1
|
Wang Y, Geng X, Qin S, Che T, Yan L, Yuan B, Li W. Advance on the effects of algal carotenoids on inflammatory signaling pathways. Eur J Med Chem 2025; 281:117020. [PMID: 39536497 DOI: 10.1016/j.ejmech.2024.117020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The development of inflammation has an indispensable importance in the self-protection of the human body. However, over-inflammation may damage human health, and inflammatory pathways and inflammasomes have a significant impact on the onset of inflammation. Therefore, how to constrain the development of inflammation through inflammatory pathways or inflammasomes becomes a hot research issue. Carotenoids are a natural pigment and an active substance in algae, with anti-inflammatory and antioxidant effects. Many studies have shown that carotenoids have inhibitory effects on the inflammatory pathways and inflammasomes. In this review, we discussed the mechanism of carotenoids targeting those important inflammatory pathways and their effects on common inflammasome NLRP3 and inflammation-related diseases from the perspective of several inflammatory pathways, including p38 MAPK, IL-6/JAK/STAT3, and PI3K, with a focus on the targets and targeting effects of carotenoids on different inflammatory signaling pathways, and at last proposed possible anti-inflammatory targets.
Collapse
Affiliation(s)
- Yudi Wang
- Institute of Marine Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Xinrong Geng
- Institute of Marine Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Song Qin
- Institute of Marine Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Tuanjie Che
- Zhigong Biomedicine Co., Ltd, Yantai, Shandong, 2640035, China
| | - Libo Yan
- Zhigong Biomedicine Co., Ltd, Yantai, Shandong, 2640035, China
| | - Biao Yuan
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Wenjun Li
- Institute of Marine Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China.
| |
Collapse
|
2
|
Matin M, Koszarska M, Atanasov AG, Król-Szmajda K, Jóźwik A, Stelmasiak A, Hejna M. Bioactive Potential of Algae and Algae-Derived Compounds: Focus on Anti-Inflammatory, Antimicrobial, and Antioxidant Effects. Molecules 2024; 29:4695. [PMID: 39407623 PMCID: PMC11477577 DOI: 10.3390/molecules29194695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Algae, both micro- and macroalgae, are recognized for their rich repository of bioactive compounds with potential therapeutic applications. These marine organisms produce a variety of secondary metabolites that exhibit significant anti-inflammatory, antioxidant, and antimicrobial properties, offering promising avenues for the development of new drugs and nutraceuticals. Algae-derived compounds, including polyphenols, carotenoids, lipids, and polysaccharides, have demonstrated efficacy in modulating key inflammatory pathways, reducing oxidative stress, and inhibiting microbial growth. At the molecular level, these compounds influence macrophage activity, suppress the production of pro-inflammatory cytokines, and regulate apoptotic processes. Studies have shown that algae extracts can inhibit inflammatory signaling pathways such as NF-κB and MAPK, reduce oxidative damage by activating Nrf2, and offer an alternative to traditional antibiotics by combatting bacterial infections. Furthermore, algae's therapeutic potential extends to addressing diseases such as cardiovascular disorders, neurodegenerative conditions, and cancer, with ongoing research exploring their efficacy in preclinical animal models. The pig model, due to its physiological similarities to humans, is highlighted as particularly suitable for validating the bioactivities of algal compounds in vivo. This review underscores the need for further investigation into the specific mechanisms of action and clinical applications of algae-derived biomolecules.
Collapse
Affiliation(s)
- Maima Matin
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (M.M.); (M.K.); (A.G.A.); (K.K.-S.); (A.J.)
| | - Magdalena Koszarska
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (M.M.); (M.K.); (A.G.A.); (K.K.-S.); (A.J.)
| | - Atanas G. Atanasov
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (M.M.); (M.K.); (A.G.A.); (K.K.-S.); (A.J.)
