1
|
Sun W, Feng M, Zhu N, Leng F, Yang M, Wang Y. Genomic Characteristics and Comparative Genomics Analysis of the Endophytic Fungus Paraphoma chrysanthemicola DS-84 Isolated from Codonopsis pilosula Root. J Fungi (Basel) 2023; 9:1022. [PMID: 37888278 PMCID: PMC10607767 DOI: 10.3390/jof9101022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
Paraphoma chrysanthemicola is a newly identified endophytic fungus. The focus of most studies on P. chrysanthemicola has been on its isolation, identification and effects on plants. However, the limited genomic information is a barrier to further research. Therefore, in addition to studying the morphological and physiological characteristics of P. chrysanthemicola, we sequenced its genome and compared it with that of Paraphoma sp. The results showed that sucrose, peptone and calcium phosphate were suitable sources of carbon, nitrogen and phosphorus for this strain. The activities of amylase, cellulase, chitosanase, lipase and alkaline protease were also detected. Sequencing analysis revealed that the genome of P. chrysanthemicola was 44.1 Mb, with a scaffold N50 of 36.1 Mb and 37,077 protein-coding genes. Gene Ontology (GO) annotation showed that mannose-modified glycosylation was predominant in monosaccharide utilisation. The percentage of glycoside hydrolase (GH) modules was the highest in the carbohydrate-active enzymes database (CAZy) analysis. Secondary metabolite-associated gene cluster analysis identified melanin, dimethylcoprogen and phyllostictine A biosynthetic gene clusters (>60% similarity). The results indicated that P. chrysanthemicola had a mannose preference in monosaccharide utilisation and that melanin, dimethylcoprogen and phyllostictine A were important secondary metabolites for P. chrysanthemicola as an endophytic fungus.
Collapse
Affiliation(s)
| | | | | | | | | | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (W.S.); (M.F.); (N.Z.); (F.L.); (M.Y.)
| |
Collapse
|
2
|
Abdallah EM, Alhatlani BY, de Paula Menezes R, Martins CHG. Back to Nature: Medicinal Plants as Promising Sources for Antibacterial Drugs in the Post-Antibiotic Era. PLANTS (BASEL, SWITZERLAND) 2023; 12:3077. [PMID: 37687324 PMCID: PMC10490416 DOI: 10.3390/plants12173077] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/28/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Abstract
Undoubtedly, the advent of antibiotics in the 19th century had a substantial impact, increasing human life expectancy. However, a multitude of scientific investigations now indicate that we are currently experiencing a phase known as the post-antibiotic era. There is a genuine concern that we might regress to a time before antibiotics and confront widespread outbreaks of severe epidemic diseases, particularly those caused by bacterial infections. These investigations have demonstrated that epidemics thrive under environmental stressors such as climate change, the depletion of natural resources, and detrimental human activities such as wars, conflicts, antibiotic overuse, and pollution. Moreover, bacteria possess a remarkable ability to adapt and mutate. Unfortunately, the current development of antibiotics is insufficient, and the future appears grim unless we abandon our current approach of generating synthetic antibiotics that rapidly lose their effectiveness against multidrug-resistant bacteria. Despite their vital role in modern medicine, medicinal plants have served as the primary source of curative drugs since ancient times. Numerous scientific reports published over the past three decades suggest that medicinal plants could serve as a promising alternative to ineffective antibiotics in combating infectious diseases. Over the past few years, phenolic compounds, alkaloids, saponins, and terpenoids have exhibited noteworthy antibacterial potential, primarily through membrane-disruption mechanisms, protein binding, interference with intermediary metabolism, anti-quorum sensing, and anti-biofilm activity. However, to optimize their utilization as effective antibacterial drugs, further advancements in omics technologies and network pharmacology will be required in order to identify optimal combinations among these compounds or in conjunction with antibiotics.
Collapse
Affiliation(s)
- Emad M. Abdallah
- Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia;
| | - Bader Y. Alhatlani
- Unit of Scientific Research, Applied College, Qassim University, Buraydah 52571, Saudi Arabia
| | - Ralciane de Paula Menezes
- Technical School of Health, Federal University of Uberlândia, Uberlândia 38400-732, MG, Brazil;
- Laboratory of Antimicrobial Testing, Federal University of Uberlândia, Uberlândia 38405-320, MG, Brazil;
| | | |
Collapse
|
3
|
Toure S, Millot M, Ory L, Roullier C, Khaldi Z, Pichon V, Girardot M, Imbert C, Mambu L. Access to Anti-Biofilm Compounds from Endolichenic Fungi Using a Bioguided Networking Screening. J Fungi (Basel) 2022; 8:jof8101012. [PMID: 36294577 PMCID: PMC9604612 DOI: 10.3390/jof8101012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Endolichenic microorganisms represent a new source of bioactive natural compounds. Lichens, resulting from a symbiotic association between algae or cyanobacteria and fungi, constitute an original ecological niche for these microorganisms. Endolichenic fungi inhabiting inside the lichen thallus have been isolated and characterized. By cultivation on three different culture media, endolichenic fungi gave rise to a wide diversity of bioactive metabolites. A total of 38 extracts were screened for their anti-maturation effect on Candida albicans biofilms. The 10 most active ones, inducing at least 50% inhibition, were tested against 24 h preformed biofilms of C. albicans, using a reference strain and clinical isolates. The global molecular network was associated to bioactivity data in order to identify and priorize active natural product families. The MS-targeted isolation led to the identification of new oxygenated fatty acid in Preussia persica endowed with an interesting anti-biofilm activity against C. albicans yeasts.
Collapse
Affiliation(s)
- Seinde Toure
- Laboratoire PEIRENE, University Limoges, UR 22722, F-87000 Limoges, France
| | - Marion Millot
- Laboratoire PEIRENE, University Limoges, UR 22722, F-87000 Limoges, France
| | - Lucie Ory
- Institut des Substances et Organismes de la Mer (ISOMer), Nantes Université, UR 2160, F-44000 Nantes, France
| | - Catherine Roullier
- Institut des Substances et Organismes de la Mer (ISOMer), Nantes Université, UR 2160, F-44000 Nantes, France
| | - Zineb Khaldi
- Laboratoire PEIRENE, University Limoges, UR 22722, F-87000 Limoges, France
| | - Valentin Pichon
- Laboratoire PEIRENE, University Limoges, UR 22722, F-87000 Limoges, France
| | - Marion Girardot
- Laboratoire Ecologie et Biologie des Interactions (EBI), University Poitiers, UMR CNRS 7267, F-86000 Poitiers, France
| | - Christine Imbert
- Laboratoire Ecologie et Biologie des Interactions (EBI), University Poitiers, UMR CNRS 7267, F-86000 Poitiers, France
| | - Lengo Mambu
- Laboratoire PEIRENE, University Limoges, UR 22722, F-87000 Limoges, France
- Correspondence: ; Tel.: +33-5-55-43-58-34
| |
Collapse
|
4
|
Scarpino V, Sulyok M, Krska R, Reyneri A, Blandino M. The Role of Nitrogen Fertilization on the Occurrence of Regulated, Modified and Emerging Mycotoxins and Fungal Metabolites in Maize Kernels. Toxins (Basel) 2022; 14:toxins14070448. [PMID: 35878186 PMCID: PMC9316227 DOI: 10.3390/toxins14070448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/17/2022] [Accepted: 06/28/2022] [Indexed: 01/27/2023] Open
Abstract
The European Food Safety Authority is currently evaluating the risks related to the presence of emerging mycotoxins in food and feeds. The aim of this study was to investigate the role of soil fertility, resulting from different nitrogen fertilization rates, on the contamination of regulated mycotoxins and emerging fungal metabolites in maize grains. The trial was carried out in the 2012–2013 growing seasons as part of a long-term (20-year) experimental platform area in North-West Italy, where five different N rates, ranging from 0 to 400 kg N ha−1, were applied to maize each year. Maize samples were analyzed by means of a dilute-and-shoot multi-mycotoxin LC-MS/MS method, and more than 25 of the most abundant mycotoxins and fungal metabolites were detected. Contamination by fumonisins and other fungal metabolites produced by Fusarium spp. of the section Liseola was observed to have increased in soils that showed a poor fertility status. On the other hand, an overload of nitrogen fertilization was generally associated with higher deoxynivalenol and zearalenone contamination in maize kernels, as well as a higher risk of other fungal metabolites produced by Fusarium spp. sections Discolor and Roseum. A balanced application of N fertilizer, in accordance with maize uptake, generally appears to be the best solution to guarantee an overall lower contamination by regulated mycotoxins and emerging fungal metabolites.
