1
|
Camargo A, Ramírez JD, Kiu R, Hall LJ, Muñoz M. Unveiling the pathogenic mechanisms of Clostridium perfringens toxins and virulence factors. Emerg Microbes Infect 2024; 13:2341968. [PMID: 38590276 PMCID: PMC11057404 DOI: 10.1080/22221751.2024.2341968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/06/2024] [Indexed: 04/10/2024]
Abstract
Clostridium perfringens causes multiple diseases in humans and animals. Its pathogenic effect is supported by a broad and heterogeneous arsenal of toxins and other virulence factors associated with a specific host tropism. Molecular approaches have indicated that most C. perfringens toxins produce membrane pores, leading to osmotic cell disruption and apoptosis. However, identifying mechanisms involved in cell tropism and selective toxicity effects should be studied more. The differential presence and polymorphisms of toxin-encoding genes and genes encoding other virulence factors suggest that molecular mechanisms might exist associated with host preference, receptor binding, and impact on the host; however, this information has not been reviewed in detail. Therefore, this review aims to clarify the current state of knowledge on the structural features and mechanisms of action of the major toxins and virulence factors of C. perfringens and discuss the impact of genetic diversity of toxinotypes in tropism for several hosts.
Collapse
Affiliation(s)
- Anny Camargo
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Health Sciences Faculty, Universidad de Boyacá, Tunja, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raymond Kiu
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Lindsay J. Hall
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Instituto de Biotecnología-UN (IBUN), Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
2
|
Yue N, Huang J, Dong M, Li J, Gao S, Wang J, Wang Y, Li D, Luo X, Liu T, Han S, Dong L, Chen M, Wang J, Xu N, Kang L, Xin W. Proteome and Phosphoproteome Profiling Reveal the Toxic Mechanism of Clostridium perfringens Epsilon Toxin in MDCK Cells. Toxins (Basel) 2024; 16:394. [PMID: 39330852 PMCID: PMC11435651 DOI: 10.3390/toxins16090394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Epsilon toxin (ETX), a potential agent of biological and toxic warfare, causes the death of many ruminants and threatens human health. It is crucial to understand the toxic mechanism of such a highly lethal and rapid course toxin. In this study, we detected the effects of ETX on the proteome and phosphoproteome of MDCK cells after 10 min and 30 min. A total of 44 differentially expressed proteins (DEPs) and 588 differentially phosphorylated proteins (DPPs) were screened in the 10 min group, while 73 DEPs and 489 DPPs were screened in the 30 min group. ETX-induced proteins and phosphorylated proteins were mainly located in the nucleus, cytoplasm, and mitochondria, and their enrichment pathways were related to transcription and translation, virus infection, and intercellular junction. Meanwhile, the protein-protein interaction network screened out several hub proteins, including SRSF1/2/6/7/11, SF3B1/2, NOP14/56, ANLN, GTPBP4, THOC2, and RRP1B. Almost all of these proteins were present in the spliceosome pathway, indicating that the spliceosome pathway is involved in ETX-induced cell death. Next, we used RNAi lentiviruses and inhibitors of several key proteins to verify whether these proteins play a critical role. The results confirmed that SRSF1, SF3B2, and THOC2 were the key proteins involved in the cytotoxic effect of ETX. In addition, we found that the common upstream kinase of these key proteins was SRPK1, and a reduction in the level of SRPK1 could also reduce ETX-induced cell death. This result was consistent with the phosphorylated proteomics analysis. In summary, our study demonstrated that ETX induces phosphorylation of SRSF1, SF3B2, THOC2, and SRPK1 proteins on the spliceosome pathway, which inhibits normal splicing of mRNA and leads to cell death.
Collapse
Affiliation(s)
- Nan Yue
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | - Jing Huang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100020, China
| | - Mingxin Dong
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun 130122, China
| | - Jiaxin Li
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | - Shan Gao
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | - Jing Wang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | | | - Dongxue Li
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | - Xi Luo
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | - Tingting Liu
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | - Songyang Han
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | - Lina Dong
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | - Ming Chen
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | - Jinglin Wang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | - Na Xu
- Academic Affairs Office, Jilin Medical University, Jilin 132013, China
| | - Lin Kang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| | - Wenwen Xin
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China
| |
Collapse
|
3
|
Huss A, Bachhuber F, Feraudet-Tarisse C, Hiergeist A, Tumani H. Multiple Sclerosis and Clostridium perfringens Epsilon Toxin: Is There a Relationship? Biomedicines 2024; 12:1392. [PMID: 39061966 PMCID: PMC11274216 DOI: 10.3390/biomedicines12071392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Recent research has suggested a link between multiple sclerosis and the gut microbiota. This prospective pilot study aimed to investigate the composition of the gut microbiota in MS patients, the presence of Clostridium perfringens epsilon toxin in the serum of MS patients, and the influence of disease-modifying drugs (DMDs) on epsilon toxin levels and on the microbiota. Epsilon toxin levels in blood were investigated by two methods, a qualitative ELISA and a highly sensitive quantitative ELISA. Neither epsilon toxin nor antibodies against it were detected in the analyzed serum samples. 16S ribosomal RNA sequencing was applied to obtain insights into the composition of the gut microbiota of MS patients. No significant differences in the quantity, diversity, and the relative abundance of fecal microbiota were observed in the gut microbiota of MS patients receiving various DMDs, including teriflunomide, natalizumab, ocrelizumab, and fingolimod, or no therapy. The present study did not provide evidence supporting the hypothesis of a causal relationship between Clostridium perfringens epsilon toxin and multiple sclerosis.