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, 1090 Vienna, Austria
| | - Karolina Król-Szmajda
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (M.M.); (M.K.); (A.G.A.); (K.K.-S.); (A.J.)
| | - Artur Jóźwik
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (M.M.); (M.K.); (A.G.A.); (K.K.-S.); (A.J.)
| | - Adrian Stelmasiak
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, University of Life Sciences of Warsaw, 02-787 Warsaw, Poland;
| | - Monika Hejna
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (M.M.); (M.K.); (A.G.A.); (K.K.-S.); (A.J.)
| |
Collapse
|
3
|
Martínez-Jerónimo F, Gonzalez-Trujillo L, Hernández-Zamora M. Continuous and Intermittent Exposure to the Toxigenic Cyanobacterium Microcystis aeruginosa Differentially Affects the Survival and Reproduction of Daphnia curvirostris. Toxins (Basel) 2024; 16:360. [PMID: 39195770 PMCID: PMC11359247 DOI: 10.3390/toxins16080360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/28/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Anthropic eutrophication leads to water quality degradation because it may cause the development of harmful cyanobacterial blooms, affecting aquatic biota and threatening human health. Because in the natural environment zooplankters are exposed continuously or intermittently to cyanotoxins in the water or through cyanobacterial consumption, this study aimed to assess the effects of the toxigenic Microcystis aeruginosa VU-5 by different ways of exposure in Daphnia curvirostris. The acute toxicity produced by the cells, the aqueous crude extract of cells (ACE), and the cell-free culture medium (CFM) were determined. The effect on the survival and reproduction of D. curvirostris under continuous and intermittent exposure was determined during 26 d. The LC50 was 407,000 cells mL-1; exposure to the ACE and CFM produced mortality lower than 20%. Daphnia survivorship and reproduction were significantly reduced. Continuous exposure to Microcystis cells caused 100% mortality on the fourth day. Exposure during 4 and 24 h in 48 h cycles produced adult mortality, and reproduction decreased as the exposure time and the Microcystis concentrations increased. The higher toxicity of cells than the ACE could mean that the toxin's absorption is higher in the digestive tract. The temporary exposure to Microcystis cells produced irreversible damage despite the recovery periods with microalgae as food. The form and the continuity in exposure to Microcystis produced adverse effects, warning about threats to the zooplankton during HCBs.
Collapse
Affiliation(s)
- Fernando Martínez-Jerónimo
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Hidrobiología Experimental, Carpio y Plan de Ayala s/n, Ciudad de México 11340, Mexico
| | | | - Miriam Hernández-Zamora
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Hidrobiología Experimental, Carpio y Plan de Ayala s/n, Ciudad de México 11340, Mexico
| |
Collapse
|
4
|
Chuan H, Li B, Wang Z, Wang J, Xie P, Liu Y. Feedback of lake trophic status via MC-LR fluorescence technique. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115671. [PMID: 37951093 DOI: 10.1016/j.ecoenv.2023.115671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/13/2023]
Abstract
Eutrophication remains one of the most challenging environmental problems, and microcystin-leucine-arginine (MC-LR) produced in eutrophic waters would cause serious ecological risks. However, the traditional assessment methods of trophic status, such as water quality index (WQI) and trophic status index (TSI), could not directly reflect the existence or concentration of MC-LR in water. Moreover, traditional MC-LR detection methods are costly and time-consuming. Therefore, it remains a challenge to develop a method that can simply and quickly reflect the level of MC-LR. Herein, a novel probe with specific response to MC-LR was proposed to assess the distribution characteristics of MC-LR in water bodies. By combining the response signal of the probe with the filtered water sample and the water quality parameters, a more accurate assessment tool for MC-LR was obtained. This probe can specifically respond to MC-LR in aqueous solution, and its fluorescence signal is enhanced with the increase of MC-LR concentration. More importantly, the fluorescent signal of the probe showed a significant positive correlation with MC-LR concentration in water samples. This visualization tool has practical application potential for the preliminary assessment of MC-LR in eutrophic waters.