Collapse
Affiliation(s)
- Valentina Scarpino
- Department of Agricultural, Forest and Food Sciences (DISAFA), Università degli Studi di Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy; (V.S.); (A.R.)
| | - Michael Sulyok
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria; (M.S.); (R.K.)
| | - Rudolf Krska
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria; (M.S.); (R.K.)
| | - Amedeo Reyneri
- Department of Agricultural, Forest and Food Sciences (DISAFA), Università degli Studi di Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy; (V.S.); (A.R.)
| | - Massimo Blandino
- Department of Agricultural, Forest and Food Sciences (DISAFA), Università degli Studi di Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy; (V.S.); (A.R.)
- Correspondence: ; Tel.: +39-0116708895
| |
Collapse
|
5
|
Achimón F, Brito VD, Pizzolitto RP, Zygadlo JA. Effect of Carbon Sources on the Production of Volatile Organic Compounds by Fusarium verticillioides. J Fungi (Basel) 2022; 8:jof8020158. [PMID: 35205912 PMCID: PMC8880662 DOI: 10.3390/jof8020158] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
The aim of the present study was to evaluate the effect of different carbon sources on the hydrocarbon-like volatile organic compounds (VOCs) of Fusarium verticillioides strain 7600 through a Principal Component Analysis approach, and to explore their diesel potential by using data from the literature. The fungus was cultivated in GYAM culture medium, and five carbon sources were evaluated: glucose, sucrose, xylose, lactose, and fructose. The VOCs were collected using a close-loop apparatus and identified through GC-MS. The same profile of 81 VOCs was detected with all treatments, but with different relative percentages among carbon sources. The production of branched-chain alkanes (30 compounds) ranged from 25.80% to 38.64%, straight-chain alkanes (12 compounds) from 22.04% to 24.18%, benzene derivatives (12 compounds) from 7.48% to 35.58%, and the biosynthesis of branched-chain alcohols (11 compounds) was from 6.82% to 16.71%, with lower values for the remaining groups of VOCs. Our results show that F. verticillioides has the metabolic potential to synthesize diesel-like VOCs. Further research should include the optimization of culture conditions other than carbon sources to increase the production of certain groups of VOCs.
Collapse
Affiliation(s)
- Fernanda Achimón
- Multidisciplinary Institute of Plant Biology (IMBIV-CONICET), National University of Cordoba, Cordoba X5016GCA, Argentina; (F.A.); (V.D.B.); (J.A.Z.)
- Science and Food Technology Institute (ICTA), National University of Cordoba, Cordoba X5016GCA, Argentina
| | - Vanessa D. Brito
- Multidisciplinary Institute of Plant Biology (IMBIV-CONICET), National University of Cordoba, Cordoba X5016GCA, Argentina; (F.A.); (V.D.B.); (J.A.Z.)
- Science and Food Technology Institute (ICTA), National University of Cordoba, Cordoba X5016GCA, Argentina
| | - Romina P. Pizzolitto
- Multidisciplinary Institute of Plant Biology (IMBIV-CONICET), National University of Cordoba, Cordoba X5016GCA, Argentina; (F.A.); (V.D.B.); (J.A.Z.)
- Science and Food Technology Institute (ICTA), National University of Cordoba, Cordoba X5016GCA, Argentina
- Correspondence:
| | - Julio A. Zygadlo
- Multidisciplinary Institute of Plant Biology (IMBIV-CONICET), National University of Cordoba, Cordoba X5016GCA, Argentina; (F.A.); (V.D.B.); (J.A.Z.)
- Science and Food Technology Institute (ICTA), National University of Cordoba, Cordoba X5016GCA, Argentina
- Chemistry Department, Faculty of Exact, Physical and Natural Science, National University of Cordoba, Cordoba X5016GCA, Argentina
| |
Collapse
|
6
|
Senatore MT, Ward TJ, Cappelletti E, Beccari G, McCormick SP, Busman M, Laraba I, O'Donnell K, Prodi A. Species diversity and mycotoxin production by members of the Fusarium tricinctum species complex associated with Fusarium head blight of wheat and barley in Italy. Int J Food Microbiol 2021; 358:109298. [PMID: 34210546 DOI: 10.1016/j.ijfoodmicro.2021.109298] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/26/2021] [Accepted: 06/05/2021] [Indexed: 11/29/2022]
Abstract
Fusarium head blight (FHB) is a global cereal disease caused by a complex of Fusarium species. In Europe, the main species responsible for FHB are F. graminearum, F. culmorum and F. poae. However, members of the F. tricinctum species complex (FTSC) have become increasingly important. FTSC fusaria can synthesize mycotoxins such as moniliformin (MON), enniatins (ENNs) and several other biologically active secondary metabolites that could compromise food quality. In this study, FTSC isolates primarily from Italian durum wheat and barley, together with individual strains from four non-graminaceous hosts, were collected to assess their genetic diversity and determine their potential to produce mycotoxins in vitro on rice cultures. A multilocus DNA sequence dataset (TEF1, RPB1 and RPB2) was constructed for 117 isolates from Italy and 6 from Iran to evaluate FTSC species diversity and their evolutionary relationships. Phylogenetic analyses revealed wide genetic diversity among Italian FTSC isolates. Among previously described FTSC species, F. avenaceum (FTSC 4) was the most common species in Italy (56/117 = 47.9%) while F. tricinctum (FTSC 3), and F. acuminatum (FTSC 2) accounted for 11.1% (13/117) and the 8.5% (10/117), respectively. The second most detected species was a new and unnamed Fusarium sp. (FTSC 12; 32/117 = 19%) resolved as the sister group of F. tricinctum. Collectively, these four phylospecies accounted for 111/117 = 94.9% of the Italian FTSC collection. However, we identified five other FTSC species at low frequencies, including F. iranicum (FTSC 6) and three newly discovered species (Fusarium spp. FTSC 13, 14, 15). Of the 59 FTSC isolates tested for mycotoxin production on rice cultures, 54 and 55 strains, respectively, were able to produce detectable levels of ENNs and MON. In addition, we confirmed that the ability to produce bioactive secondary metabolites such as chlamydosporol, acuminatopyrone, longiborneol, fungerin and butanolide is widespread across the FTSC.
