1
|
Dodds JN, Kirkwood-Donelson KI, Boatman AK, Knappe DRU, Hall NS, Schnetzer A, Baker ES. Evaluating Solid Phase Adsorption Toxin Tracking (SPATT) for passive monitoring of per- and polyfluoroalkyl substances (PFAS) with Ion Mobility Spectrometry-Mass Spectrometry (IMS-MS). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174574. [PMID: 38981548 PMCID: PMC11295640 DOI: 10.1016/j.scitotenv.2024.174574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/14/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024]
Abstract
Detection and monitoring of per- and polyfluoroalkyl substances (PFAS) in aquatic environments has become an increasingly higher priority of regulatory agencies as public concern for human intake of these chemicals continues to grow. While many methods utilize active sampling strategies ("grab samples") for precise PFAS quantitation, here we evaluate the efficacy of low-cost passive sampling devices (Solid Phase Adsorption Toxin Tracking, or SPATTs) for spatial and temporal PFAS assessment of aquatic systems. For this study, passive samplers were initially deployed in North Carolina along the Cape Fear River during the summer and fall of 2016 and 2017. These were originally intended for the detection of microcystins and monitoring potentially harmful algal blooms, though this period also coincided with occurrences of PFAS discharge from a local fluorochemical manufacturer into the river. Additional samplers were then deployed in 2022 to evaluate changes in PFAS fingerprint and abundances. Assessment of PFAS showed legacy compounds were observed across almost all sampling sites over all 3 years (PFHxS, PFOS, PFHxA, etc.), while emerging replacement PFAS (e.g., Nafion byproducts) were predominantly localized downstream from the manufacturer. Furthermore, samplers deployed downstream from the manufacturer in 2022 noted sharp decreases in observed signal for replacement PFAS in comparison to samplers deployed in 2016 and 2017, indicating mitigation and remediation efforts in the area were able to reduce localized fluorochemical contamination.
Collapse
Affiliation(s)
- James N Dodds
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, United States of America.
| | - Kaylie I Kirkwood-Donelson
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27607, United States of America; Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Durham, NC 27709, United States of America
| | - Anna K Boatman
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, United States of America
| | - Detlef R U Knappe
- Department of Civil, Construction, & Environmental Engineering, North Carolina State University, Raleigh, NC 27607, United States of America
| | - Nathan S Hall
- Department of Earth, Marine, and Environmental Sciences, University of North Carolina at Chapel Hill, Morehead City, NC 28557, United States of America
| | - Astrid Schnetzer
- Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27607, United States of America
| | - Erin S Baker
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, United States of America.
| |
Collapse
|
2
|
Jaegge AC, Lavergne BC, Stauffer BA. Widespread, low concentration microcystin detection in a subtropical Louisiana estuary. MARINE POLLUTION BULLETIN 2024; 207:116843. [PMID: 39151330 DOI: 10.1016/j.marpolbul.2024.116843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
Spatiotemporal patterns and drivers of hepatotoxic microcystins (MC) were investigated in the Atchafalaya-Vermilion Bay System (AVBS), a subtropical, river-dominated estuary in Louisiana. Along with environmental data, monthly particulate MC (pMC) samples were examined over a two-year period (2016-2018), and biweekly pMC and dissolved MC (dMC) samples were examined over a five-month period in 2020. Solid phase adsorption toxin tracking (SPATT) samplers used to quantify time-integrated dMC concentrations were also deployed in 2020. Low, but detectable concentrations of pMC (≤0.033 μg L-1) and dMC (≤0.190 μg L-1) were found throughout the AVBS in 37.8 and 21.2 % of samples, respectively. Time integrative SPATT samplers detected dMC in nearly 100 % of the deployments, compared to dMC detections in 30.8 % of the discrete samples. This study documents widespread MC presence throughout the AVBS and while concentrations were low, knowledge gaps remain regarding the potential long-term impacts of sublethal MC exposure to estuarine organisms.
Collapse
Affiliation(s)
- Andrea C Jaegge
- Department of Biology, University of Louisiana at Lafayette, 104 E University Ave, Lafayette, LA 70504, United States
| | - Bryce C Lavergne
- Department of Biology, University of Louisiana at Lafayette, 104 E University Ave, Lafayette, LA 70504, United States
| | - Beth A Stauffer
- Department of Biology, University of Louisiana at Lafayette, 104 E University Ave, Lafayette, LA 70504, United States.
| |
Collapse
|
3
|
Preece EP, Otten TG, Cooke J. Use of multiple sampling techniques for cyanobacteria and cyanotoxin monitoring in the Sacramento-San Joaquin Delta under different hydrologic regimes. MARINE POLLUTION BULLETIN 2024; 205:116585. [PMID: 38878417 DOI: 10.1016/j.marpolbul.2024.116585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 07/24/2024]
Abstract
Cyanobacteria harmful algal blooms (CHABs) are a growing water quality problem in the upper San Francisco Estuary (California), also known as the Sacramento-San Joaquin Delta. We conducted cyanobacteria and cyanotoxin monitoring from 2020 to 2023, which spanned California's driest consecutive 3-year period and one of the wettest years on record (2023). To assess the impact of CHABs over this range of hydrologic conditions, we monitored invasive Asian Clams (Corbicula fluminea) for microcystin contamination and used molecular tools (qPCR and sequencing) to characterize cyanobacteria in the water column. We also used solid phase adsorption toxin tracking (SPATT) samplers to track microcystins (MCs) and other cyanotoxins in 2023. During the drought years, record breaking MCs, in excess of 1000 μg/L, were documented in water grab samples and Asian clams also accumulated higher MCs relative to the wet year. However, MCs were present in Asian clams during the entire study period. SPATT's confirmed MC presence during wet 2023 and sequencing results corroborated the integrative sampler findings. Yet, no MC was detected in water grab samples at our primary sampling sites during the drought year of 2022 or the wet year of 2023. This highlights the importance of using multiple sampling modalities to provide a more accurate assessment of MC contamination, especially in large estuaries where traditional discrete monitoring can easily miss episodic and transient CHAB events.
Collapse
Affiliation(s)
- Ellen P Preece
- California Department of Water Resources, 3500 Industrial Blvd, West Sacramento, CA 95691, United States of America; Robertson-Bryan, Inc., 3100 Zinfandel Drive, St 300, Rancho Cordova, CA, United States of America.
| | - Timothy G Otten
- Bend Genetics, LLC., 107 Scripps Drive St 210. Sacramento, CA, United States of America
| | - Janis Cooke
- Central Valley Regional Water Quality Control Board, 11020 Sun Center Drive, St 200, Rancho Cordova, CA, United States of America
| |
Collapse
|
4
|
Zhou CY, Pan CG, Peng FJ, Zhu RG, Hu JJ, Yu K. Simultaneous determination of trace marine lipophilic and hydrophilic phycotoxins in various environmental and biota matrices. MARINE POLLUTION BULLETIN 2024; 203:116444. [PMID: 38705002 DOI: 10.1016/j.marpolbul.2024.116444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/21/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
An efficient and sensitivity approach, which combines solid-phase extraction or ultrasonic extraction for pretreatment, followed by ultra-performance liquid chromatography-tandem mass spectrometry, has been established to simultaneously determine eight lipophilic phycotoxins and one hydrophilic phycotoxin in seawater, sediment and biota samples. The recoveries and matrix effects of target analytes were in the range of 61.6-117.3 %, 55.7-121.3 %, 57.5-139.9 % and 82.6 %-95.0 %, 85.8-106.8 %, 80.7 %-103.3 % in seawater, sediment, and biota samples, respectively. This established method revealed that seven, six and six phycotoxins were respectively detected in the Beibu Gulf, with concentrations ranging from 0.14 ng/L (okadaic acid, OA) to 26.83 ng/L (domoic acid, DA) in seawater, 0.04 ng/g (gymnodimine-A, GYM-A) to 2.75 ng/g (DA) in sediment and 0.01 ng/g (GYM-A) to 2.64 ng/g (domoic acid) in biota samples. These results suggest that the presented method is applicable for the simultaneous determination of trace marine lipophilic and hydrophilic phycotoxins in real samples.
