1
|
Matak I, Lacković Z. Native botulinum toxin type A vs. redesigned botulinum toxins in pain: What did we learn so far? Curr Opin Pharmacol 2024; 78:102476. [PMID: 39178620 DOI: 10.1016/j.coph.2024.102476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 07/11/2024] [Accepted: 07/24/2024] [Indexed: 08/26/2024]
Abstract
Driven by the clinical success of botulinum toxin serotype A (BoNT/A) and the need for improved chronic pain management, researchers attempted to develop re-designed botulinum toxin (BoNT)-based molecules as novel analgesics. Various recombinant protein expression strategies including retargeted binding domains, and chimeric toxins combining different serotypes were tested to improve BoNT/A therapeutic safety margin and expand its efficacy. The aim of this review is to re-evaluate the current design strategies for recombinant BoNT-based molecules for pain treatment, compares their analgesic profile against the native BoNT/A, as well as to discuss the main strengths and potential weaknesses of reported approaches.
Collapse
Affiliation(s)
- Ivica Matak
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology and Croatian Institute of Brain Research, University of Zagreb School of Medicine, Šalata 11, 10000 Zagreb, Croatia.
| | - Zdravko Lacković
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology and Croatian Institute of Brain Research, University of Zagreb School of Medicine, Šalata 11, 10000 Zagreb, Croatia
| |
Collapse
|
2
|
Lalaurie CJ, Zhang C, Liu SM, Bunting KA, Dalby PA. An open source in silico workflow to assist in the design of fusion proteins. Comput Biol Chem 2024; 113:108209. [PMID: 39260229 DOI: 10.1016/j.compbiolchem.2024.108209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
Fusion proteins have the potential to become the new norm for targeted therapeutic treatments. Highly specific payload delivery can be achieved by combining custom targeting moieties, such as VHH domains, with active parts of proteins that have a particular activity not naturally targeted to the intended cells. Conversely, novel drug products may make use of the highly specific targeting properties of naturally occurring proteins and combine them with custom payloads. When designing such a product, there is rarely a known structure for the final construct which makes it difficult to assess molecular behaviour that may ultimately impact therapeutic outcome. Considering the time and cost of expressing a construct, optimising the purification procedure, obtaining sufficient quantities for biophysical characterisation, and performing structural studies in vitro, there is an enormous benefit to conduct in silico studies ahead of wet lab work. By following a repeatable, streamlined, and fast workflow of molecular dynamics assessment, it is possible to eliminate low-performing candidates from costly experimental work. There are, however, many aspects to consider when designing a novel fusion protein and it is crucial not to overlook some elements. In this work, we suggest a set of user-friendly, open-source methods which can be used to screen fusion protein candidates from the sequence alone. We used the light chain and translocation domain of botulinum toxin A (BoNT/A) fused with a selected VHH domain, termed here LC-HN-VHH, as a case study for a general approach to designing, modelling, and simulating fusion proteins. Its behaviour in silico correlated well with initial in vitro work, with SEC HPLC showing multiple protein states in solution and a dynamic protein shifting between these states over time without loss of material.
Collapse
Affiliation(s)
- C J Lalaurie
- Department of Biochemical Engineering, University College London, London, United Kingdom
| | - C Zhang
- Department of Biochemical Engineering, University College London, London, United Kingdom
| | - S M Liu
- IPSEN Bioinnovation, 5th Floor, The Point, 37 North Wharf Road, London W2 1AF, United Kingdom
| | - K A Bunting
- IPSEN Bioinnovation, 5th Floor, The Point, 37 North Wharf Road, London W2 1AF, United Kingdom
| | - P A Dalby
- Department of Biochemical Engineering, University College London, London, United Kingdom.
| |
Collapse
|
3
|
Tsai YC, Kozar L, Mawi ZP, Ichtchenko K, Shoemaker CB, McNutt PM, Weissman AM. The Degradation of Botulinum Neurotoxin Light Chains Using PROTACs. Int J Mol Sci 2024; 25:7472. [PMID: 39000579 PMCID: PMC11242356 DOI: 10.3390/ijms25137472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Botulinum neurotoxins are some of the most potent natural toxins known; they cause flaccid paralysis by inhibiting synaptic vesicle release. Some serotypes, notably serotype A and B, can cause persistent paralysis lasting for several months. Because of their potency and persistence, botulinum neurotoxins are now used to manage several clinical conditions, and there is interest in expanding their clinical applications using engineered toxins with novel substrate specificities. It will also be beneficial to engineer toxins with tunable persistence. We have investigated the potential use of small-molecule proteolysis-targeting chimeras (PROTACs) to vary the persistence of modified recombinant botulinum neurotoxins. We also describe a complementary approach that has potential relevance for botulism treatment. This second approach uses a camelid heavy chain antibody directed against botulinum neurotoxin that is modified to bind the PROTAC. These strategies provide proof of principle for the use of two different approaches to fine tune the persistence of botulinum neurotoxins by selectively targeting their catalytic light chains for proteasomal degradation.
Collapse
Affiliation(s)
- Yien Che Tsai
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA (A.M.W.)
| | - Loren Kozar
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA (A.M.W.)
| | - Zo P. Mawi
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA (A.M.W.)
| | - Konstantin Ichtchenko
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA;
| | - Charles B. Shoemaker
- Department of Infectious Diseases and Global Health, Tufts University Cummings School of Veterinary Medicine, Grafton, MA 01536, USA;
| | - Patrick M. McNutt
- Wake Forest Research Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA;
| | - Allan M. Weissman
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA (A.M.W.)
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Gregg AT, Wang T, Szczepan M, Lam E, Yagi H, Neilsen K, Wang X, Smith LEH, Sun Y. Botulinum neurotoxin serotype A inhibited ocular angiogenesis through modulating glial activation via SOCS3. Angiogenesis 2024:10.1007/s10456-024-09935-7. [PMID: 38922557 DOI: 10.1007/s10456-024-09935-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Pathological angiogenesis causes significant vision loss in neovascular age-related macular degeneration and other retinopathies with neovascularization (NV). Neuronal/glial-vascular interactions influence the release of angiogenic and neurotrophic factors. We hypothesized that botulinum neurotoxin serotype A (BoNT/A) modulates pathological endothelial cell proliferation through glial cell activation and growth factor release. METHODS A laser-induced choroidal NV (CNV) was employed to investigate the anti-angiogenic effects of BoNT/A. Fundus fluorescence angiography, immunohistochemistry, and real-time PCR were used to assess BoNT/A efficacy in inhibiting CNV and the molecular mechanisms underlying this inhibition. Neuronal and glial suppressor of cytokine signaling 3 (SOCS3) deficient mice were used to investigate the molecular mechanisms of BoNT/A in inhibiting CNV via SOCS3. FINDINGS In laser-induced CNV mice with intravitreal BoNT/A treatment, CNV lesions decreased > 30%; vascular leakage and retinal glial activation were suppressed; and Socs3 mRNA expression was induced while vascular endothelial growth factor A (Vegfa) mRNA expression was suppressed. The protective effects of BoNT/A on CNV development were diminished in mice lacking neuronal/glial SOCS3. CONCLUSION BoNT/A suppressed laser-induced CNV and glial cell activation, in part through SOCS3 induction in neuronal/glial cells. BoNT/A treatment led to a decrease of pro-angiogenic factors, including VEGFA, highlighting the potential of BoNT/A as a therapeutic intervention for pathological angiogenesis in retinopathies.
Collapse
Affiliation(s)
- Austin T Gregg
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Tianxi Wang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Manon Szczepan
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Enton Lam
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Hitomi Yagi
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Katherine Neilsen
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Xingyan Wang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Lois E H Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Ye Sun
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
5
|
Raciti L, Raciti G, Ammendolia A, de Sire A, Onesta MP, Calabrò RS. Improving Spasticity by Using Botulin Toxin: An Overview Focusing on Combined Approaches. Brain Sci 2024; 14:631. [PMID: 39061372 PMCID: PMC11274891 DOI: 10.3390/brainsci14070631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Spasticity is a very common sign in the neurological field. It can be defined as "a motor disorder marked by a velocity-dependent increase in muscle tone or tonic stretch reflexes" associated with hypertonia. It leads to a high risk of limb deformities and pain that prejudices residual motor function, impairing quality of life". The treatment of spasticity depends on its severity and its location and, in general, it is based on rehabilitation, oral therapies (the gamma-aminobutyric acid b agonist baclofen) and injectable medications (i.e., botulin toxins, acting on polysynaptic reflex mechanisms). The botulin toxin type A (BoNT-A) injection has been effectively used to improve different types of spasticity. However, when BoNT-A is not sufficient, a combination of nonpharmacological approaches could be attempted. Therefore, additional intervention, such as conventional physical therapy by itself or further combined with robotic gait training, may be needed. Indeed, it has been shown that combination of BoNT-A and robotics has a positive effect on activity level and upper limb function in patients with stroke, including those in the chronic phase. The aim of this review is to evaluate the efficacy of pharmacological or nonpharmacological treatment in combination with BoNT-A injections on spasticity. The combined therapy of BoNT with conventional or adjunct activities or robot-assisted training, especially with end-effectors, is a valid tool to improve patients' performance and outcomes. The combined strategies might rise the toxin's effect, lowering its dosages of botulinum and reducing side effects and costs.
Collapse
Affiliation(s)
- Loredana Raciti
- Unità Spinale Unipolare, AO Cannizzaro, 98102 Catania, Italy; (L.R.); (M.P.O.)
| | - Gianfranco Raciti
- Department of Medical and Surgical Sciences, Magna Græcia University, 88100 Catanzaro, Italy; (G.R.); (A.A.); (A.d.S.)
| | - Antonio Ammendolia
- Department of Medical and Surgical Sciences, Magna Græcia University, 88100 Catanzaro, Italy; (G.R.); (A.A.); (A.d.S.)
| | - Alessandro de Sire
- Department of Medical and Surgical Sciences, Magna Græcia University, 88100 Catanzaro, Italy; (G.R.); (A.A.); (A.d.S.)
| | - Maria Pia Onesta
- Unità Spinale Unipolare, AO Cannizzaro, 98102 Catania, Italy; (L.R.); (M.P.O.)
| | | |
Collapse
|
6
|
Rasetti-Escargueil C, Palea S. Embracing the Versatility of Botulinum Neurotoxins in Conventional and New Therapeutic Applications. Toxins (Basel) 2024; 16:261. [PMID: 38922155 PMCID: PMC11209287 DOI: 10.3390/toxins16060261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Botulinum neurotoxins (BoNTs) have been used for almost half a century in the treatment of excessive muscle contractility. BoNTs are routinely used to treat movement disorders such as cervical dystonia, spastic conditions, blepharospasm, and hyperhidrosis, as well as for cosmetic purposes. In addition to the conventional indications, the use of BoNTs to reduce pain has gained increased recognition, giving rise to an increasing number of indications in disorders associated with chronic pain. Furthermore, BoNT-derived formulations are benefiting a much wider range of patients suffering from overactive bladder, erectile dysfunction, arthropathy, neuropathic pain, and cancer. BoNTs are categorised into seven toxinotypes, two of which are in clinical use, and each toxinotype is divided into multiple subtypes. With the development of bioinformatic tools, new BoNT-like toxins have been identified in non-Clostridial organisms. In addition to the expanding indications of existing formulations, the rich variety of toxinotypes or subtypes in the wild-type BoNTs associated with new BoNT-like toxins expand the BoNT superfamily, forming the basis on which to develop new BoNT-based therapeutics as well as research tools. An overview of the diversity of the BoNT family along with their conventional therapeutic uses is presented in this review followed by the engineering and formulation opportunities opening avenues in therapy.
