1
|
Hussain R, Naz S, Alam S, Ali HM, Ali A, Khan MS, Fouad D, Ataya FS, Mammadov A, Li K. Temporal and dosage impact of magnesium oxide nanoparticles on grass carp: unveiling oxidative stress, DNA damage, and antioxidant suppression. Toxicol Mech Methods 2025; 35:19-31. [PMID: 39034674 DOI: 10.1080/15376516.2024.2382801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Magnesium oxide nanoparticles (MgO NPs) have gained significant importance in biomedicine and variety of nanotechnology-based materials used in the agriculture and biomedical industries. However, the release of different nanowastes in the water ecosystem becomes a serious concern. Therefore, this study was executed to evaluate the toxic impacts of MgO NPs on grass carp. A total of 60 grass carp were randomly divided in three groups (G0, G1, and G2). Fish reared in group G0 were kept as control while fish of groups G1 and G2 were exposed to 0.5 mg/L and 0.7 mg/L MgO NPs, respectively, mixed in water for 21 days. The 96h median lethal concentration (LC50) of MgO NPs was found to be 4.5 mg/L. Evaluation of oxidative stress biomarkers, antioxidant enzymes, DNA damage in different visceral organs and the presence of micronuclei in erythrocytes were determined on days 7, 14, and 21 of the trial. Results revealed dose- and time-dependent significantly increased values of reactive oxygen species, lipid peroxidation product, DNA damage in multiple visceral organs and formation of micronuclei in the erythrocytes of treated fish (0.7 mg/L). The results on antioxidant profile exhibited significantly lower amounts of total proteins, catalase, superoxide dismutase, and peroxidase in visceral organs of the fish exposed to MgO NPs (0.5 and 0.7 mg/L) at day 21 of trial compared to control group. In conclusion, it has been recorded that MgO NPs severely influence the normal physiological functions of the grass carp even at low doses.
Collapse
Affiliation(s)
- Riaz Hussain
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Saima Naz
- Department of Zoology, Government Sadiq College Women University, Bahawalpur, Pakistan
| | - Sana Alam
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Hafiz Muhammad Ali
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Arooj Ali
- Faculty of Physical & Mathematical Sciences Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Shahid Khan
- Faculty of Physical & Mathematical Sciences Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Dalia Fouad
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Farid Shokry Ataya
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ayaz Mammadov
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan
| | - Kun Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Subramaniam H, Lim CK, Tey LH, Wong LS, Djearamane S. Oxidative stress-induced cytotoxicity of HCC2998 colon carcinoma cells by ZnO nanoparticles synthesized from Calophyllum teysmannii. Sci Rep 2024; 14:30198. [PMID: 39632962 PMCID: PMC11618351 DOI: 10.1038/s41598-024-81384-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
The field of green synthesis, namely using plant extracts for the production of metal nanoparticles, is rapidly gaining traction. Therefore, this study investigated the process of producing zinc oxide nanoparticles (ZnO NPs) using a water-based extract derived from the stem bark of Calophyllum teysmannii. Notably, this is the first documented utilization of this particular plant source. The presence of a distinct Ultraviolet-Visible (UV-Vis) absorption peak at 372 nm provided evidence for the creation of ZnO nanoparticles. The X-ray Diffractometer (XRD) and Field Emission Scanning Electron Microscopy (FESEM) investigations indicated that the nanoparticles exhibited sizes ranging from 31.5 to 59.9 nm and had spherical morphologies. Energy Dispersive X-ray Diffractometer (EDX) analysis verified the elemental composition of the ZnO nanoparticles, whereas the Fourier Transform Infrared (FTIR) spectra showed clear peaks, demonstrating their production. The FTIR examination of the C. teysmannii extract revealed peaks at around 3370 cm- 1, indicating the presence of phenolic compounds. These chemicals are likely responsible for the reduction and stabilization of the ZnO NPs. The high-resolution X-ray Photoelectron Spectroscopy (XPS) spectra clearly revealed separate peaks corresponding to Zn 2p and O 1s, providing confirmation of the chemical states and bonding contexts. The Raman Spectroscopy analysis revealed a distinct peak at around 425 cm⁻¹, confirming the presence of the wurtzite structure. The harmful effects of ZnO nanoparticles on HCC2998 (a kind of human colon cancer) and Vero (a type of monkey kidney epithelial) cells were evaluated using 3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide (MTT), dichlorodihydrofluorescein diacetate (DCFH-DA), and boron-Dipyrromethene (BODIPY) assays. The cancer cells underwent cell death due to oxidative stress in a dose-dependent manner, as confirmed by microscopic and flow cytometry investigations.
Collapse
Affiliation(s)
- Hemaroopini Subramaniam
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Kampar Campus, Jalan Universiti, Bandar Barat, Kampar, Perak, 31900, Malaysia
| | - Chan Kiang Lim
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Kampar Campus, Jalan Universiti, Bandar Barat, Kampar, Perak, 31900, Malaysia
| | - Lai Hock Tey
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Kampar Campus, Jalan Universiti, Bandar Barat, Kampar, Perak, 31900, Malaysia
| | - Ling Shing Wong
- Life Science Division, Faculty of Health and Life Sciences, INTI International University, Nilai, 71800, Malaysia
| | - Sinouvassane Djearamane
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Kampar Campus, Jalan Universiti, Bandar Barat, Kampar, Perak, 31900, Malaysia.
- Biomedical Research Unit and Lab Animal Research Centre, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College, Saveetha University, Chennai, 602 105, India.
| |
Collapse
|
3
|
Tekşen Y, Gündüz MK, Berikten D, Özatik FY, Aydın HE. Peganum harmala L. seed extract attenuates anxiety and depression in rats by reducing neuroinflammation and restoring the BDNF/TrkB signaling pathway and monoamines after exposure to chronic unpredictable mild stress. Metab Brain Dis 2024; 39:1523-1541. [PMID: 39172328 DOI: 10.1007/s11011-024-01416-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Depression is a mental disorder characterised by persistent low mood, anhedonia and cognitive impairment that affects an estimated 3.8% of the world's population, including 5% of adults. Peganum harmala L. (P. harmala) is a medicinal plant and has been reported to be effective against Alzheimer's disease, Parkinson's disease and depression. The present study was aimed to evaluate the behavioral and pharmacological effects of P. harmala seed extract in rats exposed to chronic unpredictable mild stress (CUMS) in vivo and to investigate the mechanism of action. CUMS-exposed rats were treated with P. harmala extract (75 and 150 mg/kg, i.p.) for 2 weeks. HPLC analysis was used to determine the concentration of harmaline and harmine alkaloids in the extract. Heavy metal analysis in seeds was performed by ICP-MS. Our results showed that P. harmala at the dose of 150 mg/kg significantly reduced the depressive-like behaviors in CUMS-exposed rats, as evidenced by increased sucrose consumption in the sucrose preference test (SPT), decreased immobility time in the forced swim test (FST) and plasma corticosterone levels, increased the time spent in open arms in the elevated plus maze (EPM), and improved memory and learning in the passive avoidance test (PAT). In addition, P. harmala decreased monoamine oxidase-A (MAO-A) levels, and increased serotonin (5-HT), dopamine (DA), and noradrenaline (NA) levels in the brains of rats exposed to CUMS. P. harmala decreased the expression of the pro-inflammatory transcription factor nuclear factor-κB (NF-κB), and increased the antioxidant nuclear factor erythroid 2-related factor 2 (Nrf2) in rat brain. Furthermore, P. harmala improved brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) protein expression in rat brain. In conclusion, P. harmala at a dose of 150 mg/kg is more effective in preventing depressive-like behavior in CUMS-exposed rats by improving neurotransmitter levels, reducing oxidative stress, suppressing neuroinflammation and activating the BDNF/TrkB pathway, all of which are important in the pathogenesis of depression.
Collapse
Affiliation(s)
- Yasemin Tekşen
- Faculty of Medicine, Department of Pharmacology, Kütahya Health Sciences University, Evliya Çelebi Yerleşkesi, Kütahya, 43000, Türkiye.
| | - Meliha Koldemir Gündüz
- Faculty of Engineering and Natural Sciences, Department of Basic Sciences of Engineering, Kütahya Health Sciences University, Evliya Çelebi Yerleşkesi, Kütahya, 43000, Türkiye
| | - Derya Berikten
- Faculty of Engineering and Natural Sciences, Department of Molecular Biology and Genetics, Kütahya Health Sciences University, Evliya Çelebi Yerleşkesi, 43000, Kütahya, Türkiye
| | - Fikriye Yasemin Özatik
- Faculty of Medicine, Department of Pharmacology, Kütahya Health Sciences University, Evliya Çelebi Yerleşkesi, Kütahya, 43000, Türkiye
| | - Hasan Emre Aydın
- Faculty of Medicine, Department of Neurosurgery, Kütahya Health Sciences University, Evliya Çelebi Yerleşkesi, 43000, Kütahya, Türkiye
| |
Collapse
|
4
|
Cao X, Chen L, Fan Y, Fu M, Du Q, Chang Z. Black phosphorus quantum dots induced neurotoxicity, intestinal microbiome and metabolome dysbiosis in zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176644. [PMID: 39374705 DOI: 10.1016/j.scitotenv.2024.176644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/20/2024] [Accepted: 09/29/2024] [Indexed: 10/09/2024]
Abstract
The potential toxicity of BPQDs has received considerable attention due to their increasing use in biomedical applications. In this study, the toxicity of BPQDs at concentrations of 5 μg/mL, 50 μg/mL, and 500 μg/mL on the brain-gut axis was assessed in zebrafish. Following 35 days of exposure, the neurotransmitter, locomotor behavior, gut barrier (physical barrier, chemical barrier, and microbial barrier), and gut content metabolism in zebrafish were evaluated. The results indicated that BPQDs induced the locomotor behavior abnormalities, inhibited acetylcholinesterase activity, induced dopaminase activity, and promoted apoptosis in zebrafish brain tissue. Meanwhile, BPQDs caused damage to the physical and chemical barriers in zebrafish intestinal tissue, which increased the permeability of the intestinal mucosa, and induced oxidative stress and apoptosis. The gut microbiota was analyzed by 16S rRNA gene sequencing. The results showed that BPQDs caused dysbiosis of the gut microbiota, resulting in decreased diversity. Specifically, the relative abundance of Firmicutes, Bacteroidetes, and Actinobacteria decreased, while the relative abundance of Proteobacteria and Clostriobacteria increased. At the genus level, the high concentration BPQDs showed a significant increase in Cetobacterium, Pleisionomas, Aeromonas, and other bacteria. Bioinformatic analysis revealed a correlation between the relative abundance of the gut microbiota and antioxidant levels, immune response, and apoptosis. Statistical analysis of the metabolomic revealed significant perturbations in several metabolic pathways, including amino acid, lipid, nucleotide, and energy metabolism. In addition, correlation analysis between microbiota and metabolism confirmed that gut microbiota dysbiosis was closely associated with metabolic dysfunction. The histopathologic injury supported the changes in biomarkers and the expression of related marker genes in the gut-brain axis, indicating the communication between the gut peripheral nerves and the CNS. The results indicate that BPQDs induce gut microbiota dysbiosis, disrupt metabolic function, and induce neurotoxicity, probably by disrupting the homeostasis of the microbiota-gut-brain axis. In summary, this study demonstrates the effects of BPQDs on physiological changes within the zebrafish brain-gut axis and provides valuable data for assessing the toxicological risks of BPQDs in aquatic ecosystems.
Collapse
Affiliation(s)
- Xiaonan Cao
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| | - Lili Chen
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China.
| | - Yingxin Fan
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| | - Mengxiao Fu
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| | - Qiyan Du
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China.
| | - Zhongjie Chang
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China.
| |
Collapse
|
5
|
Singh P, Singh LK. Myeloperoxidase enzyme-catalyzed breakdown of zero-dimension carbon quantum dots. FRONTIERS IN MEDICAL TECHNOLOGY 2024; 6:1493288. [PMID: 39669902 PMCID: PMC11634592 DOI: 10.3389/fmedt.2024.1493288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/31/2024] [Indexed: 12/14/2024] Open
Abstract
Carbon quantum dots (CQDs) have shown considerable interest in multiple fields including bioimaging, biosensing, photocatalysis, ion sensing, heavy metal detection, and therapy due to highly tunable photoluminescence and good photostability. Apart from having optical properties CQDs offer several advantages such as low toxicity, environmental friendliness, affordability, and simple synthesis methods. Furthermore, by modifying their surface and functionality, it's possible to precisely control their physical and chemical characteristics. Nevertheless, the growing utilization of carbon-based nanomaterials (CNMs) requires thorough examination of their potential toxicity and long-term impacts on human health and biological systems. In this study, carbon quantum dots (CQDs) were synthesized via a microwave-assisted method using citric acid and urea as precursors, resulting in an average particle diameter of 10.73 nm. The CQDs were further characterized using SEM and FTIR analysis. The CQDs exhibited an excitation wavelength of 320 nm, displaying an emission peak at 430 nm. The enzymatic biodegradation of CQDs by human myeloperoxidase enzyme has been thoroughly investigated here. It is very crucial to understand how these carbon quantum dots interact with the innate immune system that plays a vital role in recognizing and clearing foreign particles. Human myeloperoxidase (MPO), a key enzyme highly expressed in neutrophil granulocytes during inflammatory responses, has been shown to facilitate the biodegradation of carbon quantum dots and various carbon-based nanomaterials through oxidative processes. As a member of the peroxidase family, MPO produces hypochlorous acid (HOCl) and a range of reactive intermediates to eliminate pathogens. Consequently, the study of the biodegradability of CQDs within biological systems is essential for accelerating technological advancements. Here, we have assessed breakdown of CQDs through an oxidative process facilitated by a myeloperoxidase (MPO)-based peroxide system. The human MPO enzyme acted as a catalyst for the CQD degradation, and the addition of hydrogen peroxide (H2O2) and sodium chloride (NaCl) was found to accelerate the reaction.