Collapse
Affiliation(s)
- M T Senatore
- Department of Agricultural and Food Sciences, Alma Mater Studiorum University of Bologna, Viale G. Fanin, 44, 40127 Bologna, Italy
| | - T J Ward
- US Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, 1815 North University Street, Peoria, IL 60604-3999, USA
| | - E Cappelletti
- Department of Agricultural and Food Sciences, Alma Mater Studiorum University of Bologna, Viale G. Fanin, 44, 40127 Bologna, Italy
| | - G Beccari
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy
| | - S P McCormick
- US Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, 1815 North University Street, Peoria, IL 60604-3999, USA
| | - M Busman
- US Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, 1815 North University Street, Peoria, IL 60604-3999, USA
| | - I Laraba
- US Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, 1815 North University Street, Peoria, IL 60604-3999, USA
| | - K O'Donnell
- US Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, 1815 North University Street, Peoria, IL 60604-3999, USA
| | - A Prodi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum University of Bologna, Viale G. Fanin, 44, 40127 Bologna, Italy.
| |
Collapse
|
7
|
Horinaka A, Kim YH, Kimura A, Iwamoto E, Masaki T, Ichijo T, Sato S. Changes in the predicted function of the rumen bacterial community of Japanese Black beef cattle during the fattening stages according to Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. J Vet Med Sci 2021; 83:1098-1106. [PMID: 34108339 PMCID: PMC8349811 DOI: 10.1292/jvms.21-0121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We investigated changes in the predicted functions of the rumen bacterial community in Japanese Black beef cattle during fattening. Nine cattle were fed a
high-concentrate diet during the early, middle, and late fattening stages consecutively (10–14, 15–22, and 23–30 months of age, respectively). The rumen fluid
and solid samples collected at each stage were subjected to sequencing analyses. The sequencing results were clustered and classified into operational taxonomic
units (OTUs). Representative sequences and a raw counting table for each OTU were submitted to the Piphillin website. The predicted functions were revealed by
the Kyoto Encyclopedia of Genes and Genomes database as the ratio of the total sequence. In the early stage, “Biosynthesis of secondary metabolites” was
significantly higher in the fluid fraction than in the solid fraction. “Two-component system” in the middle stage was significantly lower and “Purine
metabolism” in the late stage was significantly higher in the fluid fraction than those in the solid fraction. The fluid fraction was significantly correlated
with acetic acid, propionic acid, and bacterial metabolism, such as “Biosynthesis of secondary metabolites” and “Sugar metabolism.” Moreover, the solid fraction
was correlated with “Purine metabolism” and “Biosynthesis of secondary metabolism”. These results suggest that the rumen bacterial community in Japanese Black
beef cattle adapts to changes in rumen conditions by altering their functions in response to a long-term high-grain diet.
Collapse
Affiliation(s)
- Asahi Horinaka
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Iwate 020-8550, Japan
| | - Yo-Han Kim
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Iwate 020-8550, Japan.,Department of Animal Resources Science, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
| | - Atsushi Kimura
- Veterinary Teaching Hospital of Iwate University, Iwate 020-8550, Japan
| | - Eiji Iwamoto
- Hyogo Prefectural Technology Center of Agriculture, Forestry and Fisheries, Hyogo 679-0198, Japan
| | - Tatsunori Masaki
- Hyogo Prefectural Technology Center of Agriculture, Forestry and Fisheries, Hyogo 679-0198, Japan
| | - Toshihiro Ichijo
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Iwate 020-8550, Japan
| | - Shigeru Sato
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Iwate 020-8550, Japan
| |
Collapse
|
8
|
Kristensen SB, Pedersen TB, Nielsen MR, Wimmer R, Muff J, Sørensen JL. Production and Selectivity of Key Fusarubins from Fusarium solani due to Media Composition. Toxins (Basel) 2021; 13:376. [PMID: 34070644 PMCID: PMC8230112 DOI: 10.3390/toxins13060376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 11/21/2022] Open
Abstract
Natural products display a large structural variation and different uses within a broad spectrum of industries. In this study, we investigate the influence of carbohydrates and nitrogen sources on the production and selectivity of production of four different polyketides produced by Fusarium solani, fusarubin, javanicin, bostrycoidin and anhydrofusarubin. We introduce four different carbohydrates and two types of nitrogen sources. Hereafter, a full factorial design was applied using combinations of three levels of sucrose and three levels of the two types of nitrogen. Each combination displayed different selectivity and production yields for all the compounds of interest. Response surface design was utilized to investigate possible maximum yields for the surrounding combinations of media. It was also shown that the maximum yields were not always the ones illustrating high selectivity, which is an important factor for making purification steps easier. We visualized the production over time for one of the media types, illustrating high yields and selectivity.
Collapse
Affiliation(s)
- Sebastian Birkedal Kristensen
- Department of Chemistry and Bioscience, Aalborg University, 6700 Esbjerg, Denmark; (S.B.K.); (T.B.P.); (M.R.N.); (J.M.)
| | - Tobias Bruun Pedersen
- Department of Chemistry and Bioscience, Aalborg University, 6700 Esbjerg, Denmark; (S.B.K.); (T.B.P.); (M.R.N.); (J.M.)
| | - Mikkel Rank Nielsen
- Department of Chemistry and Bioscience, Aalborg University, 6700 Esbjerg, Denmark; (S.B.K.); (T.B.P.); (M.R.N.); (J.M.)
| | - Reinhard Wimmer
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark;
| | - Jens Muff
- Department of Chemistry and Bioscience, Aalborg University, 6700 Esbjerg, Denmark; (S.B.K.); (T.B.P.); (M.R.N.); (J.M.)
| | - Jens Laurids Sørensen
- Department of Chemistry and Bioscience, Aalborg University, 6700 Esbjerg, Denmark; (S.B.K.); (T.B.P.); (M.R.N.); (J.M.)
| |
Collapse
|
9
|
Achimón F, Krapacher CR, Jacquat AG, Pizzolitto RP, Zygadlo JA. Carbon sources to enhance the biosynthesis of useful secondary metabolites in Fusarium verticillioides submerged cultures. World J Microbiol Biotechnol 2021; 37:78. [PMID: 33797632 DOI: 10.1007/s11274-021-03044-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/24/2021] [Indexed: 12/13/2022]
Abstract
Fusarium verticillioides is a prolific producer of useful secondary metabolites such as naphthoquinone pigments, monoterpenes, and sesquiterpenes, as well as the harmful mycotoxins fumonisins. A strategy to increase their production includes creating a proper nutritional environment that enables the fungus to produce the compounds of interest. The aim of the present work was to study the effect of different carbon sources (glucose, fructose, xylose, sucrose, and lactose) on secondary metabolites biosynthesis in F. verticillioides submerged cultures. The production of volatile terpenes was evaluated through gas chromatography coupled to mass spectrometry. The quantification and identification of pigments was conducted using a UV/VIS spectrophotometer and NMR spectrometer, respectively. The quantification of fumonisin B1 and fumonisin B2 was performed by high-performance liquid chromatography. Our results showed that the biosynthesis of naphthoquinone pigments, monoterpenes, and sesquiterpenes was highest in cultures with fructose (13.00 ± 0.71 mmol/g), lactose [564.52 × 10-11 ± 11.50 × 10-11 μg/g dry weight (DW)], and xylose (54.41 × 10-11 ± 1.55 × 10-11 μg/g DW), respectively, with fumonisin being absent or present in trace amounts in the presence of these carbon sources. The highest biosynthesis of fumonisins occurred in sucrose-containing medium (fumonisin B1: 7.85 × 103 ± 0.25 × 103 μg/g DW and fumonisin B2: 0.38 × 103 ± 0.03 × 103 μg/g DW). These results are encouraging since we were able to enhance the production of useful fungal metabolites without co-production with harmful mycotoxins by controlling the carbon source provided in the culture medium.
