1
|
Arce-López B, Coton M, Coton E, Hymery N. Occurrence of the two major regulated mycotoxins, ochratoxin A and fumonisin B1, in cereal and cereal-based products in Europe and toxicological effects: A review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 109:104489. [PMID: 38844151 DOI: 10.1016/j.etap.2024.104489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/25/2024] [Accepted: 05/30/2024] [Indexed: 06/14/2024]
Abstract
Among cereal contaminants, mycotoxins are of concern due to their importance in terms of food and feed safety. The difficulty in establishing a diagnosis for mycotoxicosis relies on the fact that the effects are most often subclinical for chronic exposure and the most common scenario is multi-contamination by various toxins. Mycotoxin co-occurrence is a major food safety concern as additive or even synergic toxic impacts may occur, but also regarding current regulations as they mainly concern individual mycotoxin levels in specific foods and feed in the food chain. However, due to the large number of possible mycotoxin combinations, there is still limited knowledge on co-exposure toxicity data, which depends on several parameters. In this context, this systematic review aims to provide an overview of the toxic effects of two regulated mycotoxins, namely ochratoxin A and fumonisin B1. This review focused on the 2012-2022 period and analysed the occurrence in Europe of the selected mycotoxins in different food matrices (cereals and cereal-derived products), and their toxic impact, alone or in combination, on in vitro intestinal and hepatic human cells. To better understand and evaluate the associated risks, further research is needed using new approach methodologies (NAM), such as in vitro 3D models. KEY CONTRIBUTION: Cereals and their derived products are the most important food source for humans and feed for animals worldwide. This manuscript is a state of the art review of the literature over the last ten years on ochratoxin A and fumonisin B1 mycotoxins in these products in Europe as well as their toxicological effects, alone and in combination, on human cells. Future perspectives and some challenges regarding the assessment of toxicological effects of mycotoxins are also discussed.
Collapse
Affiliation(s)
- Beatriz Arce-López
- Univ. Brest, INRAE, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané F-29280, France
| | - Monika Coton
- Univ. Brest, INRAE, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané F-29280, France
| | - Emmanuel Coton
- Univ. Brest, INRAE, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané F-29280, France
| | - Nolwenn Hymery
- Univ. Brest, INRAE, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané F-29280, France.
| |
Collapse
|
2
|
Mishra S, Kapoor R, Sushma, Kanchan S, Jha G, Sharma D, Tomar B, Rath SK. Deoxynivalenol Induces Drp-1-Mediated Mitochondrial Dysfunction via Elevating Oxidative Stress. Chem Res Toxicol 2024; 37:1139-1154. [PMID: 38875017 DOI: 10.1021/acs.chemrestox.4c00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Mitochondrial dysfunction is often linked to neurotoxicity and neurological diseases and stems from oxidative stress, yet effective therapies are lacking. Deoxynivalenol (DON or vomitoxin) is one of the most common and hazardous type-B trichothecene mycotoxins, which contaminates crops used for food and animal feed. Despite the abundance of preliminary reports, comprehensive investigations are scarce to explore the relationship between these fungal metabolites and neurodegenerative disorders. The present study aimed to elucidate the precise role of DON in mitochondrial dynamics and cell death in neuronal cells. Excessive mitochondrial fission is associated with the pathology of several neurodegenerative diseases. Human SH-SY5Y cells were treated with different concentrations of DON (250-1000 ng/mL). Post 24 and 48 h DON treatment, the indexes were measured as follows: generation of reactive oxygen species (ROS), ATP levels, mitochondrial membrane potential, calcium levels, and cytotoxicity in SH-SY5Y cells. The results showed that cytotoxicity, intracellular calcium levels, and ROS in the DON-treated group increased, while the ATP levels and mitochondrial membrane potential decreased in a dose-dependent manner. With increasing DON concentrations, the expression levels of P-Drp-1, mitochondrial fission proteins Mff, and Fis-1 were elevated with reduced activities of MFN1, MFN2, and OPA1, further resulting in an increased expression of autophagic marker LC3 and beclin-1. The reciprocal relationship between mitochondrial damage and ROS generation is evident as ROS can instigate structural and functional deficiencies within the mitochondria. Consequently, the impaired mitochondria facilitate the release of ROS, thereby intensifying the cycle of damage and exacerbating the overall process. Using specific hydroxyl, superoxide inhibitors, and calcium chelators, our study confirmed that ROS and Ca2+-mediated signaling pathways played essential roles in DON-induced Drp1 phosphorylation. Therefore, ROS and mitochondrial fission inhibitors could provide critical research tools for drug development in mycotoxin-induced neurodegenerative diseases.