Collapse
Affiliation(s)
- André Huss
- Department of Neurology, University Hospital Ulm, 89081 Ulm, Germany; (A.H.); (F.B.)
| | - Franziska Bachhuber
- Department of Neurology, University Hospital Ulm, 89081 Ulm, Germany; (A.H.); (F.B.)
| | - Cécile Feraudet-Tarisse
- CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, Paris-Saclay University, 91191 Gif-sur-Yvette, France
| | - Andreas Hiergeist
- Institute of Clinical Microbiology and Hygiene, University Medical Center, 93053 Regensburg, Germany
| | - Hayrettin Tumani
- Department of Neurology, University Hospital Ulm, 89081 Ulm, Germany; (A.H.); (F.B.)
| |
Collapse
|
4
|
Sakaguchi Y, Kobayashi K, Takehara M, Nagahama M. Clostridium perfringens epsilon-toxin requires acid sphingomyelinase for cellular entry. Anaerobe 2023; 82:102753. [PMID: 37308057 DOI: 10.1016/j.anaerobe.2023.102753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
OBJECTIVES Clostridium perfringens epsilon-toxin is considered to be a crucial agent in enterotoxemia in domestic animals. Epsilon-toxin enters host cells via endocytosis and results in the formation of late endosome/lysosome-derived vacuoles. In the present study, we found that acid sphingomyelinase promotes the internalization of epsilon-toxin in MDCK cells. METHODS We measured the extracellular release of acid sphingomyelinase (ASMase) by epsilon-toxin. We examined the role of ASMase in epsilon-toxin-induced cytotoxicity using selective inhibitors and knockdown of ASMase. Production of ceramide after toxin treatment was determined by immunofluorescence technique. RESULTS Blocking agents of ASMase and exocytosis of lysosomes inhibited this epsilon-toxin-induced vacuole formation. Lysosomal ASMase was liberated to extracellular space during treatment of the cells with epsilon-toxin in the presence of Ca2+. RNAi-mediated attenuation of ASMase blocked epsilon-toxin-induced vacuolation. Moreover, incubation of MDCK cells with epsilon-toxin led to production of ceramide. The ceramide colocalized with lipid raft-binding cholera toxin subunit B (CTB) in the cell membrane, indicating that conversion of lipid raft associated sphingomyelin to ceramide by ASMase facilitates lesion of MDCK cells and internalization of epsilon-toxin. CONCLUSIONS Based on the present results, ASMase is required for efficient internalization of epsilon-toxin.
Collapse
Affiliation(s)
- Yoshihiko Sakaguchi
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho 180, Tokushima, 770-8514, Japan
| | - Keiko Kobayashi
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho 180, Tokushima, 770-8514, Japan
| | - Masaya Takehara
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho 180, Tokushima, 770-8514, Japan
| | - Masahiro Nagahama
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho 180, Tokushima, 770-8514, Japan.
| |
Collapse
|
5
|
Watier-Grillot S, Larréché S, Mazuet C, Baudouin F, Feraudet-Tarisse C, Holterbach L, Dia A, Tong C, Bourget L, Hery S, Pottier E, Bouilland O, Tanti M, Merens A, Simon S, Diancourt L, Chesnay A, Pommier de Santi V. From Foodborne Disease Outbreak (FBDO) to Investigation: The Plant Toxin Trap, Brittany, France, 2018. Toxins (Basel) 2023; 15:457. [PMID: 37505726 PMCID: PMC10467087 DOI: 10.3390/toxins15070457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/28/2023] [Accepted: 07/07/2023] [Indexed: 07/29/2023] Open
Abstract
On 6 July 2018, the Center for Epidemiology and Public Health of the French Armed Forces was informed of an outbreak of acute gastroenteritis among customers of a dining facility at a military base in Brittany, France. A total of 200 patients were reported out of a population of 1700 (attack rate: 12%). The symptoms were mainly lower digestive tract disorders and occurred rapidly after lunch on 5 July (median incubation period: 3.3 h), suggesting a toxin-like pathogenic process. A case-control survey was carried out (92 cases and 113 controls). Statistical analysis pointed to the chili con carne served at lunch on 5 July as the very likely source of poisoning. Phytohaemagglutinin, a plant lectin, was found in the chili con carne at a concentration above the potentially toxic dose (400 HAU/gram). The raw kidney beans incorporated in the chili con carne presented a high haemagglutination activity (66,667 HAU/gram). They were undercooked, and the phytohaemagglutinin was not completely destroyed. FBDOs due to PHA are poorly documented. This study highlights the need to develop methods for routine testing of plant toxins in food matrices. Improved diagnostic capabilities would likely lead to better documentation, epidemiology, and prevention of food-borne illnesses caused by plant toxins.