Collapse
Affiliation(s)
- Fernanda Achimón
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Universidad Nacional de Córdoba, Avenida Vélez Sarsfield 1611, X5016 GCA, Córdoba, Argentina.,Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Avenida Vélez Sarsfield 1611, X5016 GCA, Córdoba, Argentina
| | - Claudio R Krapacher
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Universidad Nacional de Córdoba, Avenida Vélez Sarsfield 1611, X5016 GCA, Córdoba, Argentina.,Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Avenida Vélez Sarsfield 1611, X5016 GCA, Córdoba, Argentina
| | - Andrés G Jacquat
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Universidad Nacional de Córdoba, Avenida Vélez Sarsfield 1611, X5016 GCA, Córdoba, Argentina.,Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Avenida Vélez Sarsfield 1611, X5016 GCA, Córdoba, Argentina
| | - Romina P Pizzolitto
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Universidad Nacional de Córdoba, Avenida Vélez Sarsfield 1611, X5016 GCA, Córdoba, Argentina. .,Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Avenida Vélez Sarsfield 1611, X5016 GCA, Córdoba, Argentina.
| | - Julio A Zygadlo
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Universidad Nacional de Córdoba, Avenida Vélez Sarsfield 1611, X5016 GCA, Córdoba, Argentina.,Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Avenida Vélez Sarsfield 1611, X5016 GCA, Córdoba, Argentina
| |
Collapse
|
10
|
Westphal KR, Heidelbach S, Zeuner EJ, Riisgaard-Jensen M, Nielsen ME, Vestergaard SZ, Bekker NS, Skovmark J, Olesen CK, Thomsen KH, Niebling SK, Sørensen JL, Sondergaard TE. The effects of different potato dextrose agar media on secondary metabolite production in Fusarium. Int J Food Microbiol 2021; 347:109171. [PMID: 33872940 DOI: 10.1016/j.ijfoodmicro.2021.109171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/05/2021] [Accepted: 03/23/2021] [Indexed: 11/16/2022]
Abstract
Potatoes contain several nutrients essential for fungal growth, making them an excellent component of media such as the popular Potato Dextrose Agar (PDA) medium. Commercially, PDA is available from multiple retailers offering virtually the same product. These media, however, could contain small differences in composition of nutrients affecting the expression of secondary metabolites. This study aims to investigate the use of four PDA media from different manufacturers (Fluka, Oxoid, Sigma, and VWR) and their effect on the metabolite profile of four species of Fusarium (F. fujikuroi, F. graminearum, F. pseudograminearum and F. avenaceum). Secondary metabolites were analysed using HPLC-HRMS, from which statistically significant differences in intensities were observed for 9 out of 10 metabolites.
Collapse
Affiliation(s)
- Klaus Ringsborg Westphal
- Aalborg University, Department of Chemistry and Bioscience, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Søren Heidelbach
- Aalborg University, Department of Chemistry and Bioscience, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Emil Juel Zeuner
- Aalborg University, Department of Chemistry and Bioscience, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Marie Riisgaard-Jensen
- Aalborg University, Department of Chemistry and Bioscience, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Morten Eneberg Nielsen
- Aalborg University, Department of Chemistry and Bioscience, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Sofie Zacho Vestergaard
- Aalborg University, Department of Chemistry and Bioscience, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Nicolai Sundgaard Bekker
- Aalborg University, Department of Chemistry and Bioscience, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Jesper Skovmark
- Aalborg University, Department of Chemistry and Bioscience, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Christian Kjær Olesen
- Aalborg University, Department of Chemistry and Bioscience, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Katrine Hartmann Thomsen
- Aalborg University, Department of Chemistry and Bioscience, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Sara Kramer Niebling
- Aalborg University, Department of Chemistry and Bioscience, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Jens Laurids Sørensen
- Aalborg University, Department of Chemistry and Bioscience, Niels Bohrsvej 8, 6700 Esbjerg, Denmark
| | - Teis Esben Sondergaard
- Aalborg University, Department of Chemistry and Bioscience, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark.
| |
Collapse
|
11
|
Damodaran T, Rajan S, Muthukumar M, Ram Gopal, Yadav K, Kumar S, Ahmad I, Kumari N, Mishra VK, Jha SK. Biological Management of Banana Fusarium Wilt Caused by Fusarium oxysporum f. sp. cubense Tropical Race 4 Using Antagonistic Fungal Isolate CSR-T-3 ( Trichoderma reesei). Front Microbiol 2021; 11:595845. [PMID: 33391212 PMCID: PMC7772460 DOI: 10.3389/fmicb.2020.595845] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/26/2020] [Indexed: 12/21/2022] Open
Abstract
Fusarium wilt in bananas is one of the most devastating diseases that poses a serious threat to the banana industry globally. With no effective control measures available to date, biological control has been explored to restrict the spread and manage the outbreak. We studied the effective biological control potential of different Trichoderma spp. in the management of Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4). Expression of the defense related genes and metabolites in banana plants inoculated with Foc TR4 and treated with effective Trichoderma sp interactions were also studied. The in vitro growth inhibition of Foc TR4 by Trichoderma reesei isolate CSR-T-3 was 85.19% indicating a higher antagonistic potential than other Trichoderma isolates used in the study. Further, in in vivo assays, the banana plants treated with the isolate CSR-T-3 T. reesei had a significant reduction in the disease severity index (0.75) and also had increased phenological indices with respect to Foc TR4 treated plants. Enhanced activity of defense enzymes, such as β-1, 3-glucanase, peroxidase, chitinase, polyphenol oxidase, and phenylalanine ammonia lyase with higher phenol contents were found in the Trichoderma isolate CSR-T-3 treated banana plants challenge-inoculated with Foc TR4. Fusarium toxins, such as fusaristatin A, fusarin C, chlamydosporal, and beauveric acid were identified by LC-MS in Foc TR4-infected banana plants while high intensity production of antifungal compounds, such as ß-caryophyllene, catechin-o-gallate, soyasapogenol rhamnosyl glucoronide, peptaibols, fenigycin, iturin C19, anthocyanin, and gallocatechin-o-gallate were detected in T. reesei isolate CSR-T-3 treated plants previously inoculated with Foc TR4. Gene expression analysis indicated the upregulation of TrCBH1/TrCBH2, TrXYL1, TrEGL1, TrTMK1, TrTGA1, and TrVEL1 genes in CSR-T-3 treatment. LC-MS and gene expression analysis could ascertain the upregulation of genes involved in mycoparasitism and the signal transduction pathway leading to secondary metabolite production under CSR-T-3 treatment. The plants in the field study showed a reduced disease severity index (1.14) with high phenological growth and yield indices when treated with T. reesei isolate CSR-T-3 formulation. We report here an effective biocontrol-based management technological transformation from lab to the field for successful control of Fusarium wilt disease caused by Foc TR4 in bananas.