Collapse
Affiliation(s)
| | - Lalit Kumar Singh
- Department of Biochemical Engineering, School of Chemical Engineering, Harcourt Butler Technical University, Kanpur, India
| |
Collapse
|
6
|
Ijatuyi TT, Lawal AO, Akinjiyan MO, Ojo FM, Koledoye OF, Agboola OO, Dahunsi DT, Folorunso IM, Elekofehinti OO. Effects of Bryophyllum pinnatum on Dysfunctional Autophagy in Rats Lungs Exposed to Zinc Oxide Nanoparticles. Int Immunopharmacol 2024; 141:113005. [PMID: 39213874 DOI: 10.1016/j.intimp.2024.113005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Lung inflammation as a result of exposure to toxicants is a major pathological problem. Autophagy (AP) is a process of cell self-digestion and can be disrupted by environmental toxicants, leading to oxidative stress, inflammation and cellular damage. Bryophyllum pinnatum (Lam.) Oken has been used in folklore medicine to manage pathological abnormalities, including inflammation, but mechanisms remain unclear. This work investigated the effects of Bryophyllum pinnatum ethanol leaf extract (BP) on dysfunctional AP in the lungs of Wistar rats exposed to zinc oxide nanoparticles (ZONPs). The experimental rats were orally administered ZONPs for seven days (10 mg/kg). Some exposed rats were post-treated with BP (62.5 and 125 mg/kg) through oral gavage. Oxidative stress, inflammation, and apoptotic and autophagic parameters were assessed using biochemical assay and gene expression methods. Several indices of pulmonary damage were also evaluated. PCR analysis suggested that ZONP downregulated the expression of pro-autophagy-related genes (Beclin 2, ATG5, DAPK, and FOXP3) and upregulated the expression of the TNF-alpha, NF-Kb, LC3 and Bcl2 genes. In contrast, BP significantly (p < 0.0001) reversed ZONP-induced pulmonary toxicity and oxidative stress. It reduced MDA levels and increased SOD, CAT, GSH and GPxD activities. BP significantly (p < 0.0001) downregulated the expressions of proinflammatory genes (IL-6 and JNK) and upregulated the expressions of IL-10, CAT and SOD genes in ZONP-exposed rats. BP restored the lung's histoarchitectural structure after ZNOP-induced distortion. The results suggested that BP has antioxidant and anti-inflammatory properties, and could effectively restore ZNOP-induced dysfunctional AP in the lungs of Wistar rats.
Collapse
Affiliation(s)
- Taiwo Tolulope Ijatuyi
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, School of Life Sciences, Federal University of Technology, Akure, P.M.B. 704, Akure, Ondo-State, Nigeria
| | - Akeem Olalekan Lawal
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, School of Life Sciences, Federal University of Technology, Akure, P.M.B. 704, Akure, Ondo-State, Nigeria; Precision Molecular Laboratory, Akure, Ondo State, Nigeria
| | - Moses Orimoloye Akinjiyan
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, School of Life Sciences, Federal University of Technology, Akure, P.M.B. 704, Akure, Ondo-State, Nigeria; Medical Biochemistry Department, School of Basic Medical Sciences, Federal University of Technology, Akure, Ondo State, Nigeria.
| | - Funmilayo Mercy Ojo
- Medical Biochemistry Department, School of Basic Medical Sciences, Federal University of Technology, Akure, Ondo State, Nigeria
| | - Omowumi Funmilayo Koledoye
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, School of Life Sciences, Federal University of Technology, Akure, P.M.B. 704, Akure, Ondo-State, Nigeria
| | - Olaoluwa Oladimeji Agboola
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, School of Life Sciences, Federal University of Technology, Akure, P.M.B. 704, Akure, Ondo-State, Nigeria
| | - Damilola Timothy Dahunsi
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, School of Life Sciences, Federal University of Technology, Akure, P.M.B. 704, Akure, Ondo-State, Nigeria
| | - Ibukun Mary Folorunso
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, School of Life Sciences, Federal University of Technology, Akure, P.M.B. 704, Akure, Ondo-State, Nigeria; Precision Molecular Laboratory, Akure, Ondo State, Nigeria
| | - Olusola Olalekan Elekofehinti
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, School of Life Sciences, Federal University of Technology, Akure, P.M.B. 704, Akure, Ondo-State, Nigeria
| |
Collapse
|
7
|
Salem M, Ateya A, Shouman Z, Salama B, Hamed B, Batiha G, Ataya F, Alexiou A, Papadakis M, Abass M. Amelioration of full-thickness cutaneous wound healing using stem cell exosome and zinc oxide nanoparticles in rats. Heliyon 2024; 10:e38994. [PMID: 39568845 PMCID: PMC11577189 DOI: 10.1016/j.heliyon.2024.e38994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/28/2024] [Accepted: 10/04/2024] [Indexed: 11/22/2024] Open
Abstract
Background Wound healing is a complex procedure that requires the coordination of several factors, so this study aimed to assess the zinc oxide nanoparticles' regenerated effect and stem cell exosomes on full-thickness wounds in rats. Methods Seventy-two Wistar male rats were subjected to a full-thickness skin defect (20 mm2) on the dorsal surface of each rat between two shoulder joints. The rats were randomized into four groups (18/group) according to wound treatments. The wounds were irrigated with normal saline (Control group), or the wound's edges were subcutaneously injected daily with 0.3 ml of exosome (Exo-group), or 1 ml of zinc oxide nanoparticles (ZnO2-NPs group), or 0.3 ml of exosome in combined with 1 ml of zinc oxide nanoparticles (Exo/ZnO2-NPs group). On the 7th, 14th, and 21st days post-wounding, the weight of the rats, the wound healing breaking strength, the wound size, and the contraction percent were evaluated. Six rats in each group were euthanized at each time point for histopathological, immunohistochemical examination of collagen, the levels of alpha-smooth muscle actin (α-SMA), and epidermal growth factor receptor (EGFR). additionally, the gene expression analysis of the relative renal nuclear factor erythroid 2-related factor2 (Nrf2 mRNA), Transforming growth factor beta-1 (TGFβ1), fibroblast growth factor-7 (FGF7), Transforming growth factor beta-1 (TGFβ1), Lysyl oxidase (LOX), and Vascular endothelial growth factor (VEGF) were applied. Results The Exo-group exhibited a significant decrease in wound size and a significant increase in wound contraction compared with other groups. Histopathologically evaluation during the three intervals revealed that the Exo-group had the highest collagen deposition area with a significant reduction of the granulation tissue. Moreover, upregulated gene expression profiles of the growth factors genes at all time points post-wounding. Discussion The exosomes-treated group revealed superior wound healing and contraction, with minimal inflammatory signs, higher angiogenesis, and myofibroblasts, and associated with higher growth factor expression genes compared to the other groups. Conclusions Exosome-based therapy demonstrates potential as a treatment method to promote and accelerate wound healing by modulating angiogenesis, re-epithelialization, collagen deposition, and gene expression profiles.
Collapse
Affiliation(s)
- Mohamed Salem
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Ahmed Ateya
- Department of Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Zeinab Shouman
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Basma Salama
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Basma Hamed
- Mansoura experimental research center (MERC), Faculty of Medicine, Mansoura, 35516, Egypt
| | - Gaber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Farid Ataya
- Department of Biochemistry, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Athanasios Alexiou
- Department of Research & Development, Funogen, Athens, 11741, Greece
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, 42283, Wuppertal, Germany
| | - Marwa Abass
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
8
|
Aschner M, Skalny AV, Lu R, Martins AC, Tsatsakis A, Miroshnikov SA, Santamaria A, Tinkov AA. Molecular mechanisms of zinc oxide nanoparticles neurotoxicity. Chem Biol Interact 2024; 403:111245. [PMID: 39278458 DOI: 10.1016/j.cbi.2024.111245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Zinc oxide nanoparticles (ZnONPs) are widely used in industry and biomedicine. A growing body of evidence demonstrates that ZnONPs exposure may possess toxic effects to a variety of tissues, including brain. Therefore, the objective of the present review was to summarize existing evidence on neurotoxic effects of ZnONPs and discuss the underlying molecular mechanisms. The existing laboratory data demonstrate that both in laboratory rodents and other animals ZnONPs exposure results in a significant accumulation of Zn in brain and nervous tissues, especially following long-term exposure. As a result, overexposure to ZnONPs causes oxidative stress and cell death, both in neurons and glial cells, by induction of apoptosis, necrosis and ferroptosis. In addition, ZnONPs may induce neuroinflammation through the activation of nuclear factor kappa B (NF-κB), extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (MAPK), and lipoxygenase (LOX) signaling pathways. ZnONPs exposure is associated with altered cholinergic, dopaminergic, serotoninergic, as well as glutamatergic and γ-aminobutyric acid (GABA)-ergic neurotransmission, thus contributing to impaired neuronal signal transduction. Cytoskeletal alterations, as well as impaired autophagy and mitophagy also contribute to ZnONPs-induced brain damage. It has been posited that some of the adverse effects of ZnONPs in brain are mediated by altered microRNA expression and dysregulation of gut-brain axis. Furthermore, in vivo studies have demonstrated that ZnONPs exposure induced anxiety, motor and cognitive deficits, as well as adverse neurodevelopmental outcome. At the same time, the relevance of ZnONPs-induced neurotoxicity and its contribution to pathogenesis of neurological diseases in humans are still unclear. Further studies aimed at estimation of hazards of ZnONPs to human brain health and the underlying molecular mechanisms are warranted.
Collapse
Affiliation(s)
- Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Anatoly V Skalny
- Institute of Bioelementology, Orenburg State University, Orenburg, 460018, Russia; Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119146, Russia
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Airton C Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 700 13, Heraklion, Greece
| | - Sergey A Miroshnikov
- Institute of Bioelementology, Orenburg State University, Orenburg, 460018, Russia
| | - Abel Santamaria
- Laboratorio de Nanotecnología y Nanomedicina, Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, 04960, Mexico City, Mexico; Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Alexey A Tinkov
- Institute of Bioelementology, Orenburg State University, Orenburg, 460018, Russia; Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119146, Russia; Laboratory of Molecular Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, 150003, Russia.
| |
Collapse
|
9
|
Cai H, Gao M, Xu T, Li K, Zhou Y, Lyu C, Xu S. Silicon dioxide particles induce DNA oxidative damage activating the AIM2-mediated PANoptosis in mice cerebellum. Chem Biol Interact 2024; 403:111258. [PMID: 39362619 DOI: 10.1016/j.cbi.2024.111258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Silicon dioxide (SiO2) particles are novel materials with wide-ranging applications across various fields, posing potential neurotoxic effects. This study investigates the toxicological mechanisms of SiO2 particles of different sizes on murine cerebellar tissue and cells. Six-week-old C57BL/6 mice were orally administered SiO2 particles of three sizes (1 μm, 300 nm, 50 nm) for 21 days to establish an in vivo model, and mice cerebellar astrocytes (C8-D1A cells) were cultured in vitro. Indicators of oxidative stress, DNA damage, and the PANoptosis pathway were detected using methods such as immunofluorescence staining, comet assay, western blotting, and qRT-PCR. The results show that SiO2 particles induce oxidative stress leading to DNA oxidative damage. The aberrant DNA is recognized by AIM2 (absent in melanoma 2), which activates the assembly of the PANoptosome complex, subsequently triggering PANoptosis. Furthermore, the extent of damage is inversely correlated with the size of SiO2 particles. This study elucidates the toxicological mechanism of SiO2 particles causing cerebellar damage via PANoptosis, extending research on PANoptosis in neurotoxicology, and aiding in the formulation of stricter safety standards and protective measures to reduce the potential toxic risk of SiO2 particles to humans.
Collapse
Affiliation(s)
- Hao Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Meichen Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ke Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yuanxin Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Chencong Lyu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
10
|
Nazemof N, Breznan D, Dirieh Y, Blais E, Johnston LJ, Tayabali AF, Gomes J, Kumarathasan P. Cytotoxic Potencies of Zinc Oxide Nanoforms in A549 and J774 Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1601. [PMID: 39404328 PMCID: PMC11482475 DOI: 10.3390/nano14191601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024]
Abstract
Zinc oxide nanoparticles (NPs) are used in a wide range of consumer products and in biomedical applications, resulting in an increased production of these materials with potential for exposure, thus causing human health concerns. Although there are many reports on the size-related toxicity of ZnO NPs, the toxicity of different nanoforms of this chemical, toxicity mechanisms, and potency determinants need clarification to support health risk characterization. A set of well-characterized ZnO nanoforms (e.g., uncoated ca. 30, 45, and 53 nm; coated with silicon oil, stearic acid, and (3-aminopropyl) triethoxysilane) were screened for in vitro cytotoxicity in two cell types, human lung epithelial cells (A549), and mouse monocyte/macrophage (J774) cells. ZnO (bulk) and ZnCl2 served as reference particles. Cytotoxicity was examined 24 h post-exposure by measuring CTB (viability), ATP (energy metabolism), and %LDH released (membrane integrity). Cellular oxidative stress (GSH-GSSG) and secreted proteins (targeted multiplex assay) were analyzed. Zinc oxide nanoform type-, dose-, and cell type-specific cytotoxic responses were seen, along with cellular oxidative stress. Cell-secreted protein profiles suggested ZnO NP exposure-related perturbations in signaling pathways relevant to inflammation/cell injury and corresponding biological processes, namely reactive oxygen species generation and apoptosis/necrosis, for some nanoforms, consistent with cellular oxidative stress and ATP status. The size, surface area, agglomeration state and metal contents of these ZnO nanoforms appeared to be physicochemical determinants of particle potencies. These findings warrant further research on high-content "OMICs" to validate and resolve toxicity pathways related to exposure to nanoforms to advance health risk-assessment efforts and to inform on safer materials.