Collapse
Affiliation(s)
- Chao-Yang Zhou
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Chang-Gui Pan
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| | - Feng-Jiao Peng
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Rong-Gui Zhu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Jun-Jie Hu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| |
Collapse
|
5
|
Chambers C, Grimes S, Fire S, Reza MT. Influence of biochar on the removal of Microcystin-LR and Saxitoxin from aqueous solutions. Sci Rep 2024; 14:11058. [PMID: 38745050 PMCID: PMC11094018 DOI: 10.1038/s41598-024-61802-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024] Open
Abstract
The present study assessed the effective use of biochar for the adsorption of two potent HAB toxins namely, Microcystin-LR (MCLR) and Saxitoxin (STX) through a combination of dosage, kinetic, equilibrium, initial pH, and competitive adsorption experiments. The adsorption results suggest that biochar has excellent capabilities for removing MCLR and STX, with STX reporting higher adsorption capacities (622.53-3507.46 µg/g). STX removal required a minimal dosage of 0.02 g/L, while MCLR removal needed 0.4 g/L for > 90%. Similarly, a shorter contact time was required for STX removal compared to MCLR for > 90% of toxin removed from water. Initial pH study revealed that for MCLR acidic conditions favored higher uptake while STX favored basic conditions. Kinetic studies revealed that the Elovich model to be most suitable for both toxins, while STX also showed suitable fittings for Pseudo-First Order and Pseudo-Second Order in individual toxin systems. Similarly, for the Elovich model the most suited kinetic model for both toxins in presence of each other. Isotherm studies confirmed the Langmuir-Freundlich model as the best fit for both toxins. These results suggest adsorption mechanisms including pore filling, hydrogen bonding, π-π interactions, hydrophobic interactions, electrostatic attraction, and dispersive interactions.
Collapse
Affiliation(s)
- Cadianne Chambers
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Savannah Grimes
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Spencer Fire
- Department of Ocean Engineering and Marine Sciences, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - M Toufiq Reza
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, FL, 32901, USA.
| |
Collapse
|
6
|
Tang J, He X, Chen J, Cao W, Han T, Xu Q, Sun C. Occurrence and distribution of phycotoxins in the Antarctic Ocean. MARINE POLLUTION BULLETIN 2024; 201:116250. [PMID: 38479322 DOI: 10.1016/j.marpolbul.2024.116250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 04/07/2024]
Abstract
Lipophilic phycotoxins (LPTs) and domoic acid (DA) in Antarctic seawater, as well as parts of the South Pacific and the Southern Indian Oceans were systematically investigated. DA and six LPTs, namely pectenotoxin-2 (PTX2), okadaic acid (OA), yessotoxin (YTX), homo-yessotoxin (h-YTX), 13-desmethyl spirolide C (SPX1), and gymnodimine (GYM), were detected. PTX2, as the dominant LPTs, was widely distributed in seawater surrounding Antarctica, whereas OA, YTX, and h-YTX were irregularly distributed across the region. The total concentration of LPTs in surface seawater ranged from 0.10 to 13.57 ng/L (mean = 2.20 ng/L). ∑LPT levels were relatively higher in the eastern sea areas of Antarctica than in the western sea areas. PTX2 was the main LPT in the vertical profiles, and the PTX2 concentration was significantly higher in the epipelagic zone than water depths below 200 m. The predominant sources of PTX2 and OA in Antarctic sea areas are likely to be Dinophysis.
Collapse
Affiliation(s)
- Jiale Tang
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Xiuping He
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266071,China
| | - Junhui Chen
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266071,China.
| | - Wei Cao
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Tongzhu Han
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Qinzeng Xu
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Chengjun Sun
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| |
Collapse
|
7
|
Zhang W, Ye Z, Qu P, Li D, Gao H, Liang Y, He Z, Tong M. Using solid phase adsorption toxin tracking and extended local similarity analysis to monitor lipophilic shellfish toxins in a mussel culture ranch in the Yangtze River Estuary. MARINE POLLUTION BULLETIN 2024; 199:116027. [PMID: 38217914 DOI: 10.1016/j.marpolbul.2024.116027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
Harmful algal blooms (HABs) and their associated phycotoxins are increasing globally, posing great threats to local coastal ecosystems and human health. Nutrients have been carried by the freshwater Yangtze River and have entered the estuary, which was reported to be a biodiversity-rich but HAB-frequent region. Here, in situ solid phase adsorption toxin tracking (SPATT) was used to monitor lipophilic shellfish toxins (LSTs) in seawaters, and extended local similarity analysis (eLSA) was conducted to trace the temporal and special regions of those LSTs in a one-year trail in a mussel culture ranch in the Yangtze River Estuary. Nine analogs of LSTs, including okadaic acid (OA), dinophysistoxin-1 (DTX1), yessotoxin (YTX), homoyessotoxin (homoYTX), 45-OH-homoYTX, pectenotoxin-2 (PTX2), 7-epi-PTX2 seco acid (7-epi-PTX2sa), gymnodimine (GYM) and azaspiracids-3 (AZA3), were detected in seawater (SPATT) or rope farmed mussels. The concentrations of OA + DTX1 and homoYTX in mussels were positively correlated with those in SPATT samplers (Pearson test, p < 0.05), indicating that SPATT (with resin HP20) would be a good monitoring tool and potential indicator for OA + DTX1 and homoYTX in mussel Mytilus coruscus. The eLSA results indicated that late summer and early autumn were the most phycotoxin-contaminated seasons in the Yangtze River Estuary. OA + DTX1, homoYTX, PTX2 and GYM were most likely driven by the local growing HAB species in spring and summer, while Yangtze River diluted water may impact the accumulation of HAB species, causing potential phycotoxin contamination in the Yangtze River Estuary in autumn and winter. Together, the results showed that the mussel harvesting season, late summer and early autumn, would be the season with the greatest phycotoxin risk and would be the most contaminated by local growing toxic algae. Routine monitoring sites should be set up close to the local seawaters.
Collapse
Affiliation(s)
- Wenguang Zhang
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Zi Ye
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Peipei Qu
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Dongmei Li
- Ocean College, Zhejiang University, Zhoushan 316021, China; Dalian Phycotoxins Key Laboratory, National Marine Environmental Monitoring Center, Ministry of Ecological Environment, Dalian 116023, China
| | - Han Gao
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Yubo Liang
- Dalian Phycotoxins Key Laboratory, National Marine Environmental Monitoring Center, Ministry of Ecological Environment, Dalian 116023, China
| | - Zhiguo He
- Ocean College, Zhejiang University, Zhoushan 316021, China; Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Mengmeng Tong
- Ocean College, Zhejiang University, Zhoushan 316021, China; Hainan Institute of Zhejiang University, Sanya 572025, China.
| |
Collapse
|
8
|
Sibat M, Mai T, Tanniou S, Biegala I, Hess P, Jauffrais T. Seasonal Single-Site Sampling Reveals Large Diversity of Marine Algal Toxins in Coastal Waters and Shellfish of New Caledonia (Southwestern Pacific). Toxins (Basel) 2023; 15:642. [PMID: 37999505 PMCID: PMC10674433 DOI: 10.3390/toxins15110642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023] Open
Abstract
Algal toxins pose a serious threat to human and coastal ecosystem health, even if their potential impacts are poorly documented in New Caledonia (NC). In this survey, bivalves and seawater (concentrated through passive samplers) from bays surrounding Noumea, NC, collected during the warm and cold seasons were analyzed for algal toxins using a multi-toxin screening approach. Several groups of marine microalgal toxins were detected for the first time in NC. Okadaic acid (OA), azaspiracid-2 (AZA2), pectenotoxin-2 (PTX2), pinnatoxin-G (PnTX-G), and homo-yessotoxin (homo-YTX) were detected in seawater at higher levels during the summer. A more diversified toxin profile was found in shellfish with brevetoxin-3 (BTX3), gymnodimine-A (GYM-A), and 13-desmethyl spirolide-C (SPX1), being confirmed in addition to the five toxin groups also found in seawater. Diarrhetic and neurotoxic toxins did not exceed regulatory limits, but PnTX-G was present at up to the limit of the threshold recommended by the French Food Safety Authority (ANSES, 23 μg kg-1). In the present study, internationally regulated toxins of the AZA-, BTX-, and OA-groups by the Codex Alimentarius were detected in addition to five emerging toxin groups, indicating that algal toxins pose a potential risk for the consumers in NC or shellfish export.
Collapse
Affiliation(s)
- Manoëlla Sibat
- Ifremer, ODE/PHYTOX/METALG, Rue de l’île d’Yeu, F-44300 Nantes, France;
| | - Tepoerau Mai
- Ifremer, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, CNRS, UMR 9220 ENTROPIE, 98800 Nouméa, New Caledonia; (T.M.); (T.J.)