Collapse
Affiliation(s)
- Sakshi Mishra
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Radhika Kapoor
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Sushma
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Sonam Kanchan
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Gaurav Jha
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Divyansh Sharma
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Bhawna Tomar
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Srikanta Kumar Rath
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| |
Collapse
|
3
|
Kinkade CW, Aleksunes LM, Brinker A, Buckley B, Brunner J, Wang C, Miller RK, O'Connor TG, Rivera-Núñez Z, Barrett ES. Associations between mycoestrogen exposure and sex steroid hormone concentrations in maternal serum and cord blood in the UPSIDE pregnancy cohort. Int J Hyg Environ Health 2024; 260:114405. [PMID: 38878407 PMCID: PMC11441442 DOI: 10.1016/j.ijheh.2024.114405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
Zearalenone (ZEN) is a fungal-derived toxin found in global food supplies including cereal grains and processed foods, impacting populations worldwide through diet. Because the chemical structure of ZEN and metabolites closely resembles 17β-estradiol (E2), they interact with estrogen receptors α/β earning their designation as 'mycoestrogens'. In animal models, gestational exposure to mycoestrogens disrupts estrogen activity and impairs fetal growth. Here, our objective was to evaluate relationships between mycoestrogen exposure and sex steroid hormone concentrations in maternal circulation and cord blood for the first time in humans. In each trimester, pregnant participants in the UPSIDE study (n = 297) provided urine for mycoestrogen analysis and serum for hormone analysis. At birth, placental mycoestrogens and cord steroids were measured. We fitted longitudinal models examining log-transformed mycoestrogen concentrations in relation to log-transformed hormones, adjusting for covariates. Secondarily, multivariable linear models examined associations at each time point (1st, 2nd, 3rd trimesters, delivery). We additionally considered effect modification by fetal sex. ZEN and its metabolite, α-zearalenol (α-ZOL), were detected in >93% and >75% of urine samples; >80% of placentas had detectable mycoestrogens. Longitudinal models from the full cohort exhibited few significant associations. In sex-stratified analyses, in pregnancies with male fetuses, estrone (E1) and free testosterone (fT) were inversely associated with ZEN (E1 %Δ: -6.68 95%CI: -12.34, -0.65; fT %Δ: -3.22 95%CI: -5.68, -0.70); while α-ZOL was positively associated with E2 (%Δ: 5.61 95%CI: -1.54, 9.85) in pregnancies with female fetuses. In analysis with cord hormones, urinary mycoestrogens were inversely associated with androstenedione (%Δ: 9.15 95%CI: 14.64, -3.30) in both sexes, and placental mycoestrogens were positively associated with cord fT (%Δ: 37.13, 95%CI: 4.86, 79.34) amongst male offspring. Findings support the hypothesis that mycoestrogens act as endocrine disruptors in humans, as in animal models and livestock. Additional work is needed to understand impacts on maternal and child health.
Collapse
Affiliation(s)
- Carolyn W Kinkade
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA.
| | - Lauren M Aleksunes
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA; Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Anita Brinker
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Brian Buckley
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Jessica Brunner
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - Christina Wang
- Clinical and Translational Science Institute, The Lundquist Institute at Harbor - UCLA Medical Center, Torrance, CA, USA
| | - Richard K Miller
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA; Department of Environmental Medicine, Pediatrics and Pathology, University of Rochester, New York, NY, 14642, USA
| | - Thomas G O'Connor
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA; Department of Psychiatry, University of Rochester, NY, USA; Wynne Center for Family Research, University of Rochester, USA
| | - Zorimar Rivera-Núñez
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA; Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Emily S Barrett
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA; Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA; Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| |
Collapse
|
4
|
Gallardo-Ramos JA, Marín-Sáez J, Sanchis V, Gámiz-Gracia L, García-Campaña AM, Hernández-Mesa M, Cano-Sancho G. Simultaneous detection of mycotoxins and pesticides in human urine samples: A 24-h diet intervention study comparing conventional and organic diets in Spain. Food Chem Toxicol 2024; 188:114650. [PMID: 38599273 DOI: 10.1016/j.fct.2024.114650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
Pesticides and mycotoxins, prominent chemical hazards in the food chain, are commonly found in plant-based foods, contributing to their pervasive presence in the human body, as evidenced by biomonitoring programs. Despite this, there is limited knowledge about their co-occurrence patterns. While intervention studies have demonstrated that organic diets can significantly reduce pesticide levels, their impact on mycotoxin exposure has been overlooked. To address this gap, this study pursued two objectives: first, to characterize the simultaneous presence of mycotoxins and pesticides in human urine samples by means of the control of the biomarkers of exposure, and second, to investigate the influence of consuming organic foods on these co-exposure patterns. A pilot study involving 20 healthy volunteers was conducted, with participants consuming either exclusively organic or conventional foods during a 24-h diet intervention in autumn 2021 and spring 2022 to account for seasonal variability. Participants provided detailed 24-h dietary records, and their first-morning urine samples were collected, minimally treated and analysed using LC-Q-ToF-MS by means of a multitargeted method in order to detect the presence of these residues. Results indicated that among the 52 screened compounds, four mycotoxins and seven pesticides were detected in over 25% of the samples. Deoxynivalenol (DON) and the non-specific pesticide metabolite diethylphosphate (DEP) exhibited the highest frequency rates (100%) and concentration levels. Correlations were observed between urine levels of mycotoxins (DON, ochratoxin alpha [OTα], and enniatin B [ENNB]) and organophosphate pesticide metabolites DEP and 2-diethylamino-6-methyl-4-pyrimidinol (DEAMPY). The pilot intervention study suggested a reduction in ENNB and OTα levels and an increase in β-zearalenol levels in urine after a short-term replacement with organic food. However, caution is advised due to the study's small sample size and short duration, emphasizing the need for further research to enhance understanding of the human chemical exposome and refine chemical risk assessment.