Collapse
Affiliation(s)
- Nazila Nazemof
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 7K4, Canada; (N.N.); (J.G.)
| | - Dalibor Breznan
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON K1A 0K9, Canada; (D.B.); (Y.D.); (E.B.); (A.F.T.)
| | - Yasmine Dirieh
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON K1A 0K9, Canada; (D.B.); (Y.D.); (E.B.); (A.F.T.)
| | - Erica Blais
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON K1A 0K9, Canada; (D.B.); (Y.D.); (E.B.); (A.F.T.)
| | - Linda J. Johnston
- Metrology Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada;
| | - Azam F. Tayabali
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON K1A 0K9, Canada; (D.B.); (Y.D.); (E.B.); (A.F.T.)
| | - James Gomes
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 7K4, Canada; (N.N.); (J.G.)
| | - Premkumari Kumarathasan
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 7K4, Canada; (N.N.); (J.G.)
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON K1A 0K9, Canada; (D.B.); (Y.D.); (E.B.); (A.F.T.)
| |
Collapse
|
11
|
Mustafa S, Abbas RZ, Saeed Z, Baazaoui N, Khan AMA. Use of Metallic Nanoparticles Against Eimeria-the Coccidiosis-Causing Agents: A Comprehensive Review. Biol Trace Elem Res 2024:10.1007/s12011-024-04399-8. [PMID: 39354182 DOI: 10.1007/s12011-024-04399-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/25/2024] [Indexed: 10/03/2024]
Abstract
Coccidiosis is a protozoan disease caused by Eimeria species and is a major threat to the poultry industry. Different anti-coccidial drugs (diclazuril, amprolium, halofuginone, ionophores, sulphaquinoxaline, clopidol, and ethopabate) and vaccines have been used for their control. Still, due to the development of resistance, their efficacy has been limited. It is continuously damaging the economy of the poultry industry because under its control, almost $14 billion is spent, globally. Recent research has been introducing better and more effective control of coccidiosis by using metallic and metallic oxide nanoparticles. Zinc, zinc oxide, copper, copper oxide, silver, iron, and iron oxide are commonly used because of their drug delivery mechanism. These nanoparticles combined with other drugs enhance the effect of these drugs and give their better results. Moreover, by using nanotechnology, the resistance issue is also solved because by using several mechanisms at a time, protozoa cannot evolve and thus resistance cannot develop. Green nanotechnology has been giving better results due to its less toxic effects. Utilization of metallic and metallic oxide nanoparticles may present a new, profitable, and economical method of controlling chicken coccidiosis, thus by changing established treatment approaches and improving the health and production of chickens. Thus, the objective of this review is to discuss about economic burden of avian coccidiosis, zinc, zinc oxide, iron, iron oxide, copper, copper oxide, silver nanoparticles use in the treatment of coccidiosis, their benefits, and toxicity.
Collapse
Affiliation(s)
- Sahar Mustafa
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Rao Zahid Abbas
- Department of Parasitology, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Zohaib Saeed
- Department of Parasitology, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Narjes Baazaoui
- Applied College Muhayil Assir, King Khalid University, 61421, Abha, Saudi Arabia
| | | |
Collapse
|
12
|
Goma AA, Salama AR, Tohamy HG, Rashed RR, Shukry M, El-Kazaz SE. Examining the Influence of Zinc Oxide Nanoparticles and Bulk Zinc Oxide on Rat Brain Functions: a Comprehensive Neurobehavioral, Antioxidant, Gene Expression, and Histopathological Investigation. Biol Trace Elem Res 2024; 202:4654-4673. [PMID: 38190061 PMCID: PMC11339107 DOI: 10.1007/s12011-023-04043-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/25/2023] [Indexed: 01/09/2024]
Abstract
The study aimed to assess the impact of zinc oxide nanoparticles (ZnONPs) on rats' neurobehavior compared to bulk zinc oxide (BZnO). Thirty male Sprague-Dawley rats were randomly assigned to five groups. The control group received Tween 80 (10%), while the ZnONP groups were given ZnONPs at 5 and 10 mg/kg body weight dosages, and the bulk zinc oxide (BZnO) groups received BZnO at the same dosages. Behavioral observations, neurobehavioral examinations, and assessments of brain tissue oxidative markers, neurotransmitter levels, and histopathological changes were performed. The results indicated that ZnONP at a dosage of 5 mg/kg improved general behavior, locomotor activity, memory, and recognition and reduced fearfulness in rats. Conversely, the higher dosage of 10 mg/kg and the bulk form had adverse effects on general behavior, locomotor activity, and learning ability, with the bulk form demonstrating the most severe impact-znONP-5 treatment increased antioxidant enzyme levels and decreased inflammatory markers. BZnO-5 exhibited lower oxidative stress markers, although still higher than BZnO-10. Furthermore, ZnONP-5 and BZnO-5 increased neurotransmitter levels compared to higher dosages. ZnONP-5 upregulated the expression of brain-derived neurotrophic factor (BDNF) mRNA, while BZnO-5 showed increased BDNF mRNA expression and decreased expression of genes related to apoptosis and inflammation. In summary, ZnONPs at 5 mg/kg demonstrated positive effects on rat brain function and behavior, while higher dosages and the bulk form had detrimental effects. In conclusion, the studies emphasized the importance of further assessing various doses and forms of zinc oxide on brain health, highlighting the significance of dosage considerations when using nanomaterials.
Collapse
Affiliation(s)
- Amira A Goma
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 21944, Egypt
| | - Alyaa R Salama
- Department of Pathology, Clinical Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 21944, Egypt
| | - Hossam G Tohamy
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 21944, Egypt
| | - Rashed R Rashed
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 21944, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33511, Egypt.
| | - Sara E El-Kazaz
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 21944, Egypt
| |
Collapse
|
13
|
Ansari AA, Lv R, Gai S, Parchur AK, Solanki PR, Archana, Ansari Z, Dhayal M, Yang P, Nazeeruddin M, Tavakoli MM. ZnO nanostructures – Future frontiers in photocatalysis, solar cells, sensing, supercapacitor, fingerprint technologies, toxicity, and clinical diagnostics. Coord Chem Rev 2024; 515:215942. [DOI: 10.1016/j.ccr.2024.215942] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
14
|
Azizi S, Sellam M, Mesri N, Sehili T, Gherraf N. Photocatalytic degradation of methyl green by doped zinc oxide thin layers under solar irradiation. J Photochem Photobiol A Chem 2024; 453:115681. [DOI: 10.1016/j.jphotochem.2024.115681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
15
|
Khafajah Y, Shaheen M, Natour DE, Merheb M, Matar R, Borjac J. Neuroprotective Effects of Zinc Oxide Nanoparticles in a Rotenone-Induced Mouse Model of Parkinson's Disease. Nanotheranostics 2024; 8:497-505. [PMID: 38961888 PMCID: PMC11217785 DOI: 10.7150/ntno.95863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/11/2024] [Indexed: 07/05/2024] Open
Abstract
Goals of the investigation: This work aimed to evaluate the neuroprotective effects of zinc oxide (ZnO) nanoparticles in an experimental mouse model of rotenone-induced PD and investigate the therapeutic effects of ZnO, cobalt ferrite nanoparticles, and their combination. Methods: The levels of dopamine, norepinephrine, epinephrine, and serotonin were assessed using ELISA in the control and experimental model of PD mice. The dopa-decarboxylase expression level was assayed by real-time PCR. The expression level of tyrosine hydroxylase (TH) was assessed by western blot analysis. Results: Our data showed that levels of dopamine decreased in PD mice compared to normal. ZnO NP increased dopamine levels in normal and PD mice (37.5% and 29.5%; respectively, compared to untreated mice). However, ZnO NP did not cause any change in norepinephrine and epinephrine levels either in normal or in PD mice. Levels of serotonin decreased by 64.0%, and 51.1% in PD mice treated with cobalt ferrite and dual ZnO- cobalt ferrite NPs; respectively, when compared to PD untreated mice. The mRNA levels of dopa-decarboxylase increased in both normal and PD mice treated with ZnO NP. Its level decreased when using cobalt ferrite NP and the dual ZnO-cobalt ferrite NP when compared to untreated PD mice. A significant decrease in TH expression by 0.25, 0.68, and 0.62 folds was observed in normal mice treated with ZnO, cobalt ferrite, and the dual ZnO-cobalt ferrite NP as compared to normal untreated mice. In PD mice, ZnO administration caused a non-significant 0.15-fold decrease in TH levels while both cobalt ferrite and the dual ZnO-cobalt ferrite NP administration caused a significant 0.3 and 0.4-fold decrease respectively when compared to untreated PD mice. Principal conclusion: This study reveals that ZnO NPs may be utilized as a potential intervention to elevate dopamine levels to aid in PD treatment.
Collapse
Affiliation(s)
- Yasmeen Khafajah
- Beirut Arab University, Department of Biological Sciences, Faculty of Science, Debbieh, Lebanon
| | - Mariam Shaheen
- Beirut Arab University, Department of Biological Sciences, Faculty of Science, Debbieh, Lebanon
| | - Dania El Natour
- Beirut Arab University, Department of Internal Medicine, Faculty of Medicine, Beirut, Lebanon
| | - Maxime Merheb
- Liwa College, College of Medical and Health Sciences, United Arab Emirates
| | - Rachel Matar
- American University of Ras Al Khaimah, School of Arts and Sciences, United Arab Emirates
| | - Jamilah Borjac
- Beirut Arab University, Department of Biological Sciences, Faculty of Science, Debbieh, Lebanon
| |
Collapse
|
16
|
Bautista-Pérez R, Cano-Martínez A, Herrera-Rodríguez MA, Ramos-Godinez MDP, Pérez Reyes OL, Chirino YI, Rodríguez Serrano ZJ, López-Marure R. Oral Exposure to Titanium Dioxide E171 and Zinc Oxide Nanoparticles Induces Multi-Organ Damage in Rats: Role of Ceramide. Int J Mol Sci 2024; 25:5881. [PMID: 38892068 PMCID: PMC11172338 DOI: 10.3390/ijms25115881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Food-grade titanium dioxide (E171) and zinc oxide nanoparticles (ZnO NPs) are common food additives for human consumption. We examined multi-organ toxicity of both compounds on Wistar rats orally exposed for 90 days. Rats were divided into three groups: (1) control (saline solution), (2) E171-exposed, and (3) ZnO NPs-exposed. Histological examination was performed with hematoxylin-eosin (HE) staining and transmission electron microscopy (TEM). Ceramide (Cer), 3-nitrotyrosine (NT), and lysosome-associated membrane protein 2 (LAMP-2) were detected by immunofluorescence. Relevant histological changes were observed: disorganization, inflammatory cell infiltration, and mitochondrial damage. Increased levels of Cer, NT, and LAMP-2 were observed in the liver, kidney, and brain of E171- and ZnO NPs-exposed rats, and in rat hearts exposed to ZnO NPs. E171 up-regulated Cer and NT levels in the aorta and heart, while ZnO NPs up-regulated them in the aorta. Both NPs increased LAMP-2 expression in the intestine. In conclusion, chronic oral exposure to metallic NPs causes multi-organ injury, reflecting how these food additives pose a threat to human health. Our results suggest how complex interplay between ROS, Cer, LAMP-2, and NT may modulate organ function during NP damage.
Collapse
Affiliation(s)
- Rocío Bautista-Pérez
- Departamento de Biología Molecular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Agustina Cano-Martínez
- Departamento de Fisiología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (A.C.-M.)
| | | | | | - Olga Lidia Pérez Reyes
- Departamento de Patología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - Yolanda Irasema Chirino
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico
| | - Zariá José Rodríguez Serrano
- Departamento de Fisiología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (A.C.-M.)
| | - Rebeca López-Marure
- Departamento de Fisiología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (A.C.-M.)
| |
Collapse
|
17
|
Suthar JK, Vaidya A, Ravindran S. Size, Surface Properties, and Ion Release of Zinc Oxide Nanoparticles: Effects on Cytotoxicity, Dopaminergic Gene Expression, and Acetylcholinesterase Inhibition in Neuronal PC-12 Cells. Biol Trace Elem Res 2024; 202:2254-2271. [PMID: 37713055 DOI: 10.1007/s12011-023-03832-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 08/25/2023] [Indexed: 09/16/2023]
Abstract
The extensive applications of zinc oxide nanoparticles (ZnO NPs) have resulted in a substantial risk of human exposure. However, the knowledge of the toxicity of these NPs in the nervous system is still limited. A comparative analysis of ZnO NPs of various sizes and NPs of the same size, with and without surface coating, and the potential role of released zinc ions is yet to be thoroughly explored. As a result, we have studied the cellular toxicity of two different-sized ZnO NPs, ZnO-22 (22 nm) and ZnO-43 (43 nm), and NPs with similar size but with polyvinylpyrrolidone coating (ZnO-P, 45 nm). The findings from our study suggested a time-, size-, and surface coating-dependent cytotoxicity in PC-12 cells at a concentration ≥ 10 μg/ml. ZnO NP treatment significantly elevated reactive oxygen and reactive nitrogen species, thereby increasing oxidative stress. The exposure of ZnO-22 and ZnO-43 significantly upregulated the expression of monoamine oxidase-A and downregulated the α-synuclein gene expression associated with the dopaminergic system. The interaction of NPs enzymes in the nervous system is also hazardous. Therefore, the inhibition activity of acetylcholinesterase enzyme was also studied for its interaction with these NPs, and the results indicated a dose-dependent inhibition of enzyme activity. Particle size, coating, and cellular interactions modulate ZnO NP's cytotoxicity; smaller sizes enhance cellular uptake and reactivity, while coating reduces cytotoxicity by limiting direct cell contact and potentially mitigating oxidative stress. Furthermore, the study of released zinc ions from the NPs suggested no significant contribution to the observed cytotoxicity compared to the NPs.
