1
|
Wang N, Hu W, Jiang H, Jiang D, Wang L. A portable micro-nanochannel bio-3D printed liver microtissue biosensor for DON detection. Biosens Bioelectron 2025; 267:116810. [PMID: 39357492 DOI: 10.1016/j.bios.2024.116810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/11/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024]
Abstract
We investigated a portable micro-nanochannel biosensor 3D-printed liver microtissues for rapid and sensitive deoxynivalenol (DON) detection. The screen-printed carbon electrode (SPCE) was modified with nanoporous anodic aluminum oxide (AAO), gold nanoparticles (AuNPs), and cytochrome C oxidase (COx) to enhance sensor performance. Gelatin methacrylate hydrogel, combined with hepatocellular carcinoma cells, formed the bioink for 3D printing. Liver microtissues were prepared through standardized and high-throughput techniques via bio-3D printing technology. These microtissues were immobilized onto modified electrodes to fabricate liver microtissue sensors. The peak current of this biosensor was positively correlated with DON concentration, as determined by cyclic voltammetry (CV), within a linear detection range of 2∼40 μg/mL. The standard curve equation is denoted by ICV(μA) = = 18.76956 + 0.03107CDON(μg/mL), with a correlation coefficient R2 was 0.99471(n=3). A minimum detection limit of 1.229 μg/mL was calculated from the formula, indicating the successful construction of a portable micro-nanochannel bio-3D printed liver microtissue biosensor. It provides innovative ideas for developing rapid and convenient instrumentation to detect mycotoxin hazards after grain production. It also holds significant potential for application in the prediction and assessment of post-production quality changes in grain.
Collapse
Affiliation(s)
- Nanwei Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu, 210023, China
| | - Wei Hu
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu, 210023, China; Harbin University of Commerce, Harbin, 150028, China
| | - Hui Jiang
- Nanjing Institute for Food and Drug Control, Nanjing, Jiangsu, 211198, China
| | - Donglei Jiang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu, 210023, China.
| | - Lifeng Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
2
|
Wang R, Li M, Jin R, Liu Y, Guan E, Mohamed SR, Bian K. Analysis of wheat fungal community succession in traditional storage structures using Illumina MiSeq sequencing technology. Int J Food Microbiol 2024; 425:110876. [PMID: 39173288 DOI: 10.1016/j.ijfoodmicro.2024.110876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/23/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
The diversity of fungi in wheat with different deoxynivalenol (DON) content at various periods post-harvest and in the environment of storage were investigated. The changes in DON content were measured with ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), and an amplicon sequence analysis of fungi was performed in traditional storage structures using high-throughput sequencing. The changes in temperature, humidity, and CO2 concentration were collected by sensors. In addition, we analyzed principal component analysis, species composition, species differences, and community differences of fungi. There was an obvious separation of the fungal communities under different storage conditions and times. Many fungal genera were gradually decreasing during storage and were eventually undetectable, and many fungal genera that were undetectable at first gradually increased during storage and even became dominant fungal genera. The competition between fungi was fierce. The competition between fungi were affected by the presence of DON. As the initial DON content increased, the contribution of inter-group differences became more obvious. The temperature, humidity, and CO2 concentration of wheat in the silo's environment changed with extended storage time. The content of DON decreased with extended storage time. We had investigated the changes in DON content and their correlation with the changes in fungal communities and environmental factors, which showed a high degree of correlation. This study offers theoretical justification for optimizing safe wheat grain in traditional storage conditions.
Collapse
Affiliation(s)
- Ruihu Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Mengmeng Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Rui Jin
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yuanxiao Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Erqi Guan
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Sherif Ramzy Mohamed
- Department of Food Toxicology and Contaminant, National Research Centre, Cairo 12411, Egypt
| | - Ke Bian
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
3
|
Fiorbelli E, Lapris M, Errico M, Della Badia A, Riahi I, Rocchetti G, Gallo A. Mycotoxin Challenge in Dairy Cows: Assessment of the Efficacy of an Anti-Mycotoxin Agent by Adopting an In Vitro Rumen Simulation Method. Toxins (Basel) 2024; 16:490. [PMID: 39591245 PMCID: PMC11598721 DOI: 10.3390/toxins16110490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
To protect ruminants from the harmful effects of mycotoxins, anti-mycotoxin agents can be added to the dietary ration, thus guaranteeing animal health and production. Therefore, the objective of this study was to evaluate the in vitro ruminal initial sequestration (weak binding) and subsequent desorption (strong binding) of an anti-mycotoxin agent based on a mixture of adsorbing material, turmeric and milk thistle extracts and yeast-based components to adsorb or bio-convert aflatoxins (AF), fumonisins B1 and B2 (FB), trichothecene deoxynivalenol (DON), T-2 and HT-2 toxins, and zearalenone (ZEN). Two doses were tested: Dose 1 simulated 30 mg/cow/d, while Dose 2 simulated 90 mg/cow/d of the anti-mycotoxin agent. Each treatment involved three analytical replicates at each of three incubation times (1, 4, and 24 h post-incubation), with two independent experimental runs providing experimental replicates. Analytical methods, including UHPLC-HRMS and multivariate analyses, were used to both quantify mycotoxin concentrations and reveal dose-dependent reductions, with statistical validations indicating significant changes in mycotoxin levels across both dose and time. The results indicated that the anti-mycotoxin agent was able to highly bind AFB1, T2, and HT-2 toxins since its concentration was always under the limit of detection (<1 ppb). Regarding ZEN (weak binding mean: 94.6%; strong binding mean: 62.4%) and FBs (weak binding mean: 58.7%; strong binding mean: 32.3%), orthogonal contrasts indicated that the anti-mycotoxin agent was able to effectively bind these toxins using Dose 1 (p < 0.05). This finding suggests that Dose 1 may be sufficient to achieve the targeted effect and that a further increase does not significantly improve the outcome. Regarding DON, a strong linear relationship was observed between dose and adsorption. However, the complex interactions between the mycotoxin, the ruminal environment, and the anti-mycotoxin agent made it difficult to establish a clear dose-effect relationship (p > 0.10). UHPLC-HRMS analysis identified over 1500 mass features in rumen samples, which were further analyzed to assess the effects of the anti-mycotoxin agent. Hierarchical clustering analysis (HCA) revealed significant changes in the untargeted metabolomic profiles of samples treated with mycotoxins compared to control samples, particularly after 24 h with the anti-mycotoxin treatments. Clear differences were noted between strong binding and weak binding samples. Further analysis using orthogonal partial least squares discriminant analysis (OPLS-DA) highlighted distinct metabolomic profiles, with stronger predictive ability in the strong binding group (Q2 cumulative value of 0.57) compared to the weak binding group (0.30). The analysis identified 44 discriminant compounds in the strong binding model and 16 in the weak binding model. Seven compounds were common to both groups, while silibinin, known for its antioxidant and anti-inflammatory properties, was found among the unique compounds in the weak binding group. Overall, the findings suggest that both doses of the anti-mycotoxin agent significantly influenced the chemical profiles in the rumen, particularly enhancing the binding of mycotoxins, thereby supporting the role of phytogenic extracts in mitigating mycotoxin effects.