Collapse
Affiliation(s)
- Thukkaram Damodaran
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute, Regional Research Station, Lucknow, India
| | - Shailendra Rajan
- Indian Council of Agricultural Research-Central Institute for Subtropical Horticulture, Lucknow, India
| | - Manoharan Muthukumar
- Indian Council of Agricultural Research-Central Institute for Subtropical Horticulture, Lucknow, India
| | - Ram Gopal
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute, Regional Research Station, Lucknow, India
| | - Kavita Yadav
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute, Regional Research Station, Lucknow, India
| | - Sandeep Kumar
- Indian Council of Agricultural Research-Central Institute for Subtropical Horticulture, Lucknow, India
| | - Israr Ahmad
- Indian Council of Agricultural Research-Central Institute for Subtropical Horticulture, Lucknow, India
| | - Nidhi Kumari
- Indian Council of Agricultural Research-Central Institute for Subtropical Horticulture, Lucknow, India
| | - Vinay K Mishra
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute, Regional Research Station, Lucknow, India
| | - Sunil K Jha
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute, Regional Research Station, Lucknow, India
| |
Collapse
|
12
|
Gautier C, Pinson-Gadais L, Richard-Forget F. Fusarium Mycotoxins Enniatins: An Updated Review of Their Occurrence, the Producing Fusarium Species, and the Abiotic Determinants of Their Accumulation in Crop Harvests. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4788-4798. [PMID: 32243758 DOI: 10.1021/acs.jafc.0c00411] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cereal grains and their processed food products are frequently contaminated with mycotoxins produced by the Fusarium genus. Enniatins (ENNs), which belong to the so-called "emerging mycotoxins" family, are among the most frequently found in small grain cereals. Health hazards induced by a chronic exposure to ENNs or an association of ENNs with other major mycotoxins is a risk that cannot be excluded given the current toxicological data. Thus, efforts must be pursued to define efficient control strategies to mitigate their presence in cereal grains. A key condition for achieving this aim is to gain deep and comprehensive knowledge of the factors promoting the appearance of ENNs in crop harvests. After an update of ENN occurrence data, this review surveys the scientific literature on the Fusarium species responsible for ENN contamination and covers the recent advances concerning the abiotic determinants and the genetic regulation of ENN biosynthesis.
Collapse
Affiliation(s)
- Charlotte Gautier
- INRAE, UR 1264, Unité MycSA, 71 Avenue Edouard Bourlaux, 33883 Villenave d'Ornon, France
| | - Laetitia Pinson-Gadais
- INRAE, UR 1264, Unité MycSA, 71 Avenue Edouard Bourlaux, 33883 Villenave d'Ornon, France
| | | |
Collapse
|
13
|
Westphal KR, Werner MIH, Nielsen KAH, Sørensen JL, Andrushchenko V, Winde J, Hertz M, Jensen MA, Mortensen ML, Bouř P, Sondergaard TE, Wimmer R. Characterization of Eight Novel Spiroleptosphols from Fusarium avenaceum. Molecules 2019; 24:molecules24193498. [PMID: 31561557 PMCID: PMC6804164 DOI: 10.3390/molecules24193498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 01/29/2023] Open
Abstract
Chemical analyses of Fusarium avenaceum grown on banana medium resulted in eight novel spiroleptosphols, T1, T2 and U-Z (1-8). The structures were elucidated by a combination of high-resolution mass spectrometric data and 1- and 2-D NMR experiments. The relative stereochemistry was assigned by 1H coupling and NOESY/ROESY experiments. Absolute stereochemistry established for 7 by vibrational circular dichroism was found analogous to that of the putative polyketide spiroleptosphol from Leptosphaeria doliolum.
Collapse
Affiliation(s)
- Klaus Ringsborg Westphal
- Department of Chemistry and Bioscience-Section for Biotechnology, Aalborg University, Frederik Bajers Vej 7H, 9220 Aalborg Ø, Denmark.
| | - Manuela Ilse Helga Werner
- Department of Chemistry and Bioscience-Section for Biotechnology, Aalborg University, Frederik Bajers Vej 7H, 9220 Aalborg Ø, Denmark.
| | - Katrine Amalie Hamborg Nielsen
- Department of Chemistry and Bioscience-Section for Biotechnology, Aalborg University, Frederik Bajers Vej 7H, 9220 Aalborg Ø, Denmark.
| | - Jens Laurids Sørensen
- Department of Chemistry and Bioscience, Aalborg University, Niels Bohrs Vej 8, 6700 Esbjerg, Denmark.
| | - Valery Andrushchenko
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 542/2, 166 10 Prague 6, Czech Republic.
| | - Jacob Winde
- Department of Chemistry and Bioscience-Section for Biotechnology, Aalborg University, Frederik Bajers Vej 7H, 9220 Aalborg Ø, Denmark.
| | - Morten Hertz
- Department of Chemistry and Bioscience-Section for Biotechnology, Aalborg University, Frederik Bajers Vej 7H, 9220 Aalborg Ø, Denmark.
| | - Mikkel Astrup Jensen
- Department of Chemistry and Bioscience-Section for Biotechnology, Aalborg University, Frederik Bajers Vej 7H, 9220 Aalborg Ø, Denmark.
| | - Mathilde Lauge Mortensen
- Department of Chemistry and Bioscience-Section for Biotechnology, Aalborg University, Frederik Bajers Vej 7H, 9220 Aalborg Ø, Denmark.
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 542/2, 166 10 Prague 6, Czech Republic.
| | - Teis Esben Sondergaard
- Department of Chemistry and Bioscience-Section for Biotechnology, Aalborg University, Frederik Bajers Vej 7H, 9220 Aalborg Ø, Denmark.
| | - Reinhard Wimmer
- Department of Chemistry and Bioscience-Section for Biotechnology, Aalborg University, Frederik Bajers Vej 7H, 9220 Aalborg Ø, Denmark.
| |
Collapse
|
14
|
Westphal KR, Wollenberg RD, Herbst FA, Sørensen JL, Sondergaard TE, Wimmer R. Enhancing the Production of the Fungal Pigment Aurofusarin in Fusarium graminearum. Toxins (Basel) 2018; 10:toxins10110485. [PMID: 30469367 PMCID: PMC6266765 DOI: 10.3390/toxins10110485] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/15/2018] [Accepted: 11/18/2018] [Indexed: 12/19/2022] Open
Abstract
There is an increasing demand for products from natural sources, which includes a growing market for naturally-produced colorants. Filamentous fungi produce a vast number of chemically diverse pigments and are therefore explored as an easily accessible source. In this study we examine the positive regulatory effect of the transcription factor AurR1 on the aurofusarin gene cluster in Fusarium graminearum. Proteomic analyses showed that overexpression of AurR1 resulted in a significant increase of five of the eleven proteins belonging to the aurofusarin biosynthetic pathway. Further, the production of aurofusarin was increased more than threefold in the overexpression mutant compared to the wild type, reaching levels of 270 mg/L. In addition to biosynthesis of aurofusarin, several yet undescribed putative naphthoquinone/anthraquinone analogue compounds were observed in the overexpression mutant. Our results suggest that it is possible to enhance the aurofusarin production through genetic engineering.