Collapse
Affiliation(s)
- Jose A Gallardo-Ramos
- Department of Food Technology, Engineering and Science. Applied Mycology Group, AGROTECNIO-CERCA Center, University of Lleida, 25198, Lleida, Spain
| | - Jesús Marín-Sáez
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva S/n, E-18071, Granada, Spain; Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almeria, Agrifood Campus of International Excellence, CeiA3, E-04120, Almeria, Spain
| | - Vicente Sanchis
- Department of Food Technology, Engineering and Science. Applied Mycology Group, AGROTECNIO-CERCA Center, University of Lleida, 25198, Lleida, Spain
| | - Laura Gámiz-Gracia
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva S/n, E-18071, Granada, Spain
| | - Ana M García-Campaña
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva S/n, E-18071, Granada, Spain
| | - Maykel Hernández-Mesa
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva S/n, E-18071, Granada, Spain
| | | |
Collapse
|
5
|
Marín-Sáez J, Hernández-Mesa M, Gallardo-Ramos JA, Gámiz-Gracia L, García-Campaña AM. Assessing human exposure to pesticides and mycotoxins: optimization and validation of a method for multianalyte determination in urine samples. Anal Bioanal Chem 2024; 416:1935-1949. [PMID: 38321180 PMCID: PMC10901940 DOI: 10.1007/s00216-024-05191-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/08/2024]
Abstract
Humans are exposed to an increasing number of contaminants, with diet being one of the most important exposure routes. In this framework, human biomonitoring is considered the gold standard for evaluating human exposure to chemicals. Pesticides and mycotoxins are chemicals of special concern due to their health implications. They constitute the predominant border rejection notifications for food and feed in Europe and the USA. However, current biomonitoring studies are focused on a limited number of compounds and do not evaluate mycotoxins and pesticides together. In this study, an analytical method has been developed for the determination of 30 pesticides and 23 mycotoxins of concern in urine samples. A salting-out liquid-liquid extraction (SALLE) procedure was optimized achieving recoveries between 70 and 120% for almost all the compounds and limits as lower as when QuEChERS was applied. The compounds were then determined by liquid chromatography coupled to triple quadrupole mass spectrometry. Different chromatographic conditions and analytical columns were tested, selecting a Hypersild gold aQ column as the best option. Finally, the method was applied to the analysis of 45 urine samples, in which organophosphate and pyrethroid pesticides (detection rates (DR) of 82% and 42%, respectively) and ochratoxin A and deoxynivalenol (DR of 51% and 33%, respectively) were the most detected compounds. The proposed analytical method involves the simultaneous determination of a diverse set of pesticides and mycotoxins, including their most relevant metabolites, in human urine. It serves as an essential tool for biomonitoring the presence of highly prevalent contaminants in modern society.
Collapse
Affiliation(s)
- Jesús Marín-Sáez
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva S/N, 18071, Granada, Spain.
- Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almeria, Agrifood Campus of International Excellence, ceiA3, 04120, Almeria, Spain.
| | - Maykel Hernández-Mesa
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva S/N, 18071, Granada, Spain
| | - Jose A Gallardo-Ramos
- Department of Food Technology, Engineering and Science, Applied Mycology Group, AGROTECNIO-CERCA Center, University of Lleida, 25198, Lleida, Spain
| | - Laura Gámiz-Gracia
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva S/N, 18071, Granada, Spain
| | - Ana M García-Campaña
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva S/N, 18071, Granada, Spain.