Collapse
Affiliation(s)
- Erica Fiorbelli
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (E.F.); (M.L.); (M.E.); (G.R.)
| | - Marco Lapris
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (E.F.); (M.L.); (M.E.); (G.R.)
| | - Michela Errico
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (E.F.); (M.L.); (M.E.); (G.R.)
| | | | - Insaf Riahi
- Technical Department, BIŌNTE Nutrition S.L., 43204 Reus, Spain; (A.D.B.); (I.R.)
| | - Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (E.F.); (M.L.); (M.E.); (G.R.)
| | - Antonio Gallo
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (E.F.); (M.L.); (M.E.); (G.R.)
| |
Collapse
|
4
|
Ntungwe EN, Tchana AN, Abia WA. Mycotoxin management: exploring natural solutions for mycotoxin prevention and detoxification in food and feed. Mycotoxin Res 2024; 40:519-534. [PMID: 39271576 DOI: 10.1007/s12550-024-00562-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
Mycotoxins, secondary metabolites produced by various fungi, pose a significant threat to food and feed safety worldwide due to their toxic effects on human and animal health. Traditional methods of mycotoxin management often involve chemical treatments, which may raise concerns about residual toxicity and environmental impact. In recent years, there has been growing interest in exploring natural alternatives for preventing mycotoxin contamination and detoxification. This review provides an overview of the current research on the use of natural products for mitigating mycotoxin risks in food and feed. It encompasses a wide range of natural sources, including plant-derived compounds, microbial agents, and enzymatic control. The mechanisms underlying the efficacy of these natural products in inhibiting mycotoxin synthesis, adsorbing mycotoxins, or enhancing detoxification processes are discussed. Challenges and future directions in the development and application of natural products for mycotoxin management are also addressed. Overall, this review highlights the promising role of natural products as sustainable and eco-friendly alternatives for combating mycotoxin contamination in the food and feed supply chain.
Collapse
Affiliation(s)
- Epole Ngolle Ntungwe
- Department of Chemistry, University of Coimbra, P-3004-535, Coimbra, Portugal.
- Agri-Food Safety and One Health Agency (AFS1HA), Yaounde, Cameroon.
| | - Angéle N Tchana
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaounde 1, P.O. Box 812, Yaounde, Cameroon
| | - Wilfred Angie Abia
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaounde 1, P.O. Box 812, Yaounde, Cameroon.
- Agri-Food Safety and One Health Agency (AFS1HA), Yaounde, Cameroon.
- Institute for Global Food Security, School of Biological Sciences, The Queen's University of Belfast, Belfast, Northern Ireland, BT9 5DL, UK.
| |
Collapse
|
5
|
Hua L, Ye P, Li X, Xu H, Lin F. Anti-Aflatoxigenic Burkholderia contaminans BC11-1 Exhibits Mycotoxin Detoxification, Phosphate Solubilization, and Cytokinin Production. Microorganisms 2024; 12:1754. [PMID: 39338429 PMCID: PMC11434526 DOI: 10.3390/microorganisms12091754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/30/2024] Open
Abstract
The productivity and quality of agricultural crops worldwide are adversely affected by disease outbreaks and inadequate nutrient availability. Of particular concern is the potential increase in mycotoxin prevalence due to crop diseases, which poses a threat to food security. Microorganisms with multiple functions have been favored in sustainable agriculture to address such challenges. Aspergillus flavus is a prevalent aflatoxin B1 (AFB1)-producing fungus in China. Therefore, we wanted to obtain an anti-aflatoxigenic bacterium with potent mycotoxin detoxification ability and other beneficial properties. In the present study, we have isolated an anti-aflatoxigenic strain, BC11-1, of Burkholderia contaminans, from a forest rhizosphere soil sample obtained in Luzhou, Sichuan Province, China. We found that it possesses several beneficial properties, as follows: (1) a broad spectrum of antifungal activity but compatibility with Trichoderma species, which are themselves used as biocontrol agents, making it possible to use in a biocontrol mixture or individually with other biocontrol agents in an integrated management approach; (2) an exhibited mycotoxin detoxification capacity with a degradation ratio of 90% for aflatoxin B1 and 78% for zearalenone, suggesting its potential for remedial application; and (3) a high ability to solubilize phosphorus and produce cytokinin production, highlighting its potential as a biofertilizer. Overall, the diverse properties of BC11-1 render it a beneficial bacterium with excellent potential for use in plant disease protection and mycotoxin prevention and as a biofertilizer. Lastly, a pan-genomic analysis suggests that BC11-1 may possess other undiscovered biological properties, prompting further exploration of the properties of this unique strain of B. contaminans. These findings highlight the potential of using the anti-aflatoxigenic strain BC11-1 to enhance disease protection and improve soil fertility, thus contributing to food security. Given its multiple beneficial properties, BC11-1 represents a valuable microbial resource as a biocontrol agent and biofertilizer.
Collapse
Affiliation(s)
- Lixia Hua
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610300, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest of Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
| | - Pengsheng Ye
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610300, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest of Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
| | - Xue Li
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610300, China
| | - Hanhong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Fei Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
6
|
López-Rodríguez C, Verheecke-Vaessen C, Strub C, Fontana A, Schorr-Galindo S, Medina A. Reduction in Ochratoxin A Occurrence in Coffee: From Good Practices to Biocontrol Agents. J Fungi (Basel) 2024; 10:590. [PMID: 39194915 DOI: 10.3390/jof10080590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin mainly produced by Aspergillus section Circumdati and section Nigri across the coffee chain. OTA is nephrotoxic and is a threat to human health. This review summarizes current knowledge on how to reduce OTA concentration in coffee from farm to cup. After a brief introduction to the OTA occurrence in coffee, current good management practices are introduced. The core of this review focuses on biocontrol and microbial decontamination by lactic acid bacteria, yeasts and fungi, and their associated enzymes currently reported in the literature. Special attention is given to publications closest to in vivo applications of biocontrol agents and microbial OTA adsorption or degradation agents. Finally, this review provides an opinion on which future techniques to promote within the coffee supply chain.
Collapse
Affiliation(s)
- Claudia López-Rodríguez
- Magan Centre of Applied Mycology, Cranfield University, Cranfield MK43 0AL, UK
- Qualisud, University of Montpellier, CIRAD, Institut Agro, IRD, Avignon University, University of La Réunion, 34095 Montpellier, France
| | | | - Caroline Strub
- Qualisud, University of Montpellier, CIRAD, Institut Agro, IRD, Avignon University, University of La Réunion, 34095 Montpellier, France
| | - Angélique Fontana
- Qualisud, University of Montpellier, CIRAD, Institut Agro, IRD, Avignon University, University of La Réunion, 34095 Montpellier, France
| | - Sabine Schorr-Galindo
- Qualisud, University of Montpellier, CIRAD, Institut Agro, IRD, Avignon University, University of La Réunion, 34095 Montpellier, France
| | - Angel Medina
- Magan Centre of Applied Mycology, Cranfield University, Cranfield MK43 0AL, UK
| |
Collapse
|
7
|
Sidari R, Tofalo R. Dual Role of Yeasts and Filamentous Fungi in Fermented Sausages. Foods 2024; 13:2547. [PMID: 39200474 PMCID: PMC11354145 DOI: 10.3390/foods13162547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
This contribution aims to review the presence and the potential double role-positive or beneficial and negative or harmful-of fungi in fermented sausages as well as their use as starter cultures. Traditionally, studies have been focused on lactic acid bacteria; however, over the years, interest in the study of fungi has increased. The important contribution of yeasts and filamentous fungi to the quality and safety of fermented sausages has emerged from reviewing the literature regarding these fermented products. In conclusion, this review contributes to the existing literature by considering the double role of filamentous fungi and yeasts, the global fermented sausage market size, the role and use of starters, and the starters mainly present in the worldwide market, as well as the main factors to take into account to optimize production. Finally, some suggestions for future broadening of the sector are discussed.