Collapse
Affiliation(s)
| | - Stefano Palea
- Humana Biosciences-Prologue Biotech, 516 Rue Pierre et Marie Curie, 31670 Labège, France;
| |
Collapse
|
7
|
Martin V, Carre D, Bilbault H, Oster S, Limana L, Sebal F, Favre-Guilmard C, Kalinichev M, Leveque C, Boulifard V, George C, Lezmi S. Intramuscular Botulinum Neurotoxin Serotypes E and A Elicit Distinct Effects on SNAP25 Protein Fragments, Muscular Histology, Spread and Neuronal Transport: An Integrated Histology-Based Study in the Rat. Toxins (Basel) 2024; 16:225. [PMID: 38787077 PMCID: PMC11125604 DOI: 10.3390/toxins16050225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Botulinum neurotoxins E (BoNT/E) and A (BoNT/A) act by cleaving Synaptosome-Associated Protein 25 (SNAP25) at two different C-terminal sites, but they display very distinct durations of action, BoNT/E being short acting and BoNT/A long acting. We investigated the duration of action, spread and neuronal transport of BoNT/E (6.5 ng/kg) and BoNT/A (125 pg/kg) after single intramuscular administrations of high equivalent efficacious doses, in rats, over a 30- or 75-day periods, respectively. To achieve this, we used (i) digit abduction score assay, (ii) immunohistochemistry for SNAP25 (N-ter part; SNAP25N-ter and C-ter part; SNAP25C-ter) and its cleavage sites (cleaved SNAP25; c-SNAP25E and c-SNAP25A) and (iii) muscular changes in histopathology evaluation. Combined in vivo observation and immunohistochemistry analysis revealed that, compared to BoNT/A, BoNT/E induces minimal muscular changes, possesses a lower duration of action, a reduced ability to spread and a decreased capacity to be transported to the lumbar spinal cord. Interestingly, SNAP25C-ter completely disappeared for both toxins during the peak of efficacy, suggesting that the persistence of toxin effects is driven by the persistence of proteases in tissues. These data unveil some new molecular mechanisms of action of the short-acting BoNT/E and long-acting BoNT/A, and reinforce their overall safety profiles.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Christian Leveque
- Aix-Marseille University, INSERM, DyNaMo U1325, 13009 Marseille, France
| | | | | | | |
Collapse
|
8
|
Park SG, Lee HB, Kang S. Development of plug-and-deliverable intracellular protein delivery platforms based on botulinum neurotoxin. Int J Biol Macromol 2024; 261:129622. [PMID: 38266854 DOI: 10.1016/j.ijbiomac.2024.129622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/04/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
Intracellular protein delivery systems have great potential in the fields of therapeutics development and biomedical research. However, targeted delivery, passing through the cell membrane without damaging the cells, and escaping from endosomal entrapment of endocytosed molecular cargos are major challenges of the system. Here, we present a novel intracellular protein delivery system based on modularly engineered botulinum neurotoxin type A (BoNT/A). LHNA domain, consisting of light chain and endosomal escape machinery of BoNT/A, was genetically fused with SpyCatcher (SC) and EGFR targeting affibody (EGFRAfb) to create SC-LHNA-EGFRAfb, a target-specific and protein cargo-switchable BoNT/A-based intracellular protein delivery platform. SC-LHNA-EGFRAfb was purely purified in large quantities, efficiently ligated with multiple ST-fused protein cargos individually, generating a variety of protein cargo-containing intracellular delivery complexes, and successfully delivered ligated protein cargos into the cytosol of target cells via receptor-mediated endocytosis, followed by endosomal escape and subsequent cytosolic delivery. SC-LHNA-EGFRAfb enhanced intracellular delivery efficiency of protein toxin, gelonin, by approximately 100-fold, highlighting the crucial roles of EGFRAfb and LHNA domain as a targeting ligand and an endosomal escape machinery, respectively, in the delivery process. The BoNT-based plug-and-deliverable intracellular protein delivery system has the potential to expand its applications in protein therapeutics and manipulating cellular processes.
Collapse
Affiliation(s)
- Seong Guk Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyun Bin Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sebyung Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
9
|
Klee M, Hørmann Thomsen T, Enggaard TP, Bitsch MS, Simonsen L, Jensen RH, Biering-Sørensen B. Perineural injections of incobotulinumtoxin-A for diabetic neuropathic pain of the lower extremities: protocol for a phase II, single-centre, double-blind, randomised, placebo-controlled trial (the PINBOT study). BMJ Open 2024; 14:e074372. [PMID: 38262642 PMCID: PMC10806716 DOI: 10.1136/bmjopen-2023-074372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
INTRODUCTION Diabetic neuropathic pain (DNP) is a debilitating complication affecting 15-20% of people with diabetes and is a predictor of depression, poor sleep and decreased quality of life. Current pharmacological treatments are often insufficient and have significant side-effects. Subcutaneous or intradermal botulinumtoxin-A (BonT-A) is an effective and safe treatment for neuropathic pain but is limited by the need to cover the entire affected area with injections. For large cutaneous areas, infiltration of the sensory nerve supply with BonT-A could provide similar effects, with a single injection. We aim to investigate the safety, efficacy, and effects on quality of life, physical activity, depressive symptoms and activities of daily living of perineural injections of BonT-A in patients with DNP of both lower extremities. METHODS This study is a double-blind, randomised, placebo-controlled clinical trial. 80 participants with moderate to severe DNP of both legs will be randomised 1:1 to receive injections of either 100 units incobotulinumtoxin-A or a saline placebo around each distal sciatic nerve for two cycles of 12 weeks. Average daily pain scores will be recorded once a day from 1 week prior to the first treatment and through the entire study period. Primary outcomes are differences between groups in daily and weekly mean pain scores. Secondary outcomes are levels of physical activity, depression scores, health-related quality of life, activities of daily living, sensory profiles and motor function, recorded at baseline, 4, 12, 16 and 24 weeks. The use of rescue medication and adverse events will be recorded throughout the study period. ETHICS AND DISSEMINATION The study is approved by the Danish Committee on Health Research Ethics and the Danish Medicines Agency. EU-Clinical Trial Information System (EU: 2022-500727-68-01), clinicaltrials.gov (ID: NCT05623111). Results will be published in peer-reviewed journals in open-access formats and data made available in anonymised form. TRIAL REGISTRATION NUMBER NCT05623111.
Collapse
Affiliation(s)
- Marc Klee
- Department of Neurology, Rigshospitalet Glostrup, Glostrup, Denmark
- University of Copenhagen, Copenhagen, Denmark
| | | | | | | | - Louise Simonsen
- Department of Anaesthesiology, Bispebjerg Hospital, Copenhagen, Denmark
| | - Rigmor Højland Jensen
- University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Rigshospitalet Glostrup, Danish Headache Centre, Glostrup, Denmark
| | | |
Collapse
|
10
|
Silkina MV, Kartseva AS, Riabko AK, Makarova MA, Rogozin MM, Romanenko YO, Shemyakin IG, Dyatlov IA, Firstova VV. New approach to generating of human monoclonal antibodies specific to the proteolytic domain of botulinum neurotoxin A. BIOIMPACTS : BI 2023; 14:27680. [PMID: 39104622 PMCID: PMC11298023 DOI: 10.34172/bi.2023.27680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 08/07/2024]
Abstract
Introduction Botulinum neurotoxins (BoNTs) cause botulism and are the most potent natural toxins known. Immunotherapy with neutralizing monoclonal antibodies (MAbs) is considered to be the most effective immediate response to BoNT exposure. Hybridoma technology remains the preferred method for producing MAbs with naturally paired immunoglobulin genes and with preserved innate functions of immune cells. The affinity-matured human antibody repertoire may be ideal as a source for antibody therapeutics against BoNTs. In an effort to develop novel BoNT type A (BoNT/A) immunotherapeutics, sorted by flow cytometry plasmablasts and activated memory B cells from a donor repeatedly injected with BoNT/A for aesthetic botulinum therapy could be used due to obtain hybridomas producing native antibodies. Methods Plasmablasts and activated memory B-cells were isolated from whole blood collected 7 days after BoNT/A injection and sorted by flow cytometry. The sorted cells were then electrofused with the K6H6/B5 cell line, resulting in a producer of native human monoclonal antibodies (huMAbs). The 3 antibodies obtained were then purified by affinity chromatography, analyzed for binding by Western blot assay and neutralization by FRET assay. Results We have succeeded in creating 3 hybridomas that secrete huMAbs specific to native BoNT/A and the proteolytic domain (LC) of BoNT/A. The 1B9 antibody also directly inhibited BoNT/A catalytic activity in vitro. Conclusion The use activated plasmablasts and memory B-cells isolated at the peak of the immune response (at day 7 of immunogenesis) that have not yet completed the terminal stage of differentiation but have undergone somatic hypermutation for hybridization allows us to obtain specific huMAbs even when the immune response of the donor is weak (with low levels of specific antibodies and specific B-cells in blood). A BoNT/A LC-specific antibody is capable of effectively inhibiting BoNT/A by mechanisms not previously associated with antibodies that neutralize BoNT. Antibodies specific to BoNT LC can be valuable components of a mixture of antibodies against BoNT exposure.
Collapse
Affiliation(s)
| | - Alena Sergeevna Kartseva
- State Research Center for Applied Microbiology and Biotechnology (SRCAMB), Obolensk 142279, Russia
| | | | | | | | - Yana Olegovna Romanenko
- State Research Center for Applied Microbiology and Biotechnology (SRCAMB), Obolensk 142279, Russia
| | | | - Ivan Alekseevich Dyatlov
- State Research Center for Applied Microbiology and Biotechnology (SRCAMB), Obolensk 142279, Russia
| | | |
Collapse
|
11
|
Huang C, Chen Y, Cai Y, Ding H, Hong J, You S, Lin Y, Hu H, Chen Y, Hu X, Chen Y, Huang Y, Zhang C, Lin Y, Huang Z, Li W, Zhang W, Fang X. TRPV1 + neurons alter Staphylococcus aureus skin infection outcomes by affecting macrophage polarization and neutrophil recruitment. BMC Immunol 2023; 24:55. [PMID: 38129779 PMCID: PMC10740264 DOI: 10.1186/s12865-023-00584-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/06/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND The interaction between the nervous system and the immune system can affect the outcome of a bacterial infection. Staphylococcus aureus skin infection is a common infectious disease, and elucidating the relationship between the nervous system and immune system may help to improve treatment strategies. RESULTS In this study, we found that the local release of calcitonin gene-related peptide (CGRP) increased during S. aureus skin infection, and S. aureus could promote the release of CGRP from transient receptor potential cation channel subfamily V member 1 (TRPV1+) neurons in vitro. The existence of TRPV1+ neurons inhibited the recruitment of neutrophils to the infected region and regulated the polarization of macrophages toward M2 while inhibiting polarization toward M1. This reduces the level of inflammation in the infected area, which aggravates the local infection. Furthermore, this study demonstrates that TRPV1 may be a target for the treatment of S. aureus skin infections and that botulinum neurotoxin A (BoNT/A) and BIBN4096 may reverse the inhibited inflammatory effect of CGRP, making them potential therapeutics for the treatment of skin infection in S. aureus. CONCLUSIONS In S. aureus skin infection, TRPV1+ neurons inhibit neutrophil recruitment and regulate macrophage polarization by releasing CGRP. BoNT/A and BIBN4096 may be potential therapeutic agents for S. aureus skin infection.