- Institut Louis Malardé (ILM), 98713 Papeete, Tahiti, French Polynesia
| | - Simon Tanniou
- Ifremer, ODE/PHYTOX/METALG, Rue de l’île d’Yeu, F-44300 Nantes, France;
| | - Isabelle Biegala
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, UM110, 13288 Marseille, France;
| | - Philipp Hess
- Ifremer, ODE/PHYTOX/METALG, Rue de l’île d’Yeu, F-44300 Nantes, France;
| | - Thierry Jauffrais
- Ifremer, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, CNRS, UMR 9220 ENTROPIE, 98800 Nouméa, New Caledonia; (T.M.); (T.J.)
| |
Collapse
|
9
|
Trapp A, Hayashi K, Fiechter J, Kudela RM. What happens in the shadows - Influence of seasonal and non-seasonal dynamics on domoic acid monitoring in the Monterey Bay upwelling shadow. HARMFUL ALGAE 2023; 129:102522. [PMID: 37951621 DOI: 10.1016/j.hal.2023.102522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 11/14/2023]
Abstract
Domoic acid produced by toxigenic Pseudo-nitzschia species is the main toxin threat from harmful algal blooms in Monterey Bay and the larger California Current region on the West Coast of the United States. Toxin monitoring in Monterey Bay includes a long-running time series of weekly measurements of domoic acid from water samples, sentinel mussels, and solid phase adsorption toxin tracking (SPATT) at the Santa Cruz Municipal Wharf (SCW). The SCW sampling site is unusual because of its position in the Monterey Bay upwelling shadow in the north bay. The upwelling shadow circulation pattern has been previously characterized as a bloom incubator for dinoflagellates, but it has not yet been analyzed in the context of long-term monitoring methods. In data collected from the SCW from 2012 - 2020, domoic acid from water samples and sentinel mussels had a different temporal distribution than domoic acid from SPATT. Here we explore the discrepancy through a seasonal and non-seasonal analysis including physical oceanography of the region. Results show that domoic acid from water samples and sentinel mussels are related to seasonal upwelling and Pseudo-nitzschia blooms. Domoic acid monitored by SPATT, on the other hand, is correlated to anomalous upwelling and warmer than usual temperatures during the relaxation season. This work builds on previous analyses of the SCW time series and contributes to understanding of the circulation of dissolved toxin in the environment. Results lend rationale for the continuation of rigorous domoic acid monitoring in Monterey Bay and encourage stakeholders to consider local physical dynamics when interpreting toxin monitoring data.
Collapse
Affiliation(s)
- Aubrey Trapp
- University of California Santa Cruz, Dept. of Ocean Sciences, 1156 High St, Santa Cruz, CA 95064, United States of America.
| | - Kendra Hayashi
- University of California Santa Cruz, Dept. of Ocean Sciences, 1156 High St, Santa Cruz, CA 95064, United States of America
| | - Jerome Fiechter
- University of California Santa Cruz, Dept. of Ocean Sciences, 1156 High St, Santa Cruz, CA 95064, United States of America
| | - Raphael M Kudela
- University of California Santa Cruz, Dept. of Ocean Sciences, 1156 High St, Santa Cruz, CA 95064, United States of America
| |
Collapse
|
10
|
Lewis NI, Yu R, Rafuse C, Quilliam MA. Seasonal occurrence of toxic phytoplankton and phycotoxins at a mussel aquaculture site in Nova Scotia, Canada. HARMFUL ALGAE 2023; 129:102528. [PMID: 37951613 DOI: 10.1016/j.hal.2023.102528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 11/14/2023]
Abstract
A three-year field study at a mussel (Mytilus edulis) aquaculture site in Ship Harbour, Nova Scotia, Canada was carried out between 2004 and 2006 to detect toxic phytoplankton species and dissolved lipophilic phycotoxins and domoic acid. A combination of plankton monitoring and solid phase adsorption toxin tracking (SPATT) techniques were used. Net tow and pipe phytoplankton samples were taken weekly to determine the abundance of potentially toxic species and SPATT samplers were deployed weekly for phycotoxin analysis. Mussels were also collected for toxin analysis in 2005. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to analyse the samples for spirolides (SPXs), pectenotoxins (PTXs), okadaic acid group toxins (OA, DTXs) and domoic acid (DA). Phycotoxins were detected with SPATT samplers beginning from the time of deployment until after the producing organisms were no longer observed in pipe samples. Seasonal changes in toxin composition occurred over the sampling period and were related to changes in cell concentrations of Alexandrium Halim, Dinophysis Ehrenberg and Pseudo-nitzschia (Hasle) Hasle. Spirolides peaked in late spring and early summer, followed by DA in mid-July. Okadaic acid, DTX1 and PTXs occurred throughout the field season but peaked in late summer. Concentrations of some phycotoxins detected in SPATT samplers deployed within the area where mussels were suspended on lines were lower than in those deployed outside the mussel farm. The SPATT samplers provided a useful tool to detect the presence of phycotoxins and to establish trends in their appearance in the Ship Harbour estuary.
Collapse
Affiliation(s)
- Nancy I Lewis
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford St., Halifax, Nova Scotia, B3H 3Z1, Canada.
| | - Rencheng Yu
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford St., Halifax, Nova Scotia, B3H 3Z1, Canada
| | - Cheryl Rafuse
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford St., Halifax, Nova Scotia, B3H 3Z1, Canada
| | - Michael A Quilliam
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford St., Halifax, Nova Scotia, B3H 3Z1, Canada
| |
Collapse
|
11
|
Bouquet A, Thébault A, Arnich N, Foucault E, Caillard E, Gianaroli C, Bellamy E, Rolland JL, Laabir M, Abadie E. Modelling spatiotemporal distributions of Vulcanodinium rugosum and pinnatoxin G in French Mediterranean lagoons: Application to human health risk characterisation. HARMFUL ALGAE 2023; 129:102500. [PMID: 37951616 DOI: 10.1016/j.hal.2023.102500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/16/2023] [Accepted: 09/07/2023] [Indexed: 11/14/2023]
Abstract
Consumption of seafood contaminated by phycotoxins produced by harmful algae is a major issue in human public health. Harmful algal blooms are driven by a multitude of environmental variables; therefore predicting human dietary exposure to phycotoxins based on these variables is a promising approach in health risk management. In this study, we attempted to predict the human health risks associated with Vulcanodinium rugosum and its neurotoxins, pinnatoxins (PnTXs), which have been regularly found in Mediterranean lagoons since their identification in 2011. Based on environmental variables collected over 1 year in four Mediterranean lagoons, we developed linear mixed models to predict the presence of V. rugosum and PnTX G contamination of mussels. We found that the occurrence of V. rugosum was significantly associated with seawater temperature. PnTX G contamination of mussels was highest in summer but persisted throughout the year. This contamination was significantly associated with seawater temperature and the presence of V. rugosum with a time lag, but not with dissolved PnTX G in seawater. By using the contamination model predictions and their potential variability/uncertainty, we calculated the human acute dietary exposures throughout the year and predicted that 25% of people who consume mussels could exceed the provisional acute benchmark value during the warmest periods. We suggest specific recommendations to monitor V. rugosum and PnTX G.
Collapse
Affiliation(s)
- Aurélien Bouquet
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, 87 Avenue Jean Monnet, 34200 Sète, France.
| | - Anne Thébault
- ANSES (French Agency for Food, Environmental and Occupational Health and Safety), Risk Assessment Directorate, Maisons-Alfort, France
| | - Nathalie Arnich
- ANSES (French Agency for Food, Environmental and Occupational Health and Safety), Risk Assessment Directorate, Maisons-Alfort, France
| | - Elodie Foucault
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, 87 Avenue Jean Monnet, 34200 Sète, France
| | - Elise Caillard
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, 87 Avenue Jean Monnet, 34200 Sète, France
| | - Camille Gianaroli
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, 87 Avenue Jean Monnet, 34200 Sète, France
| | - Elise Bellamy
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, 87 Avenue Jean Monnet, 34200 Sète, France
| | - Jean Luc Rolland
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, 87 Avenue Jean Monnet, 34200 Sète, France
| | - Mohamed Laabir
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Place Eugène Bataillon, 34095 Montpellier, France
| | - Eric Abadie
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, 87 Avenue Jean Monnet, 34200 Sète, France; IFREMER, Biodivenv, 79 Route de Pointe Fort, 97231 Martinique, France
| |
Collapse
|
12
|
Pease SK, Egerton TA, Reece KS, Sanderson MP, Onofrio MD, Yeargan E, Wood A, Roach A, Huang ISW, Scott GP, Place AR, Hayes AM, Smith JL. Co-occurrence of marine and freshwater phycotoxins in oysters, and analysis of possible predictors for management. Toxicon X 2023; 19:100166. [PMID: 37448555 PMCID: PMC10336265 DOI: 10.1016/j.toxcx.2023.100166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/16/2023] [Accepted: 06/06/2023] [Indexed: 07/15/2023] Open
Abstract
Oysters (Crassostrea virginica) were screened for 12 phycotoxins over two years in nearshore waters to collect baseline phycotoxin data and to determine prevalence of phycotoxin co-occurrence in the commercially and ecologically-relevant species. Trace to low concentrations of azaspiracid-1 and -2 (AZA1, AZA2), domoic acid (DA), okadaic acid (OA), and dinophysistoxin-1 (DTX1) were detected, orders of magnitude below seafood safety action levels. Microcystins (MCs), MC-RR and MC-YR, were also found in oysters (maximum: 7.12 μg MC-RR/kg shellfish meat wet weight), warranting consideration of developing action levels for freshwater phycotoxins in marine shellfish. Oysters contained phycotoxins that impair shellfish health: karlotoxin1-1 and 1-3 (KmTx1-1, KmTx1-3), goniodomin A (GDA), and pectenotoxin-2 (PTX2). Co-occurrence of phycotoxins in oysters was common (54%, n = 81). AZAs and DA co-occurred most frequently of the phycotoxins investigated that are a concern for human health (n = 13) and PTX2 and KmTxs co-occurred most frequently amongst the phycotoxins of concern for shellfish health (n = 9). Various harmful algal bloom (HAB) monitoring methods and tools were assessed for their effectiveness at indicating levels of phycotoxins in oysters. These included co-deployed solid phase adsorption toxin tracking (SPATT) devices, toxin levels in particulate organic matter (POM, >1.5 μm) and whole water samples and cell concentrations from water samples as determined by microscopy and quantitative real-time PCR (qPCR). The dominant phycotoxin varied between SPATTs and all other phycotoxin sample types, and out of the 11 phycotoxins detected in oysters, only four and seven were detected in POM and whole water respectively, indicating phycotoxin profile mismatch between ecosystem compartments. Nevertheless, there were correlations between DA in oysters and whole water (simple linear regression [LR]: R2 = 0.6, p < 0.0001, n = 40), and PTX2 in oysters and SPATTs (LR: R2 = 0.3, p = 0.001, n = 36), providing additional monitoring tools for these phycotoxins, but oyster samples remain the best overall indicators of seafood safety.