Collapse
Affiliation(s)
- Rossana Sidari
- Department of Agraria, Mediterranea University of Reggio Calabria, 89122 Reggio Calabria, Italy
| | - Rosanna Tofalo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| |
Collapse
|
8
|
Rahim Abro M, Rashid N, Khanoranga, Siddique Z. In-vivo evaluation of the adverse effects of ochratoxin A on broiler chicken health and adsorption efficacy of indigenous and commercial clay of Balochistan, Pakistan. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:833-845. [PMID: 38771562 DOI: 10.1080/19440049.2024.2354491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Mycotoxins in animal feed pose health risks and economic losses, but using various adsorbent types could potentially protect animals from mycotoxicosis. The study aimed to assess the effect of OTA on the health of broiler chickens and to envisage the ameliorative potential of clay adsorbents. The objectives of this in vivo study were to investigate the effects of OTA on productivity, biochemical parameters, fecal residues, and the preventive effects of indigenous and commercial clay of Balochistan as adsorbents to alleviate the adverse effects of exposure. Male broiler chickens (n = 160) were treated with 400 μg/kg OTA and 0.5 g/kg clay adsorbent for 42 days, with feed and water available in an ad libitum manner. The amount of OTA in diet and fecal residues was assessed through HPLC. The administration of OTA in the diet, resulted in a significant (p < 0.05) decrease in the average daily gain (ADG) and average daily feed intake (ADFI) while increasing the feed conversion ratio (FCR) as compared to the control group. Furthermore, no significant (p > 0.05) differences were found between the weight gain of broiler chickens fed without OTA (positive control) and that of chickens fed adsorbent. The group given a diet containing OTA without adsorbents as compared to the control and adsorbent-supplemented group has shown a significant (p < 0.05) increase in the relative weight of the liver, kidney, gizzard, and proventriculus while decreasing the relative weight of the spleen and bursa of Fabricius. Alterations in the levels of serum total protein (TP), cholesterol (CHL), serum urea (SU), enzymatic activity (aspartate aminotransferase (AST) and alanine transaminase (ALT)), and creatinine were observed in the OTA-intoxicated and adsorbent-supplemented groups as compared to the control group. Adsorbent supplementation resulted in a significantly (p < 0.05) higher OTA content in the faeces. It can be concluded from the results of this study, that OTA intoxication negatively affects the health of broiler chickens, and the clay of Balochistan has shown effective adsorption potential against OTA.
Collapse
Affiliation(s)
- Mustafa Rahim Abro
- Department of Nutrition and Toxicology, Center for Advanced Studies Vaccinology and Biotechnology, University of Balochistan, Quetta, Pakistan
| | - Nadeem Rashid
- Department of Nutrition and Toxicology, Center for Advanced Studies Vaccinology and Biotechnology, University of Balochistan, Quetta, Pakistan
| | - Khanoranga
- Department of Environmental Science, Sardar Bhadur khan women's University Quetta, Balochistan, Pakistan
| | - Zainab Siddique
- Department of Zoology, Sardar Bhadur khan women's University Quetta, Balochistan, Pakistan
| |
Collapse
|
9
|
Chin XH, Elhalis H, Chow Y, Liu SQ. Enhancing food safety in soybean fermentation through strategic implementation of starter cultures. Heliyon 2024; 10:e25007. [PMID: 38312583 PMCID: PMC10835011 DOI: 10.1016/j.heliyon.2024.e25007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 02/06/2024] Open
Abstract
Fermented soybean products have played a significant role in Asian diets for a long time. Due to their diverse flavours, nutritional benefits, and potential health-promoting properties, they have gained a huge popularity globally in recent years. Traditionally, soybean fermentation is conducted spontaneously, using microorganisms naturally present in the environment, or inoculating with traditional starter cultures. However, many potential health risks are associated with consumption of these traditionally fermented soybean products due to the presence of food pathogens, high levels of biogenic amines and mycotoxins. The use of starter culture technology in fermentation has been well-studied in recent years and confers significant advantages over traditional fermentation methods due to strict control of the microorganisms inoculated. This review provides a comprehensive review of microbial safety and health risks associated with consumption of traditional fermented soybean products, and how adopting starter culture technology can help mitigate these risks to ensure the safety of these products.
Collapse
Affiliation(s)
- Xin Hui Chin
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore, 138669, Singapore
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, 2 Science Drive 2, 117543, Singapore
| | - Hosam Elhalis
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore, 138669, Singapore
- Research School of Biology, The Australian National University, Canberra, ACT, 2600, Australia
| | - Yvonne Chow
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore, 138669, Singapore
| | - Shao Quan Liu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, 2 Science Drive 2, 117543, Singapore
| |
Collapse
|
10
|
Fang J, Sheng L, Ye Y, Ji J, Sun J, Zhang Y, Sun X. Recent advances in biosynthesis of mycotoxin-degrading enzymes and their applications in food and feed. Crit Rev Food Sci Nutr 2023:1-17. [PMID: 38108665 DOI: 10.1080/10408398.2023.2294166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Mycotoxins are secondary metabolites produced by fungi in food and feed, which can cause serious health problems. Bioenzymatic degradation is gaining increasing popularity due to its high specificity, gentle degradation conditions, and environmental friendliness. We reviewed recently reported biosynthetic mycotoxin-degrading enzymes, traditional and novel expression systems, enzyme optimization strategies, food and feed applications, safety evaluation of both degrading enzymes and degradation products, and commercialization potentials. Special emphasis is given to the novel expression systems, advanced optimization strategies, and safety considerations for industrial use. Over ten types of recombinases such as oxidoreductase and hydrolase have been studied in the enzymatic hydrolysis of mycotoxins. Besides traditional expression system of Escherichia coli and yeasts, these enzymes can also be expressed in novel systems such as Bacillus subtilis and lactic acid bacteria. To meet the requirements of industrial applications in terms of degradation efficacy and stability, genetic engineering and computational tools are used to optimize enzymatic expression. Currently, registration and technical difficulties have restricted commercial application of mycotoxin-degrading enzymes. To overcome these obstacles, systematic safety evaluation of both biosynthetic enzymes and their degradation products, in-depth understanding of degradation mechanisms and a comprehensive evaluation of their impact on food and feed quality are urgently needed.