Collapse
Affiliation(s)
- Changyu Huang
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Yang Chen
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Yuanqing Cai
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Haiqi Ding
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Jiaoying Hong
- Department of Anesthesiology, The Second Hospital of Nan'an, Quanzhou, Fujian, China
| | - Shan You
- Fujian Medical University, Fuzhou, Fujian, China
| | - Yiming Lin
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Hongxin Hu
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Yongfa Chen
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Xueni Hu
- Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yanshu Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ying Huang
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Chaofan Zhang
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Yunzhi Lin
- Department of Stomatology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zida Huang
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Wenbo Li
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Wenming Zhang
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China.
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China.
- , Fuzhou, China.
| | - Xinyu Fang
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China.
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China.
- , Fuzhou, China.
| |
Collapse
|
12
|
Leka O, Wu Y, Zanetti G, Furler S, Reinberg T, Marinho J, Schaefer JV, Plückthun A, Li X, Pirazzini M, Kammerer RA. A DARPin promotes faster onset of botulinum neurotoxin A1 action. Nat Commun 2023; 14:8317. [PMID: 38110403 PMCID: PMC10728214 DOI: 10.1038/s41467-023-44102-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 11/30/2023] [Indexed: 12/20/2023] Open
Abstract
In this study, we characterize Designed Ankyrin Repeat Proteins (DARPins) as investigative tools to probe botulinum neurotoxin A1 (BoNT/A1) structure and function. We identify DARPin-F5 that completely blocks SNAP25 substrate cleavage by BoNT/A1 in vitro. X-ray crystallography reveals that DARPin-F5 inhibits BoNT/A1 activity by interacting with a substrate-binding region between the α- and β-exosite. This DARPin does not block substrate cleavage of BoNT/A3, indicating that DARPin-F5 is a subtype-specific inhibitor. BoNT/A1 Glu-171 plays a critical role in the interaction with DARPin-F5 and its mutation to Asp, the residue found in BoNT/A3, results in a loss of inhibition of substrate cleavage. In contrast to the in vitro results, DARPin-F5 promotes faster substrate cleavage of BoNT/A1 in primary neurons and muscle tissue by increasing toxin translocation. Our findings could have important implications for the application of BoNT/A1 in therapeutic areas requiring faster onset of toxin action combined with long persistence.
Collapse
Affiliation(s)
- Oneda Leka
- Laboratory of Biomolecular Research, Division of Biology, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland
| | - Yufan Wu
- Laboratory of Biomolecular Research, Division of Biology, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland
| | - Giulia Zanetti
- Department of Biomedical Sciences, University of Padova, 35121, Padova, Italy
| | - Sven Furler
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Thomas Reinberg
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Joana Marinho
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Jonas V Schaefer
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Xiaodan Li
- Laboratory of Biomolecular Research, Division of Biology, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland
| | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, 35121, Padova, Italy
| | - Richard A Kammerer
- Laboratory of Biomolecular Research, Division of Biology, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland.
| |
Collapse
|
13
|
Kaji R. A look at the future-new BoNTs and delivery systems in development: What it could mean in the clinic. Toxicon 2023; 234:107264. [PMID: 37657515 DOI: 10.1016/j.toxicon.2023.107264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/07/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023]
Abstract
Despite the expanding clinical utility of botulinum neurotoxins, there remain problems to be solved for attaining the best outcome. The efficacy and safety need to be reconsidered for commercially available preparations all derived from subtype A1 or B1. Emerging new toxins include A2 or A6 subtypes or engineered toxins with less spread, more potency, longer durations of action, less antigenicity and better safety profile than currently used preparations. Non-toxic BoNTs with a few amino acid replacements of the light chain (LC) may have a role as a drug-delivery system if the toxicity is abolished entirely. At present, efficacy of these BoNTs in animal botulism was demonstrated.
Collapse
Affiliation(s)
- Ryuji Kaji
- Tokushima University, Department of Clinical Neuroscience, 2-50-1 Kuramoto-cho, Tokushima, 770-8503, Japan.
| |
Collapse
|
14
|
Park CK, Lim SH, Park K. Clinical Application of Botulinum Toxin for Hemifacial Spasm. Life (Basel) 2023; 13:1760. [PMID: 37629617 PMCID: PMC10455826 DOI: 10.3390/life13081760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Hemifacial spasm is typically caused by contact between the facial nerve and blood vessels. Microvascular decompression, a treatment that directly addresses this pathogenesis, is often considered the most effective treatment method. However, surgery is not immediately performed for patients at risk from the surgical treatment, or for those with an unclear diagnosis. In these instances, Botulinum toxin injection can help manage the patient's symptoms. Numerous studies corroborate the effectiveness and safety of Botulinum toxin treatment, with large-scale studies indicating symptom control lasts, on average, around 15 weeks.
Collapse
Affiliation(s)
- Chang-Kyu Park
- Department of Neurosurgery, Kyung Hee University College of Medicine, Seoul 02447, Republic of Korea; (C.-K.P.); (S.-H.L.)
| | - Seung-Hoon Lim
- Department of Neurosurgery, Kyung Hee University College of Medicine, Seoul 02447, Republic of Korea; (C.-K.P.); (S.-H.L.)
| | - Kwan Park
- Department of Neurosurgery, Konkuk University Medical Center, Seoul 05030, Republic of Korea
| |
Collapse
|
15
|
Gregory KS, Hall PR, Onuh JP, Mojanaga OO, Liu SM, Acharya KR. Crystal Structure of the Catalytic Domain of a Botulinum Neurotoxin Homologue from Enterococcus faecium: Potential Insights into Substrate Recognition. Int J Mol Sci 2023; 24:12721. [PMID: 37628902 PMCID: PMC10454453 DOI: 10.3390/ijms241612721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/25/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Clostridium botulinum neurotoxins (BoNTs) are the most potent toxins known, causing the deadly disease botulism. They function through Zn2+-dependent endopeptidase cleavage of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, preventing vesicular fusion and subsequent neurotransmitter release from motor neurons. Several serotypes of BoNTs produced by Clostridium botulinum (BoNT/A-/G and/X) have been well-characterised over the years. However, a BoNT-like gene (homologue of BoNT) was recently identified in the non-clostridial species, Enterococcus faecium, which is the leading cause of hospital-acquired multi-drug resistant infections. Here, we report the crystal structure of the catalytic domain of a BoNT homologue from Enterococcus faecium (LC/En) at 2.0 Å resolution. Detailed structural analysis in comparison with the full-length BoNT/En AlphaFold2-predicted structure, LC/A (from BoNT/A), and LC/F (from BoNT/F) revealed putative subsites and exosites (including loops 1-5) involved in recognition of LC/En substrates. LC/En also appears to possess a conserved autoproteolytic cleavage site whose function is yet to be established.
Collapse
Affiliation(s)
- Kyle S. Gregory
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK; (K.S.G.); (P.-R.H.); (J.P.O.); (O.O.M.)
| | - Peter-Rory Hall
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK; (K.S.G.); (P.-R.H.); (J.P.O.); (O.O.M.)
| | - Jude Prince Onuh
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK; (K.S.G.); (P.-R.H.); (J.P.O.); (O.O.M.)
| | - Otsile O. Mojanaga
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK; (K.S.G.); (P.-R.H.); (J.P.O.); (O.O.M.)
| | - Sai Man Liu
- Protein Sciences Department, Ipsen Bioinnovation Limited, 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK;
| | - K. Ravi Acharya
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK; (K.S.G.); (P.-R.H.); (J.P.O.); (O.O.M.)
| |
Collapse
|
16
|
Turin L, Piccione MM, Crosa F, Dall'Ara P, Filipe J, Zarucco L. Therapeutic Applications of Botulinum Neurotoxins in Veterinary Medicine. Vet Sci 2023; 10:460. [PMID: 37505863 PMCID: PMC10386576 DOI: 10.3390/vetsci10070460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) are emerging as multipurpose therapeutic compounds for the treatment of several different syndromes involving peripheral and central nervous systems, and muscular and musculoskeletal disorders both in human and veterinary medicine. Therefore, the study of BoNTs is rapidly developing and identifying newly produced BoNT variants. Efforts should be made to clarify the biological and pharmacological characteristics of these novel BoNTs as well as the natural ones. The high potential of BoNTs as a therapeutic compound for medical syndromes lies in its ability to reach a specific cell type while bypassing other cells, thus having mild or no side effects. In this paper the recent developments in BoNTs are reviewed with the aim of analyzing the current knowledge on BoNTs' biological mechanisms of action, immunogenicity, formulations, and therapeutic applications in the veterinary field, highlighting advantages and drawbacks and identifying the gaps to be filled in order to address research priorities.
Collapse
Affiliation(s)
- Lauretta Turin
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Via dell'Università 6, 26900 Lodi, LO, Italy
| | - Marina Michela Piccione
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Via dell'Università 6, 26900 Lodi, LO, Italy
| | - Fabio Crosa
- Department of Veterinary Sciences (DSV), University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
| | - Paola Dall'Ara
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Via dell'Università 6, 26900 Lodi, LO, Italy
| | - Joel Filipe
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Via dell'Università 6, 26900 Lodi, LO, Italy
| | - Laura Zarucco
- Department of Veterinary Sciences (DSV), University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
| |
Collapse
|
17
|
Poenaru D, Sandulescu MI, Cinteza D. Pain Modulation in Chronic Musculoskeletal Disorders: Botulinum Toxin, a Descriptive Analysis. Biomedicines 2023; 11:1888. [PMID: 37509527 PMCID: PMC10376837 DOI: 10.3390/biomedicines11071888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/25/2023] [Accepted: 07/01/2023] [Indexed: 07/30/2023] Open
Abstract
Botulinum neurotoxin (BoNT), a product of Clostridium botulinum, reversibly inhibits the presynaptic release of the neurotransmitter acetylcholine at the neuromuscular junction. In addition, BoNT blocks the transmission of other substances involved in pain perception and, together with a soft-tissue anti-inflammatory effect, may play a role in analgesia. When first-line treatment fails, second-line therapies might include BoNT. Studies on chronic and recurrent pain using different mechanisms offer heterogenous results that must be validated and standardized. Plantar fasciitis, severe knee osteoarthritis, painful knee and hip arthroplasty, antalgic muscular contractures, and neuropathic and myofascial pain syndromes may benefit from the administration of BoNT. Research on this topic has revealed the main musculoskeletal conditions that can benefit from BoNT, stressing the effects, modalities of administration, doses, and schedule.