Collapse
Affiliation(s)
| | | | | | | | | | - Reinhard Wimmer
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark.
| |
Collapse
|
15
|
Rodrigues JP, Peti APF, Figueiró FS, de Souza Rocha I, Junior VRA, Silva TG, de Melo IS, Behlau F, Moraes LAB. Bioguided isolation, characterization and media optimization for production of Lysolipins by actinomycete as antimicrobial compound against Xanthomonas citri subsp. citri. Mol Biol Rep 2018; 45:2455-2467. [PMID: 30311124 DOI: 10.1007/s11033-018-4411-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/26/2018] [Indexed: 11/28/2022]
Abstract
Citrus Canker disease is one of the most important disease in citrus production worldwide caused by gram-negative bacterial pathogen Xanthomonas citri subsp. citri, leading to great economic losses. Currently, a spray of copper-based bactericides is the primary measure for citrus canker management. However, these measures can lead to the contamination of soil by metal contamination, but also the development of copper-resistant Xanthomonas populations. Considering the need to discovery new alternatives to control the citrus canker disease, actinomycetes isolated from the Brazilian Caatinga biome and their crude extracts were tested against different strains of Xanthomonas citri subsp. citri. Streptomyces sp. Caat 1-54 crude extract showed the highest antibiotic activity against Xcc. The crude extract dereplication was performed by LC-MS/MS. Through bioassay-guided fractionation strategy, the antimicrobial activity was assigned to Lysolipins, showing a MIC around 0.4-0.8 µg/mL. Growth media optimization using statistical experimental design increased the Lysolipins production in three-fold production. The preventive and curative effects of the optimized crude extract obtained by experimental design of Caat-1-54 against citrus canker were evaluated in potted 'Pera' sweet orange nursery trees. Caat 1-54 extract was effective in preventing new infections by Xcc on leaves but was not able to reduce Xcc population in pre-established citrus canker lesions. Streptomyces sp. Caat 1-54 extract is a promising, environmentally-friendly source of antimicrobial compound to protect citrus trees against citrus canker.
Collapse
Affiliation(s)
- Júlia Pereira Rodrigues
- Department of Chemistry, Faculty of Philosophy, Science and Letters, University of São Paulo, Bandeirantes Avenue, 3900, Monte Alegre, Ribeirão Preto, São Paulo, 12040-901, Brazil
| | - Ana Paula Ferranti Peti
- Department of Chemistry, Faculty of Philosophy, Science and Letters, University of São Paulo, Bandeirantes Avenue, 3900, Monte Alegre, Ribeirão Preto, São Paulo, 12040-901, Brazil
| | - Fernanda Salés Figueiró
- Department of Chemistry, Faculty of Philosophy, Science and Letters, University of São Paulo, Bandeirantes Avenue, 3900, Monte Alegre, Ribeirão Preto, São Paulo, 12040-901, Brazil
| | - Izadora de Souza Rocha
- Department of Chemistry, Faculty of Philosophy, Science and Letters, University of São Paulo, Bandeirantes Avenue, 3900, Monte Alegre, Ribeirão Preto, São Paulo, 12040-901, Brazil
| | - Vinicius Ricardo Acquaro Junior
- Department of Chemistry, Faculty of Philosophy, Science and Letters, University of São Paulo, Bandeirantes Avenue, 3900, Monte Alegre, Ribeirão Preto, São Paulo, 12040-901, Brazil
| | | | | | - Franklin Behlau
- FUNDECITRUS, Fundo de Defesa da Citricultura, Araraquara, Brazil
| | - Luiz Alberto Beraldo Moraes
- Department of Chemistry, Faculty of Philosophy, Science and Letters, University of São Paulo, Bandeirantes Avenue, 3900, Monte Alegre, Ribeirão Preto, São Paulo, 12040-901, Brazil.
| |
Collapse
|
16
|
Clark TN, Carroll M, Ellsworth K, Guerrette R, Robichaud GA, Johnson JA, Gray CA. Antibiotic Mycotoxins from an Endophytic Fusarium acuminatum Isolated from the Medicinal Plant Geum macrophyllum. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801301017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
An extract of the endophytic fungus Fusarium acuminatum (TC2-084) isolated from the Canadian medicinal plant Geum macrophyllum exhibited significant antimycobacterial activity against Mycobacterium tuberculosis H37Ra when fermented in both malt extract and potato dextrose broths. However, significant differences observed in the NMR spectra of the respective extracts led us to further investigate both. Bioassay guided fractionation revealed that lateropyrone was solely responsible for the bioactivity observed when TC2-084 was fermented in malt extract broth, while the antimycobacterial activity of the extract derived from the isolate fermented in potato dextrose broth was augmented by the presence of enniatins B, B1, and B4 in addition to lateropyrone.
Collapse
Affiliation(s)
- Trevor N. Clark
- Department of Biological Sciences, University of New Brunswick, 100 Tucker Park Rd, Saint John, NB, E2L 4L5, Canada
| | - Madison Carroll
- Department of Chemistry, University of New Brunswick, 30 Dineen Dr, Fredericton, NB, E3B 5A3, Canada
| | - Katelyn Ellsworth
- Department of Biological Sciences, University of New Brunswick, 100 Tucker Park Rd, Saint John, NB, E2L 4L5, Canada
| | - Roxann Guerrette
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Ave, Moncton, NB, E1A 3E9, Canada
- Atlantic Cancer Research Institute, 35 Providence Ave, Moncton, NB, E1C 8X3, Canada
| | - Gilles A. Robichaud
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Ave, Moncton, NB, E1A 3E9, Canada
- Atlantic Cancer Research Institute, 35 Providence Ave, Moncton, NB, E1C 8X3, Canada
| | - John A. Johnson
- Department of Biological Sciences, University of New Brunswick, 100 Tucker Park Rd, Saint John, NB, E2L 4L5, Canada
| | - Christopher A. Gray
- Department of Biological Sciences, University of New Brunswick, 100 Tucker Park Rd, Saint John, NB, E2L 4L5, Canada
- Department of Chemistry, University of New Brunswick, 30 Dineen Dr, Fredericton, NB, E3B 5A3, Canada
| |
Collapse
|
17
|
Vujanovic V, Kim SH. Adaptability of mitosporic stage in Sphaerodes mycoparasitica towards its mycoparasitic-polyphagous lifestyle. Mycologia 2018; 109:701-709. [PMID: 29336725 DOI: 10.1080/00275514.2017.1400303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sphaerodes mycoparasitica Vuj. is a Fusarium-specific mycoparasite. Some recent discoveries recognize its biotrophic polyphagous lifestyle as an interesting biocontrol property against a broad spectrum of mycotoxigenic Fusarium hosts. Secondary metabolites such as mycotoxins produced by Fusarium spp. may play an important role in the signaling process, allowing an early mycoparasite-host recognition. A multiple-paper-disc assay has been conducted to test S. mycoparasitica hyphal adaptability to filtrates of 12 Fusarium spp. This study shows that shifts of adapted and nonadapted hyphal migration towards different Fusarium-host filtrates may partly explain S. mycoparasitica polyphagous lifestyle, and its adaptability depending on host preference or compatibility. In terms of host compatibility, the current findings suggest that S. mycoparasitica tends to prefer native Fusarium hosts more related to its origin and propose that the mycoparasite could possess diphasic interactions such as biotrophic-attraction and antagonistic-inhibition relationships based on relative radial growth. This implies that the mycoparasite may use a group of mycotoxins produced by specific Fusarium spp. as an adaptive selective mechanism that facilitates a parasite-host recognition and further successful mycoparasitism. In particular, relative polarity or hydrophilicity/hydrophobicity of mycotoxins may be related to solubility and absorption properties in hyphae of the mycoparasite. Taken together, the studies of host compatibility and adaptability depending on host filtrates will aid in understanding complex mechanisms of S. mycoparasitica, as a promising model organism for a specific biotrophic mycoparasite to enhance and improve biocontrol efficacy against Fusaria.
