption capacity is 16.23 mg g-1. This study shortened the adsorption equilibrium time of pomegranate-based biosorbents and presents positive significance in designing and optimizing waste fruit-peel-derived adsorption materials for water purification.
Collapse
Affiliation(s)
- Yingzhou Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Jinyan Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Adil Abbas
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| |
Collapse
|