Collapse
Affiliation(s)
- Daniela Poenaru
- Rehabilitation Department 1, Carol Davila University of Medicine and Pharmacy, 4192910 Bucharest, Romania
| | - Miruna Ioana Sandulescu
- Doctoral School, Carol Davila University of Medicine and Pharmacy, 4192910 Bucharest, Romania
| | - Delia Cinteza
- Rehabilitation Department 1, Carol Davila University of Medicine and Pharmacy, 4192910 Bucharest, Romania
| |
Collapse
|
18
|
Fonfria E, Marks E, Foulkes LM, Schofield R, Higazi D, Coward S, Kippen A. Replacement of the Mouse LD 50 Assay for Determination of the Potency of AbobotulinumtoxinA with a Cell-Based Method in Both Powder and Liquid Formulations. Toxins (Basel) 2023; 15:toxins15050314. [PMID: 37235349 DOI: 10.3390/toxins15050314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) are important therapeutic agents. The in vivo median lethal dose (LD50) assay has been commonly used to measure the potency of BoNT commercial preparations. As an alternative, we developed cell-based assays for abobotulinumtoxinA in both powder (Dysport®, Azzalure®) and liquid (Alluzience®) formulations using the in vitro BoCell® system. The assays demonstrated linearity over 50-130% of the expected relative potency, with a correlation coefficient of 0.98. Mean recoveries of 90-108% of the stated potency were observed over this range. The coefficients of variation for powder and liquid formulations, respectively, were 3.6% and 4.0% for repeatability and 8.3% and 5.0% for intermediate precision. A statistically powered comparability assessment of the BoCell® and LD50 assays was performed. Equivalence was demonstrated between the assays for the liquid formulation at release and end of shelf life using a paired equivalence test with predefined equivalence margins. For the powder formulation, the assays were also shown to be equivalent for release samples and when determining loss of potency following thermal degradation. The BoCell® assay was approved for establishing the potency of abobotulinumtoxinA for both powder and liquid formulations in Europe and for the powder formulation only in the USA.
Collapse
Affiliation(s)
| | | | | | | | | | - Sam Coward
- Ipsen Biopharm Ltd., Wrexham LL13 9UF, UK
| | | |
Collapse
|
19
|
Liu Z, Lee PG, Krez N, Lam KH, Liu H, Przykopanski A, Chen P, Yao G, Zhang S, Tremblay JM, Perry K, Shoemaker CB, Rummel A, Dong M, Jin R. Structural basis for botulinum neurotoxin E recognition of synaptic vesicle protein 2. Nat Commun 2023; 14:2338. [PMID: 37095076 PMCID: PMC10125960 DOI: 10.1038/s41467-023-37860-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 04/03/2023] [Indexed: 04/26/2023] Open
Abstract
Botulinum neurotoxin E (BoNT/E) is one of the major causes of human botulism and paradoxically also a promising therapeutic agent. Here we determined the co-crystal structures of the receptor-binding domain of BoNT/E (HCE) in complex with its neuronal receptor synaptic vesicle glycoprotein 2A (SV2A) and a nanobody that serves as a ganglioside surrogate. These structures reveal that the protein-protein interactions between HCE and SV2 provide the crucial location and specificity information for HCE to recognize SV2A and SV2B, but not the closely related SV2C. At the same time, HCE exploits a separated sialic acid-binding pocket to mediate recognition of an N-glycan of SV2. Structure-based mutagenesis and functional studies demonstrate that both the protein-protein and protein-glycan associations are essential for SV2A-mediated cell entry of BoNT/E and for its potent neurotoxicity. Our studies establish the structural basis to understand the receptor-specificity of BoNT/E and to engineer BoNT/E variants for new clinical applications.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, 92697, USA
| | - Pyung-Gang Lee
- Department of Urology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Nadja Krez
- Institute of Toxicology, Hannover Medical School, Hannover, 30623, Germany
| | - Kwok-Ho Lam
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, 92697, USA
| | - Hao Liu
- Department of Urology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Adina Przykopanski
- Institute of Toxicology, Hannover Medical School, Hannover, 30623, Germany
| | - Peng Chen
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, 92697, USA
| | - Guorui Yao
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, 92697, USA
| | - Sicai Zhang
- Department of Urology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | | | - Kay Perry
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, IL, 60439, USA
| | | | - Andreas Rummel
- Institute of Toxicology, Hannover Medical School, Hannover, 30623, Germany
| | - Min Dong
- Department of Urology, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA.
| | - Rongsheng Jin
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
20
|
Okroša AD, Munoz-Lora V, Matak I, Bach-Rojecky L, Kalinichev M, Lacković Z. The safety of botulinum neurotoxin type A's intraarticular application in experimental animals. Toxicon X 2023; 18:100155. [PMID: 37096009 PMCID: PMC10121478 DOI: 10.1016/j.toxcx.2023.100155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
In vivo studies of botulinum neurotoxin type A (BoNT-A) enabled characterization of its activity in the nociceptive sensory system separate from its preferred action in motor and autonomic nerve terminals. However, in the recent rodent studies of arthritic pain which employed high intra-articular (i.a.) doses (expressed as a total number of units (U) per animal or U/kg), possible systemic effects have not been conclusively excluded. Herein we assessed the effect of two pharmaceutical preparations, abobotulinumtoxinA (aboBoNT-A, 10, 20, and 40 U/kg corresponding to 0.05, 0.11, and 0.22 ng/kg neurotoxin) and onabotulinumtoxinA (onaBoNT-A, 10 and 20 U/kg corresponding to 0.09 and 0.18 ng/kg, respectively) injected into the rat knee, on safety-relevant readouts: digit abduction, motor performance and weight gain during 14 days post-treatment. The i. a. toxin produced dose-dependent impairment of the toe spreading reflex and rotarod performance, which was moderate and transient after 10 U/kg onaBoNT-A and ≤20 U/kg aboBoNT-A doses, and severe and long-lasting (examined up to 14 days) after ≥20 U/kg of onaBoNT-A and 40 U/kg aboBoNT-A. In addition, lower toxin doses prevented the normal weight gain compared to controls, while higher doses induced marked weight loss (≥20 U/kg of onaBoNT-A and 40 U/kg aboBoNT-A). Commonly employed BoNT-A formulations, depending on the doses, cause local relaxation of the surrounding muscles and systemic adverse effects in rats. Thus, to evade possible toxin unwanted local or systemic spread, careful dosing and motor testing should be mandatory in preclinical behavioral studies, irrespective of the sites and doses of toxin application.
Collapse
|
21
|
Miyashita SI, Karatsu S, Fujiishi M, Huang IH, Nagashima Y, Morobishi T, Hosoya K, Hata T, Dong M, Sagane Y. Characterization of Serotype CD Mosaic Botulinum Neurotoxin in Comparison with Serotype C and A. Toxins (Basel) 2023; 15:123. [PMID: 36828437 PMCID: PMC9962336 DOI: 10.3390/toxins15020123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Botulinum neurotoxin (BoNT), produced by Clostridium botulinum, cleaves proteins involved in neurotransmitter release, thereby triggering flaccid paralyses, which are responsible for botulism. BoNT is classified into seven serotypes (BoNT/A-G); BoNT/A and BoNT/B are used as medical therapeutics and anti-wrinkle reagents. In this study, we investigated the efficacy of BoNT/CD, a mosaic toxin of BoNT/C and BoNT/D, to assess its potential as a therapeutic alternative for BoNT/A. In a cultured neuron assay, BoNT/CD cleaved syntaxin and SNAP-25 with higher efficacy than BoNT/C and BoNT/A. Intramuscularly administrated BoNT/CD induced dose-dependent muscle paralysis, and the paralysis lasted ~21 days in a mouse digit abduction score assay (BoNT/A-induced paralysis lasted ~30 days). BoNT/C failed to induce local paralysis without systemic toxicity. Multiple alignment analyses of the amino acid sequences of the receptor binding domain (HC) of eight BoNT/CDs and two BoNT/Ds showed sequence clustering in five groups. Comparing BoNT/CD strain 003-9 (BoNT/CD003-9) and strain 6813 (BoNT/CD6813) showed that both BoNT/CDs displayed similar efficacies in cultured neurons, but BoNT/CD003-9 displayed higher efficacy in a mouse model than BoNT/CD6813. These findings suggest that BoNT/CD may be a potential alternative for patients who do not respond to existing BoNT-based therapeutics.
Collapse
Affiliation(s)
- Shin-Ichiro Miyashita
- Department of Food, Aroma and Cosmetic Chemistry, Faculty of Bioindustry, Tokyo University of Agriculture, Abashiri 099-2493, Hokkaido, Japan
| | - Shura Karatsu
- Department of Food, Aroma and Cosmetic Chemistry, Faculty of Bioindustry, Tokyo University of Agriculture, Abashiri 099-2493, Hokkaido, Japan
| | - Mako Fujiishi
- Department of Food, Aroma and Cosmetic Chemistry, Faculty of Bioindustry, Tokyo University of Agriculture, Abashiri 099-2493, Hokkaido, Japan
| | - I Hsun Huang
- Department of Food, Aroma and Cosmetic Chemistry, Faculty of Bioindustry, Tokyo University of Agriculture, Abashiri 099-2493, Hokkaido, Japan
| | - Yuki Nagashima
- Department of Food, Aroma and Cosmetic Chemistry, Faculty of Bioindustry, Tokyo University of Agriculture, Abashiri 099-2493, Hokkaido, Japan
| | - Tamaki Morobishi
- Department of Food, Aroma and Cosmetic Chemistry, Faculty of Bioindustry, Tokyo University of Agriculture, Abashiri 099-2493, Hokkaido, Japan
| | - Keita Hosoya
- Department of Food, Aroma and Cosmetic Chemistry, Faculty of Bioindustry, Tokyo University of Agriculture, Abashiri 099-2493, Hokkaido, Japan
| | - Tsuyoshi Hata
- Department of Food, Aroma and Cosmetic Chemistry, Faculty of Bioindustry, Tokyo University of Agriculture, Abashiri 099-2493, Hokkaido, Japan
| | - Min Dong
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Yoshimasa Sagane
- Department of Food, Aroma and Cosmetic Chemistry, Faculty of Bioindustry, Tokyo University of Agriculture, Abashiri 099-2493, Hokkaido, Japan
| |
Collapse
|
22
|
A Comprehensive Structural Analysis of Clostridium botulinum Neurotoxin A Cell-Binding Domain from Different Subtypes. Toxins (Basel) 2023; 15:toxins15020092. [PMID: 36828407 PMCID: PMC9966434 DOI: 10.3390/toxins15020092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) cause flaccid neuromuscular paralysis by cleaving one of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex proteins. BoNTs display high affinity and specificity for neuromuscular junctions, making them one of the most potent neurotoxins known to date. There are seven serologically distinct BoNTs (serotypes BoNT/A to BoNT/G) which can be further divided into subtypes (e.g., BoNT/A1, BoNT/A2…) based on small changes in their amino acid sequence. Of these, BoNT/A1 and BoNT/B1 have been utilised to treat various diseases associated with spasticity and hypersecretion. There are potentially many more BoNT variants with differing toxicological profiles that may display other therapeutic benefits. This review is focused on the structural analysis of the cell-binding domain from BoNT/A1 to BoNT/A6 subtypes (HC/A1 to HC/A6), including features such as a ganglioside binding site (GBS), a dynamic loop, a synaptic vesicle glycoprotein 2 (SV2) binding site, a possible Lys-Cys/Cys-Cys bridge, and a hinge motion between the HCN and HCC subdomains. Characterising structural features across subtypes provides a better understanding of how the cell-binding domain functions and may aid the development of novel therapeutics.