Collapse
Affiliation(s)
- Huiyan Chuan
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Bingyan Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Zhaomin Wang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Jie Wang
- Yunnan Water Science Research Institute, Kunming 650500, Yunnan, PR China
| | - Ping Xie
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China; Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| | - Yong Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China.
| |
Collapse
|
5
|
Pinto A, Botelho MJ, Churro C, Asselman J, Pereira P, Pereira JL. A review on aquatic toxins - Do we really know it all regarding the environmental risk posed by phytoplankton neurotoxins? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118769. [PMID: 37597370 DOI: 10.1016/j.jenvman.2023.118769] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/24/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023]
Abstract
Aquatic toxins are potent natural toxins produced by certain cyanobacteria and marine algae species during harmful cyanobacterial and algal blooms (CyanoHABs and HABs, respectively). These harmful bloom events and the toxins produced during these events are a human and environmental health concern worldwide, with occurrence, frequency and severity of CyanoHABs and HABs being predicted to keep increasing due to ongoing climate change scenarios. These contexts, as well as human health consequences of some toxins produced during bloom events have been thoroughly reviewed before. Conversely, the wider picture that includes the non-human biota in the assessment of noxious effects of toxins is much less covered in the literature and barely covered by review works. Despite direct human exposure to aquatic toxins and related deleterious effects being responsible for the majority of the public attention to the blooms' problematic, it constitutes a very limited fraction of the real environmental risk posed by these toxins. The disruption of ecological and trophic interactions caused by these toxins in the aquatic biota building on deleterious effects they may induce in different species is paramount as a modulator of the overall magnitude of the environmental risk potentially involved, thus necessarily constraining the quality and efficiency of the management strategies that should be placed. In this way, this review aims at updating and consolidating current knowledge regarding the adverse effects of aquatic toxins, attempting to going beyond their main toxicity pathways in human and related models' health, i.e., also focusing on ecologically relevant model organisms. For conciseness and considering the severity in terms of documented human health risks as a reference, we restricted the detailed revision work to neurotoxic cyanotoxins and marine toxins. This comprehensive revision of the systemic effects of aquatic neurotoxins provides a broad overview of the exposure and the hazard that these compounds pose to human and environmental health. Regulatory approaches they are given worldwide, as well as (eco)toxicity data available were hence thoroughly reviewed. Critical research gaps were identified particularly regarding (i) the toxic effects other than those typical of the recognized disease/disorder each toxin causes following acute exposure in humans and also in other biota; and (ii) alternative detection tools capable of being early-warning signals for aquatic toxins occurrence and therefore provide better human and environmental safety insurance. Future directions on aquatic toxins research are discussed in face of the existent knowledge, with particular emphasis on the much-needed development and implementation of effective alternative (eco)toxicological biomarkers for these toxins. The wide-spanning approach followed herein will hopefully stimulate future research more broadly addressing the environmental hazardous potential of aquatic toxins.
Collapse
Affiliation(s)
- Albano Pinto
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal.
| | - Maria João Botelho
- IPMA, Portuguese Institute for the Sea and Atmosphere, Av. Alfredo Magalhães Ramalho 6, 1495-165, Algés, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Catarina Churro
- IPMA, Portuguese Institute for the Sea and Atmosphere, Av. Alfredo Magalhães Ramalho 6, 1495-165, Algés, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Bluebridge Building, Ostend Science Park 1, 8400, Ostend, Belgium
| | - Patrícia Pereira
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal
| | - Joana Luísa Pereira
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal
| |
Collapse
|
6
|
Davidović P, Blagojević D, Meriluoto J, Simeunović J, Svirčev Z. Biotests in Cyanobacterial Toxicity Assessment-Efficient Enough or Not? BIOLOGY 2023; 12:biology12050711. [PMID: 37237524 DOI: 10.3390/biology12050711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023]
Abstract
Cyanobacteria are a diverse group of organisms known for producing highly potent cyanotoxins that pose a threat to human, animal, and environmental health. These toxins have varying chemical structures and toxicity mechanisms and several toxin classes can be present simultaneously, making it difficult to assess their toxic effects using physico-chemical methods, even when the producing organism and its abundance are identified. To address these challenges, alternative organisms among aquatic vertebrates and invertebrates are being explored as more assays evolve and diverge from the initially established and routinely used mouse bioassay. However, detecting cyanotoxins in complex environmental samples and characterizing their toxic modes of action remain major challenges. This review provides a systematic overview of the use of some of these alternative models and their responses to harmful cyanobacterial metabolites. It also assesses the general usefulness, sensitivity, and efficiency of these models in investigating the mechanisms of cyanotoxicity expressed at different levels of biological organization. From the reported findings, it is clear that cyanotoxin testing requires a multi-level approach. While studying changes at the whole-organism level is essential, as the complexities of whole organisms are still beyond the reach of in vitro methodologies, understanding cyanotoxicity at the molecular and biochemical levels is necessary for meaningful toxicity evaluations. Further research is needed to refine and optimize bioassays for cyanotoxicity testing, which includes developing standardized protocols and identifying novel model organisms for improved understanding of the mechanisms with fewer ethical concerns. In vitro models and computational modeling can complement vertebrate bioassays and reduce animal use, leading to better risk assessment and characterization of cyanotoxins.