Collapse
Affiliation(s)
- Jitendra Kumar Suthar
- Symbiosis School of Biological Sciences, Faculty of Medical and Health Sciences, Symbiosis International (Deemed) University, Pune, India
| | - Anuradha Vaidya
- Symbiosis Centre for Stem Cell Research, Symbiosis School of Biological Sciences, Symbiosis International (Deemed) University, Pune, India
| | - Selvan Ravindran
- Symbiosis School of Biological Sciences, Faculty of Medical and Health Sciences, Symbiosis International (Deemed) University, Pune, India.
| |
Collapse
|
18
|
Naghdi Babaei F, Shirzad M, Ghasemi-Kasman M, Ghadir S, Hasaniani N, Ghasemi S, Amiri Manjili D. Sub-acute administration of metal-organic Framework-5 induces behavioral impairments and augments the levels of oxidative stress and inflammation in the brain of rats. Food Chem Toxicol 2024; 187:114608. [PMID: 38522498 DOI: 10.1016/j.fct.2024.114608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
Metal-organic frameworks (MOFs) are known as potential pharmaceutical carriers because of their structure. Here, we evaluated the sub-acute administrations of MOF-5 on behavioral parameters, oxidative stress, and inflammation levels in rats. Thirty-two male Wistar rats received four injections of saline or MOF-5 at different doses which were 1, 10, and 50 mg/kg via caudal vein. Y-Maze and Morris-Water Maze (MWM) tests were used to explore working memory and spatial learning and memory, respectively. The antioxidant capacity and oxidative stress level of brain samples were assessed by ferric reducing antioxidant power (FRAP) and thiobarbituric acid-reacting substance (TBARS) assay, respectively. The expression levels of GFAP, IL-1β, and TNF-α were also measured by quantitative real-time reverse-transcription PCR (qRT-PCR). Sub-acute administration of MOF-5 reduced the spatial learning and memory as well as working memory, dose-dependently. The levels of FRAP were significantly reduced in rats treated with MOF-5 at higher doses. The Malondialdehyde (MDA) levels increased at the dose of 50 mg/kg. Additionally, the expression levels of IL-1β and TNF-α were significantly elevated in the rats' brains that were treated with MOF-5. Our findings indicate that sub-acute administration of MOF-5 induces cognitive impairment dose-dependently which might be partly mediated by increasing oxidative stress and inflammation.
Collapse
Affiliation(s)
| | - Moein Shirzad
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Physiology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.
| | - Sara Ghadir
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Nima Hasaniani
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Shahram Ghasemi
- Department of Applied Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | | |
Collapse
|
19
|
Eren B, Gunduz MK, Kaymak G, Berikten D, Bahsi ZB. Therapeutic Potential of Sol-Gel ZnO Nanocrystals: Anticancer, Antioxidant, and Antimicrobial Tri-Action. ACS OMEGA 2024; 9:14818-14829. [PMID: 38585122 PMCID: PMC10993253 DOI: 10.1021/acsomega.3c07191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/09/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024]
Abstract
Zinc oxide nanocrystals (ZnO NCs) hold great promise in nanomedicine with fascinating multifunctional properties. We investigated the therapeutic potential of sol-gel synthesized ZnO NCs with crystal sizes of 52.65 and 25.11 nm, focusing on their anticancer effects on HepG2 and HT29 cells, antioxidant properties, and antimicrobial activity. Both samples displayed a hexagonal wurtzite ZnO structure, wherein the crystal sizes diminished with lower calcination temperatures according to X-ray diffraction. The scanning electron microscopy analysis revealed that lowering the calcination temperature resulted in a decrease in the grain size of the ZnO NCs, as expected. This reduction in grain size combined with a decrease in crystal size resulted in a significant 40% reduction in the reflectance of the ZnO NCs in UV-vis-NIR spectroscopy. It was also observed that the ZnO NCs calcined at higher temperatures exhibited larger particle sizes with a reduced surface area mean of 69.30 μm and a stable negative zeta potential of -11.2 mV. In contrast, the ZnO NCs calcined at lower temperatures exhibited a larger surface area mean of 34.56 μm and a positive zeta potential of +10 mV. In both cell lines, the cytotoxic potential was found to be higher in HepG2 cells. Specifically, when ZnO nanocrystals (NCs) with a crystal size of 52.65 nm were used, the lowest cell viability was observed at a concentration of 5.74 μg/mL. Based on oxidative stress index values, a lower crystal size of ZnO NCs displayed greater effectiveness in HT29 cells, while a higher crystal size of ZnO NCs had pronounced effects in HepG2 cells. Moreover, both ZnO NCs exhibited significant antimicrobial activity against Gram-positive bacteria (Enterococcus faecalis and Staphylococcus aureus) and Candida parapsilopsis fungus. These findings emphasize sol-gel ZnO NCs' potential as versatile agents in nanomedicine, spurring research on targeted cancer therapies and antimicrobial innovations.
Collapse
Affiliation(s)
- Busra Eren
- Institute
of Biotechnology, Gebze Technical University, Gebze, Kocaeli 41400, Turkey
| | - Meliha Koldemir Gunduz
- Faculty
of Engineering and Natural Sciences, Department of Basic Sciences
of Engineering, Kutahya Health Sciences
University, Kütahya 43100, Turkey
| | - Gullu Kaymak
- Training
and Research Center, Kutahya Health Sciences
University, Kütahya 43500, Turkey
| | - Derya Berikten
- Faculty
of Engineering and Natural Sciences, Department of Molecular Biology
and Genetics, Kütahya Health Sciences
University, Kütahya 43100, Turkey
| | - Zehra Banu Bahsi
- Institute
of Biotechnology, Gebze Technical University, Gebze, Kocaeli 41400, Turkey
| |
Collapse
|
20
|
Chen M, Wu T. Nanoparticles and neurodegeneration: Insights on multiple pathways of programmed cell death regulated by nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168739. [PMID: 38008311 DOI: 10.1016/j.scitotenv.2023.168739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/13/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Currently, nanoparticles (NPs) are extensively applied in the diagnosis and treatment of neurodegenerative diseases (NDs). With the rapid development and increasing exposure to the public, the potential neurotoxicity associated with NDs caused by NPs has attracted the researchers' attentions but their biosafety assessments are still far behind relevant application studies. Based on recent research, this review aims to conduct a comprehensive and systematic analysis of neurotoxicity induced by NPs. The 191 studies selected according to inclusion and exclusion criteria were imported into the software, and the co-citations and keywords of the included literatures were analyzed to find the breakthrough point of previous studies. According to the available studies, the routes of NPs entering into the normal and injured brain were various, and then to be distributed and accumulated in living bodies. When analyzing the adverse effects induced by NPs, we focused on multiple programmed cell deaths (PCDs), especially ferroptosis triggered by NPs and their tight connection and crosstalk that have been found playing critical roles in the pathogenesis of NDs and their underlying toxic mechanisms. The activation of multiple PCD pathways by NPs provides a scientific basis for the occurrence and development of NDs. Furthermore, the adoption of new methodologies for evaluating the biosafety of NPs would benefit the next generation risk assessment (NGRA) of NPs and their toxic interventions. This would help ensure their safe application and sustainable development in the field of medical neurobiology.
Collapse
Affiliation(s)
- Min Chen
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, PR China.
| |
Collapse
|
21
|
Anyaegbunam NJ, Mba IE, Ige AO, Ogunrinola TE, Emenike OK, Uwazie CK, Ujah PN, Oni AJ, Anyaegbunam ZKG, Olawade DB. Revisiting the smart metallic nanomaterials: advances in nanotechnology-based antimicrobials. World J Microbiol Biotechnol 2024; 40:102. [PMID: 38366174 DOI: 10.1007/s11274-024-03925-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/08/2024] [Indexed: 02/18/2024]
Abstract
Despite significant advancements in diagnostics and treatments over the years, the problem of antimicrobial drug resistance remains a pressing issue in public health. The reduced effectiveness of existing antimicrobial drugs has prompted efforts to seek alternative treatments for microbial pathogens or develop new drug candidates. Interestingly, nanomaterials are currently gaining global attention as a possible next-generation antibiotics. Nanotechnology holds significant importance, particularly when addressing infections caused by multi-drug-resistant organisms. Alternatively, these biomaterials can also be combined with antibiotics and other potent biomaterials, providing excellent synergistic effects. Over the past two decades, nanoparticles have gained significant attention among research communities. Despite the complexity of some of their synthesis strategies and chemistry, unrelenting efforts have been recorded in synthesizing potent and highly effective nanomaterials using different approaches. With the ongoing advancements in nanotechnology, integrating it into medical procedures presents novel approaches for improving the standard of patient healthcare. Although the field of nanotechnology offers promises, much remains to be learned to overcome the several inherent issues limiting their full translation to clinics. Here, we comprehensively discussed nanotechnology-based materials, focusing exclusively on metallic nanomaterials and highlighting the advances in their synthesis, chemistry, and mechanisms of action against bacterial pathogens. Importantly, we delve into the current challenges and prospects associated with the technology.
Collapse
Affiliation(s)
- Ngozi J Anyaegbunam
- Measurement and Evaluation unit, Science Education Department, University of Nigeria, Nsukka, Nigeria
| | - Ifeanyi Elibe Mba
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria Nsukka, Nsukka, Nigeria.
| | - Abimbola Olufunke Ige
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | | | | | | | - Patrick Ndum Ujah
- 7Department of Education Foundations, University of Nigeria Nsukka, Nsukka, Nigeria
| | - Ayodele John Oni
- Department of Industrial chemistry, Federal University of Technology, Akure, Nigeria
| | | | - David B Olawade
- Department of Allied and Public Health, School of Health, Sport and Bioscience, University of East London, London, UK
| |
Collapse
|
22
|
Fatima A, Zaheer T, Pal K, Abbas RZ, Akhtar T, Ali S, Mahmood MS. Zinc Oxide Nanoparticles Significant Role in Poultry and Novel Toxicological Mechanisms. Biol Trace Elem Res 2024; 202:268-290. [PMID: 37060542 DOI: 10.1007/s12011-023-03651-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/27/2023] [Indexed: 04/16/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) have involved a lot of consideration owing to their distinctive features. The ZnO NPs can be described as particularly synthesized mineral salts via nanotechnology, varying in size from 1 to 100 nm, while zinc oxide (ZnO), it is an inorganic substrate of zinc (Zn). The Zn is a critical trace element necessary for various biological and physiological processes in the body. Studies have revealed ZnO NPs' efficient immuno-modulatory, growth-promoting, and antimicrobial properties in poultry birds. They offer increased bioavailability as compared to their traditional sources, producing better results in terms of productivity and welfare and consequently reducing ecological harm in the poultry sector. However, they have also been reported for their toxicological effects, which are size, shape, concentration, and exposure route dependent. The investigations done so far have yielded inconsistent results, therefore, a lot of additional studies and research are required to clarify the harmful consequences of ZnO NPs and to bring them to a logical end. This review explores an overview of efficient possible role of ZnO NPs, while comparing them with other nutritional Zn sources, in the poultry industry, primarily as dietary supplements that effect the growth, health, and performance of the birds. In addition to the anti-bacterial mechanisms of ZnO NPs and their promising role as antifungal, and anti-colloidal agent, this paper also covers the toxicological mechanisms of ZnO NPs and their consequent toxicological hazards to vital organs and the reproductive system of poultry birds.
Collapse
Affiliation(s)
- Arjmand Fatima
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Tean Zaheer
- Institute of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Kaushik Pal
- University Center for Research and Development (UCRD), Department of Physics, Chandigarh University, Mohali, Gharuan, Punjab, 140413, India.
| | - Rao Zahid Abbas
- Institute of Parasitology, University of Agriculture, Faisalabad, Pakistan.
| | - Tayyaba Akhtar
- KBCMA College of Veterinary and Animal Sciences, Sub-Campus UVAS-Lahore, Narowal, Pakistan
| | - Sultan Ali
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | | |
Collapse
|
23
|
Møller P, Roursgaard M. Gastrointestinal tract exposure to particles and DNA damage in animals: A review of studies before, during and after the peak of nanotoxicology. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 793:108491. [PMID: 38522822 DOI: 10.1016/j.mrrev.2024.108491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/08/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Humans ingest particles and fibers on daily basis. Non-digestible carbohydrates are beneficial to health and food additives are considered safe. However, titanium dioxide (E171) has been banned in the European Union because the European Food Safety Authority no longer considers it non-genotoxic. Ingestion of microplastics and nanoplastics are novel exposures; their potential hazardous effects to humans have been under the radar for many years. In this review, we have assessed the association between oral exposure to man-made particles/fibers and genotoxicity in gastrointestinal tract cells and secondary tissues. We identified a total of 137 studies on oral exposure to particles and fibers. This was reduced to 49 papers with sufficient quality and relevance, including exposures to asbestos, diesel exhaust particles, titanium dioxide, silver nanoparticles, zinc oxide, synthetic amorphous silica and certain other nanomaterials. Nineteen studies show positive results, 25 studies show null results, and 5 papers show equivocal results on genotoxicity. Recent studies seem to show null effects, whereas there is a higher proportion of positive genotoxicity results in early studies. Genotoxic effects seem to cluster in studies on diesel exhaust particles and titanium dioxide, whereas studies on silver nanoparticles, zinc oxide and synthetic amorphous silica seem to show mainly null effects. The most widely used genotoxic tests are the alkaline comet assay and micronucleus assay. There are relatively few results on genotoxicity using reliable measurements of oxidatively damaged DNA, DNA double strand breaks (γH2AX assay) and mutations. In general, evidence suggest that oral exposure to particles and fibers is associated with genotoxicity in animals.