Collapse
|
23
|
Shikhkerimov RK, Istomina EV. Recombinant botulinum toxin as a new stage in the development of botulinum toxin therapy. Possibilities and perspectives of use in neurological practice. NEUROLOGY, NEUROPSYCHIATRY, PSYCHOSOMATICS 2022. [DOI: 10.14412/2074-2711-2022-6-103-109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
24
|
A Pilot Study of A2NTX, a Novel Low-Molecular-Weight Neurotoxin Derived from Subtype A2 for Post-Stroke Lower Limb Spasticity: Comparison with OnabotulinumtoxinA. Toxins (Basel) 2022; 14:toxins14110739. [PMID: 36355989 PMCID: PMC9697926 DOI: 10.3390/toxins14110739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/15/2022] [Accepted: 10/20/2022] [Indexed: 01/26/2023] Open
Abstract
All the currently used type A botulinum neurotoxins for clinical uses are of subtype A1. We compared the efficacy and safety for the first time head-to-head between a novel botulinum toxin A2NTX prepared from subtype A2 and onabotulinumtoxinA (BOTOX) derived from A1 for post-stroke spasticity. We assessed the modified Ashworth scale (MAS) of the ankle joint, the mobility scores of Functional Independence Measure (FIM), and the grip power of the unaffected hand before and after injecting 300 units of BOTOX or A2NTX into calf muscles. The procedure was done in a blinded manner for the patient, the injecting physician, and the examiner. Stroke patients with chronic spastic hemiparesis (15 for A2NTX and 16 for BOTOX) were enrolled, and 11 for A2NTX and 13 for BOTOX (MAS of ankle; > or = 2) were entered for the MAS study. Area-under-curves of changes in MAS (primary outcome) were greater for A2NTX by day 30 (p = 0.044), and were similar by day 60. FIM was significantly improved in the A2NTX group (p = 0.005), but not in the BOTOX group by day 60. The hand grip of the unaffected limb was significantly decreased in the BOTOX-injected group (p = 0.002), but was unaffected in the A2NTX-injected group by day 60, suggesting there was less spread of A2NTX to the upper limb than there was with BOTOX. Being a small-sized pilot investigation with an imbalance in the gender of the subjects, the present study suggested superior efficacy and safety of A2NTX, and warrants a larger scale clinical trial of A2NTX to confirm these preliminary results.
Collapse
|
25
|
Esquenazi A, Elliott M, Lysandropoulos A. Corrections required for Dressler and Johnson 2022. J Neural Transm (Vienna) 2022; 129:1307-1308. [PMID: 36040626 PMCID: PMC9468082 DOI: 10.1007/s00702-022-02534-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/22/2022] [Indexed: 10/27/2022]
Affiliation(s)
- Alberto Esquenazi
- MossRehab & Albert Einstein Medical Center, 60 Township Line Rd., Elkins Park, PA, 19027, USA.
| | | | | |
Collapse
|
26
|
Lalaurie CJ, Splevins A, Barata TS, Bunting KA, Higazi DR, Zloh M, Spiteri VA, Perkins SJ, Dalby PA. Elucidation of critical pH-dependent structural changes in Botulinum Neurotoxin E. J Struct Biol 2022; 214:107876. [PMID: 35738335 DOI: 10.1016/j.jsb.2022.107876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 10/18/2022]
Abstract
Botulinum Neurotoxins (BoNT) are the most potent toxins currently known. However, they also have therapeutic applications for an increasing number of motor related conditions due to their specificity, and low diffusion into the system. Although the start- and end- points for the BoNT mechanism of action are well-studied, a critical step remains poorly understood. It is theorised that BoNTs undergo a pH-triggered conformational shift, activating the neurotoxin by priming it to form a transmembrane (TM) channel. To test this hypothesis, we combined molecular dynamics (MD) simulations and small-angle x-ray scattering (SAXS), revealing a new conformation of serotype E (BoNT/E). This conformation was exclusively observed in simulations below pH 5.5, as determined by principal component analysis (PCA), and its theoretical SAXS profile matched an experimental SAXS profile obtained at pH 4. Additionally, a localised secondary structural change was observed in MD simulations below pH 5.5, in a region previously identified as instrumental for membrane insertion for serotype A (BoNT/A). These changes were found at a critical pH value for BoNTs in vivo, and may be relevant for their therapeutic use.
Collapse
Affiliation(s)
- Christophe J Lalaurie
- Department of Biochemical Engineering, Bernard Katz Building, University College London, Gordon Street, London WC1H 0AH, UK
| | - Andrew Splevins
- Evox Therapeutics Ltd, Oxford Science Park, Medwar Center, Oxford, England OX4 4HG, UK; Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4RY UK
| | - Teresa S Barata
- FairJourney Biologics, 823 Rua do Campo Alegre, Porto, Porto 4150-180, Portugal; Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4RY UK
| | - Karen A Bunting
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4RY UK
| | - Daniel R Higazi
- Ipsen Biopharm Ltd., Wrexham Industrial Estate, 9 Ash Road, LL13 9UF, UK
| | - Mire Zloh
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Valentina A Spiteri
- Department of Structural and Molecular Biology, Division of Biosciences, Darwin Building, University College London, Gower Street, London WC1E 6BT, UK
| | - Stephen J Perkins
- Department of Structural and Molecular Biology, Division of Biosciences, Darwin Building, University College London, Gower Street, London WC1E 6BT, UK
| | - Paul A Dalby
- Department of Biochemical Engineering, Bernard Katz Building, University College London, Gordon Street, London WC1H 0AH, UK.
| |
Collapse
|
27
|
Adler M, Pellett S, Sharma SK, Lebeda FJ, Dembek ZF, Mahan MA. Preclinical Evidence for the Role of Botulinum Neurotoxin A (BoNT/A) in the Treatment of Peripheral Nerve Injury. Microorganisms 2022; 10:microorganisms10050886. [PMID: 35630331 PMCID: PMC9148055 DOI: 10.3390/microorganisms10050886] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/29/2022] [Accepted: 04/17/2022] [Indexed: 01/27/2023] Open
Abstract
Traumatic peripheral nerve injuries tend to be more common in younger, working age populations and can lead to long-lasting disability. Peripheral nerves have an impressive capacity to regenerate; however, successful recovery after injury depends on a number of factors including the mechanism and severity of the trauma, the distance from injury to the reinnervation target, connective tissue sheath integrity, and delay between injury and treatment. Even though modern surgical procedures have greatly improved the success rate, many peripheral nerve injuries still culminate in persistent neuropathic pain and incomplete functional recovery. Recent studies in animals suggest that botulinum neurotoxin A (BoNT/A) can accelerate nerve regeneration and improve functional recovery after injury to peripheral nerves. Possible mechanisms of BoNT/A action include activation or proliferation of support cells (Schwann cells, mast cells, and macrophages), increased angiogenesis, and improvement of blood flow to regenerating nerves.
Collapse
Affiliation(s)
- Michael Adler
- Neuroscience Department, Medical Toxicology Division, U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd., Aberdeen Proving Ground, MD 21010, USA
- Correspondence: ; Tel.: +1-410-436-1913
| | - Sabine Pellett
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706, USA;
| | - Shashi K. Sharma
- Division of Microbiology, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740, USA;
| | - Frank J. Lebeda
- Biotechnology, Protein Bioinformatics, Zanvyl Krieger School of Arts & Sciences, Johns Hopkins University, Advanced Academic Programs, 9601 Medical Center Drive, Rockville, MD 20850, USA;
| | - Zygmunt F. Dembek
- Department of Military and Emergency Medicine, Uniformed Services University of Health Sciences, 3154 Jones Bridge Rd., Bethesda, MD 20814, USA;
| | - Mark A. Mahan
- Department of Neurosurgery, Clinical Neurosciences, University of Utah, 175 N Medical Drive East, Salt Lake City, UT 84132, USA;
| |
Collapse
|
28
|
Hada S, Lee JC, Lee EC, Ji S, Nam JS, Yun BJ, Na DH, Kim NA, Jeong SH. Dissociation mechanics and stability of type A botulinum neurotoxin complex by means of biophysical evaluation. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00570-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Carré D, Martin V, Kouidri Y, Morin R, Norlund M, Gomes A, Lagarde JM, Lezmi S. The distribution of neuromuscular junctions depends on muscle pennation, when botulinum neurotoxin receptors and SNAREs expression are uniform in the rat. Toxicon 2022; 212:34-41. [DOI: 10.1016/j.toxicon.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/12/2022] [Accepted: 04/05/2022] [Indexed: 11/25/2022]
|
30
|
Dyer RP, Weiss GA. Making the cut with protease engineering. Cell Chem Biol 2022; 29:177-190. [PMID: 34921772 PMCID: PMC9127713 DOI: 10.1016/j.chembiol.2021.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 07/30/2021] [Accepted: 11/29/2021] [Indexed: 12/30/2022]
Abstract
Proteases cut with enviable precision and regulate diverse molecular events in biology. Such qualities drive a seemingly inexhaustible appetite for proteases with new activities and capabilities. Comprising 25% of the total industrial enzyme market, proteases appear in consumer goods, such as detergents, textile processing, and numerous foods; additionally, proteases include 25 US Food and Drug Administration-approved medicines and various research tools. Recent advances in protease engineering strategies address target specificity, catalytic efficiency, and stability. This guide to protease engineering surveys best practices and emerging strategies. We further highlight gaps and flexibilities inherent to each system that suggest opportunities for new technology development along with engineered proteases to solve challenges in proteomics, protein sequencing, and synthetic gene circuits.
Collapse
Affiliation(s)
- Rebekah P Dyer
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 1102 NS-2, Irvine, CA 92697-2025, USA
| | - Gregory A Weiss
- Department of Chemistry, University of California, Irvine, 1102 NS-2, Irvine, CA 92697-2025, USA; Department of Molecular Biology and Biochemistry, University of California, Irvine, 1102 NS-2, Irvine, CA 92697-2025, USA; Department of Pharmaceutical Sciences, University of California, Irvine, 1102 NS-2, Irvine, CA 92697-2025, USA.
| |
Collapse
|
31
|
Gregory KS, Mojanaga OO, Liu SM, Acharya KR. Crystal Structures of Botulinum Neurotoxin Subtypes A4 and A5 Cell Binding Domains in Complex with Receptor Ganglioside. Toxins (Basel) 2022; 14:toxins14020129. [PMID: 35202156 PMCID: PMC8876736 DOI: 10.3390/toxins14020129] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 02/04/2023] Open
Abstract
Botulinum neurotoxins (BoNT) cause the potentially fatal neuroparalytic disease botulism that arises due to proteolysis of a SNARE protein. Each BoNT is comprised of three domains: a cell binding domain (HC), a translocation domain (HN), and a catalytic (Zn2+ endopeptidase) domain (LC). The HC is responsible for neuronal specificity by targeting both a protein and ganglioside receptor at the neuromuscular junction. Although highly toxic, some BoNTs are commercially available as therapeutics for the treatment of a range of neuromuscular conditions. Here we present the crystal structures of two BoNT cell binding domains, HC/A4 and HC/A5, in a complex with the oligosaccharide of ganglioside, GD1a and GM1b, respectively. These structures, along with a detailed comparison with the previously reported apo-structures, reveal the conformational changes that occur upon ganglioside binding and the interactions involved.
Collapse
Affiliation(s)
- Kyle S. Gregory
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK; (K.S.G.); (O.O.M.)
| | - Otsile O. Mojanaga
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK; (K.S.G.); (O.O.M.)
| | - Sai Man Liu
- Protein Sciences Department, Ipsen Bioinnovation Limited, 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK;
| | - K. Ravi Acharya
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK; (K.S.G.); (O.O.M.)