Collapse
Affiliation(s)
- Stéphanie Watier-Grillot
- French Armed Forces Centre for Epidemiology and Public Health (CESPA), 13014 Marseille, France; (L.H.); (A.D.); (C.T.); (M.T.); (V.P.d.S.)
| | - Sébastien Larréché
- Bégin Military Teaching Hospital, 94160 Saint-Mandé, France; (S.L.); (A.M.)
- Inserm, UMR-S1144, France & Paris Cité University, 75006 Paris, France
| | - Christelle Mazuet
- National Reference Centre for Anaerobic Bacteria and Botulism, Institut Pasteur, Paris Cité University, CEDEX 15, 75724 Paris, France; (C.M.); (L.D.)
| | | | - Cécile Feraudet-Tarisse
- Department of Medications and Healthcare Technologies (DMTS), Paris-Saclay University, CEA, INRAE, SPI, 91190 Gif-sur-Yvette, France; (C.F.-T.); (S.S.)
| | - Lise Holterbach
- French Armed Forces Centre for Epidemiology and Public Health (CESPA), 13014 Marseille, France; (L.H.); (A.D.); (C.T.); (M.T.); (V.P.d.S.)
| | - Aïssata Dia
- French Armed Forces Centre for Epidemiology and Public Health (CESPA), 13014 Marseille, France; (L.H.); (A.D.); (C.T.); (M.T.); (V.P.d.S.)
| | - Christelle Tong
- French Armed Forces Centre for Epidemiology and Public Health (CESPA), 13014 Marseille, France; (L.H.); (A.D.); (C.T.); (M.T.); (V.P.d.S.)
| | - Laure Bourget
- Laboratory of the French Armed Forces Commissariat, 49130 Les Ponts-de-Cé, France; (L.B.); (A.C.)
| | - Sophie Hery
- Naval Group, Department of Occupational Health, 29200 Brest, France;
| | - Emmanuel Pottier
- Brest Arsenal Medical Center, 29200 Brest, France; (E.P.); (O.B.)
| | | | - Marc Tanti
- French Armed Forces Centre for Epidemiology and Public Health (CESPA), 13014 Marseille, France; (L.H.); (A.D.); (C.T.); (M.T.); (V.P.d.S.)
| | - Audrey Merens
- Bégin Military Teaching Hospital, 94160 Saint-Mandé, France; (S.L.); (A.M.)
- Inserm, UMR-S1144, France & Paris Cité University, 75006 Paris, France
| | - Stéphanie Simon
- Department of Medications and Healthcare Technologies (DMTS), Paris-Saclay University, CEA, INRAE, SPI, 91190 Gif-sur-Yvette, France; (C.F.-T.); (S.S.)
| | - Laure Diancourt
- National Reference Centre for Anaerobic Bacteria and Botulism, Institut Pasteur, Paris Cité University, CEDEX 15, 75724 Paris, France; (C.M.); (L.D.)
| | - Aurélie Chesnay
- Laboratory of the French Armed Forces Commissariat, 49130 Les Ponts-de-Cé, France; (L.B.); (A.C.)
| | - Vincent Pommier de Santi
- French Armed Forces Centre for Epidemiology and Public Health (CESPA), 13014 Marseille, France; (L.H.); (A.D.); (C.T.); (M.T.); (V.P.d.S.)