Collapse
Affiliation(s)
- Petar Davidović
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Dajana Blagojević
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Jussi Meriluoto
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi, Tykistökatu 6 A, 20520 Turku, Finland
| | - Jelica Simeunović
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Zorica Svirčev
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi, Tykistökatu 6 A, 20520 Turku, Finland
| |
Collapse
|
7
|
Gao S, Jiang X, Wang L, Jiang S, Luo H, Chen Y, Peng C. The pathogenesis of liver cancer and the therapeutic potential of bioactive substances. Front Pharmacol 2022; 13:1029601. [PMID: 36278230 PMCID: PMC9581229 DOI: 10.3389/fphar.2022.1029601] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Liver cancer is the third most common cause of cancer-related deaths in the world and has become an urgent problem for global public health. Bioactive substances are widely used for the treatment of liver cancer due to their widespread availability and reduced side effects. This review summarizes the main pathogenic factors involved in the development of liver cancer, including metabolic fatty liver disease, viral infection, and alcoholic cirrhosis, and focuses on the mechanism of action of bioactive components such as polysaccharides, alkaloids, phenols, peptides, and active bacteria/fungi. In addition, we also summarize transformation methods, combined therapy and modification of bioactive substances to improve the treatment efficiency against liver cancer, highlighting new ideas in this field.
Collapse
Affiliation(s)
- Song Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xingyue Jiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liang Wang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shanshan Jiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hanyuan Luo
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yan Chen, ; Cheng Peng,
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yan Chen, ; Cheng Peng,
| |
Collapse
|
8
|
Yin L, Wang FY, Zhang W, Wang X, Tang YH, Wang T, Chen YT, Huang CX. RA signaling pathway combined with Wnt signaling pathway regulates human-induced pluripotent stem cells (hiPSCs) differentiation to sinus node-like cells. Stem Cell Res Ther 2022; 13:324. [PMID: 35851424 PMCID: PMC9290266 DOI: 10.1186/s13287-022-03006-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The source of SAN is debated among researchers. Many studies have shown that RA and Wnt signaling are involved in heart development. In this study, we investigated the role of retinoic acid (RA) and Wnt signaling in the induction of sinus node-like cells. METHODS The experimental samples were divided into four groups: control group (CHIR = 0), CHIR = 3, RA + CHIR = 0 andRA + CHIR = 3. After 20 days of differentiation, Western blot, RT-qPCR, immunofluorescence and flow cytometry were performed to identify sinus node-like cells. Finally, whole-cell patch clamp technique was used to record pacing funny current and action potential (AP) in four groups. RESULTS The best intervention method used in our experiment was RA = 0.25 µmol/L D5-D9 + CHIR = 3 µmol/L D5-D7. Results showed that CHIR can increase the expression of ISL-1 and TBX3, while RA mainly elevated Shox2. Immunofluorescence assay and flow cytometry further illustrated that combining RA with CHIR can induce sinus node-like cells (CTNT+Shox2+Nkx2.5-). Moreover, CHIR might reduce the frequency of cell beats, but in conjunction with RA could partly compensate for this side effect. Whole cell patch clamps were able to record funny current and the typical sinus node AP in the experimental group, which did not appear in the control group. CONCLUSIONS Combining RA with Wnt signaling within a specific period can induce sinus node-like cells.