Collapse
Affiliation(s)
- Vladimir Vujanovic
- a Department of Food and Bioproduct Sciences , University of Saskatchewan , 51 Campus Drive, Saskatoon , SK S7N 5A8 , Canada
| | - Seon Hwa Kim
- a Department of Food and Bioproduct Sciences , University of Saskatchewan , 51 Campus Drive, Saskatoon , SK S7N 5A8 , Canada
| |
Collapse
|
18
|
Hertz M, Jensen IR, Jensen LØ, Thomsen SN, Winde J, Dueholm MS, Sørensen LH, Wollenberg RD, Sørensen HO, Sondergaard TE, Sørensen JL. The fungal community changes over time in developing wheat heads. Int J Food Microbiol 2016; 222:30-9. [DOI: 10.1016/j.ijfoodmicro.2016.01.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/14/2016] [Accepted: 01/24/2016] [Indexed: 10/22/2022]
|
19
|
Dresch P, D´Aguanno MN, Rosam K, Grienke U, Rollinger JM, Peintner U. Fungal strain matters: colony growth and bioactivity of the European medicinal polypores Fomes fomentarius, Fomitopsis pinicola and Piptoporus betulinus.. AMB Express 2015; 5:4. [PMID: 25642401 PMCID: PMC4305089 DOI: 10.1186/s13568-014-0093-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 12/27/2014] [Indexed: 11/10/2022] Open
Abstract
Polypores have been applied in traditional Chinese medicine up to the present day, and are becoming more and more popular worldwide. They show a wide range of bioactivities including anti-cancer, anti-inflammatory, antiviral and immuno-enhancing effects. Their secondary metabolites have been the focus of many studies, but the importance of fungal strain for bioactivity and metabolite production has not been investigated so far for these Basidiomycetes. Therefore, we screened several strains from three medicinal polypore species from traditional European medicine: Fomes fomentarius, Fomitopsis pinicola and Piptoporus betulinus. A total of 22 strains were compared concerning their growth rates, optimum growth temperatures, as well as antimicrobial and antifungal properties of ethanolic fruit body extracts. The morphological identification of strains was confirmed based on rDNA ITS phylogenetic analyses. Our results showed that species delimitation is critical due to the presence of several distinct lineages, e.g. within the Fomes fomentarius species complex. Fungal strains within one lineage showed distinct differences in optimum growth temperatures, in secondary metabolite production, and accordingly, in their bioactivities. In general, F. pinicola and P. betulinus extracts exerted distinct antibiotic activities against Bacillus subtilis and Staphylococcus aureus at minimum inhibitory concentrations (MIC) ranging from 31-125 μg mL−1; The antifungal activities of all three polypores against Aspergillus flavus, A. fumigatus, Absidia orchidis and Candida krusei were often strain-specific, ranging from 125-1000 μg mL−1. Our results highlight that a reliable species identification, followed by an extensive screening for a ‘best strain’ is an essential prerequisite for the proper identification of bioactive material.
Collapse
|
20
|
Hegge A, Lønborg R, Nielsen DM, Sørensen JL. Factors Influencing Production of Fusaristatin A in Fusarium graminearum. Metabolites 2015; 5:184-91. [PMID: 25838075 PMCID: PMC4495368 DOI: 10.3390/metabo5020184] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 02/27/2015] [Accepted: 03/16/2015] [Indexed: 01/11/2023] Open
Abstract
Fusarium graminearum is a ubiquitous plant pathogen, which is able to produce several bioactive secondary metabolites. Recently, the cyclic lipopeptide fusaristatin A was isolated from this species and the biosynthetic gene cluster identified. Fusaristatin A consists of a C24 reduced polyketide and the three amino acids dehydroalanine, β-aminoisobutyric acid and glutamine and is biosynthesized by a collaboration of a polyketide synthase and a nonribosomal peptide synthetase. To gain insight into the environmental factors, which controls the production of fusaristatin A, we cultivated F. graminearum under various conditions. We developed an LC-MS/MS method to quantify fusaristatin A in F. graminearum extracts. The results showed that yeast extract sucrose (YES) medium was the best medium for fusaristatin A production and that the optimal pH was 7.5 and temperature 25–30 °C. Furthermore, production of fusaristatin A was more than four times higher in stationary cultures than in agitated cultures when F. graminearum was grown in liquid YES medium. The results also showed that fusaristatin A was only present in the mycelium and not in the liquid, which suggests that fusaristatin A is stored intracellulally and not exported to the extracellular environment.
Collapse
Affiliation(s)
- Anne Hegge
- Department of Chemistry and Bioscience, Aalborg University Esbjerg, Niels Bohrs Vej 8, 6700 Esbjerg, Denmark.
| | - Rikke Lønborg
- Department of Chemistry and Bioscience, Aalborg University Esbjerg, Niels Bohrs Vej 8, 6700 Esbjerg, Denmark.
| | - Ditte Møller Nielsen
- Department of Chemistry and Bioscience, Aalborg University Esbjerg, Niels Bohrs Vej 8, 6700 Esbjerg, Denmark.
| | - Jens Laurids Sørensen
- Department of Chemistry and Bioscience, Aalborg University Esbjerg, Niels Bohrs Vej 8, 6700 Esbjerg, Denmark.