| |
Collapse
|
6
|
Mendes MI, Cunha SC, Rebai I, Fernandes JO. Algerian Workers' Exposure to Mycotoxins-A Biomonitoring Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6566. [PMID: 37623152 PMCID: PMC10454754 DOI: 10.3390/ijerph20166566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/14/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023]
Abstract
Mycotoxins, produced by fungi as secondary metabolites, have the potential to induce both short-term and long-term toxic consequences in animals and humans. The present study aimed to determine multi-mycotoxin levels in Algerian workers using urine as the target. A method based on a QuEChERS (quick, easy, cheap, effective, rugged, and safe) extraction procedure followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was optimized and validated for the determination of eleven mycotoxins in 96 urine samples. Different sorbents were tested to be used in the dispersive solid-phase extraction (d-SPE) cleanup step of QuEChERS. The final method was fit-for-purpose and showed good analytical performance in terms of specificity, linearity, and precision. All samples contained at least two mycotoxins, and toxin-2 (T-2) was the most common, being found in 92.7% of the samples, followed by zearalenone (ZEN) in 90.6% of positive samples, and ochratoxin A (OTA) in 86.4%. T-2 levels ranged from 0.3 μg/L to 36.3 μg/L, while OTA ranged from 0.3 μg/L to 3.5 μg/L, and ZEN ranged from 7.6 μg/L to 126.8 μg/L. This was the first mycotoxin biomonitoring study carried out in the Algerian population. The findings highlight the need for accurate data for better risk assessment and for the development of better regulation to manage mycotoxin contamination in this country.
Collapse
Affiliation(s)
- Marta I. Mendes
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Sara C. Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Iméne Rebai
- Laboratory of Toxicology, Faculty of Medicine, Salah Boubnider University 3, Constantine 5000, Algeria;
| | - José O. Fernandes
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| |
Collapse
|
7
|
Lazofsky A, Brinker A, Rivera-Núñez Z, Buckley B. A comparison of four liquid chromatography-mass spectrometry platforms for the analysis of zeranols in urine. Anal Bioanal Chem 2023; 415:4885-4899. [PMID: 37432442 PMCID: PMC10386926 DOI: 10.1007/s00216-023-04791-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/11/2023] [Accepted: 05/30/2023] [Indexed: 07/12/2023]
Abstract
Targeted biomonitoring studies quantifying the concentration of zeranols in biological matrices have focused on liquid chromatography interfaced to mass spectrometry (LC-MS). The MS platform for measurement, quadrupole, time-of-flight (ToF), ion trap, etc., is often chosen based on either sensitivity or selectivity. An instrument performance comparison of the benefits and limitations using matrix-matched standards containing 6 zeranols on 4 MS instruments, 2 low-resolution (linear ion traps), and 2 high-resolution (Orbitrap and ToF) was undertaken to identify the best measurement platform for multiple biomonitoring projects characterizing the endocrine disruptive properties of zeranols. Analytical figures of merit were calculated for each analyte to compare instrument performance across platforms. The calibration curves had correlation coefficients r = 0.989 ± 0.012 for all analytes and LODs and LOQs were ranked for sensitivity: Orbitrap > LTQ > LTQXL > G1 (V mode) > G1 (W mode). The Orbitrap had the smallest measured variation (lowest %CV), while the G1 had the highest. Instrumental selectivity was calculated using full width at half maximum (FWHM) and as expected, the low-resolution instruments had the broadest spectrometric peaks, concealing coeluting peaks under the same mass window as the analyte. Multiple peaks from concomitant ions, unresolved at low resolution (within a unit mass window), were present but did not match the exact mass predicted for the analyte. For example, the high-resolution platforms were able to differentiate between a concomitant peak at 319.1915 from the analyte at 319.1551, included in low-resolution quantitative analyses demonstrating the need to consider coeluting interfering ions in biomonitoring studies. Finally, a validated method using the Orbitrap was applied to human urine samples from a pilot cohort study.
Collapse
Affiliation(s)
- Abigail Lazofsky
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, 08854, USA
| | - Anita Brinker
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, 08854, USA
| | - Zorimar Rivera-Núñez
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, 08854, USA
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Rutgers University, Piscataway, NJ, 08854, USA
| | - Brian Buckley
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, 08854, USA.
| |
Collapse
|
8
|
Drouault M, Rouge M, Hanoux V, Séguin V, Garon D, Bouraïma-Lelong H, Delalande C. Ex vivo effects of bisphenol A or zearalenone on the prepubertal rat testis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104203. [PMID: 37394082 DOI: 10.1016/j.etap.2023.104203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/02/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023]
Abstract
Bisphenol A (BPA) and zearalenone (ZEA) are two widespread xenoestrogens involved in male reproductive disorders. Few studies investigated the effects of these compounds on the prepubertal testis, which is highly sensitive to endocrine disruptors such as xenoestrogens. An ex vivo approach was performed to evaluate the effects of BPA or ZEA (10-11, 10-9, 10-6 M) on the testes of 20 and 25 dpp rats. To investigate the involvement of classical nuclear ER-mediated estrogen signaling in these effects, pre-incubation with an antagonist (ICI 182.780 10-6M) was performed. BPA and ZEA have similar effects on spermatogenesis- and steroidogenesis-related endpoints in the immature testis, but our study highlights different age-dependent patterns of sensitivity to each compound during the prepubertal period. Moreover, our results indicate that the effects of BPA are likely to be induced by nuclear ER, whereas those of ZEA appear to involve other mechanisms.