Collapse
Affiliation(s)
- Lin Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060 Hubei People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 People’s Republic of China
| | - Feng-yuan Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060 Hubei People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 People’s Republic of China
| | - Wei Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060 Hubei People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 People’s Republic of China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060 Hubei People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 People’s Republic of China
| | - Yan-hong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060 Hubei People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 People’s Republic of China
| | - Teng Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060 Hubei People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 People’s Republic of China
| | - Yu-ting Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060 Hubei People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 People’s Republic of China
| | - Cong-xin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060 Hubei People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 People’s Republic of China
| |
Collapse
|
9
|
Jiang H, He J, Wang H, Zheng L, Wang X, Zhang H, Wu H, Shu Y. Gill Junction Injury and Microbial Disorders Induced by Microcystin-Leucine Arginine in Lithobates catesbeianus Tadpoles. Toxins (Basel) 2022; 14:toxins14070479. [PMID: 35878217 PMCID: PMC9322459 DOI: 10.3390/toxins14070479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 02/01/2023] Open
Abstract
Microcystin-LR (MC-LR) is widely present in waters around the world, but its potential toxic effects and mechanisms on amphibian gills remain unknown. In the present study, tadpoles (Lithobates catesbeianus) were exposed to environmentally realistic concentrations of 0.5, 2 μg/L MC-LR, and 0 μg/L MC-LR (Control) for 30 days with the objective to unveil the impairment of gill health. The lysozyme was downregulated, while pattern recognition receptors and complement and adaptive immune processes were upregulated and the ability of gill supernatant to inhibit pathogenic bacteria decreased in the 0.5 and 2 μg/L MC-LR groups. The transcriptions of epithelial barrier components (e.g., CLDN1) were significantly decreased in MC-LR-exposed gills, while the gill content of lipopolysaccharide (LPS) endotoxins and the transcriptions of downstream responsive genes (e.g., TLR4 and NF-κB) were concurrently increased. In addition, the number of eosinophils and the expression of pro-inflammatory cytokines (e.g., IL-1β and TNF-α) were increased. These results imply that exposure of tadpoles to low environmentally concentrations of MC-LR leads to inflammation, increased permeability, and a reduced ability to inhibit pathogenic bacteria. The epithelial cells of inner gill filaments increased and transcriptions of hypoxic stress genes (e.g., HIF-1α, FLT1, and SERPINE1) were upregulated within the exposed group. As a consequence, exposure to MC-LR may lead to hypoxic stress. MC-LR exposure also drove gill microbiota to a dysbiosis. The relative abundance of Elizabethkingia was positively correlated with content of LPS and transcriptions of NF-κB and TNF-α. Overall, this study presents the first evidence about the pronounced impacts of MC-LR exposure on gills of amphibians, highlighting the susceptibility of early developing tadpoles to the environmental risks of MC-LR.
Collapse
Affiliation(s)
- Huiling Jiang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; (H.J.); (J.H.); (H.W.); (L.Z.); (X.W.); (H.Z.)
| | - Jun He
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; (H.J.); (J.H.); (H.W.); (L.Z.); (X.W.); (H.Z.)
| | - Hui Wang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; (H.J.); (J.H.); (H.W.); (L.Z.); (X.W.); (H.Z.)
| | - Lingling Zheng
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; (H.J.); (J.H.); (H.W.); (L.Z.); (X.W.); (H.Z.)
| | - Xiaoran Wang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; (H.J.); (J.H.); (H.W.); (L.Z.); (X.W.); (H.Z.)
| | - Huijuan Zhang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; (H.J.); (J.H.); (H.W.); (L.Z.); (X.W.); (H.Z.)
| | - Hailong Wu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; (H.J.); (J.H.); (H.W.); (L.Z.); (X.W.); (H.Z.)
- Correspondence: (H.W.); (Y.S.)
| | - Yilin Shu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; (H.J.); (J.H.); (H.W.); (L.Z.); (X.W.); (H.Z.)