| |
Collapse
|
21
|
An update to polyketide synthase and non-ribosomal synthetase genes and nomenclature in Fusarium. Fungal Genet Biol 2015; 75:20-9. [DOI: 10.1016/j.fgb.2014.12.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 12/15/2014] [Accepted: 12/17/2014] [Indexed: 12/21/2022]
|
22
|
Optimization of cultivation medium and fermentation parameters for lincomycin production by Streptomyces lincolnensis. BIOTECHNOL BIOPROC E 2015. [DOI: 10.1007/s12257-014-0280-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Lysøe E, Harris LJ, Walkowiak S, Subramaniam R, Divon HH, Riiser ES, Llorens C, Gabaldón T, Kistler HC, Jonkers W, Kolseth AK, Nielsen KF, Thrane U, Frandsen RJN. The genome of the generalist plant pathogen Fusarium avenaceum is enriched with genes involved in redox, signaling and secondary metabolism. PLoS One 2014; 9:e112703. [PMID: 25409087 PMCID: PMC4237347 DOI: 10.1371/journal.pone.0112703] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 10/13/2014] [Indexed: 12/03/2022] Open
Abstract
Fusarium avenaceum is a fungus commonly isolated from soil and associated with a wide range of host plants. We present here three genome sequences of F. avenaceum, one isolated from barley in Finland and two from spring and winter wheat in Canada. The sizes of the three genomes range from 41.6–43.1 MB, with 13217–13445 predicted protein-coding genes. Whole-genome analysis showed that the three genomes are highly syntenic, and share>95% gene orthologs. Comparative analysis to other sequenced Fusaria shows that F. avenaceum has a very large potential for producing secondary metabolites, with between 75 and 80 key enzymes belonging to the polyketide, non-ribosomal peptide, terpene, alkaloid and indole-diterpene synthase classes. In addition to known metabolites from F. avenaceum, fuscofusarin and JM-47 were detected for the first time in this species. Many protein families are expanded in F. avenaceum, such as transcription factors, and proteins involved in redox reactions and signal transduction, suggesting evolutionary adaptation to a diverse and cosmopolitan ecology. We found that 20% of all predicted proteins were considered to be secreted, supporting a life in the extracellular space during interaction with plant hosts.
Collapse
Affiliation(s)
- Erik Lysøe
- Department of Plant Health and Plant Protection, Bioforsk - Norwegian Institute of Agricultural and Environmental Research, Ås, Norway
- * E-mail:
| | - Linda J. Harris
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa, Canada
| | - Sean Walkowiak
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| | - Rajagopal Subramaniam
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| | - Hege H. Divon
- Section of Mycology, Norwegian Veterinary Institute, Oslo, Norway
| | - Even S. Riiser
- Department of Plant Health and Plant Protection, Bioforsk - Norwegian Institute of Agricultural and Environmental Research, Ås, Norway
| | | | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - H. Corby Kistler
- ARS-USDA, Cereal Disease Laboratory, St. Paul, Minnesota, United States of America
| | - Wilfried Jonkers
- ARS-USDA, Cereal Disease Laboratory, St. Paul, Minnesota, United States of America
| | - Anna-Karin Kolseth
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Kristian F. Nielsen
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Ulf Thrane
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | | |
Collapse
|
24
|
Sørensen LQ, Lysøe E, Larsen JE, Khorsand-Jamal P, Nielsen KF, Frandsen RJN. Genetic transformation of Fusarium avenaceum by Agrobacterium tumefaciens mediated transformation and the development of a USER-Brick vector construction system. BMC Mol Biol 2014; 15:15. [PMID: 25048842 PMCID: PMC4133957 DOI: 10.1186/1471-2199-15-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/04/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The plant pathogenic and saprophytic fungus Fusarium avenaceum causes considerable in-field and post-field losses worldwide due to its infections of a wide range of different crops. Despite its significant impact on the profitability of agriculture production and a desire to characterize the infection process at the molecular biological level, no genetic transformation protocol has yet been established for F. avenaceum. In the current study, it is shown that F. avenaceum can be efficiently transformed by Agrobacterium tumefaciens mediated transformation. In addition, an efficient and versatile single step vector construction strategy relying on Uracil Specific Excision Reagent (USER) Fusion cloning, is developed. RESULTS The new vector construction system, termed USER-Brick, is based on a limited number of PCR amplified vector fragments (core USER-Bricks) which are combined with PCR generated fragments from the gene of interest. The system was found to have an assembly efficiency of 97% with up to six DNA fragments, based on the construction of 55 vectors targeting different polyketide synthase (PKS) and PKS associated transcription factor encoding genes in F. avenaceum. Subsequently, the ΔFaPKS3 vector was used for optimizing A. tumefaciens mediated transformation (ATMT) of F. avenaceum with respect to six variables. Acetosyringone concentration, co-culturing time, co-culturing temperature and fungal inoculum were found to significantly impact the transformation frequency. Following optimization, an average of 140 transformants per 106 macroconidia was obtained in experiments aimed at introducing targeted genome modifications. Targeted deletion of FaPKS6 (FA08709.2) in F. avenaceum showed that this gene is essential for biosynthesis of the polyketide/nonribosomal compound fusaristatin A. CONCLUSION The new USER-Brick system is highly versatile by allowing for the reuse of a common set of building blocks to accommodate seven different types of genome modifications. New USER-Bricks with additional functionality can easily be added to the system by future users. The optimized protocol for ATMT of F. avenaceum represents the first reported targeted genome modification by double homologous recombination of this plant pathogen and will allow for future characterization of this fungus. Functional linkage of FaPKS6 to the production of the mycotoxin fusaristatin A serves as a first testimony to this.
Collapse
Affiliation(s)
| | | | | | | | | | - Rasmus John Normand Frandsen
- Eukaryotic Molecular Cell Biology Group, Department of Systems Biology, The Technical University of Denmark, Søltofts Plads building 223, DK-2800 Kgs,, Lyngby, Denmark.
| |
Collapse
|
25
|
Wang C, Li C, Li B, Li G, Dong X, Wang G, Zhang Q. Toxins produced by Valsa mali var. mali and their relationship with pathogenicity. Toxins (Basel) 2014; 6:1139-54. [PMID: 24662481 PMCID: PMC3968381 DOI: 10.3390/toxins6031139] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/11/2014] [Accepted: 03/12/2014] [Indexed: 12/31/2022] Open
Abstract
Valsa mali var. mali (Vmm), the causal agent of apple tree canker disease, produces various toxic compounds, including protocatechuic acid, p-hydroxybenzoic acid, p-hydroxyacetophenone, 3-(p-hydroxyphenyl)propanoic acid and phloroglucinol. Here, we examined the relationship between toxin production and the pathogenicity of Vmm strains and determined their bioactivities in several assays, for further elucidating the pathogenesis mechanisms of Vmm and for developing new procedures to control this disease. The toxins were quantified with the high performance liquid chromatography (HPLC) method, and the results showed that the strain with attenuated virulence produced low levels of toxins with only three to four kinds of compounds being detectable. In contrast, higher amounts of toxins were produced by the more aggressive strain, and all five compounds were detected. This indicated a significant correlation between the pathogenicity of Vmm strains and their ability to produce toxins. However, this correlation only existed in planta, but not in vitro. During the infection of Vmm, protocatechuic acid was first detected at three days post inoculation (dpi), and the others at seven or 11 dpi. In addition, all compounds produced noticeable symptoms on host plants at concentrations of 2.5 to 40 mmol/L, with protocatechuic acid being the most effective compound, whereas 3-(p-hydroxyphenyl)propanoic acid or p-hydroxybenzoic acid were the most active compounds on non-host plants.
Collapse
Affiliation(s)
- Caixia Wang
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao 266109, China.
| | - Chao Li
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao 266109, China.
| | - Baohua Li
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao 266109, China.
| | - Guifang Li
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao 266109, China.
| | - Xiangli Dong
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao 266109, China.
| | - Guoping Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Qingming Zhang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
26
|
The effects of different yeast extracts on secondary metabolite production in Fusarium. Int J Food Microbiol 2014; 170:55-60. [DOI: 10.1016/j.ijfoodmicro.2013.10.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/22/2013] [Accepted: 10/28/2013] [Indexed: 01/13/2023]
|