Collapse
Affiliation(s)
- Sarah K.D. Pease
- Virginia Institute of Marine Science, William & Mary, P.O. Box 1346, Gloucester Point, VA, 23062, USA
| | - Todd A. Egerton
- Division of Shellfish Safety and Waterborne Hazards, Virginia Department of Health, Norfolk, VA, 23510, USA
| | - Kimberly S. Reece
- Virginia Institute of Marine Science, William & Mary, P.O. Box 1346, Gloucester Point, VA, 23062, USA
| | - Marta P. Sanderson
- Virginia Institute of Marine Science, William & Mary, P.O. Box 1346, Gloucester Point, VA, 23062, USA
| | - Michelle D. Onofrio
- Virginia Institute of Marine Science, William & Mary, P.O. Box 1346, Gloucester Point, VA, 23062, USA
| | - Evan Yeargan
- Division of Shellfish Safety and Waterborne Hazards, Virginia Department of Health, Norfolk, VA, 23510, USA
| | - Adam Wood
- Division of Shellfish Safety and Waterborne Hazards, Virginia Department of Health, Norfolk, VA, 23510, USA
| | - Amanda Roach
- Division of Shellfish Safety and Waterborne Hazards, Virginia Department of Health, Norfolk, VA, 23510, USA
| | - I-Shuo Wade Huang
- Virginia Institute of Marine Science, William & Mary, P.O. Box 1346, Gloucester Point, VA, 23062, USA
| | - Gail P. Scott
- Virginia Institute of Marine Science, William & Mary, P.O. Box 1346, Gloucester Point, VA, 23062, USA
| | - Allen R. Place
- Institute of Marine and Environmental Technology, University of Maryland, Center for Environmental Sciences, Baltimore, MD, 21202, USA
| | - Amy M. Hayes
- Public Health Toxicology Program, Virginia Department of Health, Richmond, VA, 23219, USA
| | - Juliette L. Smith
- Virginia Institute of Marine Science, William & Mary, P.O. Box 1346, Gloucester Point, VA, 23062, USA
| |
Collapse
|
13
|
Shartau RB, Turcotte LDM, Bradshaw JC, Ross ARS, Surridge BD, Nemcek N, Johnson SC. Dissolved Algal Toxins along the Southern Coast of British Columbia Canada. Toxins (Basel) 2023; 15:395. [PMID: 37368696 DOI: 10.3390/toxins15060395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/04/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Harmful algal blooms (HABs) in coastal British Columbia (BC), Canada, negatively impact the salmon aquaculture industry. One disease of interest to salmon aquaculture is Net Pen Liver Disease (NPLD), which induces severe liver damage and is believed to be caused by the exposure to microcystins (MCs). To address the lack of information about algal toxins in BC marine environments and the risk they pose, this study investigated the presence of MCs and other toxins at aquaculture sites. Sampling was carried out using discrete water samples and Solid Phase Adsorption Toxin Tracking (SPATT) samplers from 2017-2019. All 283 SPATT samples and all 81 water samples tested positive for MCs. Testing for okadaic acid (OA) and domoic acid (DA) occurred in 66 and 43 samples, respectively, and all samples were positive for the toxin tested. Testing for dinophysistoxin-1 (DTX-1) (20 samples), pectenotoxin-2 (PTX-2) (20 samples), and yessotoxin (YTX) (17 samples) revealed that all samples were positive for the tested toxins. This study revealed the presence of multiple co-occurring toxins in BC's coastal waters and the levels detected in this study were below the regulatory limits for health and recreational use. This study expands our limited knowledge of algal toxins in coastal BC and shows that further studies are needed to understand the risks they pose to marine fisheries and ecosystems.
Collapse
Affiliation(s)
- Ryan B Shartau
- Department of Biology, The University of Texas at Tyler, Tyler, TX 75799, USA
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC V9T 6N7, Canada
| | - Lenora D M Turcotte
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC V9T 6N7, Canada
| | - Julia C Bradshaw
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC V9T 6N7, Canada
| | - Andrew R S Ross
- Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, BC V8L 4B2, Canada
| | | | - Nina Nemcek
- Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, BC V8L 4B2, Canada
| | - Stewart C Johnson
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC V9T 6N7, Canada
| |
Collapse
|
14
|
Kamali N, Abbas F, Lehane M, Griew M, Furey A. A Review of In Situ Methods-Solid Phase Adsorption Toxin Tracking (SPATT) and Polar Organic Chemical Integrative Sampler (POCIS) for the Collection and Concentration of Marine Biotoxins and Pharmaceuticals in Environmental Waters. Molecules 2022; 27:7898. [PMID: 36431996 PMCID: PMC9698218 DOI: 10.3390/molecules27227898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Solid Phase Adsorption Toxin Tracking (SPATT) and Polar Organic Chemical Integrative Sampler (POCIS) are in situ methods that have been applied to pre-concentrate a range of marine toxins, pesticides and pharmaceutical compounds that occur at low levels in marine and environmental waters. Recent research has identified the widespread distribution of biotoxins and pharmaceuticals in environmental waters (marine, brackish and freshwater) highlighting the need for the development of effective techniques to generate accurate quantitative water system profiles. In this manuscript, we reviewed in situ methods known as Solid Phase Adsorption Toxin Tracking (SPATT) and Polar Organic Chemical Integrative Sampler (POCIS) for the collection and concentration of marine biotoxins, freshwater cyanotoxins and pharmaceuticals in environmental waters since the 1980s to present. Twelve different adsorption substrates in SPATT and 18 different sorbents in POCIS were reviewed for their ability to absorb a range of lipophilic and hydrophilic marine biotoxins, pharmaceuticals, pesticides, antibiotics and microcystins in marine water, freshwater and wastewater. This review suggests the gaps in reported studies, outlines future research possibilities and guides researchers who wish to work on water contaminates using Solid Phase Adsorption Toxin Tracking (SPATT) and Polar Organic Chemical Integrative Sampler (POCIS) technologies.
Collapse
Affiliation(s)
- Naghmeh Kamali
- Mass Spectrometry Group, Department Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
- HALPIN Centre for Research & Innovation, National Maritime College of Ireland (NMCI), Munster Technological University (MTU), P43 XV65 Ringaskiddy, Ireland
| | - Feras Abbas
- Mass Spectrometry Group, Department Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
- CREATE (Centre for Research in Advanced Therapeutic Engineering) and BioExplore, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
| | - Mary Lehane
- Mass Spectrometry Group, Department Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
- CREATE (Centre for Research in Advanced Therapeutic Engineering) and BioExplore, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
| | - Michael Griew
- HALPIN Centre for Research & Innovation, National Maritime College of Ireland (NMCI), Munster Technological University (MTU), P43 XV65 Ringaskiddy, Ireland
| | - Ambrose Furey
- Mass Spectrometry Group, Department Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
- CREATE (Centre for Research in Advanced Therapeutic Engineering) and BioExplore, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
| |
Collapse
|
15
|
Wu HY, Dong CF, Zheng GC, Zhang ZH, Zhang YY, Tan ZJ, Gu HF. Formation mechanism and environmental drivers of Alexandrium catenella bloom events in the coastal waters of Qinhuangdao, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120241. [PMID: 36152713 DOI: 10.1016/j.envpol.2022.120241] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/21/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
In the last 5 years, paralytic shellfish toxins (PSTs) have been recurrently detected in mollusks farmed in the mussel culture area of Qinhuangdao city, along with the occurrence of toxic outbreaks linked to dinoflagellate species of the Alexandrium genus. To understand the formation mechanism and variation of these events, continuous and comprehensive PSTs monitoring was carried out between 2017 and 2020. Through the analysis of both phytoplankton and cysts via light microscopy and quantitative polymerase chain reaction, it was shown that Alexandrium catenella was responsible for the production of PSTs, which consisted mainly of gonyautoxins 1,4 (GTX1/4, 87%) and GTX2/3 (13%). During bloom events in 2019, mussels accumulated the highest PSTs value (929 μg STX di-HCl eq·kg-1) in conjunction with the peak of cell abundances, and toxin profiles were consistent with high distributions of GTX1/4, GTX2/3, and Neosaxitoxin. Toxin metabolites vary in different substances and mainly transferred to a stable proportion of α-epimer: β-epimers 3:1. The environmental drivers of Alexandrium blooms included the continuous rise of water temperature (>4 °C) and calm weather with low wind speed and no significant precipitation. By comparing toxin profiles and method sensitivity, it was found that dissolved toxins in seawater are more useful for early warning. These results have important implications for the effective monitoring and management of paralytic shellfish poisoning outbreaks.