Collapse
Affiliation(s)
- Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, Copenhagen K DK-1014, Denmark.
| | - Martin Roursgaard
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, Copenhagen K DK-1014, Denmark
| |
Collapse
|
24
|
Liao Z, Liu X, Fan D, Sun X, Zhang Z, Wu P. Autophagy-mediated nanomaterials for tumor therapy. Front Oncol 2023; 13:1194524. [PMID: 38192627 PMCID: PMC10773885 DOI: 10.3389/fonc.2023.1194524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/30/2023] [Indexed: 01/10/2024] Open
Abstract
Autophagy is a lysosomal self-degradation pathway that plays an important protective role in maintaining intracellular environment. Deregulation of autophagy is related to several diseases, including cancer, infection, neurodegeneration, aging, and heart disease. In this review, we will summarize recent advances in autophagy-mediated nanomaterials for tumor therapy. Firstly, the autophagy signaling pathway for tumor therapy will be reviewed, including oxidative stress, mammalian target of rapamycin (mTOR) signaling and autophagy-associated genes pathway. Based on that, many autophagy-mediated nanomaterials have been developed and applied in tumor therapy. According to the different structure of nanomaterials, we will review and evaluate these autophagy-mediated nanomaterials' therapeutic efficacy and potential clinical application.
Collapse
Affiliation(s)
- Zijian Liao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Dianfa Fan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Xingjun Sun
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhikun Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Pan Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
25
|
Al-Azhary DB, Sawy SA, Fawzy Hassan H, Meligi NM. Potential effects of spirulina and date palm pollens on zinc oxide nanoparticles -induced hepatoxicity, oxidative stress, and inflammation in male albino rats. Toxicol Res (Camb) 2023; 12:1051-1062. [PMID: 38145102 PMCID: PMC10734569 DOI: 10.1093/toxres/tfad096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/12/2023] [Accepted: 09/30/2023] [Indexed: 12/26/2023] Open
Abstract
INTRODUCTION The application of Zinc oxide nanoparticles (ZnO NPs) is substantially growing in industrial products. Therefore, humans are increasingly exposed to ZnO NPs daily due to their extensive range of applications, raising worries about their possible toxicity. AIM In this study, the ameliorative effects of raw Phoenix dactylifera L. (date palm) pollens (DPP) and Spirulina platensis (SP) independently against ZnO NPS-induced hepatoxicity in male albino rats were examined. METHODS Six groups (6/group) of adult male albino rats received oral treatment using distilled water (control), SP (1000 mg/kg b. wt.), DPP (100 mg/kg b. wt.), ZnO NPs (100 mg/kg b. wt.), ZnO NPs +SP, and ZnO NPs + DPP respectively for 15 days. RESULTS The results of the biochemical investigation indicated that the administration of ZnO NPs substantially upregulated (p < 0.05) transaminases, alkaline phosphatase, and bilirubin serum levels. Malondialdehyde and pro-inflammatory cytokine serum levels were also elevated after ZnO NPs administration. Simultaneously, the downregulated catalase and glutathione peroxidase serum activities were significantly suppressed in ZnO NPs treated rats. Moreover, exposure to ZnO NPs induced liver histopathological alterations. The administration of SP and DPP ameliorated the aforementioned effects caused by ZnO NPs. This result can be attributable to the downregulation of hepatic transaminases, alkaline phosphatase, and bilirubin in the serum and the antioxidation system's equilibration, thus alleviating the accumulation of reactive oxygen species. CONCLUSION SP and DPP are natural antioxidants with the potential to eliminate inflammation as well as oxidative damage caused by ZnO NPs in hepatic tissue.
Collapse
Affiliation(s)
- Diaa B Al-Azhary
- Zoology Department, Faculty of Science, Minia University, Cairo-Aswan Road, Minia 61519, Egypt
| | - Samar A Sawy
- Zoology Department, Faculty of Science, Minia University, Cairo-Aswan Road, Minia 61519, Egypt
| | - Hanaa Fawzy Hassan
- Zoology Department, Faculty of Science, Minia University, Cairo-Aswan Road, Minia 61519, Egypt
| | - Noha M Meligi
- Zoology Department, Faculty of Science, Minia University, Cairo-Aswan Road, Minia 61519, Egypt
| |
Collapse
|
26
|
Abdel Fattah S, Ibrahim MEED, El-Din SS, Emam HS, Algaleel WAA. Possible therapeutic role of zinc oxide nanoparticles versus vanillic acid in testosterone-induced benign prostatic hyperplasia in adult albino rat: A histological, immunohistochemical and biochemical study. Life Sci 2023; 334:122190. [PMID: 37866805 DOI: 10.1016/j.lfs.2023.122190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND The search for alternative therapies for treatment of Benign prostatic hyperplasia (BPH) has been increasingly studied to avoid the common adverse effects of the usual regimens. Therefore, this study aimed at delineating possible mechanisms of benign prostatic hyperplasia (BPH) and possible therapeutic role of zinc oxide nanoparticles (ZnO-NPs) versus vanillic acid. METHODS Forty rats were divided into five groups: control, sham control, Testosterone-induced BPH, BPH and Zn-NPs, and BPH and vanillic acid. Light microscopic, immune-histochemical; PCNA, Bcl-2, Bax, caspase-3, p-Akt and p-mTOR, histomorphometric analysis, MDA/SOD and GPx and were done. Gene expression of p-Akt, p-mTOR and survivin were evaluated. RESULTS Application of zinc oxide nanoparticles as well as vanillic acid significantly reduced prostatic index, epithelial thickness, stromal collagen fibers, expression of PCNA, Bcl2, p-Akt, p-mTOR and MDA tissue level (p < 0.05). Whereas expression of Bax and caspase 3, and tissue levels of SOD and GPx were significantly increased in groups treated with Zno-Nps and vanillic acid compared to that of BPH group. Zinc oxide nanoparticles showed a better effect than vanillic acid in alleviating BPH. CONCLUSION These findings suggested that ZnO-NPs as well as VA ameliorated the histolo-pathological and biochemical effects of induced BPH, moreover they improved the proapoptotic and antioxidant parameters which ere induced in BPH. It is recommended to search for new agents to prevent the development and progression of BPH.
Collapse
Affiliation(s)
- Shereen Abdel Fattah
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Egypt
| | | | - Shimaa Saad El-Din
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Egypt.
| | - Hadeel Sayed Emam
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Egypt
| | | |
Collapse
|
27
|
Farag MR, Alagawany M, Alsulami LS, Di Cerbo A, Attia Y. Ameliorative effects of Dunaliella salina microalgae on nanoparticle (ZnO NPs)-induced toxicity in fish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:121915-121928. [PMID: 37957498 DOI: 10.1007/s11356-023-30933-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
Dunaliella salina (D. salina) is a well-known microalga that contains considerable amounts of nutritious and medicinal bioactive components. This work studied the modulatory role of D. salina against zinc oxide nanoparticle (ZnO NPs)-induced neurotoxic effects in adult zebrafish. Fishes were subjected to 0.69 mg L-1 (1/5th 96-h LC50) for 4 weeks; then, fishes were supplemented with D. salina in the diet for 2 weeks at two levels (15 and 30%). Exposure to ZnO NPs induced a significant increase in the levels of reactive oxygen species (ROS), hydrogen peroxide (H2O2), malondialdehyde (MDA), and 8-hydroxy-2-deoxyguanosine (8-OH-dG) while accompanied with downregulation of antioxidant genes in the brain of exposed fishes. Brain neurochemistry and enzyme activities were also altered following ZnO NP exposure. ZnO NPs significantly reduced the neurotransmitters and acetylcholinesterase (AchE) activity while increasing Alzheimer's disease-related proteins and inflammatory response via upregulation of tumor necrosis factor (TNF-α). Additionally, ZnO NPs increased the indices of brain's DNA oxidative damage, increasing brain tissue's metallothionein (MT) and zinc residues. ZnO NPs upregulated the transcription patterns of apoptosis-related genes (casp3 and p53). D. salina dietary co-supplementation with ZnO NPs alleviated the ZnO NPsZnO NP-induced neuro-oxidative damages by lowering the lipid, DNA damage, and inflammatory biomarkers. Besides, D. salina alleviating responses were linked with increasing the levels of the assessed antioxidants. Conclusively, D. salina dietary supplementation induced potential alleviating effects of the ZnO NP-induced neurotoxicity in adult zebrafish.
Collapse
Affiliation(s)
- Mayada R Farag
- Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig, 44519, Egypt.
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Lafi S Alsulami
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Youssef Attia
- Department of Agriculture, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
28
|
Hamdi E, Muñiz-Gonzalez AB, Hidouri S, Bermejo AM, Sakly M, Venero C, Amara S. Prevention of neurotoxicity and cognitive impairment induced by zinc nanoparticles by oral administration of saffron extract. J Anim Physiol Anim Nutr (Berl) 2023; 107:1473-1494. [PMID: 37246965 DOI: 10.1111/jpn.13848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/29/2022] [Accepted: 05/09/2023] [Indexed: 05/30/2023]
Abstract
The accumulation of relatively higher dose of zinc oxide nanoparticles in brain was reported to produce neurotoxicity. Indeed, nanoparticles have a high ability to penetrate biological membranes and be uptaken by cells, which may cause cell disorders and physiological dysfunctions. The aim of the current study was to evaluate, whether oral administration of saffron extract, in rats, can protect from neurotoxicity and behavioural disturbances induced by chronic administration of ZnO-NPs. Daily oral administration of ZnO-NPs was performed for 21 consecutive days to induce oxidative stress-like situation. Then after the saffron extract was concomitantly administrated in several rat groups to overcome the nanotoxicological effect induced by ZnO-NPs. In the frontal cortex, the hippocampus and the cerebellum, ZnO-NPs induced a H2 O2 -oxydative stress-like effect reflected in reduced enzymatic activities of catalase, superoxide dismutase and glutathione S-transferase, and decreased acetylcholinesterase activity. In addition, increased levels of proinflammatory interleukins IL-6 and IL-1-⍺ occurred in the hippocampus, reveal the existence of brain inflammation. The concomitant administration of saffron extract to animals exposed to ZnO-NPs prevented the enhanced anxiety-related to the behaviour in the elevated plus-maze test, the open field test and preserved spatial learning abilities in the Morris water maze. Moreover, animals exposed to ZnO-NPs and saffron showed abnormal activity of several antioxidant enzymes as well as acetylcholinesterase activity, an effect that may underly the preserved anxiety-like behaviour and spatial learning abilities observed in these animals. Saffron extract has a potential beneficial therapeutic effect: antioxidant, anti-inflammatory and neuroprotective agent.
Collapse
Affiliation(s)
- Essia Hamdi
- Laboratory of Integrative Physiology, Department of Sciences of Life, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna, Tunisia
- Department of Mathematical and Fluid Physics, Environmental Toxicology and Biology Group, UNED, Madrid, Spain
- Department of Psychobiology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Ana-Belén Muñiz-Gonzalez
- Department of Mathematical and Fluid Physics, Environmental Toxicology and Biology Group, UNED, Madrid, Spain
| | - Slah Hidouri
- Department of Chemistry, Faculté des Sciences de Bizerte, Zarzouna, Tunisie
| | - Alberto M Bermejo
- Department of Psychobiology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Mohsen Sakly
- Laboratory of Integrative Physiology, Department of Sciences of Life, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna, Tunisia
| | - César Venero
- Department of Psychobiology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Salem Amara
- Laboratory of Integrative Physiology, Department of Sciences of Life, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna, Tunisia
- Department of Natural and Applied Sciences in Afif, Afif, Faculty of Sciences and Humanities, Shaqra University, Sahqra, Saudi Arabia
| |
Collapse
|
29
|
Khalil SR, Zheng C, Abou-Zeid SM, Farag MR, Elsabbagh HS, Siddique MS, Azzam MM, Cerbo AD, Elkhadrawey BA. Modulatory effect of thymol on the immune response and susceptibility to Aeromonas hydrophila infection in Nile tilapia fish exposed to zinc oxide nanoparticles. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 259:106523. [PMID: 37058790 DOI: 10.1016/j.aquatox.2023.106523] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 05/15/2023]
Abstract
Zinc oxide nanoparticles (ZnO-NPs) have many exciting properties that make their use in a continuous increase in various biomedical, industrial, and agricultural applications. This is associated with accumulation in the aquatic ecosystems and fish exposure with consequent deleterious effects. To determine the potential of thymol to counteract the immunotoxic effects of ZnO-NPs, Oreochromis niloticus was exposed to ZnO-NPs (⅕ LC50 =1.14 mg/L, for 28 days) with or without feeding a thymol-incorporated diet (1 or 2 g/kg diet). Our data demonstrated a reduction of aquaria water quality, leukopenia, and lymphopenia with a decrease in serum total protein, albumin, and globulin levels in exposed fish. At the same time, the stress indices (cortisol and glucose) were elevated in response to ZnO-NPs exposure. The exposed fish also revealed a decline in serum immunoglobulins, nitric oxide, and the activities of lysozyme and myeloperoxidase, in addition to reduced resistance to the Aeromonas hydrophila challenge. The RT-PCR analysis showed downregulation of antioxidant (SOD) superoxide dismutase and (CAT) catalase gene expression in the liver tissue with overexpression of the immune-related genes (TNF-α and IL-1β). Importantly, we found that thymol markedly protected against ZnO-NPs-induced immunotoxicity in fish co-supplemented with thymol (1 or 2 g/kg diet) in a dose-dependent manner. Our data confirm the immunoprotective and antibacterial effects of thymol in ZnO-NPs exposed fish, supporting the potential utility of thymol as a possible immunostimulant agent.