Collapse
Affiliation(s)
- M Drouault
- Normandie Univ, UNICAEN, OeReCa, 14000 Caen, France
| | - M Rouge
- Normandie Univ, UNICAEN, OeReCa, 14000 Caen, France; Normandie Univ, UNICAEN, ABTE, 14000 Caen, France
| | - V Hanoux
- Normandie Univ, UNICAEN, OeReCa, 14000 Caen, France; Normandie Univ, UNICAEN, ABTE, 14000 Caen, France
| | - V Séguin
- Normandie Univ, UNICAEN, ABTE, 14000 Caen, France
| | - D Garon
- Normandie Univ, UNICAEN, ABTE, 14000 Caen, France
| | - H Bouraïma-Lelong
- Normandie Univ, UNICAEN, OeReCa, 14000 Caen, France; Normandie Univ, UNICAEN, ABTE, 14000 Caen, France
| | - C Delalande
- Normandie Univ, UNICAEN, OeReCa, 14000 Caen, France; Normandie Univ, UNICAEN, ABTE, 14000 Caen, France.
| |
Collapse
|
9
|
Chen M, Liu W, Xiang P, Xu L, Tang Y, Kong R, Yang S, Yan H, Di B. Development of an LC-MS/MS method for the determination of multiple mycotoxins in human urine. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023:1-11. [PMID: 37315076 DOI: 10.1080/19440049.2023.2222842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023]
Abstract
A sensitive liquid chromatography-tandem mass spectrometry method was developed for the determination of 17 mycotoxins in human urine. The method incorporates a two-step liquid-liquid extraction with ethyl acetate:acetonitrile (7:1), which had good extraction recovery. The LOQs of all mycotoxins ranged from 0.1 to 1 ng/mL. Intra-day accuracy ranged from 94 to 106%, and intra-day precision ranged from 1 to 12% for all mycotoxins. Inter-day accuracy and precision were 95-105% and 2-8%, respectively. The method was successfully applied to investigate the urine levels of 17 mycotoxins from 42 volunteers. Deoxynivalenol (DON, 0.97-9.88 ng/mL) was detected in 10 (24%) urine samples and zearalenone (ZEN, 0.13-1.11 ng/mL) in 2 (5%) urine samples.
Collapse
Affiliation(s)
- Mobing Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
- Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai, P. R. China
| | - Wei Liu
- Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai, P. R. China
| | - Ping Xiang
- Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai, P. R. China
| | - Linhao Xu
- School of Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
- Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai, P. R. China
| | - Yiling Tang
- School of Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
- Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai, P. R. China
| | - Ran Kong
- Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai, P. R. China
| | - Shuo Yang
- School of Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
- Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai, P. R. China
| | - Hui Yan
- Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai, P. R. China
| | - Bin Di
- School of Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| |
Collapse
|
10
|
Phytoestrogens and Health Effects. Nutrients 2023; 15:nu15020317. [PMID: 36678189 PMCID: PMC9864699 DOI: 10.3390/nu15020317] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/10/2023] Open
Abstract
Phytoestrogens are literally estrogenic substances of plant origin. Although these substances are useful for plants in many aspects, their estrogenic properties are essentially relevant to their predators. As such, phytoestrogens can be considered to be substances potentially dedicated to plant-predator interaction. Therefore, it is not surprising to note that the word phytoestrogen comes from the early discovery of estrogenic effects in grazing animals and humans. Here, several compounds whose activities have been discovered at nutritional concentrations in animals and humans are examined. The substances analyzed belong to several chemical families, i.e., the flavanones, the coumestans, the resorcylic acid lactones, the isoflavones, and the enterolignans. Following their definition and the evocation of their role in plants, their metabolic transformations and bioavailabilities are discussed. A point is then made regarding their health effects, which can either be beneficial or adverse depending on the subject studied, the sex, the age, and the physiological status. Toxicological information is given based on official data. The effects are first presented in humans. Animal models are evoked when no data are available in humans. The effects are presented with a constant reference to doses and plausible exposure.