- Correspondence: ; Tel.: +44-(0)1225-386238
| |
Collapse
|
32
|
Botulinum Toxin Injection for Painful Adductor Pollicis Contracture after Thumb Carpometacarpal Resection Arthroplasty. LIFE (BASEL, SWITZERLAND) 2022; 12:life12010110. [PMID: 35054501 PMCID: PMC8779259 DOI: 10.3390/life12010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 11/17/2022]
Abstract
Pollux adductus deformity is an accompanying symptom of thumb carpometacarpal osteoarthritis. We describe a case of a patient who presented with increased muscle tone of the adductor pollicis muscle and chronic pain in the thenar musculature, i.e., recurrence of an adduction deformity. The patient reported a symptom-free period of 5.5 years after having received resection-suspension-arthroplasty for stage IV thumb carpometacarpal osteoarthritis until spasmodic pain appeared. Due to the functional impairment of this condition, we administered therapy including 100 units of Botox® (onabotulinumtoxinA, Allergan, Dublin, Ireland) injected with a fanning technique into the adductor pollicis muscle. Thus, we observed a substantial improvement in the patient-reported outcome measures as well as pain levels compared with initial values. The current case shows the pivotal role of the adductor pollicis muscle when patients report pain at the base of the thumb, which can cause considerable impairments despite the complication-free surgical treatment of thumb CMC OA.
Collapse
|
33
|
Structural Analysis of Botulinum Neurotoxins Type B and E by Cryo-EM. Toxins (Basel) 2021; 14:toxins14010014. [PMID: 35050991 PMCID: PMC8781748 DOI: 10.3390/toxins14010014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are the causative agents of a potentially lethal paralytic disease targeting cholinergic nerve terminals. Multiple BoNT serotypes exist, with types A, B and E being the main cause of human botulism. Their extreme toxicity has been exploited for cosmetic and therapeutic uses to treat a wide range of neuromuscular disorders. Although naturally occurring BoNT types share a common end effect, their activity varies significantly based on the neuronal cell-surface receptors and intracellular SNARE substrates they target. These properties are the result of structural variations that have traditionally been studied using biophysical methods such as X-ray crystallography. Here, we determined the first structures of botulinum neurotoxins using single-particle cryogenic electron microscopy. The maps obtained at 3.6 and 3.7 Å for BoNT/B and /E, respectively, highlight the subtle structural dynamism between domains, and of the binding domain in particular. This study demonstrates how the recent advances made in the field of single-particle electron microscopy can be applied to bacterial toxins of clinical relevance and the botulinum neurotoxin family in particular.
Collapse
|
34
|
New Modified Recombinant Botulinum Neurotoxin Type F with Enhanced Potency. Toxins (Basel) 2021; 13:toxins13120834. [PMID: 34941672 PMCID: PMC8705745 DOI: 10.3390/toxins13120834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/09/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are notorious toxins and powerful agents and can be lethal, causing botulism, but they are also widely used as therapeutics, particularly to treat neuromuscular disorders. As of today, the commercial BoNT treatments available are from native A or B serotypes. Serotype F has shown efficacy in a clinical trial but has scarcely been used, most likely due to its medium duration of effect. Previously, the uniqueness of the light chain of the F7 subtype was identified and reported, showing an extended interaction with its substrates, VAMPs 1, 2 and 3, and a superior catalytic activity compared to other BoNT/F subtypes. In order to more extensively study the properties of this neurotoxin, we engineered a modified F7 chimera, mrBoNT/F7-1, in which all the regions of the neurotoxin were identical to BoNT/F7 except the activation loop, which was the activation loop from BoNT/F1. Use of the activation loop from BoNT/F1 allowed easier post-translational proteolytic activation of the recombinant protein without otherwise affecting its properties. mrBoNT/F7-1 was expressed, purified and then tested in a suite of in vitro and in vivo assays. mrBoNT/F7-1 was active and showed enhanced potency in comparison to both native and recombinant BoNT/F1. Additionally, the safety profile remained comparable to BoNT/F1 despite the increased potency. This new modified recombinant toxin F7 could be further exploited to develop unique therapeutics to address unmet medical needs.
Collapse
|
35
|
Takeuchi T, Okuno T, Miyashiro A, Kohda T, Miyamoto R, Izumi Y, Kozaki S, Kaji R. Clinical Safety and Tolerability of A2NTX, a Novel Low-Molecular-Weight Neurotoxin Derived from Botulinum Neurotoxin Subtype A2, in Comparison with Subtype A1 Toxins. Toxins (Basel) 2021; 13:824. [PMID: 34822610 PMCID: PMC8623066 DOI: 10.3390/toxins13110824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 11/29/2022] Open
Abstract
All the botulinum type A neurotoxins available for clinical use are of the A1 subtype. We developed a subtype A2 low-molecular-weight (150 kD (kilo Dalton)) neurotoxin (A2NTX) with less spread and faster entry into the motor nerve terminal than A1 in vitro and in vivo. Preliminary clinical studies showed that its efficacy is superior to A1 toxins. We conducted an open study exploring its safety and tolerability profile in comparison with A1LL (LL type A1 toxin, or onabotulinumtoxinA) and a low-molecular-weight (150 kD) A1 neurotoxin (A1NTX). Those who had been using A1LL (n = 90; 50-360 mouse LD50 units) or A1NTX (n = 30; 50-580 units) were switched to A2NTX (n = 120; 25-600 units) from 2010 to 2018 (number of sessions ~27, cumulative doses ~11,640 units per patient). The adverse events for A2NTX included weakness (n = 1, ascribed to alcoholic polyneuropathy), dysphagia (1), local weakness (4), and spread to other muscles (1), whereas those for A1LL or A1NTX comprised weakness (n = 2, A1NTX), dysphagia (8), ptosis (6), local weakness (7), and spread to other muscles (15). After injections, 89 out of 120 patients preferred A2NTX to A1 for the successive sessions. The present study demonstrated that A2NTX had clinical safety up to the dose of 500 units and was well tolerated compared to A1 toxins.
Collapse
Affiliation(s)
- Toshiaki Takeuchi
- Department of Clinical Neuroscience, Graduate School of Medicine, Tokushima University, Tokushima 770-8503, Japan; (T.T.); (T.O.); (A.M.); (R.M.); (Y.I.)
| | - Tsuyoshi Okuno
- Department of Clinical Neuroscience, Graduate School of Medicine, Tokushima University, Tokushima 770-8503, Japan; (T.T.); (T.O.); (A.M.); (R.M.); (Y.I.)
| | - Ai Miyashiro
- Department of Clinical Neuroscience, Graduate School of Medicine, Tokushima University, Tokushima 770-8503, Japan; (T.T.); (T.O.); (A.M.); (R.M.); (Y.I.)
| | - Tomoko Kohda
- Department of Veterinary Sciences, School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 598-8531, Japan; (T.K.); (S.K.)
| | - Ryosuke Miyamoto
- Department of Clinical Neuroscience, Graduate School of Medicine, Tokushima University, Tokushima 770-8503, Japan; (T.T.); (T.O.); (A.M.); (R.M.); (Y.I.)
| | - Yuishin Izumi
- Department of Clinical Neuroscience, Graduate School of Medicine, Tokushima University, Tokushima 770-8503, Japan; (T.T.); (T.O.); (A.M.); (R.M.); (Y.I.)
| | - Shunji Kozaki
- Department of Veterinary Sciences, School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 598-8531, Japan; (T.K.); (S.K.)
| | - Ryuji Kaji
- Department of Clinical Neuroscience, Graduate School of Medicine, Tokushima University, Tokushima 770-8503, Japan; (T.T.); (T.O.); (A.M.); (R.M.); (Y.I.)
| |
Collapse
|
36
|
Lew MF, Hauser RA, Isaacson SH, Truong D, Patel AT, Brashear A, Ondo W, Maisonobe P, Dashtipour K, Bahroo L, Wietek S. AbobotulinumtoxinA provides flexibility for the treatment of cervical dystonia with 500 U/1 mL and 500 U/2 mL dilutions. Clin Park Relat Disord 2021; 5:100115. [PMID: 34888518 PMCID: PMC8636802 DOI: 10.1016/j.prdoa.2021.100115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Cervical dystonia (CD) is a neurologic movement disorder with potentially disabling effects and significant impact on quality of life of those affected. AbobotulinumtoxinA (aboBoNT-A) was initially approved for a dilution of 500 U/1 mL and subsequently for a dilution of 500 U/2 mL, providing flexibility for clinicians to treat CD. Here, we explore the safety and efficacy of the 500 U/2 mL dilution versus 500 U/1 mL dilution of aboBoNT-A in a retrospective analysis based on published clinical trial data. METHODS The safety and efficacy of aboBoNT-A in patients with CD was evaluated in three multicenter, double-blind, randomized, placebo-controlled trials and open-label extensions. Trials 1 (NCT00257660) and 2 (NCT00288509) evaluated the 500 U/1 mL dilution in 80 and 116 patients, respectively; Trial 3 (NCT01753310) evaluated the 500 U/2 mL dilution in 125 patients. RESULTS Comparison of the adjusted mean difference in TWSTRS total scores at Week 4 from baseline for aboBoNT-A in Trial 1 (-6.0; 95% CI, -10.8, -1.3), Trial 2 (-8.8; 95% CI, -12.9, -4.7), and Trial 3 (-8.7; 95% CI, -13.2, -4.2) showed similar, significant improvements. Dysphagia and muscle weakness patterns were comparable across the three trials, indicating that an increased dilution of aboBoNT-A does not result in an increased risk of diffusion-related adverse events. CONCLUSION The results of these trials show that aboBoNT-A is similarly efficacious using either dilution, with similar safety and tolerability across trials. Having the 500 U/1 mL and 500 U/2 mL dilution volumes available provides further flexibility in administration, benefiting patient care.