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Correspondence: (H.W.); (Y.S.)
| |
Collapse
|
10
|
Pesnya DS, Kurbatova SA, Sharov AN, Chernova EN, Yershov IY, Shurganova GV, Vodeneeva EL. Genotoxicity of Natural Water during the Mass Development of Cyanobacteria Evaluated by the Allium Test Method: A Model Experiment with Microcosms. Toxins (Basel) 2022; 14:toxins14050359. [PMID: 35622605 PMCID: PMC9145725 DOI: 10.3390/toxins14050359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/03/2022] Open
Abstract
Cyanobacteria, which develop abundantly in aquatic ecosystems, can be harmful to humans and animals not only by releasing toxins that cause poisoning but also by provoking cytogenetic effects. The influence of the mass development of cyanobacteria on the genotoxic properties of natural water has been studied in model ecosystems (microcosms) with different compositions of biotic components (zooplankton, amphipods and fish). The validated plant test system “Allium test” was used in this study. Genotoxic effects were detected at microcystin concentrations below those established by the World Health Organization (WHO) for drinking water. In all experimental treatments, cells with disorders such as polyploidy and mitotic abnormalities associated with damage to the mitotic spindle, including c-mitosis, as well as lagging chromosomes were found. Genotoxic effects were associated with the abundance of cyanobacteria, which, in turn, depended on the composition of aquatic organisms in the experimental ecosystem. Fish, to a greater extent than other aquatic animals, maintain an abundance of cyanobacteria. After one month, in microcosms with fish, mitotic abnormalities and polyploidy continued to be detected, whereas in other treatments, there were no statistically significant genotoxic effects. In microcosms with amphipods, the number and biomass of cyanobacteria decreased to the greatest extent, and only one parameter of genotoxic activity (frequency of polyploidy) significantly differed from the control.
Collapse
Affiliation(s)
- Dmitry S. Pesnya
- Laboratory of Water Ecosystems, Department of Ecology, Institute of Biology and Biomedicine, Lobachevsky State University, 603022 Nizhny Novgorod, Russia; (S.A.K.); (I.Y.Y.); (G.V.S.); (E.L.V.)
- Laboratory of Experimental Ecology, Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Russia
- Correspondence:
| | - Svetlana A. Kurbatova
- Laboratory of Water Ecosystems, Department of Ecology, Institute of Biology and Biomedicine, Lobachevsky State University, 603022 Nizhny Novgorod, Russia; (S.A.K.); (I.Y.Y.); (G.V.S.); (E.L.V.)
- Laboratory of Experimental Ecology, Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Russia
| | - Andrey N. Sharov
- Laboratory of Algology, Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Russia;
- Laboratory of Bio-Electronic Methods of Geo-Ecological Monitoring, St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences, 197110 St. Petersburg, Russia
| | - Ekaterina N. Chernova
- Laboratory of Eco-Chemical Studies, St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences, 197110 St. Petersburg, Russia;
| | - Igor Y. Yershov
- Laboratory of Water Ecosystems, Department of Ecology, Institute of Biology and Biomedicine, Lobachevsky State University, 603022 Nizhny Novgorod, Russia; (S.A.K.); (I.Y.Y.); (G.V.S.); (E.L.V.)
- Laboratory of Experimental Ecology, Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Russia
| | - Galina V. Shurganova
- Laboratory of Water Ecosystems, Department of Ecology, Institute of Biology and Biomedicine, Lobachevsky State University, 603022 Nizhny Novgorod, Russia; (S.A.K.); (I.Y.Y.); (G.V.S.); (E.L.V.)
| | - Ekaterina L. Vodeneeva
- Laboratory of Water Ecosystems, Department of Ecology, Institute of Biology and Biomedicine, Lobachevsky State University, 603022 Nizhny Novgorod, Russia; (S.A.K.); (I.Y.Y.); (G.V.S.); (E.L.V.)