Collapse
|
11
|
Alvarez-Ortega N, Caballero-Gallardo K, Juan C, Juan-Garcia A, Olivero-Verbel J. Cytoprotective, Antiproliferative, and Anti-Oxidant Potential of the Hydroethanolic Extract of Fridericia chica Leaves on Human Cancer Cell Lines Exposed to α- and β-Zearalenol. Toxins (Basel) 2023; 15:36. [PMID: 36668856 PMCID: PMC9864583 DOI: 10.3390/toxins15010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/16/2022] [Accepted: 11/25/2022] [Indexed: 01/22/2023] Open
Abstract
Fridericia chica (Bignoniaceae) is a Colombian Caribbean plant with numerous health benefits, including properties such as wound healing, immune system stimulation, and antioxidant capacity, among others. Mycotoxins alpha-zearalenol (α-ZEL) and beta-zearalenol (β-ZEL) are phase I metabolites of zearalenone, a natural product involved in endocrine disruption and cell proliferation processes. This study aimed to investigate the cytotoxic potential of the hydroethanolic extract of F. chica leaves (HEFc) and determine their protective effects against proliferation induced by α-ZEL and β-ZEL on human hepatoma HepG2, lung cancer Calu-1, and primary normal human epidermal keratinocytes, neonatal (HEKn). The cytotoxicity of HEFc was measured in a range from 4 to 1000 µg/mL and from 0.4 to 100 μM for both α-ZEL and β-ZEL. Cell production of intracellular ROS was monitored using the H2-DCFDA probe. The cells exposed to HEFc presented IC50 of 128, 249, and 602 µg/mL for the HepG2, Calu-1, and HEKn cells, respectively. A greater selectivity was seen in HepG2 cells [selectivity index (SI) = 3.5] than in Calu-1 cells (SI = 2.4). Cells treated with mycotoxins remained viable during the first day, and cell proliferation increased at low tested concentrations (0.4-6.3 µM) in all three cell lines. However, after 48 h treatment, cells exposed to 50 and 100 µM of α-ZEL and β-ZEL displayed decreased viability. HEFc at 16 µg/mL was able to give some protection against cytotoxicity induced by high concentrations of β-ZEL in HepG2, reducing also cell proliferation elicited at low levels of α-ZEL and β-ZEL. ROS production was not observed in cells treated with this HEFc concentration; however, it prevented ROS formation induced by treatment with 50 µM α-ZEL or β-ZEL. In summary, HEFc isolated from plants grown in northern Colombia displayed promising results against cell proliferation and oxidative stress caused by mycotoxins.
Collapse
Affiliation(s)
- Neda Alvarez-Ortega
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia
- Functional Toxicology Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia
| | - Karina Caballero-Gallardo
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia
- Functional Toxicology Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia
| | - Cristina Juan
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia (Spain)—Avda, Vicent Andrés Estellés, s/n. Burjassot, 46100 València, Spain
| | - Ana Juan-Garcia
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia (Spain)—Avda, Vicent Andrés Estellés, s/n. Burjassot, 46100 València, Spain
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia
| |
Collapse
|
12
|
Alvito P, Assunção RM, Bajard L, Martins C, Mengelers MJB, Mol H, Namorado S, van den Brand AD, Vasco E, Viegas S, Silva MJ. Current Advances, Research Needs and Gaps in Mycotoxins Biomonitoring under the HBM4EU-Lessons Learned and Future Trends. Toxins (Basel) 2022; 14:826. [PMID: 36548723 PMCID: PMC9783896 DOI: 10.3390/toxins14120826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
Mycotoxins are natural metabolites produced by fungi that contaminate food and feed worldwide. They can pose a threat to human and animal health, mainly causing chronic effects, e.g., immunotoxic and carcinogenic. Due to climate change, an increase in European population exposure to mycotoxins is expected to occur, raising public health concerns. This urges us to assess the current human exposure to mycotoxins in Europe to allow monitoring exposure and prevent future health impacts. The mycotoxins deoxynivalenol (DON) and fumonisin B1 (FB1) were considered as priority substances to be studied within the European Human Biomonitoring Initiative (HBM4EU) to generate knowledge on internal exposure and their potential health impacts. Several policy questions were addressed concerning hazard characterization, exposure and risk assessment. The present article presents the current advances attained under the HBM4EU, research needs and gaps. Overall, the knowledge on the European population risk from exposure to DON was improved by using new harmonised data and a newly derived reference value. In addition, mechanistic information on FB1 was, for the first time, organized into an adverse outcome pathway for a congenital anomaly. It is expected that this knowledge will support policy making and contribute to driving new Human Biomonitoring (HBM) studies on mycotoxin exposure in Europe.