Collapse
Affiliation(s)
- Hai-Yan Wu
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Chen-Fan Dong
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Guan-Chao Zheng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Zhi-Hua Zhang
- Hebei Province Aquatic Products Quality Inspection and Testing Station, Shijiazhuang, 050011, China
| | - Ya-Ya Zhang
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Zhi-Jun Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China
| | - Hai-Feng Gu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| |
Collapse
|
16
|
Mergia MT, Weldemariam ED, Eklo OM, Yimer GT. Pesticide residue levels in surface water, using a passive sampler and in the sediment along the littoral zone of Lake Ziway at selected sites. SN APPLIED SCIENCES 2022. [DOI: 10.1007/s42452-022-04966-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
AbstractDiaion® HP-20 resin passive samplers deployed in water and sediment samples collected from Lake Ziway were analyzed for 30 organochlorine, organophosphorus, carboxamide, and pyrethroid pesticide residues. The samples were collected from purposely selected sampling stations in five sites on Lake Ziway. Levels of selected pesticides were determined by GC–MS/MS in all samples. p,p′DDE and boscalid residues were the only detected pesticides in sediment samples. Similarly, only metalaxyl and boscalid residues were recovered from HP-20 resins. The concentration of p,p′DDE and boscalid in sediment ranged from 0.66–7.23 and 0.1–15.26 ng g−1 dry weight respectively. The presence of p,p′DDE but no other metabolites of DDT in all sediment samples indicated that DDT residues in Ziway Lake were aged and probably originated from the weathered agricultural soils of the surrounding region. The highest level of boscalid was recorded at Site 2 (near the floriculture enterprises) both in sediment and in HP-20 resins with a mean concentration of 11.8 ng g−1 dw and 39.6 ng g−1 disk respectively. However, the concertation of metalaxyl was the highest in the HP-20 resins deployed at Site1 and Site 4 (near the intensive small-scale vegetable farm) with a mean concentration of 54.7 ng g−1 disk and 54.3 ng g−1 disk respectively. Generally, most sampling sites of p,p′DDE were found to have a moderate ecological risk based on levels specified in the sediment quality standards. Moreover, the relatively high boscalid and metalaxyl levels in HP-20 deployed in Lake Ziway would be the result of recent intensive pesticide use by floriculture enterprises and small-scale vegetable farmers in the region. A spatial variation on the accumulation of detected pesticides among the sampling sites depends on the anthropogenic activities, around the lake from the point and non-point sources. Although most of the analyzed pesticides were below the detectable limit, further studies and continued monitoring of currently used pesticide residues in the Lake are highly recommended.
Collapse
|
17
|
Campàs M, Rambla-Alegre M, Wirén C, Alcaraz C, Rey M, Safont A, Diogène J, Torréns M, Fragoso A. Cyclodextrin polymers as passive sampling materials for lipophilic marine toxins in Prorocentrum lima cultures and a Dinophysis sacculus bloom in the NW Mediterranean Sea. CHEMOSPHERE 2021; 285:131464. [PMID: 34256204 DOI: 10.1016/j.chemosphere.2021.131464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Cyclodextrins, cyclic oligomers that form a conical structure with an internal cavity, are proposed as new and sustainable materials for passive sampling of lipophilic marine toxins. Two applicability scenarios have been tested. First, disks containing β-cyclodextrin-hexamethylene diisocyanate (β-CD-HDI) and β-cyclodextrin-epichlorohydrin (β-CD-EPI) polymers were immersed in Prorocentrum lima cultures for different days (2, 12 and 40). LC-MS/MS analysis showed capture of free okadaic acid (OA) and dinophysistoxin-1 (DTX1) by cyclodextrins at contents that increased with immersion time. Cyclodextrins resulted more efficient in capturing DTX1 than OA. In a second experiment, disks containing β-CD-HDI, β-CD-EPI, γ-CD-HDI and γ-CD-EPI were deployed in harbor waters of El Masnou (NW Mediterranean Sea) during a Dinophysis sacculus bloom in February 2020. Free OA and pectenotoxin-2 (PTX2) were captured by cyclodextrins. Toxin contents were higher at sampling points and sampling weeks with higher D. sacculus cell abundance. In this case, PTX2 capture with cyclodextrins was more efficient than OA capture. Therefore, cyclodextrins have provided information regarding the toxin profile of a P. lima strain and the spatial and temporal dynamics of a D. sacculus bloom, proven efficient as passive sampling materials for environmental monitoring.
Collapse
Affiliation(s)
- Mònica Campàs
- IRTA, Ctra Poble Nou km 5.5, 43540, Sant Carles de la Ràpita, Spain.
| | | | - Charlotta Wirén
- IRTA, Ctra Poble Nou km 5.5, 43540, Sant Carles de la Ràpita, Spain
| | - Carles Alcaraz
- IRTA, Ctra Poble Nou km 5.5, 43540, Sant Carles de la Ràpita, Spain
| | - María Rey
- IRTA, Ctra Poble Nou km 5.5, 43540, Sant Carles de la Ràpita, Spain
| | - Anna Safont
- IRTA, Ctra Poble Nou km 5.5, 43540, Sant Carles de la Ràpita, Spain
| | - Jorge Diogène
- IRTA, Ctra Poble Nou km 5.5, 43540, Sant Carles de la Ràpita, Spain
| | - Mabel Torréns
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007, Tarragona, Spain
| | - Alex Fragoso
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007, Tarragona, Spain
| |
Collapse
|
18
|
Berlinck RGS, Crnkovic CM, Gubiani JR, Bernardi DI, Ióca LP, Quintana-Bulla JI. The isolation of water-soluble natural products - challenges, strategies and perspectives. Nat Prod Rep 2021; 39:596-669. [PMID: 34647117 DOI: 10.1039/d1np00037c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Covering period: up to 2019Water-soluble natural products constitute a relevant group of secondary metabolites notably known for presenting potent biological activities. Examples are aminoglycosides, β-lactam antibiotics, saponins of both terrestrial and marine origin, and marine toxins. Although extensively investigated in the past, particularly during the golden age of antibiotics, hydrophilic fractions have been less scrutinized during the last few decades. This review addresses the possible reasons on why water-soluble metabolites are now under investigated and describes approaches and strategies for the isolation of these natural compounds. It presents examples of several classes of hydrosoluble natural products and how they have been isolated. Novel stationary phases and chromatography techniques are also reviewed, providing a perspective towards a renaissance in the investigation of water-soluble natural products.
Collapse
Affiliation(s)
- Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Camila M Crnkovic
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05508-000, São Paulo, SP, Brazil
| | - Juliana R Gubiani
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Darlon I Bernardi
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Laura P Ióca
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Jairo I Quintana-Bulla
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| |
Collapse
|
19
|
Gibson-Kueh S, Uichanco JA. The pathology associated with putative algal toxicosis in red snapper, Lutjanus species (Bloch 1790). JOURNAL OF FISH DISEASES 2021; 44:857-861. [PMID: 33774842 DOI: 10.1111/jfd.13371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Susan Gibson-Kueh
- Tropical Futures Institute, James Cook University, Singapore, Singapore
| | | |
Collapse
|
20
|
Onofrio MD, Egerton TA, Reece KS, Pease SKD, Sanderson MP, Iii WJ, Yeargan E, Roach A, DeMent C, Wood A, Reay WG, Place AR, Smith JL. Spatiotemporal distribution of phycotoxins and their co-occurrence within nearshore waters. HARMFUL ALGAE 2021; 103:101993. [PMID: 33980433 DOI: 10.1016/j.hal.2021.101993] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/15/2021] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
Harmful algal blooms (HABs), varying in intensity and causative species, have historically occurred throughout the Chesapeake Bay, U.S.; however, phycotoxin data are sparse. The spatiotemporal distribution of phycotoxins was investigated using solid-phase adsorption toxin tracking (SPATT) across 12 shallow, nearshore sites within the lower Chesapeake Bay and Virginia's coastal bays over one year (2017-2018). Eight toxins, azaspiracid-1 (AZA1), azaspiracid-2 (AZA2), microcystin-LR (MC-LR), domoic acid (DA), okadaic acid (OA), dinophysistoxin-1 (DTX1), pectenotoxin-2 (PTX2), and goniodomin A (GDA) were detected in SPATT extracts. Temporally, phycotoxins were always present in the region, with at least one phycotoxin group (i.e., consisting of OA and DTX1) detected at every time point. Co-occurrence of phycotoxins was also common; two or more toxin groups were observed in 76% of the samples analyzed. Toxin maximums: 0.03 ng AZA2/g resin/day, 0.25 ng DA/g resin/day, 15 ng DTX1/g resin/day, 61 ng OA/g resin/day, 72 ng PTX2/g resin/day, and 102,050 ng GDA/g resin/day were seasonal, with peaks occurring in summer and fall. Spatially, the southern tributary and coastal bay regions harbored the highest amount of total phycotoxins on SPATT over the year, and the former contained the greatest diversity of phycotoxins. The novel detection of AZAs in the region, before a causative species has been identified, supports the use of SPATT as an explorative tool in respect to emerging threats. The lack of karlotoxin in SPATT extracts, but detection of Karlodinium veneficum by microscopy, however, emphasizes that this tool should be considered complementary to, but not a replacement for, more traditional HAB management and monitoring methods.