| |
Collapse
|
11
|
Review of Cyanotoxicity Studies Based on Cell Cultures. J Toxicol 2022; 2022:5647178. [PMID: 35509523 PMCID: PMC9061046 DOI: 10.1155/2022/5647178] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/28/2022] [Accepted: 03/25/2022] [Indexed: 12/23/2022] Open
Abstract
Cyanotoxins (CTs) are a large and diverse group of toxins produced by the peculiar photosynthetic prokaryotes of the domain Cyanoprokaryota. Toxin-producing aquatic cyanoprokaryotes can develop in mass, causing “water blooms” or “cyanoblooms,” which may lead to environmental disaster—water poisoning, extinction of aquatic life, and even to human death. CT studies on single cells and cells in culture are an important stage of toxicological studies with increasing impact for their further use for scientific and clinical purposes, and for policies of environmental protection. The higher cost of animal use and continuous resistance to the use of animals for scientific and toxicological studies lead to a progressive increase of cell lines use. This review aims to present (1) the important results of the effects of CT on human and animal cell lines, (2) the methods and concentrations used to obtain these results, (3) the studied cell lines and their tissues of origin, and (4) the intracellular targets of CT. CTs reviewed are presented in alphabetical order as follows: aeruginosins, anatoxins, BMAA (β-N-methylamino-L-alanine), cylindrospermopsins, depsipeptides, lipopolysaccharides, lyngbyatoxins, microcystins, nodularins, cyanobacterial retinoids, and saxitoxins. The presence of all these data in a review allows in one look to advance the research on CT using cell cultures by facilitating the selection of the most appropriate methods, conditions, and cell lines for future toxicological, pharmacological, and physiological studies.
Collapse
|
12
|
Lad A, Breidenbach JD, Su RC, Murray J, Kuang R, Mascarenhas A, Najjar J, Patel S, Hegde P, Youssef M, Breuler J, Kleinhenz AL, Ault AP, Westrick JA, Modyanov NN, Kennedy DJ, Haller ST. As We Drink and Breathe: Adverse Health Effects of Microcystins and Other Harmful Algal Bloom Toxins in the Liver, Gut, Lungs and Beyond. Life (Basel) 2022; 12:life12030418. [PMID: 35330169 PMCID: PMC8950847 DOI: 10.3390/life12030418] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 12/19/2022] Open
Abstract
Freshwater harmful algal blooms (HABs) are increasing in number and severity worldwide. These HABs are chiefly composed of one or more species of cyanobacteria, also known as blue-green algae, such as Microcystis and Anabaena. Numerous HAB cyanobacterial species produce toxins (e.g., microcystin and anatoxin—collectively referred to as HAB toxins) that disrupt ecosystems, impact water and air quality, and deter recreation because they are harmful to both human and animal health. Exposure to these toxins can occur through ingestion, inhalation, or skin contact. Acute health effects of HAB toxins have been well documented and include symptoms such as nausea, vomiting, abdominal pain and diarrhea, headache, fever, and skin rashes. While these adverse effects typically increase with amount, duration, and frequency of exposure, susceptibility to HAB toxins may also be increased by the presence of comorbidities. The emerging science on potential long-term or chronic effects of HAB toxins with a particular emphasis on microcystins, especially in vulnerable populations such as those with pre-existing liver or gastrointestinal disease, is summarized herein. This review suggests additional research is needed to define at-risk populations who may be helped by preventative measures. Furthermore, studies are required to develop a mechanistic understanding of chronic, low-dose exposure to HAB toxins so that appropriate preventative, diagnostic, and therapeutic strategies can be created in a targeted fashion.