Collapse
Affiliation(s)
- Paula Alvito
- National Institute of Health Dr. Ricardo Jorge (INSA), 1649-016 Lisboa, Portugal
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ricardo Manuel Assunção
- National Institute of Health Dr. Ricardo Jorge (INSA), 1649-016 Lisboa, Portugal
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- IUEM, Instituto Universitário Egas Moniz, Egas Moniz-Cooperativa de Ensino Superior, CRL, Campus Universitário—Quinta da Granja, Monte da Caparica, 2829-511 Caparica, Portugal
| | - Lola Bajard
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Carla Martins
- National Institute of Health Dr. Ricardo Jorge (INSA), 1649-016 Lisboa, Portugal
- NOVA National School of Public Health, NOVA University of Lisbon, 1600-560 Lisbon, Portugal
- Comprehensive Health Research Center, CHRC, 1600-560 Lisbon, Portugal
| | - Marcel J. B. Mengelers
- National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands
| | - Hans Mol
- Wageningen Food Safety Research (WFSR), Part of Wageningen University & Research, 6708 WB Wageningen, The Netherlands
| | - Sónia Namorado
- National Institute of Health Dr. Ricardo Jorge (INSA), 1649-016 Lisboa, Portugal
- Comprehensive Health Research Center, CHRC, 1600-560 Lisbon, Portugal
| | - Annick D. van den Brand
- National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands
| | - Elsa Vasco
- National Institute of Health Dr. Ricardo Jorge (INSA), 1649-016 Lisboa, Portugal
| | - Susana Viegas
- NOVA National School of Public Health, NOVA University of Lisbon, 1600-560 Lisbon, Portugal
- Comprehensive Health Research Center, CHRC, 1600-560 Lisbon, Portugal
| | - Maria João Silva
- National Institute of Health Dr. Ricardo Jorge (INSA), 1649-016 Lisboa, Portugal
- ToxOmics—NOVA Medical School, NOVA University of Lisbon, 1150-082 Lisboa, Portugal
| |
Collapse
|
13
|
Llorens Castelló P, Sacco MA, Aquila I, Moltó Cortés JC, Juan García C. Evaluation of Zearalenones and Their Metabolites in Chicken, Pig and Lamb Liver Samples. Toxins (Basel) 2022; 14:toxins14110782. [PMID: 36422956 PMCID: PMC9692590 DOI: 10.3390/toxins14110782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 11/12/2022] Open
Abstract
Zearalenone (ZON), zearalanone (ZAN) and their phase I metabolites: α-zearalenol (α-ZOL), β-zearalenol (β-ZOL), α-zearalalanol (α-ZAL) and β-zearalalanol (β-ZAL) are compounds with estrogenic activity that are metabolized and distributed by the circulatory system in animals and can access the food chain through meat products from livestock. Furthermore, biomonitoring of zearalenones in biological matrices can provide useful information to directly assess mycotoxin exposure; therefore, their metabolites may be suitable biomarkers. The aim of this study was to determine the presence of ZON, ZAN and their metabolites in alternative biological matrices, such as liver, from three different animals: chicken, pig and lamb, in order to evaluate their exposure. A solid-liquid extraction procedure coupled to a GC-MS/MS analysis was performed. The results showed that 69% of the samples were contaminated with at least one mycotoxin or metabolite at varying levels. The highest value (max. 152.62 ng/g of β-ZOL) observed, and the most contaminated livers (42%), were the chicken liver samples. However, pig liver samples presented a high incidence of ZAN (33%) and lamb liver samples presented a high incidence of α-ZOL (40%). The values indicate that there is exposure to these mycotoxins and, although the values are low (ranged to 0.11-152.6 ng/g for α-ZOL and β-ZOL, respectively), analysis and continuous monitoring are necessary to avoid exceeding the regulatory limits and to control the presence of these mycotoxins in order to protect animal and human health.
Collapse
Affiliation(s)
- Paula Llorens Castelló
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | - Matteo Antonio Sacco
- Institute of Legal Medicine, Department of Medical and Surgical Sciences, “Magna Graecia”, Università degli Studi “Magna Graecia” di Catanzaro, 88100 Catanzaro, Italy
| | - Isabella Aquila
- Institute of Legal Medicine, Department of Medical and Surgical Sciences, “Magna Graecia”, Università degli Studi “Magna Graecia” di Catanzaro, 88100 Catanzaro, Italy
| | - Juan Carlos Moltó Cortés
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | - Cristina Juan García
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
- Correspondence:
| |
Collapse
|
14
|
Dasí-Navarro N, Lozano M, Llop S, Esplugues A, Cimbalo A, Font G, Manyes L, Mañes J, Vila-Donat P. Development and Validation of LC-Q-TOF-MS Methodology to Determine Mycotoxin Biomarkers in Human Urine. Toxins (Basel) 2022; 14:651. [PMID: 36287920 PMCID: PMC9612178 DOI: 10.3390/toxins14100651] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Mycotoxin contamination of foodstuffs is a health concern worldwide and monitoring human exposure to mycotoxins is a key concern. Most mycotoxins and their metabolites are excreted in urine, but a reliable detection method is required, considering the low levels present in this biological sample. The aim of this work is to validate a sensitive methodology capable of simultaneously determining ten targeted mycotoxins as well as detecting untargeted ones by using Liquid Chromatography coupled to Quadrupole Time of Flight Mass Spectrometry (LC-Q-TOF-MS). The targeted mycotoxins were: enniatin A, B, A1, and B1, beauvericine, aflatoxin B1, B2, G1 and G2, and ochratoxin A. Several extraction procedures such as liquid-liquid extraction, dilute and shoot, and QuEChERS were assessed. Finally, a modified simple QuEChERS extraction method was selected. Creatinine adjustment and matrix-matched calibration curves are required. The limit of detection and limit of quantification values ranged from 0.1 to 1.5 and from 0.3 to 5 ng/mL, respectively. Recoveries achieved were higher than 65% for all mycotoxins. Later, the method was applied to 100 samples of women's urine to confirm the applicability and determine their internal exposure. The untargeted mycotoxins most found were trichothecenes, zearalenones, and ochratoxins.