Collapse
Affiliation(s)
- Samah R Khalil
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Chuntian Zheng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China.
| | - Shimaa M Abou-Zeid
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, University of Sadat City, 32897, Egypt
| | - Mayada R Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Hesham S Elsabbagh
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, University of Sadat City, 32897, Egypt
| | - Mouhamed S Siddique
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, University of Sadat City, 32897, Egypt
| | - Mahmoud M Azzam
- Department of Animal Production College of Food & Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy.
| | - Basma A Elkhadrawey
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, University of Sadat City, 32897, Egypt
| |
Collapse
|
30
|
Bi J, Mo C, Li S, Huang M, Lin Y, Yuan P, Liu Z, Jia B, Xu S. Immunotoxicity of metal and metal oxide nanoparticles: from toxic mechanisms to metabolism and outcomes. Biomater Sci 2023. [PMID: 37161951 DOI: 10.1039/d3bm00271c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The influence of metal and metal oxide nanomaterials on various fields since their discovery has been remarkable. They have unique properties, and therefore, have been employed in specific applications, including biomedicine. However, their potential health risks cannot be ignored. Several studies have shown that exposure to metal and metal oxide nanoparticles can lead to immunotoxicity. Different types of metals and metal oxide nanoparticles may have a negative impact on the immune system through various mechanisms, such as inflammation, oxidative stress, autophagy, and apoptosis. As an essential factor in determining the function and fate of immune cells, immunometabolism may also be an essential target for these nanoparticles to exert immunotoxic effects in vivo. In addition, the biodegradation and metabolic outcomes of metal and metal oxide nanoparticles are also important considerations in assessing their immunotoxic effects. Herein, we focus on the cellular mechanism of the immunotoxic effects and toxic effects of different types of metal and metal oxide nanoparticles, as well as the metabolism and outcomes of these nanoparticles in vivo. Also, we discuss the relationship between the possible regulatory effect of nanoparticles on immunometabolism and their immunotoxic effects. Finally, we present perspectives on the future research and development direction of metal and metal oxide nanomaterials to promote scientific research on the health risks of nanomaterials and reduce their adverse effects on human health.
Collapse
Affiliation(s)
- Jiaming Bi
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Chuzi Mo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Siwei Li
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Mingshu Huang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Yunhe Lin
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Peiyan Yuan
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Zhongjun Liu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Bo Jia
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Shuaimei Xu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
31
|
Ucar A, Yeltekin AÇ, Köktürk M, Calimli MH, Nas MS, Parlak V, Alak G, Atamanalp M. Has PdCu@GO effect on oxidant/antioxidant balance? Using zebrafish embryos and larvae as a model. Chem Biol Interact 2023; 378:110484. [PMID: 37054932 DOI: 10.1016/j.cbi.2023.110484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/22/2023] [Accepted: 04/08/2023] [Indexed: 04/15/2023]
Abstract
Industrial products containing PdCu@GO can gain access to the aquaculture environment, causing dangerous effects on living biota. In this study, the developmental toxicity of zebrafish treated with different concentrations (50, 100, 250, 500 and 1000 μg/L) of PdCu@GO was investigated. The findings showed that PdCu@GO administration decreased the hatchability and survival rate, caused dose-dependent cardiac malformation. Reactive oxygen species (ROS) and apoptosis were also inhibited in a dose-dependent manner, with acetylcholinesterase (AChE) activity affected by nano-Pd exposure. As evidence for oxidative stress, malondialdehyde (MDA) level increased and superoxide dismutase (SOD), catalase (CAT) glutathione peroxidase (GPx) activities and glutathione (GSH) level decreased due to the increase in PdCu@GO concentration. Our research, it was determined that the oxidative stress stimulated by the increase in the concentration of PdCu@GO in zebrafish caused apoptosis (Caspase-3) and DNA damage (8-OHdG). Stimulation of ROS, inflammatory cytokines, tumor Necrosis Factor Alfa (TNF-α) and interleukin - 6 (IL-6), which act as signaling molecules to trigger proinflammatory cytokine production, induced zebrafish immunotoxicity. However, it was determined that the increase of ROS induced teratogenicity through the induction of nuclear factor erythroid 2 level (Nrf-2), NF-κB and apoptotic signaling pathways triggered by oxidative stress. Taken together with the research findings, the study contributed to a comprehensive assessment of the toxicological profile of PdCu@GO by investigating the effects on zebrafish embryonic development and potential molecular mechanisms.
Collapse
Affiliation(s)
- Arzu Ucar
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, Erzurum, Turkey.
| | | | - Mine Köktürk
- Department of Organic Agriculture Management, Faculty of Applied Sciences, Igdir University, TR-76000, Igdir, Turkey; Research Laboratory Application and Research Center (ALUM), Iğdır University, TR-76000, Iğdır, Turkey
| | - Mehmet Harbi Calimli
- Department of Medical Services and Techniques, Tuzluca Vocational School, Igdir University, TR-76000, Igdir, Turkey; Research Laboratory Application and Research Center (ALUM), Iğdır University, TR-76000, Iğdır, Turkey
| | - Mehmet Salih Nas
- Department of Environmental Engineering, Faculty of Engineering, Igdir University, TR-76000, Igdir, Turkey; Research Laboratory Application and Research Center (ALUM), Iğdır University, TR-76000, Iğdır, Turkey
| | - Veysel Parlak
- Department of Basic Sciences, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| | - Gonca Alak
- Department of Seafood Processing Technology, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| | - Muhammed Atamanalp
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, Erzurum, Turkey.
| |
Collapse
|
32
|
Anand R, Kumar L, Mohan L, Bharadvaja N. Nano-inspired smart medicines targeting brain cancer: diagnosis and treatment. J Biol Inorg Chem 2023; 28:1-15. [PMID: 36449063 DOI: 10.1007/s00775-022-01981-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/01/2022] [Indexed: 12/02/2022]
Abstract
Cancer, despite being the bull's eye for the research community, accounts for a large number of morbidity and mortality. Cancer of the brain is considered the most intractable, with the least diagnosis rates, hence treatment and survival. Despite the extensive development of therapeutic molecules, their targeting to the diseased site is a challenge. Specially tailored nanoparticles can efficiently deliver drugs and genes to the brain to treat tumours and diseases. These nanotechnology-based strategies target the blood-brain barrier, the local space, or a specific cell type. These nanoparticles are preferred over other forms of targeted drug delivery due to the chances for controlled delivery of therapeutic cargo to the intended receptor. Targeted cancer therapy involves using specific receptor-blocking compounds that block the spreading or growth of cancerous cells. This review presents an account of the recent applications of nano-based cancer theragnostic, which deal in conjunct functionalities of nanoparticles for effective diagnosis and treatment of cancer. It commences with an introduction to tumours of the brain and their grades, followed by hurdles in its conventional diagnosis and treatment. The characteristic mechanism of nanoparticles for efficiently tracing brain tumour grade and delivery of therapeutic genes or drugs has been summarised. Nanocarriers like liposomes have been widely used and commercialized for human brain cancer treatment. However, nano-inspired structures await their translational recognition. The green synthesis of nanomaterials and their advantages have been discussed. The article highlights the challenges in the nano-modulation of brain cancer and its future outlook.
Collapse
Affiliation(s)
- Raksha Anand
- Plant Biotechnology Laboratory, Department of Biotechnology, Delhi Technological University, New Delhi, Delhi, India
| | - Lakhan Kumar
- Plant Biotechnology Laboratory, Department of Biotechnology, Delhi Technological University, New Delhi, Delhi, India
| | - Lalit Mohan
- Plant Biotechnology Laboratory, Department of Biotechnology, Delhi Technological University, New Delhi, Delhi, India
| | - Navneeta Bharadvaja
- Plant Biotechnology Laboratory, Department of Biotechnology, Delhi Technological University, New Delhi, Delhi, India.
| |
Collapse
|
33
|
Zhou X, Gao S, Yue M, Zhu S, Liu Q, Zhao XE. Recent advances in analytical methods of oxidative stress biomarkers induced by environmental pollutant exposure. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
34
|
Yang C, Lu Z, Xia Y, Zhang J, Zou Z, Chen C, Wang X, Tian X, Cheng S, Jiang X. Alterations of Gut-Derived Melatonin in Neurobehavioral Impairments Caused by Zinc Oxide Nanoparticles. Int J Nanomedicine 2023; 18:1899-1914. [PMID: 37057188 PMCID: PMC10088905 DOI: 10.2147/ijn.s386240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 12/24/2022] [Indexed: 04/15/2023] Open
Abstract
Purpose The widespread use of zinc oxide nanoparticles (ZnONPs) has raised concerns about its potential toxicity. Melatonin is a neurohormone with tremendous anti-toxic effects. The enterochromaffin cells are an essential source of melatonin in vivo. However, studies on the effects of ZnONPs on endogenous melatonin are minimal. In the present study, we aimed to investigate the effects of ZnONPs exposure on gut-derived melatonin. Methods In the present study, 64 adult male mice were randomly and equally divided into four groups, and each group was exposed to ZnONPs (0, 6.5, 13, 26 mg/kg/day) for 30 days. Subsequently, the neurobehavioral changes were observed. The effects of ZnONPs on the expression of melatonin-related genes arylalkylamine N-acetyltransferase (Aanat), melatonin receptor1A (Mt1/Mtnr1a), melatonin receptor1B (Mt2/Mtnr1b), and neuropeptide Y (Npy) on melatonin synthesis and secretion in duodenum, jejunum, ileum and colon during day and night were also assessed. Results The results revealed that oral exposure to ZnONPs induced impairments of locomotor activity and anxiety-like behavior in adult mice during the day. The transcriptional analysis of brain tissues revealed that exposure to ZnONPs caused profound effects on genes and transcriptional signaling pathways associated with melatonin synthesis and metabolic processes during the day and night. We also observed that, in the duodenum, jejunum, ileum and colon sites, ZnONPs resulted in a significant reduction in the expression of the gut-derived melatonin rate-limiting enzyme Aanat, the membrane receptors Mt1 and Mt2 and Npy during the day and night. Conclusion Taken together, this is the first study shows that oral exposure to ZnONPs interferes with melatonin synthesis and secretion in different intestinal segments of adult mice. These findings will provide novelty insights into the neurotoxic mechanisms of ZnONPs and suggest an alternative strategy for the prevention of ZnONP neurotoxicity.
Collapse
Affiliation(s)
- Cantao Yang
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Zhaohong Lu
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Yinyin Xia
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Jun Zhang
- Molecular Biology Laboratory of Respiratory Diseases, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Zhen Zou
- Molecular Biology Laboratory of Respiratory Diseases, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Xiaoliang Wang
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
| | - Xin Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Shuqun Cheng
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Correspondence: Shuqun Cheng; Xuejun Jiang, Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Number 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, People’s Republic of China, Tel +86-23-68485008, Fax +86-23-68485207, Email ;
| | - Xuejun Jiang
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| |
Collapse
|
35
|
Habibi P, Ostad SN, Monazzam MR, Foroushani AR, Ghazi-Khansari M, Aliebrahimi S, Montazeri V, Golbabaei F. Thermal stress and TiO 2 nanoparticle-induced oxidative DNA damage and apoptosis in mouse hippocampus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:90128-90139. [PMID: 35864393 DOI: 10.1007/s11356-022-21796-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Titanium dioxide (nano-TiO2) is used abundantly in various industrial products and novel medical therapies. In addition, the impact of climate change on the health and safety will undoubtedly increase in the future. However, the effects of exposure to these nanoparticles and heat stress on hippocampal DNA damage and apoptosis remain unclear. This study was conducted to evaluate the DNA damage and apoptosis in the hippocampal tissue and the physiological responses in mice induced by intraperitoneal (i.p.) administration of TiO2 nanoparticles (NPs) and heat stress for 14 consecutive days. The results showed that heat stress and TiO2-NPs were induced in the mouse hippocampus that led to hippocampal reactive oxygen species generation, oxidative damage of DNA, and apoptosis in a partly dose-dependent manner, especially at very hot temperature. High doses of nanosized TiO2 and severe heat stress significantly damaged the function of the hippocampus, as shown in the comet assay and apoptosis tests. The results of this study may provide data for appropriate measures to control and assess the risk of nano-TiO2 and thermal stress hazards to human health, especially workers. Safety guidelines and policies should be considered when handling nanomaterials in a hot environment.
Collapse
Affiliation(s)
- Peymaneh Habibi
- Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Nasser Ostad
- Toxicology and Poisoning Research Centre, Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Monazzam
- Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Rahimi Foroushani
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Ghazi-Khansari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Aliebrahimi
- Department of Medical Education, Virtual University of Medical Sciences, Tehran, Iran
| | - Vahideh Montazeri
- Department of Clinical Pharmacy, Virtual University of Medical Sciences, Tehran, Iran
| | - Farideh Golbabaei
- Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
36
|
Jeyhoonabadi M, Alimoahmmadi S, Hassanpour S, Hashemnia M. Betaine Ameliorates Depressive-Like Behaviors in Zinc Oxide Nanoparticles Exposed Mice. Biol Trace Elem Res 2022; 200:4771-4781. [PMID: 34993911 DOI: 10.1007/s12011-021-03068-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/13/2021] [Indexed: 11/30/2022]
Abstract
The aim of the current study was to determine protective effects of betaine on depressive-like behaviors in zinc oxide nanoparticles (ZnO NPs) exposed mice. Forty male mice randomly allocated into four experimental groups. Group 1 kept as control and groups 2-4 received oral administration of betaine (30 mg/kg), ZnO NPs (600 mg/kg), and ZnO NPs (600 mg/kg) 1 h after pre-administration of betaine (30 mg/kg) for 7 days, respectively. Then, forced swimming test (FST), tail suspension test (TST), open field test (OFT), and rotarod tests were done. Furthermore, serum malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPx), and total antioxidant capacity (TAC) levels were determined. Hippocampal tissue samples were collected for histopathological assessment. According to the results, treatment with ZnO NPs significantly increased immobility time in the FST and TST (P<0.05). Betaine significantly decreased immobility time in the FST and TST (P<0.05). Pretreatment with betaine significantly decreased ZnO NPs-induced alterations in the FST and TST (P<0.05). The duration of staying on the rotarod and the numbers of crossings in the OFT significantly decreased in the mice that received ZnO NPs (P<0.05). These results were significantly improved in betaine+ZnO NPs treated mice as compared to the ZnO NPs group (P<0.05). Treatment with ZnO NPs significantly increased serum MDA level while decreased SOD and GPx compared to the control group (P<0.05). These changes were effectively ameliorated by pretreatment with betaine compared to the ZnO NPs group (P<0.05). No significant effect on serum TAC level was observed in all groups (P˃0.05). Administration of ZnO NPs decreased the thickness of hippocampus and pyramidal neurons in the hippocampal dentate gyrus (DG) and CA1 regions were sparsely arranged. Pretreatment with betaine caused an improvement in the histological features of the hippocampus when compared with ZnO NPs-treated mice. Taken together, these results suggest that betaine has protective role against ZnO NPs-induced toxicity in mice.