Collapse
Affiliation(s)
- Apurva Lad
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Joshua D. Breidenbach
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Robin C. Su
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Jordan Murray
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Rebecca Kuang
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Alison Mascarenhas
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - John Najjar
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Shivani Patel
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Prajwal Hegde
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Mirella Youssef
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Jason Breuler
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Andrew L. Kleinhenz
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Andrew P. Ault
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Judy A. Westrick
- Lumigen Instrumentation Center, Department of Chemistry, Wayne State University, Detroit, MI 48202, USA;
| | - Nikolai N. Modyanov
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - David J. Kennedy
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
- Correspondence: (D.J.K.); (S.T.H.); Tel.: +1-419-383-6822 (D.J.K.); +1-419-383-6859 (S.T.H.)
| | - Steven T. Haller
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
- Correspondence: (D.J.K.); (S.T.H.); Tel.: +1-419-383-6822 (D.J.K.); +1-419-383-6859 (S.T.H.)
| |
Collapse
|
13
|
Identification of Novel Molecular Targets of Four Microcystin Variants by High-Throughput Virtual Screening. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Highly toxic microcystins (MCs) perform complex interactions with many proteins that induce cellular dysregulation, leading to the development of several diseases including cancer. There is significant diversity and chemical complexity among MC congeners, which makes it difficult to identify structure-dependent toxicity outcomes and their long-term effects. The aim of this study was to exploratory identify likely molecular targets of the main MC variants (MC-LA, MC-LR, MC-RR, and MC-LY) by conducting a computational binding affinity analysis using AutoDock Vina to evaluate the interaction of the toxins with 1000 proteins related to different biological functions. All four variants showed strong in silico interactions with proteins that regulate metabolism/immune system, CD38 (top scoring hit, −11.5 kcal/mol); inflammation, TLR4 (−11.4 kcal/mol) and TLR8 (−11.5 kcal/mol); neuronal conduction, BChE; renin–angiotensin signaling, (ACE); thyroid hormone homeostasis (TTR); and cancer-promoting processes, among other biochemical activities. The results show MCs have the potential to bind onto distinct molecular targets which could generate biochemical alterations through a number of signal transduction pathways. In short, this study broadens our knowledge about the mechanisms of action of different variants of microcystins and provides information for future direct experimentation.
Collapse
|
14
|
Anabaenopeptins: What We Know So Far. Toxins (Basel) 2021; 13:toxins13080522. [PMID: 34437393 PMCID: PMC8402340 DOI: 10.3390/toxins13080522] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
Cyanobacteria are microorganisms with photosynthetic mechanisms capable of colonizing several distinct environments worldwide. They can produce a vast spectrum of bioactive compounds with different properties, resulting in an improved adaptative capacity. Their richness in secondary metabolites is related to their unique and diverse metabolic apparatus, such as Non-Ribosomal Peptide Synthetases (NRPSs). One important class of peptides produced by the non-ribosomal pathway is anabaenopeptins. These cyclic hexapeptides demonstrated inhibitory activity towards phosphatases and proteases, which could be related to their toxicity and adaptiveness against zooplankters and crustaceans. Thus, this review aims to identify key features related to anabaenopeptins, including the diversity of their structure, occurrence, the biosynthetic steps for their production, ecological roles, and biotechnological applications.
Collapse
|
15
|
Sukenik A, Kaplan A. Cyanobacterial Harmful Algal Blooms in Aquatic Ecosystems: A Comprehensive Outlook on Current and Emerging Mitigation and Control Approaches. Microorganisms 2021; 9:1472. [PMID: 34361909 PMCID: PMC8306311 DOI: 10.3390/microorganisms9071472] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 12/31/2022] Open
Abstract
An intensification of toxic cyanobacteria blooms has occurred over the last three decades, severely affecting coastal and lake water quality in many parts of the world. Extensive research is being conducted in an attempt to gain a better understanding of the driving forces that alter the ecological balance in water bodies and of the biological role of the secondary metabolites, toxins included, produced by the cyanobacteria. In the long-term, such knowledge may help to develop the needed procedures to restore the phytoplankton community to the pre-toxic blooms era. In the short-term, the mission of the scientific community is to develop novel approaches to mitigate the blooms and thereby restore the ability of affected communities to enjoy coastal and lake waters. Here, we critically review some of the recently proposed, currently leading, and potentially emerging mitigation approaches in-lake novel methodologies and applications relevant to drinking-water treatment.
Collapse
Affiliation(s)
- Assaf Sukenik
- The Yigal Allon Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, P.O. Box 447, Migdal 14950, Israel
| | - Aaron Kaplan
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 9190401, Israel;
| |
Collapse
|