Collapse
Affiliation(s)
- Nuria Dasí-Navarro
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | - Manuel Lozano
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
- Epidemiology and Environmental Health Joint Research Unit, FISABIO—Universitat Jaume I—Universitat de València, 46020 València, Spain
| | - Sabrina Llop
- Epidemiology and Environmental Health Joint Research Unit, FISABIO—Universitat Jaume I—Universitat de València, 46020 València, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Ana Esplugues
- Epidemiology and Environmental Health Joint Research Unit, FISABIO—Universitat Jaume I—Universitat de València, 46020 València, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Alessandra Cimbalo
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | - Guillermina Font
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | - Lara Manyes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | - Jordi Mañes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | - Pilar Vila-Donat
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| |
Collapse
|
15
|
Narváez A, Rodríguez-Carrasco Y, Ritieni A, Mañes J. Human biomonitoring of multiple mycotoxins in hair: first large-scale pilot study. WORLD MYCOTOXIN J 2022. [DOI: 10.3920/wmj2021.2744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human biomonitoring (HBM) represents the most accurate approach for assessing the exposure to mycotoxins, but traditional matrices fail to provide information about long-term exposure due to the rapid excretion rates and short half-lives of mycotoxins. Hair emerges as a promising matrix considering that contaminants can form stable links with hair components, such as keratins and melanin. Hence, the aim of the present study was to monitor the presence of up to ten mycotoxins (aflatoxins and Fusarium mycotoxins) in human hair samples (n=100) through a high-performance liquid chromatography coupled to Q-TOF high resolution mass spectrometry. A prevalence of 43% at concentrations ranging from 2.7 to 106.1 ng/g was observed, being enniatins and aflatoxin B1 the most prevalent compounds. Co-occurrence of up to three mycotoxins was observed in 42% of the positive samples. Retrospective untargeted analysis of hair samples tentatively identified up to 128 mycotoxins and related metabolites. These results confirm the accumulation of toxicologically relevant mycotoxins in hair matrix, thus standing as a suitable matrix for assessing long-term exposure.
Collapse
Affiliation(s)
- A. Narváez
- Department of Pharmacy, Faculty of Pharmacy, University of Naples ‘Federico II’, via Domenico Montesano 49, Naples 80131, Italy
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, av. Vicent Andrés Estellés s/n, Burjassot 46100, Spain
| | - Y. Rodríguez-Carrasco
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, av. Vicent Andrés Estellés s/n, Burjassot 46100, Spain
| | - A. Ritieni
- Department of Pharmacy, Faculty of Pharmacy, University of Naples ‘Federico II’, via Domenico Montesano 49, Naples 80131, Italy
- UNESCO Chair on Health Education and Sustainable Development at University of Naples ‘Federico II’, via Domenico Montesano 49, Naples 80131, Italy
| | - J. Mañes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, av. Vicent Andrés Estellés s/n, Burjassot 46100, Spain
| |
Collapse
|
16
|
Human Biomonitoring of T-2 Toxin, T-2 Toxin-3-Glucoside and Their Metabolites in Urine through High-Resolution Mass Spectrometry. Toxins (Basel) 2021; 13:toxins13120869. [PMID: 34941707 PMCID: PMC8703800 DOI: 10.3390/toxins13120869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 01/24/2023] Open
Abstract
The metabolic profile of T-2 toxin (T-2) and its modified form T-2-3-glucoside (T-2-3-Glc) remain unexplored in human samples. Therefore, the present study aimed to investigate the presence of T-2, T-2-3-Glc and their respective major metabolites in human urine samples (n = 300) collected in South Italy through an ultra-high performance liquid chromatography (UHPLC) coupled to Q-Orbitrap-HRMS methodology. T-2 was quantified in 21% of samples at a mean concentration of 1.34 ng/mg Crea (range: 0.22–6.54 ng/mg Crea). Almost all the major T-2 metabolites previously characterized in vitro were tentatively found, remarking the occurrence of 3′-OH-T-2 (99.7%), T-2 triol (56%) and HT-2 (30%). Regarding T-2-3-Glc, a low prevalence of the parent mycotoxin (1%) and its metabolites were observed, with HT-2-3-Glc (17%) being the most prevalent compound, although hydroxylated products were also detected. Attending to the large number of testing positive for T-2 or its metabolites, this study found a frequent exposure in Italian population.
Collapse
|