Collapse
Affiliation(s)
- Jinpei Fang
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
- Yixing Institute of Food and Biotechnology Co, Ltd, Yixing, Jiangsu, P.R China
| | - Lina Sheng
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
- Yixing Institute of Food and Biotechnology Co, Ltd, Yixing, Jiangsu, P.R China
| | - Yongli Ye
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
- Yixing Institute of Food and Biotechnology Co, Ltd, Yixing, Jiangsu, P.R China
| | - Jian Ji
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
- Yixing Institute of Food and Biotechnology Co, Ltd, Yixing, Jiangsu, P.R China
| | - Jiadi Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
- Yixing Institute of Food and Biotechnology Co, Ltd, Yixing, Jiangsu, P.R China
| | - Yinzhi Zhang
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
- Yixing Institute of Food and Biotechnology Co, Ltd, Yixing, Jiangsu, P.R China
| | - Xiulan Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
- Yixing Institute of Food and Biotechnology Co, Ltd, Yixing, Jiangsu, P.R China
| |
Collapse
|
11
|
Zavistanaviciute P, Ruzauskas M, Antanaitis R, Televicius M, Lele V, Santini A, Bartkiene E. Antimicrobial and Mycotoxin Reducing Properties of Lactic Acid Bacteria and Their Influence on Blood and Feces Parameters of Newborn Calves. Animals (Basel) 2023; 13:3345. [PMID: 37958101 PMCID: PMC10648343 DOI: 10.3390/ani13213345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
The aim of this study was to evaluate the influence of in acid whey (AW) multiplied Lactiplantibacillus plantarum LUHS135 (L.pl135), Lacticaseibacillus paracasei LUHS244 (L.pc244), and their biomass combination on newborn calves' feces and blood parameters. Additionally, the antimicrobial and mycotoxin-reducing properties and the resistance to antibiotics of the tested lactic acid bacteria (LAB) strains were analyzed. In order to ensure effective biomass growth in AW, technological parameters for the supplement preparation were selected. Control calves were fed with a standard milk replacer (SMR) and treated groups (from the 2nd day of life until the 14th day) were supplemented with 50 mL of AWL.pl135, AWL.pc244, and AWL.pl135×L.pc244 (25 mL AWL.pl135 + 25 mL AWL.pc244) in addition to SMR. It was established that L.pl135 and L.pc244 possess broad antimicrobial activities, are non-resistant to the tested antibiotics, and reduce mycotoxin concentrations in vitro. The optimal duration established for biomass growth was 48 h (LAB count higher than 7.00 log10 CFU mL-1 was found after 48 h of AW fermentation). It was established that additional feeding of newborn calves with AWL.pl135, AWL.pc244, and AWL.pl135×L.pc244 increased lactobacilli (on average by 7.4%), and AWL.pl135 and AWL.pc244 reduced the numbers of Enterobacteriaceae in calves' feces. The tested supplements also reduced the lactate concentration (on average, by 42.5%) in calves' blood. Finally, the tested supplements had a positive influence on certain health parameters of newborn calves; however, further research is needed to validate the mechanisms of the beneficial effects.
Collapse
Affiliation(s)
- Paulina Zavistanaviciute
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (P.Z.); (V.L.)
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Modestas Ruzauskas
- Faculty of Veterinary, Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania;
- Department of Anatomy and Physiology, Faculty of Veterinary, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Ramunas Antanaitis
- Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (R.A.); (M.T.)
| | - Mindaugas Televicius
- Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (R.A.); (M.T.)
| | - Vita Lele
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (P.Z.); (V.L.)
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
| | - Elena Bartkiene
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (P.Z.); (V.L.)
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| |
Collapse
|
12
|
Ganapathiwar S, Pappula R, Banothu AK, Bhukya B. Causatum of Probiotic Yeast Saccharomyces cerevisiae SBO1 Supplementation on Growth and Aflatoxin Amelioration in Broilers. Indian J Microbiol 2023; 63:253-262. [PMID: 37781010 PMCID: PMC10533762 DOI: 10.1007/s12088-023-01078-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/07/2023] [Indexed: 10/03/2023] Open
Abstract
Probiotics are beneficial live microorganisms that benefit the host's health when administered in the required number. They play a vital role in preventing infectious diseases caused by pathogens. The current study aimed to discover a competent probiotic microbe that can detoxify aflatoxin and promote poultry health. The yeast isolate SBO1 tolerates the temperature of 42 °C, low pH, and high bile conditions, has good auto aggregation, hydrophobicity, and exhibits improved adherence to chick intestinal epithelial cells. In addition, it has an aflatoxin detoxifying ability of 56% after 24 h. In-vivo studies in broilers resulted in a higher body weight (2138 g) and greater feed conversion efficiency in the T2 group when fed with yeast SBO1-supplemented diet. Gizzard, spleen, and bursa Fabricius were all found to weigh the same, however, a significant difference (p < 0.05) was observed in the carcass, breast yield, and fat. Therefore it was determined that adding 0.2% yeast to the broiler diet increased performance by lessening the toxin's adverse effects. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-023-01078-5.
Collapse
Affiliation(s)
- Swaruparani Ganapathiwar
- Centre for Microbial and Fermentation Technology, Department of Microbiology, University College of Science, Osmania University, Hyderabad, Telangana State 500007 India
| | - Radhika Pappula
- Department of Poultry Science, College of Veterinary Science, P. V. Narsimha Rao Telangana Veterinary University, Rajendranagar, Hyderabad, Telangana State 500030 India
| | - Anil Kumar Banothu
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science, P. V. Narsimha Rao Telangana Veterinary University, Rajendranagar, Hyderabad, Telangana State 500030 India
| | - Bhima Bhukya
- Centre for Microbial and Fermentation Technology, Department of Microbiology, University College of Science, Osmania University, Hyderabad, Telangana State 500007 India
| |
Collapse
|
13
|
Mariri NG, Dikhoba PM, Mongalo NI, Makhafola TJ. GC-ToF-MS Profiling and In Vitro Inhibitory Effects of Selected South African Plants against Important Mycotoxigenic Phytopathogens. Life (Basel) 2023; 13:1660. [PMID: 37629517 PMCID: PMC10455341 DOI: 10.3390/life13081660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
The harmful effects following the ingestion of mycotoxin-contaminated food include the induction of cancers, mutagenicity, immune suppression, and toxicities that target organs of the digestive, cardiovascular, and central nervous systems. Synthetic fungicides are generally associated with a high toxic residue in food and the development of excessive fungal resistance. This study aimed to determine the antifungal activities against mycotoxigenic fungi of selected South African plant leaves and potentially develop plant-derived bio-fungicides, and, furthermore, to explore the in vitro antioxidant activity and the phytochemical spectra of the compounds of the selected medicinal plant extracts. The extracts were tested for antifungal activity against phytopathogenic strains using a microdilution broth assay. Bauhinia galpinii extracts exhibited the lowest minimum inhibitory concentration (MIC) against C. cladospoides and P. haloterans at 24 h incubation periods. C. caffrum had good antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) with 50% inhibitory concentration (IC50) values of 0.013 mg/mL while B. galpini had IC50 values of 0.053 against free radicals of 2,2'-azinobis (3-ethylbenzthiazoline-6-suphonic acid (ABTS). The antimycotoxigenic and antioxidant activity exerted by both B. galpinii and C. caffrum may well be attributed to high TPC. In the GC-ToF-MS analysis, all the selected medicinal plants exhibited the presence of Hexadecanoic acid at varying % areas, while both B. galpinii and C. caffum exhibited the presence of lupeol at % area 2.99 and 3.96, respectively. The compounds identified, particularly the ones with higher % area, may well explain the biological activity observed. Although the selected medicinal plants exhibited a notable biological activity, there is a need to explore the safety profiles of these plants, both in vitro and in vivo.