Collapse
Affiliation(s)
- Michelle D Onofrio
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA 23062, USA.
| | - Todd A Egerton
- Division of Shellfish Safety and Waterborne Hazards, Virginia Department of Health, Norfolk, VA 23510, USA.
| | - Kimberly S Reece
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA 23062, USA.
| | - Sarah K D Pease
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA 23062, USA.
| | - Marta P Sanderson
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA 23062, USA.
| | - William Jones Iii
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA 23062, USA.
| | - Evan Yeargan
- Division of Shellfish Safety and Waterborne Hazards, Virginia Department of Health, Norfolk, VA 23510, USA.
| | - Amanda Roach
- Division of Shellfish Safety and Waterborne Hazards, Virginia Department of Health, Norfolk, VA 23510, USA.
| | - Caroline DeMent
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA 23062, USA.
| | - Adam Wood
- Division of Shellfish Safety and Waterborne Hazards, Virginia Department of Health, Norfolk, VA 23510, USA.
| | - William G Reay
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA 23062, USA.
| | - Allen R Place
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Sciences, Baltimore, MD 21202, USA.
| | - Juliette L Smith
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA 23062, USA.
| |
Collapse
|
21
|
Xiao W, Zhong Q, Sun F, Wang W, Zhao Z, Gu K. Differences in Abnormal Water Metabolism between SD Rats and KM Mice Intoxicated by Microcystin-RR. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1900. [PMID: 33669356 PMCID: PMC7920292 DOI: 10.3390/ijerph18041900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 01/17/2023]
Abstract
The effects of microcystin-RR (MC-RR) on water metabolism were studied on Sprague-Dawley (SD) rats and KunMing (KM) mice. In the single dose toxicity test, polydipsia, polyuria, hematuria and proteinuria were found in group of rats receiving a MC-RR dose of 574.7 μg/kg, and could be relieved by dexamethasone (DXM). Gradient damage was observed in kidney and liver in rats with gradient MC-RR doses of 574.7, 287.3, and 143.7 μg/kg. No significant water metabolic changes or kidney injuries were observed in mice treated with MC-RR doses of 210.0, 105.0, and 52.5 μg/kg. In the continuous exposure test, in which mice were administrated with 140.0, 70.0, and 35.0 μg/kg MC-RR for 28 days, mice in the 140.0 μg/kg group presented increasing polydipsia, polyuria, and liver damage. However, no anatomic or histological changes, including related serological and urinary indices, were found in the kidney. In summary, abnormal water metabolism can be induced by MC-RR in rats through kidney injury in single dose exposure; the kidney of SD rats is more sensitive to MC-RR than that of KM mouse; and polydipsia and polyuria in mice exposed to MC-RR for 28 days occurred but could not be attributed to kidney damage.
Collapse
Affiliation(s)
| | | | | | | | | | - Kangding Gu
- MOE Key Lab of Environment and Health, Institute of Environmental Medicine, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (W.X.); (Q.Z.); (F.S.); (W.W.); (Z.Z.)
| |
Collapse
|
22
|
Li J, Persson KM. Quick detection method for paralytic shellfish toxins (PSTs) monitoring in freshwater - A review. CHEMOSPHERE 2021; 265:128591. [PMID: 33189391 DOI: 10.1016/j.chemosphere.2020.128591] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/17/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
The objective of this critical review was to provide a comprehensive summary of paralytic shellfish toxins (PSTs) producing species and knowledge gaps in detecting PSTs in drinking water resources, with a focus on recent development of PSTs monitoring methods and tools for drinking water monitoring. PSTs, which are also called Saxitoxins (STXs), are a group of neurotoxins not only produced by marine dinoflagellates but also freshwater cyanobacteria. The presence of PSTs in freshwater has been reported from all continents except Antarctica. PSTs in poisoned sea food such as shellfish, molluscs and crustaceans may attack the nerve system after consumption. The high incidences of PSTs occurring in drinking water sources showed another route of potential human exposure. A development of simple and fast screening tools for drinking water surveillance of PSTs is needed. Neurotoxins produced by freshwater cyanobacteria are understudied relative to microcystin and little study is done around PSTs in drinking water monitoring. Some fast screening methods exist. The critical issues for using them in water surveillance, particularly matrix effect and cross-reactivity are summarized, and future research directions are high-lighted. We conclude that monitoring routines at drinking water resources should start from species level, followed by a profound screening of toxin profile. For practical monitoring routine, fast screening methods should be combined with highly sensitive and accurate analytical methods such as liquid chromatography/liquid chromatography-mass spectrometry (LC/LC-MS). A thorough understanding of toxin profile in source water is necessary for screening tool selection.
Collapse
Affiliation(s)
- Jing Li
- Division of Water Resources Engineering, Faculty of Engineering LTH, Lund University, P.O. Box 118, SE-221 00, Lund, Sweden.
| | - Kenneth M Persson
- Division of Water Resources Engineering, Faculty of Engineering LTH, Lund University, P.O. Box 118, SE-221 00, Lund, Sweden
| |
Collapse
|
23
|
Wang J, Chen J, He X, Hao S, Wang Y, Zheng X, Wang B. Simple determination of six groups of lipophilic marine algal toxins in seawater by automated on-line solid phase extraction coupled to liquid chromatography-tandem mass spectrometry. CHEMOSPHERE 2021; 262:128374. [PMID: 33182088 DOI: 10.1016/j.chemosphere.2020.128374] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 05/26/2023]
Abstract
Lipophilic marine algal toxins (LMATs) are highly toxic secondary metabolites produced by marine microalgae that pose a great threat to marine aquaculture organisms and human health. In this study, a novel and automated method for the simultaneous determination of six groups of LMATs in seawater was developed by on-line solid phase extraction (SPE) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Condition optimization and method validation were performed, and the recoveries of all 14 target LMATs featuring different properties ranged from 83.5% to 96.0%. The limits of detection of most target compounds were within ≤3.000 ng/L with good precision (relative standard deviation ≤ 12.1%) and linearity (R2≥0.9916). Compared with off-line SPE methods, the proposed on-line SPE method has better recovery, sensitivity, repeatability, and throughput; in addition, the volume of seawater sample necessary to conduct determinations is greatly reduced in the present method. Finally, the method was applied to determine LMATs in actual seawater samples collected from the Bohai and South Yellow Seas of China in summer, and okadaic acid and pectenotoxin-2 were detected in all seawater samples. The highest concentration of ∑LMATs (22.23 ng/L) occurred in the coastal mariculture area of Shandong Province. Therefore, routine monitoring of LMATs in seawater of the coastal mariculture zone is necessary to prevent shellfish contamination especially in summer, and the proposed on-line SPE-LC-MS/MS method is a powerful way for direct and automatic detection of various LMATs in coastal mariculture area.