Collapse
Affiliation(s)
- Mohsen Jeyhoonabadi
- Department of Basic Sciences and Pathobiology, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| | - Samad Alimoahmmadi
- Department of Basic Sciences and Pathobiology, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| | - Shahin Hassanpour
- Section of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Mohammad Hashemnia
- Department of Basic Sciences and Pathobiology, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| |
Collapse
|
37
|
Vineeth Kumar CM, Karthick V, Kumar VG, Inbakandan D, Rene ER, Suganya KSU, Embrandiri A, Dhas TS, Ravi M, Sowmiya P. The impact of engineered nanomaterials on the environment: Release mechanism, toxicity, transformation, and remediation. ENVIRONMENTAL RESEARCH 2022; 212:113202. [PMID: 35398077 DOI: 10.1016/j.envres.2022.113202] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/24/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
The presence and longevity of nanomaterials in the ecosystem, as well as their properties, account for environmental toxicity. When nanomaterials in terrestrial and aquatic systems are exposed to the prevailing environmental conditions, they undergo various transformations such as dissociation, dissolution, and aggregation, which affects the food chain. The toxicity of nanomaterials is influenced by a variety of factors, including environmental factors and its physico-chemical characteristics. Bioaccumulation, biotransformation, and biomagnification are the mechanisms that have been identified for determining the fate of nanomaterials. The route taken by nanomaterials to reach living cells provides us with information about their toxicity profile. This review discusses the recent advances in the transport, transformation, and fate of nanomaterials after they are released into the environment. The review also discusses how nanoparticles affect lower trophic organisms through direct contact, the impact of nanoparticles on higher trophic organisms, and the possible options for remediation.
Collapse
Affiliation(s)
- C M Vineeth Kumar
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, 600119, Tamilnadu, India
| | - V Karthick
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, 600119, Tamilnadu, India.
| | - V Ganesh Kumar
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, 600119, Tamilnadu, India
| | - D Inbakandan
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, 600119, Tamilnadu, India
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, P. O. Box 3015, 2611AX Delft, the Netherlands
| | - K S Uma Suganya
- Department of Biotechnology and Biochemical Engineering, Sree Chitra Thirunal College of Engineering, Pappanamcode, Thiruvananthapuram, 695018, Kerala, India
| | - Asha Embrandiri
- Department of Environmental Health, College of Medicine and Health Sciences, Wollo University, P. O. Box 1145, Dessie, Amhara, Ethiopia
| | - T Stalin Dhas
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, 600119, Tamilnadu, India
| | - M Ravi
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, 600119, Tamilnadu, India
| | - P Sowmiya
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, 600119, Tamilnadu, India
| |
Collapse
|
38
|
Sattar Ali Z. Hepatic Impact of Different Concentrations of Hibiscus rosa Zinc Oxide Nanoparticles on Rats. ARCHIVES OF RAZI INSTITUTE 2022; 77:1199-1206. [PMID: 36618294 PMCID: PMC9759250 DOI: 10.22092/ari.2022.357530.2060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/21/2022] [Indexed: 01/10/2023]
Abstract
Nanomaterial, especially zinc oxide nanoparticles, has entered the manufacture of many materials used in daily lives. The current study aimed to assess the impact of three concentrations of hibiscus rosa zinc oxide nanoparticles (HrZnONPs) and hibiscus rosa extract (Hre) on the liver tissue and DNA fragmentation of liver cells. A total of 35 adult male Wistar rats were grouped as follows: The first group which was the control (n=7) did not receive any treatment. The remaining 28 animals were randomly assigned to four groups. Group 1 (n=7) were subcutaneously injected with 100mg\kg BW of Hibiscus rosa extract for 60 days; the rats in group 2 were subcutaneouslyinjected with 25 mg\kg BW of HrZnONPs for 60 days; rats in group 3 were subcutaneouslyinjected with 75mg\kg BW of HrZnONPs for 60 days; rats in group 4 were subcutaneously injected with 100mg\kg BW of HrZnONPs for 60 days. The liver biomarkers, aspartate aminotransferase (AST), alkaline phosphatase (ALP), and alanine aminotransferase (ALT) have been assessed in serum at zero time, after one month, and after two months of the experiment. At the end of the experiment, all animals were euthanized, the liver was dissected, the specimen underwent a pathohistological investigation, and the percentage of DNA fragmentation was evaluated. The results pointed out that the rats which were treated with HrZnONPs at concentrations of 75 and 100 mg\kg B.W. demonstrated a salient elevation in serum AST, ALT, or ALP activity, a modulation in hepatic tissue architecture, and an elevated percentage of high DNA damage, as compared to those treated with HrZnONPs at a concentration of 25 mg\kg B.W. On the other hand, the recorded data indicated that the administration of Hre has some ameliorative effects on AST, ALP, and ALT levels, histological cross-section, and the value of comet assay for liver cells due to the role of Hre antioxidant. In conclusion, the results of the current study demonstrated that high doses of HrZnONPs had exerted more adverse effects, compared to low doses. Moreover, the findings confirmed the ameliorative impact of Hre on liver biomarkers, a histological cross-section of the liver, and DNA damage.
Collapse
Affiliation(s)
- Z Sattar Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Al-Muthana, Samawah, Iraq
| |
Collapse
|
39
|
Wang L, Duan Z, Liang M, Wang C, Liang T, Sun L, Yan C, Li Q, Liang T. A pivotal role of selective autophagy in mitochondrial quality control: Implications for zinc oxide nanoparticles induced neurotoxicity. Chem Biol Interact 2022; 363:110003. [DOI: 10.1016/j.cbi.2022.110003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/22/2022] [Accepted: 05/30/2022] [Indexed: 11/03/2022]
|
40
|
Mittag A, Singer A, Hoera C, Westermann M, Kämpfe A, Glei M. Impact of in vitro digested zinc oxide nanoparticles on intestinal model systems. Part Fibre Toxicol 2022; 19:39. [PMID: 35644618 PMCID: PMC9150335 DOI: 10.1186/s12989-022-00479-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background Zinc oxide nanoparticles (ZnO NP) offer beneficial properties for many applications, especially in the food sector. Consequently, as part of the human food chain, they are taken up orally. The toxicological evaluation of orally ingested ZnO NP is still controversial. In addition, their physicochemical properties can change during digestion, which leads to an altered biological behaviour. Therefore, the aim of our study was to investigate the fate of two different sized ZnO NP (< 50 nm and < 100 nm) during in vitro digestion and their effects on model systems of the intestinal barrier. Differentiated Caco-2 cells were used in mono- and coculture with mucus-producing HT29-MTX cells. The cellular uptake, the impact on the monolayer barrier integrity and cytotoxic effects were investigated after 24 h exposure to 123–614 µM ZnO NP. Results
In vitro digested ZnO NP went through a morphological and chemical transformation with about 70% free zinc ions after the intestinal phase. The cellular zinc content increased dose-dependently up to threefold in the monoculture and fourfold in the coculture after treatment with digested ZnO NP. This led to reactive oxygen species but showed no impact on cellular organelles, the metabolic activity, and the mitochondrial membrane potential. Only very small amounts of zinc (< 0.7%) reached the basolateral area, which is due to the unmodified transepithelial electrical resistance, permeability, and cytoskeletal morphology. Conclusions Our results reveal that digested and, therefore, modified ZnO NP interact with cells of an intact intestinal barrier. But this is not associated with serious cell damage.
Collapse
|
41
|
Xiong P, Huang X, Ye N, Lu Q, Zhang G, Peng S, Wang H, Liu Y. Cytotoxicity of Metal-Based Nanoparticles: From Mechanisms and Methods of Evaluation to Pathological Manifestations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2106049. [PMID: 35343105 PMCID: PMC9165481 DOI: 10.1002/advs.202106049] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/09/2022] [Indexed: 05/05/2023]
Abstract
Metal-based nanoparticles (NPs) are particularly important tools in tissue engineering-, drug carrier-, interventional therapy-, and biobased technologies. However, their complex and varied migration and transformation pathways, as well as their continuous accumulation in closed biological systems, cause various unpredictable toxic effects that threaten human and ecosystem health. Considerable experimental and theoretical efforts have been made toward understanding these cytotoxic effects, though more research on metal-based NPs integrated with clinical medicine is required. This review summarizes the mechanisms and evaluation methods of cytotoxicity and provides an in-depth analysis of the typical effects generated in the nervous, immune, reproductive, and genetic systems. In addition, the challenges and opportunities are discussed to enhance future investigations on safer metal-based NPs for practical commercial adoption.
Collapse
Affiliation(s)
- Peizheng Xiong
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, P. R. China
| | - Xiangming Huang
- The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi Province, 530023, P. R. China
| | - Naijing Ye
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, P. R. China
| | - Qunwen Lu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, P. R. China
| | - Gang Zhang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, P. R. China
| | - Shunlin Peng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, P. R. China
| | - Hongbo Wang
- Institute of Smart City and Intelligent Transportation, Southwest Jiaotong University, Chengdu, 611700, P. R. China
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Yiyao Liu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, P. R. China
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| |
Collapse
|
42
|
Esculetin and Fucoidan Attenuate Autophagy and Apoptosis Induced by Zinc Oxide Nanoparticles through Modulating Reactive Astrocyte and Proinflammatory Cytokines in the Rat Brain. TOXICS 2022; 10:toxics10040194. [PMID: 35448455 PMCID: PMC9025201 DOI: 10.3390/toxics10040194] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/07/2022] [Accepted: 04/14/2022] [Indexed: 12/10/2022]
Abstract
We examined the protective effects of esculetin and fucoidan against the neurotoxicity of ZnO NPs in rats. Ninety rats were divided into nine groups and pre-treated with esculetin or fucoidan 1 h before ZnO NP administration on a daily basis for 2 weeks. Serum and brain homogenates were examined by enzyme-linked immunosorbent assay (ELISA), and neurons, microglia, and astrocytes in the hippocampal region were examined with immunohistochemical analysis. The serum levels of interleukin-1-beta (IL-1β), 3-nitrotyrosine (3-NT), superoxide dismutase (SOD), and 8-hydroxy-2′-deoxyguanosine (8-OHdG) were altered in the ZnO NP treatment groups. Brain IL-1β and TNF-α levels were elevated after ZnO NP administration, and these effects were inhibited by esculetin and fucoidan. SOD, 8-OHdG, and acetylcholinesterase (AChE) levels in the brain were decreased after ZnO NP administration. The brain levels of beclin-1 and caspase-3 were elevated after ZnO NP treatment, and these effects were significantly ameliorated by esculetin and fucoidan. The number of reactive astrocytes measured by counting glial fibrillary acidic protein (GFAP)-positive cells, but not microglia, increased following ZnO NP treatment, and esculetin and fucoidan ameliorated the changes. Esculetin and fucoidan may be beneficial for preventing ZnO NP-mediated autophagy and apoptosis by the modulation of reactive astrocyte and proinflammatory cytokines in the rat brain.
Collapse
|
43
|
Czyżowska A, Barbasz A. A review: zinc oxide nanoparticles - friends or enemies? INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:885-901. [PMID: 32772735 DOI: 10.1080/09603123.2020.1805415] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Modern nanotechnology allows obtaining zinc oxide nanomaterials with unique properties that let its use in a wide range of commercial applications. Direct contact with these particles as well as their release into the environment is almost inevitable. This review aims to consider whether the toxicity of zinc oxide nanoparticles found in numerous test models is a real threat to humans and plants. Emerging reports indicated both the risks and benefits associated with the use of zinc oxide nanoparticles in a manner dependent on the concentration and a method of synthesis, as well as the tested object. The amounts needed to achieve the antibacterial activity of ZnO-NPs, and the reported amounts of these nanoparticles in consumer products are sufficient to have a negative impact on living organisms. The most sensitive to their action are human cells, and the mechanism of cytotoxicity is mainly associated with the formation of oxidative stress caused by the action of zinc ions. ZnO-NPs in small concentration can have positive affect to plants, but it poses a threat to more sensitive ones.
Collapse
Affiliation(s)
- Agnieszka Czyżowska
- Department of Biochemistry and Biophysics, Institute of Biology, Pedagogical University of Cracow, Kraków, Poland
| | - Anna Barbasz
- Department of Biochemistry and Biophysics, Institute of Biology, Pedagogical University of Cracow, Kraków, Poland
| |
Collapse
|
44
|
Anwar MM, Shalaby MA, Saeed H, Mostafa HM, Hamouda DG, Nounou H. Theophylline-encapsulated Nile Tilapia fish scale-based collagen nanoparticles effectively target the lungs of male Sprague-Dawley rats. Sci Rep 2022; 12:4871. [PMID: 35319009 PMCID: PMC8938969 DOI: 10.1038/s41598-022-08880-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/11/2022] [Indexed: 11/09/2022] Open
Abstract
Nile Tilapia fish scale collagen has high biodegradability, excellent biocompatibility, and low antigenicity. We assessed both the encapsulation efficiency of theophylline into Nile Tilapia fish scale-based collagen nanoparticles and their stability as a pulmonary drug delivery system in male Sprague-Dawley rats. The present study has demonstrated the successful encapsulation of theophylline into the synthesised nanoparticles as shown by spectrophotometric analysis, light microscope, scanning electron microscope, transmission electron microscope, and dynamic light scattering. The antibacterial activity of the nanoparticles improves with increasing their concentrations. Intratracheal treatment of rats using theophylline-encapsulated nanoparticles reduced the levels of creatinine, alanine transaminase, and aspartate transaminase, compared to the control group. Nevertheless, nanoparticles combined with theophylline exhibited no effects on cholesterol and triglycerides levels. Histopathological examination revealed typical uniform and diffuse thickening of the alveolar walls with capillary oedema in treated rats. We concluded that the synthesised collagen nanoparticles appropriately target the lungs of male Sprague-Dawley rats when delivered via a nebuliser, showing good tolerability to lung cells. However, dose ratio of collagen nanoparticles to theophylline needs further evaluation. The nanoprecipitation method may be optimised to involve poorly water-soluble inhaled drugs, and avoid the drawbacks of traditional drug delivery.