Collapse
Affiliation(s)
- Ntagi Gerald Mariri
- Center for Quality of Health and Living, Faculty of Health and Environmental Sciences, Central University of Technology, Private Bag X20539, Bloemfontein 9301, South Africa; (N.G.M.); (P.M.D.)
| | - Preachers Madimetja Dikhoba
- Center for Quality of Health and Living, Faculty of Health and Environmental Sciences, Central University of Technology, Private Bag X20539, Bloemfontein 9301, South Africa; (N.G.M.); (P.M.D.)
| | - Nkoana Ishmael Mongalo
- College of Agriculture and Environmental Science (CAES), Laboratories, University of South Africa, Private BagX06, Florida 0710, South Africa
| | - Tshepiso Jan Makhafola
- Center for Quality of Health and Living, Faculty of Health and Environmental Sciences, Central University of Technology, Private Bag X20539, Bloemfontein 9301, South Africa; (N.G.M.); (P.M.D.)
| |
Collapse
|
14
|
Wei M, Dhanasekaran S, Ji Q, Yang Q, Zhang H. Sustainable and efficient method utilizing N-acetyl-L-cysteine for complete and enhanced ochratoxin A clearance by antagonistic yeast. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130975. [PMID: 36860082 DOI: 10.1016/j.jhazmat.2023.130975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/12/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
With the increasing global climate change, ochratoxin A (OTA) pollution in food and environment has become a serious and potential risk element threatening food safety and human health. Biodegradation of mycotoxin is an eco-friendly and efficient control strategy. Still, research works are warranted to develop low-cost, efficient, and sustainable approaches to enhance the mycotoxin degradation efficiency of microorganisms. In this study, the activities of N-acetyl-L-cysteine (NAC) against OTA toxicity were evidenced, and its positive effects on the OTA degradation efficiency of antagonistic yeast, Cryptococcus podzolicus Y3 were verified. Co-culturing C. podzolicus Y3 with 10 mM NAC improved 100% and 92.6% OTA degradation rate into ochratoxin α (OTα) at 1 d and 2 d. The excellent promotion role of NAC on OTA degradation was observed even at low temperatures and alkaline conditions. C. podzolicus Y3 treated with OTA or OTA+NAC promoted reduced glutathione (GSH) accumulation. GSS and GSR genes were highly expressed after OTA and OTA+NAC treatment, contributing to GSH accumulation. In the early stages of NAC treatment, yeast viability and cell membrane were reduced, but the antioxidant property of NAC prevented lipid peroxidation. Our finding provides a sustainable and efficient new strategy to improve mycotoxin degradation by antagonistic yeasts, which could be applied to mycotoxin clearance.
Collapse
Affiliation(s)
- Meilin Wei
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Solairaj Dhanasekaran
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Qihao Ji
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China.
| |
Collapse
|
15
|
Avîrvarei AC, Salanță LC, Pop CR, Mudura E, Pasqualone A, Anjos O, Barboza N, Usaga J, Dărab CP, Burja-Udrea C, Zhao H, Fărcaș AC, Coldea TE. Fruit-Based Fermented Beverages: Contamination Sources and Emerging Technologies Applied to Assure Their Safety. Foods 2023; 12:foods12040838. [PMID: 36832913 PMCID: PMC9957501 DOI: 10.3390/foods12040838] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/26/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
The food and beverage market has become broader due to globalization and consumer claims. Under the umbrella of consumer demands, legislation, nutritional status, and sustainability, the importance of food and beverage safety must be decisive. A significant sector of food production is related to ensuring fruit and vegetable conservation and utilization through fermentation. In this respect, in this review, we critically analyzed the scientific literature regarding the presence of chemical, microbiological and physical hazards in fruit-based fermented beverages. Furthermore, the potential formation of toxic compounds during processing is also discussed. In managing the risks, biological, physical, and chemical techniques can reduce or eliminate any contaminant from fruit-based fermented beverages. Some of these techniques belong to the technological flow of obtaining the beverages (i.e., mycotoxins bound by microorganisms used in fermentation) or are explicitly applied for a specific risk reduction (i.e., mycotoxin oxidation by ozone). Providing manufacturers with information on potential hazards that could jeopardize the safety of fermented fruit-based drinks and strategies to lower or eliminate these hazards is of paramount importance.
Collapse
Affiliation(s)
- Alexandra Costina Avîrvarei
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Liana Claudia Salanță
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Carmen Rodica Pop
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Elena Mudura
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, I-70126 Bari, Italy
| | - Ofelia Anjos
- Instituto Politécnico de Castelo Branco, 6001-909 Castelo Branco, Portugal
- Forest Research Centre, School of Agriculture, University of Lisbon, 1349-017 Lisbon, Portugal
- Spectroscopy and Chromatography Laboratory, CBP-BI-Centro de Biotecnologia de Plantas da Beira Interior, 6001-909 Castelo Branco, Portugal
| | - Natalia Barboza
- Food Technology Department, University of Costa Rica, Ciudad Universitaria Rodrigo Facio, San Jośe 11501-2060, Costa Rica
- National Center of Food Science and Technology (CITA), University of Costa Rica, Ciudad Universitaria Rodrigo Facio, San Jośe 11501-2060, Costa Rica
| | - Jessie Usaga
- National Center of Food Science and Technology (CITA), University of Costa Rica, Ciudad Universitaria Rodrigo Facio, San Jośe 11501-2060, Costa Rica
| | - Cosmin Pompei Dărab
- Faculty of Electrical Engineering, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania
| | - Cristina Burja-Udrea
- Industrial Engineering and Management Department, Faculty of Engineering, Lucian Blaga University of Sibiu, 550024 Sibiu, Romania
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Research Institute for Food Nutrition and Human Health, Guangzhou 510640, China
| | - Anca Corina Fărcaș
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Teodora Emilia Coldea
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
- Correspondence:
| |
Collapse
|
16
|
Simões L, Fernandes N, Teixeira J, Abrunhosa L, Dias DR. Brazilian Table Olives: A Source of Lactic Acid Bacteria with Antimycotoxigenic and Antifungal Activity. Toxins (Basel) 2023; 15:71. [PMID: 36668890 PMCID: PMC9866039 DOI: 10.3390/toxins15010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/27/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Food and feed contamination by fungi, especially by toxigenic ones, is a global concern because it can pose serious health problems when the production of mycotoxins is involved. Lactic acid bacteria (LAB), well-known for fermenting foods, have been gaining attention for their antifungal and anti-mycotoxin properties. This work tested 14 LAB strains isolated from naturally fermented Brazilian table olives for growth inhibition of Aspergillus flavus, Aspergillus carbonarius, Penicillium nordicum, and Penicillium expansum. The strains Lacticaseibacillus paracasei subsp. paracasei CCMA 1764, Levilactobacillus brevis CCMA 1762, and Lactiplantibacillus pentosus CCMA 1768 showed the strongest antifungal activity, being more active against P. expansum. Aflatoxin B1 (AFB1), ochratoxin A (OTA), and patulin (PAT) production was reduced essentially by mycelia growth inhibition. The main organic acids detected in the cell free supernatant (CFS) were lactic and acetic acids. Tested LAB exhibited adsorption capacity against AFB1 (48-51%), OTA (28-33%), and PAT (23-24%). AFB1 was converted into aflatoxin B2a (AFB2a) by lactic and acetic acids produced by the strain CCMA 1764. A similar conversion was observed in solutions of these organic acids (0.1 M). These findings demonstrate the potential of isolated LAB strains as natural agents to control toxigenic fungi and their mycotoxins in fermented products, such as table olives.