Collapse
Affiliation(s)
- Jiuming Wang
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Junhui Chen
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China; Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Xiuping He
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China; Shandong University of Science and Technology, Qingdao, 266590, China
| | - Shuang Hao
- Marine College, Shandong University, Weihai, 264200, China
| | - Yuning Wang
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Xiaoling Zheng
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Baodong Wang
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China
| |
Collapse
|
24
|
Wood SA, Kelly L, Bouma-Gregson K, Humbert JF, Laughinghouse HD, Lazorchak J, McAllister T, McQueen A, Pokrzywinski K, Puddick J, Quiblier C, Reitz LA, Ryan K, Vadeboncoeur Y, Zastepa A, Davis TW. Toxic benthic freshwater cyanobacterial proliferations: Challenges and solutions for enhancing knowledge and improving monitoring and mitigation. FRESHWATER BIOLOGY 2020; 65:1824-1842. [PMID: 34970014 PMCID: PMC8715960 DOI: 10.1111/fwb.13532] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 05/05/2020] [Indexed: 05/05/2023]
Abstract
1. This review summarises knowledge on the ecology, toxin production, and impacts of toxic freshwater benthic cyanobacterial proliferations. It documents monitoring, management, and sampling strategies, and explores mitigation options. 2. Toxic proliferations of freshwater benthic cyanobacteria (taxa that grow attached to substrates) occur in streams, rivers, lakes, and thermal and meltwater ponds, and have been reported in 19 countries. Anatoxin- and microcystin-containing mats are most commonly reported (eight and 10 countries, respectively). 3. Studies exploring factors that promote toxic benthic cyanobacterial proliferations are limited to a few species and habitats. There is a hierarchy of importance in environmental and biological factors that regulate proliferations with variables such as flow (rivers), fine sediment deposition, nutrients, associated microbes, and grazing identified as key drivers. Regulating factors differ among colonisation, expansion, and dispersal phases. 4. New -omics-based approaches are providing novel insights into the physiological attributes of benthic cyanobacteria and the role of associated microorganisms in facilitating their proliferation. 5. Proliferations are commonly comprised of both toxic and non-toxic strains, and the relative proportion of these is the key factor contributing to the overall toxin content of each mat. 6. While these events are becoming more commonly reported globally, we currently lack standardised approaches to detect, monitor, and manage this emerging health issue. To solve these critical gaps, global collaborations are needed to facilitate the rapid transfer of knowledge and promote the development of standardised techniques that can be applied to diverse habitats and species, and ultimately lead to improved management.
Collapse
Affiliation(s)
| | | | - Keith Bouma-Gregson
- Office of Information Management and Analysis, California State Water Resources Control Board, Sacramento, California, United States of America
| | | | - H Dail Laughinghouse
- Fort Lauderdale Research and Education Center, University of Florida, Florida, USA
| | - James Lazorchak
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Monitoring and Modeling, Cincinnati, Ohio, United States of America
| | - Tara McAllister
- Te Pūnaha Matatini Centre of Research Excellence for Complex Systems, University of Auckland, Auckland, New Zealand
| | - Andrew McQueen
- Environmental Risk Assessment Branch, US Army Corps of Engineers, Engineering Research & Development Center, Vicksburg, Mississippi, United States of America
| | - Katyee Pokrzywinski
- Environmental Risk Assessment Branch, US Army Corps of Engineers, Engineering Research & Development Center, Vicksburg, Mississippi, United States of America
| | | | | | - Laura A Reitz
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, United States of America
| | - Ken Ryan
- School of Biological Sciences, Victoria University of Wellington, New Zealand
| | - Yvonne Vadeboncoeur
- Department of Biological Sciences, Wright State University, Ohio, United States of America
| | - Arthur Zastepa
- Environment and Climate Change Canada, Canada Centre for Inland Waters, Ontario, Canada
| | - Timothy W Davis
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, United States of America
| |
Collapse
|
25
|
Roué M, Smith KF, Sibat M, Viallon J, Henry K, Ung A, Biessy L, Hess P, Darius HT, Chinain M. Assessment of Ciguatera and Other Phycotoxin-Related Risks in Anaho Bay (Nuku Hiva Island, French Polynesia): Molecular, Toxicological, and Chemical Analyses of Passive Samplers. Toxins (Basel) 2020; 12:toxins12050321. [PMID: 32413988 PMCID: PMC7291316 DOI: 10.3390/toxins12050321] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 12/17/2022] Open
Abstract
Ciguatera poisoning is a foodborne illness caused by the consumption of seafood contaminated with ciguatoxins (CTXs) produced by dinoflagellates from the genera Gambierdiscus and Fukuyoa. The suitability of Solid Phase Adsorption Toxin Tracking (SPATT) technology for the monitoring of dissolved CTXs in the marine environment has recently been demonstrated. To refine the use of this passive monitoring tool in ciguateric areas, the effects of deployment time and sampler format on the adsorption of CTXs by HP20 resin were assessed in Anaho Bay (Nuku Hiva Island, French Polynesia), a well-known ciguatera hotspot. Toxicity data assessed by means of the mouse neuroblastoma cell-based assay (CBA-N2a) showed that a 24 h deployment of 2.5 g of resin allowed concentrating quantifiable amounts of CTXs on SPATT samplers. The CTX levels varied with increasing deployment time, resin load, and surface area. In addition to CTXs, okadaic acid (OA) and dinophysistoxin-1 (DTX1) were also detected in SPATT extracts using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), consistent with the presence of Gambierdiscus and Prorocentrum species in the environment, as assessed by quantitative polymerase chain reaction (qPCR) and high-throughput sequencing (HTS) metabarcoding analyses conducted on passive window screen (WS) artificial substrate samples. Although these preliminary findings await further confirmation in follow-up studies, they highlight the usefulness of SPATT samplers in the routine surveillance of CP risk on a temporal scale, and the monitoring of other phycotoxin-related risks in ciguatera-prone areas.
Collapse
Affiliation(s)
- Mélanie Roué
- Institut de Recherche pour le Développement, UMR 241 EIO, 98702 Faa’a, Tahiti, French Polynesia
- Institut Louis Malardé, UMR 241 EIO, 98713 Papeete, Tahiti, French Polynesia; (J.V.); (K.H.); (A.U.); (H.T.D.); (M.C.)
- Correspondence: ; Tel.: +689-40-416-413
| | - Kirsty F. Smith
- Cawthron Institute, Nelson 7042, New Zealand; (K.F.S.); (L.B.)
| | | | - Jérôme Viallon
- Institut Louis Malardé, UMR 241 EIO, 98713 Papeete, Tahiti, French Polynesia; (J.V.); (K.H.); (A.U.); (H.T.D.); (M.C.)
| | - Kévin Henry
- Institut Louis Malardé, UMR 241 EIO, 98713 Papeete, Tahiti, French Polynesia; (J.V.); (K.H.); (A.U.); (H.T.D.); (M.C.)
| | - André Ung
- Institut Louis Malardé, UMR 241 EIO, 98713 Papeete, Tahiti, French Polynesia; (J.V.); (K.H.); (A.U.); (H.T.D.); (M.C.)
| | - Laura Biessy
- Cawthron Institute, Nelson 7042, New Zealand; (K.F.S.); (L.B.)
| | - Philipp Hess
- Ifremer, DYNECO, 44000 Nantes, France; (M.S.); (P.H.)
| | - Hélène Taiana Darius
- Institut Louis Malardé, UMR 241 EIO, 98713 Papeete, Tahiti, French Polynesia; (J.V.); (K.H.); (A.U.); (H.T.D.); (M.C.)
| | - Mireille Chinain
- Institut Louis Malardé, UMR 241 EIO, 98713 Papeete, Tahiti, French Polynesia; (J.V.); (K.H.); (A.U.); (H.T.D.); (M.C.)
| |
Collapse
|
26
|
Viallon J, Chinain M, Darius HT. Revisiting the Neuroblastoma Cell-Based Assay (CBA-N2a) for the Improved Detection of Marine Toxins Active on Voltage Gated Sodium Channels (VGSCs). Toxins (Basel) 2020; 12:E281. [PMID: 32349302 PMCID: PMC7290318 DOI: 10.3390/toxins12050281] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
The neuroblastoma cell-based assay (CBA-N2a) is widely used for the detection of marine biotoxins in seafood products, yet a consensus protocol is still lacking. In this study, six key parameters of CBA-N2a were revisited: cell seeding densities, cell layer viability after 26 h growth, MTT incubation time, Ouabain and Veratridine treatment and solvent and matrix effects. A step-by-step protocol was defined identifying five viability controls for the validation of CBA-N2a results. Specific detection of two voltage gated sodium channel activators, pacific ciguatoxin (P-CTX3C) and brevetoxin (PbTx3) and two inhibitors, saxitoxin (STX) and decarbamoylsaxitoxin (dc-STX) was achieved, with EC50 values of 1.7 ± 0.35 pg/mL, 5.8 ± 0.9 ng/mL, 3 ± 0.5 ng/mL and 15.8 ± 3 ng/mL, respectively. When applied to the detection of ciguatoxin (CTX)-like toxicity in fish samples, limit of detection (LOD) and limit of quantification (LOQ) values were 0.031 ± 0.008 and 0.064 ± 0.016 ng P-CTX3C eq/g of flesh, respectively. Intra and inter-assays comparisons of viability controls, LOD, LOQ and toxicity in fish samples gave coefficients of variation (CVs) ranging from 3% to 29%. This improved test adaptable to either high throughput screening or composite toxicity estimation is a useful starting point for a standardization of the CBA-N2a in the field of marine toxin detection.