Collapse
Affiliation(s)
- Mohammed Moustapha Anwar
- Department of Biotechnology, Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, Egypt.
| | - Manal Aly Shalaby
- Department of Medical Biotechnology, Institute of Genetic Engineering, City of Scientific Research and Technological Applications, Alexandria, Egypt. .,Centre of Excellence for Drug Preclinical Studies (CE-DPS) Pharmaceutical and Fermentation Industry Development Centre, City of Scientific Research and Technological Applications, New Borg El Arab, Alexandria, Egypt.
| | - Hesham Saeed
- Department of Biotechnology, Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, Egypt
| | - Haitham Mohammed Mostafa
- Department of Medical Biotechnology, Institute of Genetic Engineering, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Dalia Galal Hamouda
- Department of Medical Biotechnology, Institute of Genetic Engineering, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Howaida Nounou
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
45
|
Lee YL, Shih YS, Chen ZY, Cheng FY, Lu JY, Wu YH, Wang YJ. Toxic Effects and Mechanisms of Silver and Zinc Oxide Nanoparticles on Zebrafish Embryos in Aquatic Ecosystems. NANOMATERIALS 2022; 12:nano12040717. [PMID: 35215043 PMCID: PMC8880218 DOI: 10.3390/nano12040717] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 02/05/2023]
Abstract
The global application of engineered nanomaterials and nanoparticles (ENPs) in commercial products, industry, and medical fields has raised some concerns about their safety. These nanoparticles may gain access into rivers and marine environments through industrial or household wastewater discharge and thereby affect the ecosystem. In this study, we investigated the effects of silver nanoparticles (AgNPs) and zinc oxide nanoparticles (ZnONPs) on zebrafish embryos in aquatic environments. We aimed to characterize the AgNP and ZnONP aggregates in natural waters, such as lakes, reservoirs, and rivers, and to determine whether they are toxic to developing zebrafish embryos. Different toxic effects and mechanisms were investigated by measuring the survival rate, hatching rate, body length, reactive oxidative stress (ROS) level, apoptosis, and autophagy. Spiking AgNPs or ZnONPs into natural water samples led to significant acute toxicity to zebrafish embryos, whereas the level of acute toxicity was relatively low when compared to Milli-Q (MQ) water, indicating the interaction and transformation of AgNPs or ZnONPs with complex components in a water environment that led to reduced toxicity. ZnONPs, but not AgNPs, triggered a significant delay of embryo hatching. Zebrafish embryos exposed to filtered natural water spiked with AgNPs or ZnONPs exhibited increased ROS levels, apoptosis, and lysosomal activity, an indicator of autophagy. Since autophagy is considered as an early indicator of ENP interactions with cells and has been recognized as an important mechanism of ENP-induced toxicity, developing a transgenic zebrafish system to detect ENP-induced autophagy may be an ideal strategy for predicting possible ecotoxicity that can be applied in the future for the risk assessment of ENPs.
Collapse
Affiliation(s)
- Yen-Ling Lee
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan; (Y.-L.L.); (Y.-S.S.); (Z.-Y.C.); (J.-Y.L.)
- Department of Oncology, Tainan Hospital, Ministry of Health and Welfare, Tainan 70101, Taiwan
| | - Yung-Sheng Shih
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan; (Y.-L.L.); (Y.-S.S.); (Z.-Y.C.); (J.-Y.L.)
| | - Zi-Yu Chen
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan; (Y.-L.L.); (Y.-S.S.); (Z.-Y.C.); (J.-Y.L.)
| | - Fong-Yu Cheng
- Department of Chemistry, Chinese Culture University, Taipei 11114, Taiwan;
| | - Jing-Yu Lu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan; (Y.-L.L.); (Y.-S.S.); (Z.-Y.C.); (J.-Y.L.)
| | - Yuan-Hua Wu
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
- Correspondence: (Y.-H.W.); (Y.-J.W.); Tel.: +886-6-235-3535 (ext. 5804) (Y.-J.W.)
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan; (Y.-L.L.); (Y.-S.S.); (Z.-Y.C.); (J.-Y.L.)
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Correspondence: (Y.-H.W.); (Y.-J.W.); Tel.: +886-6-235-3535 (ext. 5804) (Y.-J.W.)
| |
Collapse
|
46
|
Mittag A, Owesny P, Hoera C, Kämpfe A, Glei M. Effects of Zinc Oxide Nanoparticles on Model Systems of the Intestinal Barrier. TOXICS 2022; 10:49. [PMID: 35202236 PMCID: PMC8880068 DOI: 10.3390/toxics10020049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 12/16/2022]
Abstract
Zinc oxide nanoparticles (ZnO NP) are often used in the food sector, among others, because of their advantageous properties. As part of the human food chain, they are inevitably taken up orally. The debate on the toxicity of orally ingested ZnO NP continues due to incomplete data. Therefore, the aim of our study was to examine the effects of two differently sized ZnO NP (<50 nm and <100 nm primary particle size; 123-614 µmol/L) on two model systems of the intestinal barrier. Differentiated Caco-2 enterocytes were grown on Transwell inserts in monoculture and also in coculture with the mucus-producing goblet cell line HT29-MTX. Although no comprehensive mucus layer was detectable in the coculture, cellular zinc uptake was clearly lower after a 24-h treatment with ZnO NP than in monocultured cells. ZnO NP showed no influence on the permeability, metabolic activity, cytoskeleton and cell nuclei. The transepithelial electrical resistance was significantly increased in the coculture model after treatment with ≥307 µmol/L ZnO NP. Only small zinc amounts (0.07-0.65 µg/mL) reached the basolateral area. Our results reveal that the cells of an intact intestinal barrier interact with ZnO NP but do not suffer serious damage.
Collapse
Affiliation(s)
- Anna Mittag
- Department of Applied Nutritional Toxicology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Straße 24, 07743 Jena, Germany; (P.O.); (M.G.)
| | - Patricia Owesny
- Department of Applied Nutritional Toxicology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Straße 24, 07743 Jena, Germany; (P.O.); (M.G.)
| | - Christian Hoera
- Swimming and Bathing Pool Water, Chemical Analytics, German Environment Agency, Heinrich-Heine-Straße 12, 08645 Bad Elster, Germany; (C.H.); (A.K.)
| | - Alexander Kämpfe
- Swimming and Bathing Pool Water, Chemical Analytics, German Environment Agency, Heinrich-Heine-Straße 12, 08645 Bad Elster, Germany; (C.H.); (A.K.)
| | - Michael Glei
- Department of Applied Nutritional Toxicology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Straße 24, 07743 Jena, Germany; (P.O.); (M.G.)
| |
Collapse
|
47
|
Al-Ali AAA, Al-Tamimi SQ, Al-Maliki SJ, Abdullah MA. Toxic effects of zinc oxide nanoparticles and histopathological and caspase-9 expression changes in the liver and lung tissues of male mice model. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-021-02248-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
Abdulmalek S, Nasef M, Awad D, Balbaa M. Protective Effect of Natural Antioxidant, Curcumin Nanoparticles, and Zinc Oxide Nanoparticles against Type 2 Diabetes-Promoted Hippocampal Neurotoxicity in Rats. Pharmaceutics 2021; 13:pharmaceutics13111937. [PMID: 34834352 PMCID: PMC8621156 DOI: 10.3390/pharmaceutics13111937] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 02/07/2023] Open
Abstract
Numerous epidemiological findings have repeatedly established associations between Type 2 Diabetes Mellitus (T2DM) and Alzheimer's disease. Targeting different pathways in the brain with T2DM-therapy offers a novel and appealing strategy to treat diabetes-related neuronal alterations. Therefore, here we investigated the capability of a natural compound, curcumin nanoparticle (CurNP), and a biomedical metal, zinc oxide nanoparticle (ZnONP), to alleviate hippocampal modifications in T2DM-induced rats. The diabetes model was induced in male Wistar rats by feeding a high-fat diet (HFD) for eight weeks followed by intraperitoneal injection of streptozotocin (STZ). Then model groups were treated orally with curcumin, zinc sulfate, two doses of CurNP and ZnONP, as well as metformin, for six weeks. HFD/STZ-induced rats exhibited numerous biochemical and molecular changes besides behavioral impairment. Compared with model rats, CurNP and ZnONP boosted learning and memory function, improved redox and inflammation status, lowered Bax, and upregulated Bcl2 expressions in the hippocampus. In addition, the phosphorylation level of the MAPK/ERK pathway was downregulated significantly. The expression of amyloidogenic-related genes and amyloid-beta accumulation, along with tau hyperphosphorylation, were lessened considerably. In addition, both nanoparticles significantly improved histological lesions in the hippocampus. Based on our findings, CurNP and ZnONP appear to be potential neuroprotective agents to mitigate diabetic complications-associated hippocampal toxicity.
Collapse
Affiliation(s)
- Shaymaa Abdulmalek
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria 21511, Egypt; (S.A.); (M.N.); (D.A.)
- Center of Excellency for Preclinical Study (CE-PCS), Pharmaceutical and Fermentation Industries Development Centre, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City 21934, Egypt
| | - Mayada Nasef
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria 21511, Egypt; (S.A.); (M.N.); (D.A.)
| | - Doaa Awad
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria 21511, Egypt; (S.A.); (M.N.); (D.A.)
| | - Mahmoud Balbaa
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria 21511, Egypt; (S.A.); (M.N.); (D.A.)
- Correspondence: ; Fax: +20-39-1179-4320
| |
Collapse
|
49
|
Geraniol improved memory impairment and neurotoxicity induced by zinc oxide nanoparticles in male wistar rats through its antioxidant effect. Life Sci 2021; 282:119823. [PMID: 34273375 DOI: 10.1016/j.lfs.2021.119823] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/27/2021] [Accepted: 07/06/2021] [Indexed: 11/23/2022]
Abstract
AIMS Zinc oxide nanoparticles (ZnO-NPs) are currently applied in food and pharmaceutical industries whose neurotoxic effect on the central nervous system (CNS) is a major concern. Considering the pharmacological properties (antioxidant, anti-inflammatory) of the geraniol (GE), we aimed to investigate the efficacy of geraniol on ZnO-NPs neurotoxicity. MATERIALS AND METHODS We used 32 male Wistar rats, randomly assigned to four groups (n = 8): Control, GE (daily received 100 mg/kg of GE by gavage), ZnO-NPs (received intraperitoneal injection of 75 mg/kg of ZnO-NPs twice a week), and ZnO-NPs + GE (received both GE and ZnO-NPs at same doses above during 4 weeks). Morris water maze (MWM) and Y-maze tasks were done to evaluate learning and memory function. Biochemical assays were done to measure total antioxidant capacity (TAC), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPX) and ZnO-NPs bioaccumulation. Nissl and H&E staining were performed for histological evaluations. KEY FINDINGS The results of behavioral study revealed that GE improved learning and memory impairment induced by ZnO-NPs. Moreover, neuroprotective effect of GE significantly decreased pathological parameters such as necrosis and gliosis, and consequently increased the number of nerve cells in the cortex and different hippocampal areas. Furthermore, biochemical studies demonstrated that GE significantly increased antioxidant indices (namely, TAC, SOD, and GPX) and reduced oxidative stress marker (MDA) and Zn bioaccumulation in ZnO-NPs treated animals. SIGNIFICANCE Our results provide experimental evidence to further investigate the precise mechanisms underlying the geraniol as a promising therapeutic approach for improvement of cognitive function and neurotoxicity induce by ZnO-NPs.
Collapse
|
50
|
Shapiro RS. COVID-19 vaccines and nanomedicine. Int J Dermatol 2021; 60:1047-1052. [PMID: 34089534 PMCID: PMC8239562 DOI: 10.1111/ijd.15673] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/18/2022]
Abstract
Background The COVID‐19 virus‐induced pandemic has been the deadliest pandemic to have occurred in two generations, besides HIV/AIDS. Epidemiologists predicted that the SARS‐Cov 2 pandemic would not be able to be brought under control until a majority of the world’s population had been inoculated with safe and effective vaccines. A world‐wide effort to expedite vaccine development was successful. Previous research for vaccines to prevent SARS and MERS, also coronaviruses, was vital to this success. Nanotechnology was essential to this vaccine development. Key elements are presented here to better understand the relationship between nanomedicine and the COVID‐19 vaccine development. Methods NLM PubMed searches for COVID‐19 vaccines, nanotechnology and nanomedicine were done. There were 6911 articles screened, 235 of which were deemed appropriate to this subject and utilized here, together with two landmark nanomedicine texts used to expand understanding of the basic science of nanotechnology. Results SARS‐Cov 2, caused by the COVID‐19 virus, was first recognized in China in December of 2019 and was declared as a pandemic in March of 2020. The RNA sequence was identified in January of 2020. Within 4 months of the viral genome being released, over 259 vaccines had been in development. The World Health Organization (WHO) anticipated a vaccine with a 50‐80% efficacy to be developed within 1‐2 years. Ahead of schedule, the Food and Drug Administration (FDA) announced the emergency authorization approval for two mRNA vaccines within 11 month’s time. Nanotechnology was the key to the success of these rapidly developed, safe and effective vaccines. A brief review of pertinent basic science principles of nanomedicine are presented. The development of COVID vaccines is reviewed. Future considerations are discussed. Conclusions Control of the COVID‐19 SARS‐Cov2 pandemic benefitted from nanomedicine principles used to develop highly effective, yet very safe and relatively inexpensive vaccines. These nanovaccines can be much more easily altered to adjust for viral variants than traditional live or inactivated legacy‐type whole virus vaccines.
Collapse
|