Collapse
Affiliation(s)
- Mark F. Lew
- Department of Neurology, Keck/University of Southern California School of Medicine, Los Angeles, CA 90033, USA
| | - Robert A. Hauser
- University of South Florida, Parkinson’s Disease and Movement Disorders Center of Excellence, Tampa, FL 33613, USA
| | - Stuart H. Isaacson
- Parkinson’s Disease and Movement Disorders Center of Boca Raton, Boca Raton, FL 33486, USA
| | - Daniel Truong
- The Parkinson and Movement Disorder Institute, Fountain Valley, CA 92708, USA
| | - Atul T. Patel
- Kansas City Bone and Joint Clinic, Overland Park, KS 66211, USA
| | - Allison Brashear
- Department of Neurology, University of California, Davis, Sacramento, CA 95816, USA
| | - William Ondo
- Methodist Neurological Institute, Houston, TX 77030, USA
| | | | - Khashayar Dashtipour
- Department of Neurology/Movement Disorders, Loma Linda University, Loma Linda, CA 92354, USA
| | - Laxman Bahroo
- Georgetown University Hospital, Pasquerilla Healthcare Center, Washington, DC 20007, USA
| | | |
Collapse
|
37
|
Solish N, Carruthers J, Kaufman J, Rubio RG, Gross TM, Gallagher CJ. Overview of DaxibotulinumtoxinA for Injection: A Novel Formulation of Botulinum Toxin Type A. Drugs 2021; 81:2091-2101. [PMID: 34787840 PMCID: PMC8648634 DOI: 10.1007/s40265-021-01631-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 11/29/2022]
Abstract
Botulinum toxin type A (BoNTA) products are widely used for therapeutic and aesthetic indications, but there is a need for longer-lasting treatments that maintain symptom relief between injections and reduce the frequency of re-treatment. DaxibotulinumtoxinA for Injection (DAXI) is a novel BoNTA product containing highly purified 150-kDa core neurotoxin and is the first to be formulated with a proprietary stabilizing excipient peptide (RTP004) instead of human serum albumin. The positively charged RTP004 has been shown to enhance binding of the neurotoxin to neuronal surfaces, which may enhance the likelihood of neurotoxin internalization. DAXI produces robust, extended efficacy across both aesthetic and therapeutic indications. In an extensive glabellar lines clinical program, DAXI showed a high degree of efficacy, a consistent median time to loss of none or mild glabellar line severity of 24 weeks, and median time until return to baseline of up to 28 weeks. In adults with cervical dystonia, DAXI at 125 U and 250 U significantly improved Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS) total scores, with a median duration of efficacy of 24 and 20 weeks, respectively, which compares favorably with the 12–14 weeks’ duration reported for approved BoNTA products. Overall, DAXI was well tolerated, and the consistent extended duration of effect suggests that DAXI has the potential to improve the management of both aesthetic and therapeutic conditions. Botulinum toxin is used to block the nerve signals that cause muscles to contract. Products containing botulinum toxin are commonly given by injection to treat muscle spasms (such as cervical dystonia, a painful condition where the neck muscles contract involuntarily) and for cosmetic treatment of frown lines. However, the effects of the currently approved botulinum toxin products typically wear off about 3–4 months after injection and so the injections must be repeated regularly. A new product called DAXI (DaxibotulinumtoxinA for Injection) has been developed. In this product, the botulinum toxin is formulated with a unique protein (called RTP004) that has been designed to help deliver the botulinum toxin to the nerve cells. Research suggests that the RTP004 protein in DAXI adheres the botulinum toxin to the nerves close to the injection site, potentially making its effect last longer. To date, DAXI has been studied in over 3800 patients. The studies have shown that DAXI is effective for treating neck spasms (cervical dystonia) and for reducing the appearance of frown lines. Importantly, the effects of DAXI lasted up to 6 months, which is longer than seen with other botulinum toxin products. The side effects seen with DAXI are consistent in nature and frequency with those seen with other botulinum toxin products. These findings suggest that DAXI can improve both medical and cosmetic treatments due to its longer-lasting effect.
Collapse
Affiliation(s)
| | - Jean Carruthers
- University of British Columbia and Jean Carruthers Cosmetic, Vancouver, BC, Canada
| | - Joely Kaufman
- Skin Associates of South Florida, Coral Gables, FL, USA
| | - Roman G Rubio
- Revance Therapeutics, Inc., 7555 Gateway Boulevard, Newark, CA, 94560, USA
| | - Todd M Gross
- Revance Therapeutics, Inc., 7555 Gateway Boulevard, Newark, CA, 94560, USA
| | - Conor J Gallagher
- Revance Therapeutics, Inc., 7555 Gateway Boulevard, Newark, CA, 94560, USA.
| |
Collapse
|
38
|
Go EJ, Ji J, Kim YH, Berta T, Park CK. Transient Receptor Potential Channels and Botulinum Neurotoxins in Chronic Pain. Front Mol Neurosci 2021; 14:772719. [PMID: 34776867 PMCID: PMC8586451 DOI: 10.3389/fnmol.2021.772719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/11/2021] [Indexed: 12/30/2022] Open
Abstract
Pain afflicts more than 1.5 billion people worldwide, with hundreds of millions suffering from unrelieved chronic pain. Despite widespread recognition of the importance of developing better interventions for the relief of chronic pain, little is known about the mechanisms underlying this condition. However, transient receptor potential (TRP) ion channels in nociceptors have been shown to be essential players in the generation and progression of pain and have attracted the attention of several pharmaceutical companies as therapeutic targets. Unfortunately, TRP channel inhibitors have failed in clinical trials, at least in part due to their thermoregulatory function. Botulinum neurotoxins (BoNTs) have emerged as novel and safe pain therapeutics because of their regulation of exocytosis and pro-nociceptive neurotransmitters. However, it is becoming evident that BoNTs also regulate the expression and function of TRP channels, which may explain their analgesic effects. Here, we summarize the roles of TRP channels in pain, with a particular focus on TRPV1 and TRPA1, their regulation by BoNTs, and briefly discuss the use of BoNTs for the treatment of chronic pain.
Collapse
Affiliation(s)
- Eun Jin Go
- Department of Physiology, Gachon Pain Center, Gachon University College of Medicine, Incheon, South Korea
| | - Jeongkyu Ji
- Gachon University College of Medicine, Incheon, South Korea
| | - Yong Ho Kim
- Department of Physiology, Gachon Pain Center, Gachon University College of Medicine, Incheon, South Korea
| | - Temugin Berta
- Department of Anesthesiology, Pain Research Center, University of Cincinnati Medical Center, Cincinnati, OH, United States
| | - Chul-Kyu Park
- Department of Physiology, Gachon Pain Center, Gachon University College of Medicine, Incheon, South Korea
| |
Collapse
|
39
|
Ameer MA, Bhatti D. Chemodenervation for Oromandibular Dystonia Utilizing Botulinum Toxins. Cureus 2021; 13:e18425. [PMID: 34692256 PMCID: PMC8526079 DOI: 10.7759/cureus.18425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 11/29/2022] Open
Abstract
Oromandibular dystonia (OMD) is a chronic focal dystonia that involves the mouth, jaw, and tongue. It may cause repetitive or sustained dystonic movements, which can be very disabling for patients. It is usually a life-long disorder with numerous treatment options that are, most often, partially curative. In our experience, the best modality to treat OMD is botulinum toxin (BoNT) injections, which not only provide long-term relief but also have fewer adverse effects compared to other medications. Although multiple small- and large-scale studies support this fact, there is still a need for evidence from large randomized clinical trials. Jaw-closing dystonia responds very well to BoNT injections compared to other subtypes of OMD. This review discusses in detail the evidence, injection technique, and typical starting doses for botulinum injection.
Collapse
Affiliation(s)
| | - Danish Bhatti
- Department of Neurology, University of Nebraska Medical Center, Omaha, USA
| |
Collapse
|
40
|
Luvisetto S. Botulinum Neurotoxins in Central Nervous System: An Overview from Animal Models to Human Therapy. Toxins (Basel) 2021; 13:toxins13110751. [PMID: 34822535 PMCID: PMC8622321 DOI: 10.3390/toxins13110751] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/13/2021] [Accepted: 10/20/2021] [Indexed: 01/04/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) are potent inhibitors of synaptic vesicle fusion and transmitter release. The natural target of BoNTs is the peripheral neuromuscular junction (NMJ) where, by blocking the release of acetylcholine (ACh), they functionally denervate muscles and alter muscle tone. This leads them to be an excellent drug for the therapy of muscle hyperactivity disorders, such as dystonia, spasticity, and many other movement disorders. BoNTs are also effective in inhibiting both the release of ACh at sites other than NMJ and the release of neurotransmitters other than ACh. Furthermore, much evidence shows that BoNTs can act not only on the peripheral nervous system (PNS), but also on the central nervous system (CNS). Under this view, central changes may result either from sensory input from the PNS, from retrograde transport of BoNTs, or from direct injection of BoNTs into the CNS. The aim of this review is to give an update on available data, both from animal models or human studies, which suggest or confirm central alterations induced by peripheral or central BoNTs treatment. The data will be discussed with particular attention to the possible therapeutic applications to pathological conditions and degenerative diseases of the CNS.
Collapse
Affiliation(s)
- Siro Luvisetto
- National Research Council of Italy-CNR, Institute of Biochemistry and Cell Biology (IBBC), Via Ercole Ramarini 32, Monterotondo Scalo, 00015 Roma, Italy
| |
Collapse
|
41
|
Naik PP. Utilities of Botulinum Toxins in Dermatology and Cosmetology. Clin Cosmet Investig Dermatol 2021; 14:1319-1330. [PMID: 34584436 PMCID: PMC8464334 DOI: 10.2147/ccid.s332247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/04/2021] [Indexed: 12/22/2022]
Abstract
Botulinum toxin (BoNT) is a neurotoxin produced by the Clostridium botulinum bacterium with a well-known efficacy and safety profile in the focal idiopathic hyperhidrosis treatment. BoNT comprises seven different neurotoxins; however, only toxins A and B are clinically employed. BoNT is lately practiced in off-label therapies for a variety of skin diseases. Scar prevention, hyperhidrosis, rhytides, eccrine nevus, alopecia, psoriasis, Darier disease, bullous skin disease, pompholyx and Raynaud's phenomenon are some of the novel indications for BoNT in cosmetic and notably non-cosmetic aspects of dermatology. To employ BoNT correctly in clinical practice, we must have a thorough understanding of the functional anatomy of the mimetic muscles. An intensive literature search was conducted to update all dermatology-oriented experiments and clinical trials on the described element of BoNT for this general overview of BoNT use in dermatology. This review aims to analyse the role of BoNT in dermatology and cosmetology.
Collapse
Affiliation(s)
- Piyu Parth Naik
- Department of Dermatology, Saudi German Hospital and Clinic, Dubai, United Arab Emirates
| |
Collapse
|
42
|
Hafeez MU, Moore M, Hafeez K, Jankovic J. Exploring the role of botulinum toxin in critical care. Expert Rev Neurother 2021; 21:881-894. [PMID: 34281468 DOI: 10.1080/14737175.2021.1958678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Botulinum neurotoxin (BoNT) is one of the most potent and extensively studied neurotoxins with clinical applications across several different medical specialties. This review article explores the latest evidence for therapeutic applications of BoNT in patients receiving critical management in an intensive care unit (ICU). AREAS COVERED The authors did a literature search in PubMed, Google Scholar, and Texas Medical Center Library database for studies describing the use of BoNT in a critical care setting. They extracted information on study design, patient selection, methodology, and results of relevant studies. Based on initial identification of 85 studies and after conducting screening, the authors identified 61 studies to be included in this review. In an ICU setting, BoNT has been used for several neurological and non-neurological indications. However, the supporting evidence is mostly limited to small observational studies. EXPERT OPINION The use of BoNT in this setting is largely underutilized due to paucity of well-designed clinical trials and financial barriers. Further research is needed to provide evidence for the safety and efficacy of BoNT and to optimize the dosing and injection techniques for various conditions encountered in this setting.
Collapse
Affiliation(s)
- Muhammad Ubaid Hafeez
- Section of Neurocritical Care, Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
| | - Michael Moore
- Department of Neurology, Parkinson's Disease Center and Movement Disorders Clinic, Baylor College of Medicine, Houston, Texas, USA
| | - Komal Hafeez
- Department of Neurology, Parkinson's Disease Center and Movement Disorders Clinic, Baylor College of Medicine, Houston, Texas, USA
| | - Joseph Jankovic
- Department of Neurology, Parkinson's Disease Center and Movement Disorders Clinic, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
43
|
Mechanism of Ganglioside Receptor Recognition by Botulinum Neurotoxin Serotype E. Int J Mol Sci 2021; 22:ijms22158315. [PMID: 34361086 PMCID: PMC8346984 DOI: 10.3390/ijms22158315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 01/10/2023] Open
Abstract
The botulinum neurotoxins are potent molecules that are not only responsible for the lethal paralytic disease botulism, but have also been harnessed for therapeutic uses in the treatment of an increasing number of chronic neurological and neuromuscular disorders, in addition to cosmetic applications. The toxins act at the cholinergic nerve terminals thanks to an efficient and specific mechanism of cell recognition which is based on a dual receptor system that involves gangliosides and protein receptors. Binding to surface-anchored gangliosides is the first essential step in this process. Here, we determined the X-ray crystal structure of the binding domain of BoNT/E, a toxin of clinical interest, in complex with its GD1a oligosaccharide receptor. Beyond confirmation of the conserved ganglioside binding site, we identified key interacting residues that are unique to BoNT/E and a significant rearrangement of loop 1228–1237 upon carbohydrate binding. These observations were also supported by thermodynamic measurements of the binding reaction and assessment of ganglioside selectivity by immobilised-receptor binding assays. These results provide a structural basis to understand the specificity of BoNT/E for complex gangliosides.