Collapse
Affiliation(s)
- Luara Simões
- Biology Department, Federal University of Lavras, Lavras 37200-900, Brazil
- Centre of Molecular and Environmental Biology, University of Minho, 4710-057 Braga, Portugal
| | - Natália Fernandes
- Biology Department, Federal University of Lavras, Lavras 37200-900, Brazil
- Chemistry Department, University of California, Davis, CA 95616, USA
| | - José Teixeira
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - Luís Abrunhosa
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - Disney Ribeiro Dias
- Department of Food Science, Federal University of Lavras, Lavras 37200-900, Brazil
| |
Collapse
|
17
|
Loi M, Logrieco AF, Pusztahelyi T, Leiter É, Hornok L, Pócsi I. Advanced mycotoxin control and decontamination techniques in view of an increased aflatoxin risk in Europe due to climate change. Front Microbiol 2023; 13:1085891. [PMID: 36762096 PMCID: PMC9907446 DOI: 10.3389/fmicb.2022.1085891] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Aflatoxins are toxic secondary metabolites produced by Aspergillus spp. found in staple food and feed commodities worldwide. Aflatoxins are carcinogenic, teratogenic, and mutagenic, and pose a serious threat to the health of both humans and animals. The global economy and trade are significantly affected as well. Various models and datasets related to aflatoxins in maize have been developed and used but have not yet been linked. The prevention of crop loss due to aflatoxin contamination is complex and challenging. Hence, the set-up of advanced decontamination is crucial to cope with the challenge of climate change, growing population, unstable political scenarios, and food security problems also in European countries. After harvest, decontamination methods can be applied during transport, storage, or processing, but their application for aflatoxin reduction is still limited. Therefore, this review aims to investigate the effects of environmental factors on aflatoxin production because of climate change and to critically discuss the present-day and novel decontamination techniques to unravel gaps and limitations to propose them as a tool to tackle an increased aflatoxin risk in Europe.
Collapse
Affiliation(s)
- Martina Loi
- Institute of Sciences of Food Production, National Research Council, Bari, Italy,*Correspondence: Martina Loi, ✉
| | - Antonio F. Logrieco
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| | - Tünde Pusztahelyi
- Central Laboratory of Agricultural and Food Products, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Éva Leiter
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, Institute of Biotechnology, University of Debrecen, Debrecen, Hungary,ELRN-UD Fungal Stress Biology Research Group, University of Debrecen, Debrecen, Hungary
| | - László Hornok
- Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, Institute of Biotechnology, University of Debrecen, Debrecen, Hungary,ELRN-UD Fungal Stress Biology Research Group, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
18
|
Impact of Volatile Organic Compounds on the Growth of Aspergillus flavus and Related Aflatoxin B1 Production: A Review. Int J Mol Sci 2022; 23:ijms232415557. [PMID: 36555197 PMCID: PMC9779742 DOI: 10.3390/ijms232415557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Volatile organic compounds (VOCs) are secondary metabolites of varied chemical nature that are emitted by living beings and participate in their interactions. In addition, some VOCs called bioactive VOCs cause changes in the metabolism of other living species that share the same environment. In recent years, knowledge on VOCs emitted by Aspergillus flavus, the main species producing aflatoxin B1 (AFB1), a highly harmful mycotoxin, has increased. This review presents an overview of all VOCs identified as a result of A. flavus toxigenic (AFB1-producing) and non-toxigenic (non AFB1-producing) strains growth on different substrates, and the factors influencing their emissions. We also included all bioactive VOCs, mixes of VOCs or volatolomes of microbial species that impact A. flavus growth and/or related AFB1 production. The modes of action of VOCs impacting the fungus development are presented. Finally, the potential applications of VOCs as biocontrol agents in the context of mycotoxin control are discussed.
Collapse
|
19
|
Gan M, Hu J, Wan K, Liu X, Chen P, Zeng R, Wang F, Zhao Y. Isolation and Characterization of Lactobacillus paracasei 85 and Lactobacillus buchneri 93 to Absorb and Biotransform Zearalenone. TOXICS 2022; 10:680. [PMID: 36355971 PMCID: PMC9695132 DOI: 10.3390/toxics10110680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
As one of the most prevalent estrogenic mycotoxins in cereals and animal feed, zearalenone (ZEN) can cause serious reproductive disorders. ZEN control in food and feed commodities has been an imperative area of research. In this study, 87 lactic acid bacteria (LAB) were isolated from pickles and their ZEN (5 mg/L) removal abilities ranged from 0% to 68.4%. Then, five strains with potent ZEN removal ability (>50%) were identified: Lactobacillus plantarum 22, L. plantarum 37, L. plantarum 47, L. paracasei 85, and L. buchneri 93. Under optimization conditions (48 h, pH 4.0, 37 °C, and 5 mg/L), the highest ZEN removal abilities of L. paracasei 85 and L. buchneri 93 reached 77.7% and 72.8%, respectively. Moreover, the two lactic acid bacteria decreased the toxicity of ZEN, because the levels of β-zearalenol (β-ZOL) transformed from ZEN were more than two-fold higher than α-zearalenol (α-ZOL). Additionally, cell free supernatant and pellet biotransformation of ZEN to α-ZOL and β-ZOL in LAB were detected for the first time. Furthermore, chemical and enzymatical treatments combined with Fourier-transform infrared spectroscopy analysis indicated that exopolysaccharides, proteins, and lipids on the cell wall could bond to ZEN through hydrophobic interactions. Scanning electron microscopy indicated that cell structure damage occurred during the ZEN clearance to L. buchneri 93, but it did not with L. paracasei 85. In addition, various organic acids, alcohols, and esters of the two LAB participated in ZEN removal. Hence, L. paracasei 85 and L. buchneri 93 can be considered as potential detoxification agents for ZEN removal for food and feedstuff.
Collapse
Affiliation(s)
- Min Gan
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Jian Hu
- Tangshan Food and Drug Comprehensive Testing Center, Tangshan 063000, China
| | - Kai Wan
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Xiangxiang Liu
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Peirong Chen
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Rui Zeng
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Fuhua Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Yarong Zhao
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| |
Collapse
|
20
|
Abou Dib A, Assaf JC, El Khoury A, El Khatib S, Koubaa M, Louka N. Single, Subsequent, or Simultaneous Treatments to Mitigate Mycotoxins in Solid Foods and Feeds: A Critical Review. Foods 2022; 11:3304. [PMCID: PMC9601460 DOI: 10.3390/foods11203304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mycotoxins in solid foods and feeds jeopardize the public health of humans and animals and cause food security issues. The inefficacy of most preventive measures to control the production of fungi in foods and feeds during the pre-harvest and post-harvest stages incited interest in the mitigation of these mycotoxins that can be conducted by the application of various chemical, physical, and/or biological treatments. These treatments are implemented separately or through a combination of two or more treatments simultaneously or subsequently. The reduction rates of the methods differ greatly, as do their effect on the organoleptic attributes, nutritional quality, and the environment. This critical review aims at summarizing the latest studies related to the mitigation of mycotoxins in solid foods and feeds. It discusses and evaluates the single and combined mycotoxin reduction treatments, compares their efficiency, elaborates on their advantages and disadvantages, and sheds light on the treated foods or feeds, as well as on their environmental impact.