Collapse
Affiliation(s)
| | | | - Hélène Taiana Darius
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins-UMR 241-EIO, 98713 Papeete-Tahiti, French Polynesia; (J.V.); (M.C.)
| |
Collapse
|
27
|
Wu D, Chen J, He X, Wang J, Wang Z, Li X, Wang B. Distribution, partitioning, and seasonal variation of lipophilic marine algal toxins in aquatic environments of a typical semi-closed mariculture bay. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113299. [PMID: 31585405 DOI: 10.1016/j.envpol.2019.113299] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/11/2019] [Accepted: 09/22/2019] [Indexed: 06/10/2023]
Abstract
Lipophilic marine algal toxins (LMATs) pose a potential threat to the health of marine shellfish consumers and marine breeding industries. In this study, LMATs in dissolved phases (DP) and particulate phases (PP) in the seawater of Jiaozhou Bay were accurately determined over four seasons to understand their composition, level, phase partitioning, spatiotemporal variation, and potential sources in aquatic environments of a typical semi-closed mariculture bay. Various LMATs, such as okadaic acid (OA), dinophysistoxin-1 (DTX1), dinophysistoxin-2 (DTX2), gymnodimine (GYM), 13-desmethyl spirolide C (SPX1), pectenotoxin-2 (PTX2), pectenotoxin-2 seco acid (PTX2 SA), and pectenotoxin-11 (PTX11), were detected in DP and PP; of these, OA and PTX2 were the dominant LMATs in DP and PP, respectively. The average proportion of ΣLMATs in DP (97.5%) was significantly higher than that in PP (2.5%), which indicates that LMATs are predominantly partitioned into DP. The total concentrations of LMATs in DP ranged from 4.16 ng/L to 23.19 ng/L (mean, 13.35 ng/L) over four seasons. The highest levels of LMATs in DP and PP were found in summer (mean, 16.71 ng/L) and spring, respectively, while the maximum variety of LMATs was found in autumn. This result suggests that seasonal changes could influence the composition, concentration, and phase partitioning of LMATs in aquatic environments of a coastal semi-closed mariculture bay. ΣLMAT concentrations were higher in the western region than in the eastern region of the bay, where shellfish may have a greater risk of exposure. Dinophysis acuminata, Dinophysis fortii, and Prorocentrum minimum were the potential sources of LMATs in the aquaculture seawater. Overall, various LMATs occurred in the semi-closed mariculture bay, and the persistence and bioavailability of these toxins in aquaculture seawater should be determined in future research.
Collapse
Affiliation(s)
- Danni Wu
- Key Laboratory for Marine Bioactive Substances and Modern Analytical Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Junhui Chen
- Key Laboratory for Marine Bioactive Substances and Modern Analytical Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China.
| | - Xiuping He
- Key Laboratory for Marine Bioactive Substances and Modern Analytical Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China
| | - Jiuming Wang
- Key Laboratory for Marine Bioactive Substances and Modern Analytical Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Zhiwei Wang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaotong Li
- Key Laboratory for Marine Bioactive Substances and Modern Analytical Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Baodong Wang
- Key Laboratory for Marine Bioactive Substances and Modern Analytical Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China
| |
Collapse
|
28
|
Yao L, Steinman AD, Wan X, Shu X, Xie L. A new method based on diffusive gradients in thin films for in situ monitoring microcystin-LR in waters. Sci Rep 2019; 9:17528. [PMID: 31772202 PMCID: PMC6879504 DOI: 10.1038/s41598-019-53835-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 10/31/2019] [Indexed: 01/22/2023] Open
Abstract
The passive sampling method of diffusive gradients in thin-films (DGT) was developed to provide a quantitative and time-integrated measurement of microcystin-LR (MC-LR) in waters. The DGT method in this study used HLB (hydrophilic-lipophilic-balanced) material as a binding agent, and methanol as an eluent. The diffusion coefficient of MC-LR was 5.01 × 10−6 cm2 s−1 at 25 °C in 0.45 mm thick diffusion layer. This DGT method had a binding capacity of 4.24 μg per binding gel disk (3.14 cm2), ensuring sufficient capacity to measure MC-LR in most water matrices. The detection limit of HLB DGT was 0.48 ng L−1. DGT coupled to analysis by HPLC appears to be an accurate method for MC-LR monitoring. Comparison of DGT measurements for MC-LR in water and a conventional active sampling method showed little difference. This study demonstrates that HLB-based DGT is a useful tool for in situ monitoring of MC-LR in fresh waters.
Collapse
Affiliation(s)
- Lei Yao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Alan D Steinman
- Annis Water Resources Institute, Grand Valley State University, 740 West Shoreline Drive, Muskegon, MI, 49441, USA
| | - Xiang Wan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiubo Shu
- College of Resources and Environment Engineering, Guizhou University, Guiyang, 550025, China
| | - Liqiang Xie
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
29
|
D'Angelo E. Development and evaluation of a sensitive, Diffusive Gradients in Thin-Films (DGT) method for determining microcystin-LR concentrations in freshwater and seawater. HARMFUL ALGAE 2019; 89:101668. [PMID: 31672238 DOI: 10.1016/j.hal.2019.101668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/12/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
A Diffusive Gradients in Thin-Films (DGT) passive sampling technique was developed for microcystin-LR (MC-LR), one of the most common and toxic microcystins. Three types of resins (HP20, SP700, and XAD18) were evaluated for MC-LR uptake kinetics, capacities, and extraction efficiencies and simple procedures were developed for determining MC-LR concentration in binding disc extracts by Adda-ELISA (U.S. EPA Method 546). The XAD18-DGT/Adda-ELISA method had a 7-d deployment time detection limit of ≈0.05 μg/L and capacity of >250 μg/L of MC-LR in water samples which encompass U.S. EPA and WHO advisory concentrations for drinking and recreational waters. The XAD18-DGT/Adda-ELISA method determined time-averaged MC-LR concentrations in waters with wide ranging pH (4.9-8.3) and ionic strength (0.04-0.8 M) under well-stirred and quiescent conditions with 90-101% accuracy. In addition to high sensitivity and accuracy, the method is simple, inexpensive, and applicable for determining MC-LR and related MCs concentrations in waterbodies with wide ranging chemical characteristics and hydrodynamic conditions.
Collapse
Affiliation(s)
- Elisa D'Angelo
- Plant and Soil Sciences, N-122 Agricultural Science Building North, University of Kentucky, Lexington, KY 40546, United States.
| |
Collapse
|
30
|
He X, Chen J, Wu D, Sun P, Ma X, Wang J, Liu L, Chen K, Wang B. Distribution Characteristics and Environmental Control Factors of Lipophilic Marine Algal Toxins in Changjiang Estuary and the Adjacent East China Sea. Toxins (Basel) 2019; 11:E596. [PMID: 31614878 PMCID: PMC6833110 DOI: 10.3390/toxins11100596] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 12/31/2022] Open
Abstract
Marine algal toxins, highly toxic secondary metabolites, have significant influences on coastal ecosystem health and mariculture safety. The occurrence and environmental control factors of lipophilic marine algal toxins (LMATs) in the surface seawater of the Changjiang estuary (CJE) and the adjacent East China Sea (ECS) were investigated. Pectenotoxin-2 (PTX2), okadaic acid (OA), dinophysistoxin-1(DTX1), and gymnodimine (GYM) were detected in the CJE surface seawater in summer, with concentration ranges of not detected (ND)-105.54 ng/L, ND-13.24 ng/L, ND-5.48 ng/L, and ND-12.95 ng/L, respectively. DTX1 (ND-316.15 ng/L), OA (ND-16.13 ng/L), and PTX2 (ND-4.97 ng/L) were detected in the ECS during spring. LMATs formed a unique low-concentration band in the Changjiang diluted water (CJDW) coverage area in the typical large river estuary. PTX2, OA, and DTX1 in seawater were mainly derived from Dinophysis caudate and Dinophysis rotundata, while GYM was suspected to be from Karenia selliformis. Correlation analyses showed that LMAT levels in seawater were positively correlated with dissolved oxygen and salinity, but negatively correlated with temperature and nutrients, indicating that the hydrological condition and nutritional status of seawater and climatic factors exert significant effects on the distribution of LMATs.
Collapse
Affiliation(s)
- Xiuping He
- Key Laboratory for Marine Bioactive Substances and Modern Analytical Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China.
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China.
| | - Junhui Chen
- Key Laboratory for Marine Bioactive Substances and Modern Analytical Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China.
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China.
| | - Danni Wu
- Key Laboratory for Marine Bioactive Substances and Modern Analytical Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China.
| | - Ping Sun
- Key Laboratory for Marine Bioactive Substances and Modern Analytical Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China.
| | - Xin Ma
- Qinhuangdao Marine Environmental Monitoring Central Station, Qinhuangdao 066000, China.
| | - Jiuming Wang
- Key Laboratory for Marine Bioactive Substances and Modern Analytical Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China.
| | - Lijun Liu
- Key Laboratory for Marine Bioactive Substances and Modern Analytical Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China.
- Marine College, Shandong University, Weihai 264200, China.
| | - Kan Chen
- Key Laboratory for Marine Bioactive Substances and Modern Analytical Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China.
| | - Baodong Wang
- Key Laboratory for Marine Bioactive Substances and Modern Analytical Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China.
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China.
| |
Collapse
|