Collapse
|
44
|
Duchesne de Lamotte J, Perrier A, Martinat C, Nicoleau C. Emerging Opportunities in Human Pluripotent Stem-Cells Based Assays to Explore the Diversity of Botulinum Neurotoxins as Future Therapeutics. Int J Mol Sci 2021; 22:7524. [PMID: 34299143 PMCID: PMC8308099 DOI: 10.3390/ijms22147524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) are produced by Clostridium botulinum and are responsible for botulism, a fatal disorder of the nervous system mostly induced by food poisoning. Despite being one of the most potent families of poisonous substances, BoNTs are used for both aesthetic and therapeutic indications from cosmetic reduction of wrinkles to treatment of movement disorders. The increasing understanding of the biology of BoNTs and the availability of distinct toxin serotypes and subtypes offer the prospect of expanding the range of indications for these toxins. Engineering of BoNTs is considered to provide a new avenue for improving safety and clinical benefit from these neurotoxins. Robust, high-throughput, and cost-effective assays for BoNTs activity, yet highly relevant to the human physiology, have become indispensable for a successful translation of engineered BoNTs to the clinic. This review presents an emerging family of cell-based assays that take advantage of newly developed human pluripotent stem cells and neuronal function analyses technologies.
Collapse
Affiliation(s)
- Juliette Duchesne de Lamotte
- IPSEN Innovation, 91940 Les Ulis, France;
- I-STEM, INSERM UMR861, Université Evry-Paris Saclay, 91100 Corbeil-Essonne, France
| | - Anselme Perrier
- I-STEM, INSERM UMR861, Université Evry-Paris Saclay, 91100 Corbeil-Essonne, France
- Laboratoire des Maladies Neurodégénératives: Mécanismes, Thérapies, Imagerie, CEA/CNRS UMR9199, Université Paris Saclay, 92265 Fontenay-aux-Roses, France
| | - Cécile Martinat
- I-STEM, INSERM UMR861, Université Evry-Paris Saclay, 91100 Corbeil-Essonne, France
| | | |
Collapse
|
45
|
Hsu LC, Chiang PY, Lin WP, Guo YH, Hsieh PC, Kuan TS, Lien WC, Lin YC. Botulinum toxin injection for Cockayne syndrome with muscle spasticity over bilateral lower limbs: A case report. World J Clin Cases 2021; 9:4728-4733. [PMID: 34222439 PMCID: PMC8223832 DOI: 10.12998/wjcc.v9.i18.4728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/16/2020] [Accepted: 02/01/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cockayne syndrome (CS) is a rare inherited disease characterized by progressive motor symptoms including muscle weakness, joint contracture, ataxia, and spasticity. Botulinum neurotoxin type A has been used for conditions such as dystonia and spasticity, but it has rarely been used in patients with CS. CASE SUMMARY We report a 6-year-and-9-mo old girl diagnosed with CS who received an injection of botulinum neurotoxin type A to manage her difficulty with walking. A total dose of 210 units of botulinum neurotoxin type A was administered into the bilateral tibialis posterior and gastrocnemius muscles. To evaluate the treatment effects on spasticity, joint contracture, pain, and ataxia, measurement tools including the Modified Ashworth Scale, the passive range of motion, the Faces Pain Scale-Revised, and the Scale for the Assessment and Rating of Ataxia, were employed. The first week after the injection, the Modified Ashworth Scale score for the plantar flexors and foot invertors improved bilaterally, along with advancements in the passive range of motion of the bilateral ankles and a lower score for the Faces Pain Scale-Revised. These treatment effects persisted to the 8th week post-injection, but returned to baseline values at the 12th week post-injection, except for the pain scale. CONCLUSION Botulinum toxin injection can thus be considered as a treatment option for lower extremity spasticity, joint contracture, and pain derived from CS.
Collapse
Affiliation(s)
- Lin-Chieh Hsu
- Department of Physical Medicine and Rehabilitation, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Po-Ying Chiang
- Department of Physical Medicine and Rehabilitation, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Wei-Pin Lin
- Department of Physical Medicine and Rehabilitation, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Yao-Hong Guo
- Department of Physical Medicine and Rehabilitation, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Pei-Chun Hsieh
- Department of Physical Medicine and Rehabilitation, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Ta-Shen Kuan
- Department of Physical Medicine and Rehabilitation, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Department of Physical Medicine and Rehabilitation, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Wei-Chih Lien
- Department of Physical Medicine and Rehabilitation, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Yu-Ching Lin
- Department of Physical Medicine and Rehabilitation, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Department of Physical Medicine and Rehabilitation, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan 704, Taiwan
| |
Collapse
|
46
|
Lamotte JDD, Roqueviere S, Gautier H, Raban E, Bouré C, Fonfria E, Krupp J, Nicoleau C. hiPSC-Derived Neurons Provide a Robust and Physiologically Relevant In Vitro Platform to Test Botulinum Neurotoxins. Front Pharmacol 2021; 11:617867. [PMID: 33519485 PMCID: PMC7840483 DOI: 10.3389/fphar.2020.617867] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are zinc metalloproteases that block neurotransmitter release at the neuromuscular junction (NMJ). Their high affinity for motor neurons combined with a high potency have made them extremely effective drugs for the treatment of a variety of neurological diseases as well as for aesthetic applications. Current in vitro assays used for testing and developing BoNT therapeutics include primary rodent cells and immortalized cell lines. Both models have limitations concerning accuracy and physiological relevance. In order to improve the translational value of preclinical data there is a clear need to use more accurate models such as human induced Pluripotent Stem Cells (hiPSC)-derived neuronal models. In this study we have assessed the potential of four different human iPSC-derived neuronal models including Motor Neurons for BoNT testing. We have characterized these models in detail and found that all models express all proteins needed for BoNT intoxication and showed that all four hiPSC-derived neuronal models are sensitive to both serotype A and E BoNT with Motor Neurons being the most sensitive. We showed that hiPSC-derived Motor Neurons expressed authentic markers after only 7 days of culture, are functional and able to form active synapses. When cultivated with myotubes, we demonstrated that they can innervate myotubes and induce contraction, generating an in vitro model of NMJ showing dose-responsive sensitivity BoNT intoxication. Together, these data demonstrate the promise of hiPSC-derived neurons, especially Motor Neurons, for pharmaceutical BoNT testing and development.
Collapse
|
47
|
Rasetti-Escargueil C, Popoff MR. Engineering Botulinum Neurotoxins for Enhanced Therapeutic Applications and Vaccine Development. Toxins (Basel) 2020; 13:1. [PMID: 33374954 PMCID: PMC7821915 DOI: 10.3390/toxins13010001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) show increasing therapeutic applications ranging from treatment of locally paralyzed muscles to cosmetic benefits. At first, in the 1970s, BoNT was used for the treatment of strabismus, however, nowadays, BoNT has multiple medical applications including the treatment of muscle hyperactivity such as strabismus, dystonia, movement disorders, hemifacial spasm, essential tremor, tics, cervical dystonia, cerebral palsy, as well as secretory disorders (hyperhidrosis, sialorrhea) and pain syndromes such as chronic migraine. This review summarizes current knowledge related to engineering of botulinum toxins, with particular emphasis on their potential therapeutic applications for pain management and for retargeting to non-neuronal tissues. Advances in molecular biology have resulted in generating modified BoNTs with the potential to act in a variety of disorders, however, in addition to the modifications of well characterized toxinotypes, the diversity of the wild type BoNT toxinotypes or subtypes, provides the basis for innovative BoNT-based therapeutics and research tools. This expanding BoNT superfamily forms the foundation for new toxins candidates in a wider range of therapeutic options.
Collapse
|
48
|
Botulinum Toxin in the Treatment of Headache. Toxins (Basel) 2020; 12:toxins12120803. [PMID: 33348571 PMCID: PMC7766412 DOI: 10.3390/toxins12120803] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 12/20/2022] Open
Abstract
Botulinum toxin type A has been used in the treatment of chronic migraine for over a decade and has become established as a well-tolerated option for the preventive therapy of chronic migraine. Ongoing research is gradually shedding light on its mechanism of action in migraine prevention. Given that its mechanism of action is quite different from that of the new monoclonal antibodies directed against calcitonin gene-related peptide (CGRP) or its receptor, it is unlikely to be displaced to any major extent by them. Both will likely remain as important tools for patients with chronic migraine and the clinicians assisting them. New types of botulinum toxin selective for sensory pain neurons may well be discovered or produced by recombinant DNA techniques in the coming decade, and this may greatly enhance its therapeutic usefulness. This review summarizes the evolution of botulinum toxin use in headache management over the past several decades and its role in the preventive treatment of chronic migraine and other headache disorders.
Collapse
|
49
|
Physical therapy, intra-articular dextrose prolotherapy, botulinum neurotoxin, and hyaluronic acid for knee osteoarthritis: randomized clinical trial. Int J Rehabil Res 2020; 43:219-227. [PMID: 32776763 DOI: 10.1097/mrr.0000000000000411] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This study aimed to compare the efficacy of four treatments in the management of knee osteoarthritis. We carried out a randomized clinical trial with four study arms in an outpatient Department of Physical Medicine and Rehabilitation at a University Hospital. In total, 120 patients with knee osteoarthritis ≥50 years of age were randomly allocated to four groups. The primary outcome was knee pain in visual analog scale and the secondary outcome was the Knee Injury and Osteoarthritis Outcome Score. The exercise was prescribed daily for all participants throughout the study. For physical therapy (group 1), participants received superficial heat, transcutaneous electrical nerve stimulation and pulsed ultrasound. We administered a single intra-articular injection of botulinum neurotoxin type A (group 2) and three injections of hyaluronic acid (group 3) or 20% dextrose (group 4) to patients in the corresponding groups. Mixed analysis of variance showed that there was statistically significant difference between the groups in pain (P < 0.001), and Knee Injury and Osteoarthritis Outcome Score (P < 0.001). Pairwise between- and within-group comparisons showed that botulinum neurotoxin and dextrose prolotherapy were the most, and hyaluronic acid was the least efficient treatments for controlling pain and recovering function in patients. An intra-articular injection of botulinum toxin type A or dextrose prolotherapy is effective first-line treatments. In the next place stands physical therapy particularly if the patient is not willing to continue regular exercise programs. Our study was not very supportive of intra-articular injection of hyaluronic acid as an effective treatment of knee osteoarthritis.
Collapse
|
50
|
Abstract
Botulinum neurotoxin (BoNT) is an effective treatment for many neurologic disorders. This article gives a comprehensive overview of the clinical applications of BoNT across the field of neurology.
Collapse
Affiliation(s)
- Shannon Y Chiu
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, 3009 SW Williston Road, Gainesville, FL 32608, USA
| | - Matthew R Burns
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, 3009 SW Williston Road, Gainesville, FL 32608, USA
| | - Irene A Malaty
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, 3009 SW Williston Road, Gainesville, FL 32608, USA.
| |
Collapse
|