Collapse
Affiliation(s)
- Alaa Abou Dib
- Centre d’Analyses et de Recherche (CAR), Unité de Recherche Technologies et Valorisation Agro-Alimentaire (UR-TVA), Faculté des Sciences, Campus des Sciences et Technologies, Université Saint-Joseph de Beyrouth, Mar Roukos, Matn 1104-2020, Lebanon
- Department of Food Sciences and Technology, Facuty of Arts and Sciences, Bekaa Campus, Lebanese International University, Khiyara, Bekaa 1108, Lebanon
| | - Jean Claude Assaf
- Centre d’Analyses et de Recherche (CAR), Unité de Recherche Technologies et Valorisation Agro-Alimentaire (UR-TVA), Faculté des Sciences, Campus des Sciences et Technologies, Université Saint-Joseph de Beyrouth, Mar Roukos, Matn 1104-2020, Lebanon
| | - André El Khoury
- Centre d’Analyses et de Recherche (CAR), Unité de Recherche Technologies et Valorisation Agro-Alimentaire (UR-TVA), Faculté des Sciences, Campus des Sciences et Technologies, Université Saint-Joseph de Beyrouth, Mar Roukos, Matn 1104-2020, Lebanon
- Correspondence: ; Tel.: +9611421389
| | - Sami El Khatib
- Department of Food Sciences and Technology, Facuty of Arts and Sciences, Bekaa Campus, Lebanese International University, Khiyara, Bekaa 1108, Lebanon
| | - Mohamed Koubaa
- TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu, Université de Technologie de Compiègne, ESCOM—CS 60319, CEDEX, 60203 Compiègne, France
| | - Nicolas Louka
- Centre d’Analyses et de Recherche (CAR), Unité de Recherche Technologies et Valorisation Agro-Alimentaire (UR-TVA), Faculté des Sciences, Campus des Sciences et Technologies, Université Saint-Joseph de Beyrouth, Mar Roukos, Matn 1104-2020, Lebanon
| |
Collapse
|
21
|
Al Shap NF, El-Sherbeny EME, El Masry DMA. The efficacy of metal nanocomposite (Fe 3O 4/CuO/ZnO) to ameliorate the toxic effects of ochratoxin in broilers. BMC Vet Res 2022; 18:312. [PMID: 35971170 PMCID: PMC9377104 DOI: 10.1186/s12917-022-03400-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/27/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The study aimed to investigate the effectiveness of different doses of metal nanocomposite (MNc) (Fe3O4/CuO/ZnO) lower than its cytotoxic level in order to overcome or minimize the ochratoxin (OTA) adverse effects in broilers fed on contaminated ration. The study conducted on 120 one-day old chicks which were divided into equal 6 groups; G1: negative control, G2: positive control (fed on OTA 17 ppb), G3& G4 (fed MNc only with low and high doses respectively). The rest two groups G5 & G6 (treatment groups) were fed on OTA, post induced ochratoxification, treated with low and high doses respectively. RESULTS Body weight gain and heamatocellular elements in both treated groups increased significantly than control. Serum phagocytic nitric oxide levels were increased significantly in both treated groups than control groups. Prothrombin time (PT), Alanine aminotransferase (ALT) and gamma-glutamyltransferase (GGT) activities decreased significantly (P < 0.05) in both treated groups than intoxicated control group (G2) but still higher than non-intoxicated control group (G1). Total protein, albumin, globulin, calcium and phosphorus increased significantly in both treated groups than intoxicated control group. Kidney function tests showed significant improvement in both treated groups than intoxicated control group. Antioxidant study revealed that malondialdehyde (MDA) decreased significantly in treated groups than intoxicated control group. Ochratoxin residue decreased significantly in treated groups. Metal residues in tested liver and muscle of treated groups showed no-significant difference with non-intoxicated control group (G1) at the experiment's end. In conclusion, feeding either low or high doses of MNc to broilers were significantly counteracting the negative impacts of OTA or its residue and increase their body weight.
Collapse
Affiliation(s)
- Nagla F Al Shap
- Toxicology Unit Animal Health Research Institute, Tanta lab.Agricultural Research Center (ARC), Giza, Egypt
| | - Eman M El El-Sherbeny
- Pharmacology Unit Animal Health Research Institute, Tanta lab. Agricultural Research Center (ARC), Giza, Egypt
| | - Dalia M A El Masry
- Nanomaterials Research and Synthesis Unit, Animal Health Research Institute, Agricultural Research Center (ARC), Giza, 264, Egypt.
| |
Collapse
|
22
|
Wang F, Chen Y, Hu H, Liu X, Wang Y, Saleemi MK, He C, Haque MA. Protocatechuic acid: A novel detoxication agent of fumonisin B1 for poultry industry. Front Vet Sci 2022; 9:923238. [PMID: 35958305 PMCID: PMC9360745 DOI: 10.3389/fvets.2022.923238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/27/2022] [Indexed: 12/02/2022] Open
Abstract
Fumonisin B1 (FB1) is a major fusarium mycotoxin that largely contaminates feedstuffs and foods, posing a health risk to both animals and humans. This mycotoxin can enter the human body directly through contaminated food consumption or indirectly by toxins and their metabolites. In a prior study, feed-borne FB1 is one of the leading mycotoxins in breeder eggs, leading to reduced hatchability and gizzard ulceration in chicken progenies. Currently, no effective way is available to remove FB1 from feeds and human-contaminated foods. We hypothesize that FB1 can be reduced to low risk by protocatechuic acid (PCA). To assess the ability of FB1 to be degraded in vivo, 1 ppm of FB1 was treated with PCA, or D-glucose, or silymarin, or anti-FB1 monoclonal antibody. Our study revealed that both D-glucose and PCA exhibited 53.4 and 71.43% degradation, respectively, at 80°C for 2 h, while 35.15% of FB1 detoxification was determined in the silymarin group at 60°C for 0.5 h. A dose-dependent manner was found after treatment with D-glucose or PCA at 80°C for 2 h. As for detoxification of anti-FB1 monoclonal antibody, the 1:3,000 dilution induced significant FB1 detoxification, accounting for 25.9% degradation at 25°C for 2 h. Furthermore, 50 SPF 11-day-old embryonated eggs were divided into 10 groups, with five eggs per group. Post treatment with PCA or D-glucose, or silymarin or anti-FB1 monoclonal antibody, the treated samples were inoculated into albumens and monitored daily until the hatching day. Consequently, 100% of the chickens survived in the D-glucose group and other control groups, except for the FB1 control group, while 80, 80, and 60% hatching rates were found in the PCA-treated group, the anti-FB1 monoclonal antibody-treated group, and the silymarin-treated group. Additionally, both the FB1 group and the silymarin-treated group yielded lower embryo growth than other groups did. Postmortem, lower gizzard ulceration index was determined in the PCA-treated group and the anti-FB1 monoclonal antibody-treated group compared to those of the silymarin-treated group and D-glucose-treated group. Based on the above evidence, PCA is a promising detoxification to reduce FB1 contamination in the poultry industry, contributing to the eradication of mycotoxin residuals in the food chain and maintaining food security for human beings.
Collapse
Affiliation(s)
- Fei Wang
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yi Chen
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Huilong Hu
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xinyi Liu
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yihui Wang
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | | | - Cheng He
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Md Atiqul Haque
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Microbiology, Faculty of Veterinary and Animal Science, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| |
Collapse
|
23
|
A new methodology for the analysis of total deoxynivalenol, dissolved and adsorbed on cell walls, in microbiological culture assays. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Abdolmaleki K, Javanmardi F, Gavahian M, Phimolsiripol Y, Ruksiriwanich W, Mir SA, Mousavi Khaneghah A. Emerging technologies in combination with probiotics for aflatoxins removal: An updated review. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Khadije Abdolmaleki
- Research Center of Oils and Fats Kermanshah University of Medical Sciences Kermanshah Iran
| | - Fardin Javanmardi
- Department of Food Science and Technology Faculty of Nutrition Sciences and Food Technology National Nutrition and Food Technology Research Institute Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mohsen Gavahian
- Department of Food Science College of Agriculture National Pingtung University of Science and Technology 1, Shuefu Road Neipu Pingtung 91201 Taiwan, ROC
| | | | | | - Shabir Ahmad Mir
- Department of Food Science and Technology Government College for Women MA Road Srinagar, Jammu, and Kashmir India
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology Warsaw Poland
- Department of Food Science and Nutrition Faculty of Food Engineering University of Campinas Campinas, São Paulo Brazil
| |
Collapse
|
25
|
Green and sustainable technologies for the decontamination of fungi and mycotoxins in rice: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Petrova P, Arsov A, Tsvetanova F, Parvanova-Mancheva T, Vasileva E, Tsigoriyna L, Petrov K. The Complex Role of Lactic Acid Bacteria in Food Detoxification. Nutrients 2022; 14:2038. [PMID: 35631179 PMCID: PMC9147554 DOI: 10.3390/nu14102038] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/02/2022] [Accepted: 05/10/2022] [Indexed: 12/13/2022] Open
Abstract
Toxic ingredients in food can lead to serious food-related diseases. Such compounds are bacterial toxins (Shiga-toxin, listeriolysin, Botulinum toxin), mycotoxins (aflatoxin, ochratoxin, zearalenone, fumonisin), pesticides of different classes (organochlorine, organophosphate, synthetic pyrethroids), heavy metals, and natural antinutrients such as phytates, oxalates, and cyanide-generating glycosides. The generally regarded safe (GRAS) status and long history of lactic acid bacteria (LAB) as essential ingredients of fermented foods and probiotics make them a major biological tool against a great variety of food-related toxins. This state-of-the-art review aims to summarize and discuss the data revealing the involvement of LAB in the detoxification of foods from hazardous agents of microbial and chemical nature. It is focused on the specific properties that allow LAB to counteract toxins and destroy them, as well as on the mechanisms of microbial antagonism toward toxigenic producers. Toxins of microbial origin are either adsorbed or degraded, toxic chemicals are hydrolyzed and then used as a carbon source, while heavy metals are bound and accumulated. Based on these comprehensive data, the prospects for developing new combinations of probiotic starters for food detoxification are considered.
Collapse
Affiliation(s)
- Penka Petrova
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (P.P.); (A.A.)
| | - Alexander Arsov
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (P.P.); (A.A.)
| | - Flora Tsvetanova
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (F.T.); (T.P.-M.); (E.V.); (L.T.)
| | - Tsvetomila Parvanova-Mancheva
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (F.T.); (T.P.-M.); (E.V.); (L.T.)
| | - Evgenia Vasileva
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (F.T.); (T.P.-M.); (E.V.); (L.T.)
| | - Lidia Tsigoriyna
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (F.T.); (T.P.-M.); (E.V.); (L.T.)
| | - Kaloyan Petrov
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (F.T.); (T.P.-M.); (E.V.); (L.T.)
| |
Collapse
|
27
|
Zearalenone Biodegradation by the Lactobacillus Spp. and Bacillus Spp. In Vitro. FOLIA VETERINARIA 2022. [DOI: 10.2478/fv-2022-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
In this study, the biodegradation of zearalenone (ZEN) by cell suspensions of various Lactobacillus species (Lb. fermentum 2I3 (L1), Lb. reuteri L26 (L3), Lb. plantarum L81 (L4), Lb. reuteri 2/6 (L5), Lb. plantarum CCM 1904 (L6)), Bacillus subtilis CCM 2794 (Bs), and Bacillus licheniformis CCM 2206 (Bl); was investigated in vitro. All lactobacilli cell suspensions showed very good degradation efficiency (57.9—100 %) for zearalenone at the concentration 0.01 ppm. At higher concentrations of zearalenone, their biodegradation activity decreased significantly (0—13.9 %). Bacillus subtilis CCM 2794 was able to degrade zearalenone at concentrations of: 0.01 ppm (100 %), 0.1 ppm (74.5 %), and at higher concentrations of ZEN (1 ppm; 10 ppm), the degradation was 11.7 % and 0 %, respectively. For Bacillus licheniformis CCM 2206, no biodegradation of zearalenone was observed at the concentration of 10 ppm, but slight degradation (4.5—8.8 %) was found at lower zearalenone concentrations.
Collapse
|
28
|
Podgórska-Kryszczuk I, Solarska E, Kordowska-Wiater M. Reduction of the Fusarium Mycotoxins: Deoxynivalenol, Nivalenol and Zearalenone by Selected Non-Conventional Yeast Strains in Wheat Grains and Bread. Molecules 2022; 27:1578. [PMID: 35268678 PMCID: PMC8911760 DOI: 10.3390/molecules27051578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 11/17/2022] Open
Abstract
Mycotoxins, toxic secondary metabolites produced by fungi, are important contaminants in food and agricultural industries around the world. These toxins have a multidirectional toxic effect on living organisms, causing damage to the kidneys and liver, and disrupting the functions of the digestive tract and the immune system. In recent years, much attention has been paid to the biological control of pathogens and the mycotoxins they produce. In this study, selected yeasts were used to reduce the occurrence of deoxynivalenol (DON), nivalenol (NIV), and zearalenone (ZEA) produced by Fusarium culmorum, F. graminearum, and F. poae on wheat grain and bread. In a laboratory experiment, an effective reduction in the content of DON, NIV, and ZEA was observed in bread prepared by baking with the addition of an inoculum of the test yeast, ranging from 16.4% to 33.4%, 18.5% to 36.2% and 14.3% to 35.4%, respectively. These results indicate that the selected yeast isolates can be used in practice as efficient mycotoxin decontamination agents in the food industry.
Collapse
Affiliation(s)
- Izabela Podgórska-Kryszczuk
- Department of Analysis and Food Quality Assessment, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland;
| | - Ewa Solarska
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland;
| | - Monika Kordowska-Wiater
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland;
| |
Collapse
|