- Vectors–Tropical and Mediterranean Infections Joint Research Unit (VITROME), Aix-Marseille University, 13005 Marseille, France
| |
Collapse
|
6
|
Noruzy Moghadam H, Hemmaty M, Farzin HR, Jamshidian Mojaver M, Jandaghi H, Majidi B. Use of Esienia fetida Worms to Produce Peptone for Clostridium perfringens Vaccine Production. ARCHIVES OF RAZI INSTITUTE 2023; 78:1041-1047. [PMID: 38028845 PMCID: PMC10657954 DOI: 10.22092/ari.2023.361078.2627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/05/2023] [Indexed: 12/01/2023]
Abstract
Concurrent with an increase in the human population on the earth, more than ever, the creation of energy and maintenance of health is necessary, and nowadays, various sources of energy supply are being developed. The general global view in this regard is to provide protein and energy from available and cheap sources. Iran is no exception to this general rule, only in the field of ensuring the health of livestock resources every year, about 10 tons of peptone is needed for producing clostridial vaccines. Vermicomposting worms (Esienia fetida) with high protein percentages and rapid reproductions are a suitable source for peptone production. Based on this, the vaccine strain of Clostridium perfringens type D cultivated in two different media contain peptone produced from worms and meat peptone. The growth rate, epsilon toxin (ETX), and alpha toxin (CPA) of Cl. perfringens have been compared in two media. The results showed that the growth rate of bacteria in the worm peptone medium in 48 h was 22% higher than that of the meat peptone. Additionally, the activity of alpha toxin (phospholipase C) was in worm peptone 15% higher than meat peptone during 80 min of measurement. Regarding epsilon toxin lethality, all three mice of the N-worm peptone group died, while all three mice of the meat peptone group survived even 72 h after injection. The average survival time of mice in the N-worm peptone group was 1700 min. Therefore, we suggest the worms' protein is more suitable than industrial meat in peptone production for vicinal propose. To eliminate the need for hydrolyzed protein in the production of vaccines in the future, we suggest an increase in the fields of employment and the development of fertilizer and worm farms in Iran.
Collapse
Affiliation(s)
- H Noruzy Moghadam
- Mashhad Branch, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Mashhad, Iran
| | - M Hemmaty
- Mashhad Branch, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Mashhad, Iran
| | - H R Farzin
- Mashhad Branch, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Mashhad, Iran
| | - M Jamshidian Mojaver
- Mashhad Branch, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Mashhad, Iran
| | - H Jandaghi
- Mashhad Branch, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Mashhad, Iran
| | - B Majidi
- Mashhad Branch, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Mashhad, Iran
| |
Collapse
|
7
|
Pudineh Moarref M, Alimolaei M, Emami T, Koohi MK. Development and evaluation of cell membrane-based biomimetic nanoparticles loaded by Clostridium perfringens epsilon toxin: a novel vaccine delivery platform for Clostridial-associated diseases. Nanotoxicology 2023; 17:420-431. [PMID: 37695263 DOI: 10.1080/17435390.2023.2252899] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 09/12/2023]
Abstract
As Clostridium perfringens (C. perfringens) epsilon toxin (ETX) ranks as the third most potent clostridial toxin after botulinum and tetanus toxins, vaccination is necessary for creatures that can be affected by it to be safe from the effects of this toxin. Nowadays, nanostructures are good choices for carriers for biological environments. We aimed to synthesize biomimetic biodegradable nanodevices to enhance the efficiency of the ETX vaccine. For this purpose, poly(lactic-co-glycolic acid) (PLGA) copolymer loaded with purified epsilon protoxin (proETX) to create nanoparticles called nanotoxins (NTs) and then coated by RBC membrane-derived vesicles (RVs) to form epsilon nanotoxoids (RV-NTs). The resulting RV-NTs shaped smooth spherical surfaces with double-layer core/shell structure with an average particle size of 105.9 ± 35.1 nm and encapsulation efficiency of 97.5% ± 0.13%. Compared with NTs, the RV-NTs were more stable for 15 consecutive days. In addition, although both structures showed a long-term cumulative release, the release rates from RV-NTs were slower than NTs during 144 hours. According to the results of cell viability, ETX loading in PLGA and entrapment in the RBC membrane decreased the toxicity of the toxin. The presence of PLGA enhances the uptake of proETX, and the synthesized structures showed no significant lesion after injection. These results demonstrate that NTs and RV-NTs could serve as an effective vaccine platform to deliver ETX for future in vivo assays.
Collapse
Affiliation(s)
- Mokarameh Pudineh Moarref
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mojtaba Alimolaei
- Research and Development Department, Kerman Branch, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Kerman, Iran
| | - Tara Emami
- Department of Proteomics and Biochemistry, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohammad Kazem Koohi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
8
|
Grenda T, Jarosz A, Sapała M, Grenda A, Patyra E, Kwiatek K. Clostridium perfringens-Opportunistic Foodborne Pathogen, Its Diversity and Epidemiological Significance. Pathogens 2023; 12:768. [PMID: 37375458 DOI: 10.3390/pathogens12060768] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
The C. perfringens species is associated with various environments, such as soils, sewage, and food. However, it is also a component of the gastrointestinal (GI) microflora (i.e., microbiota) of sick and healthy humans and animals. C. perfringens is linked with different systemic and enteric diseases in livestock and humans, such as gas gangrene, food poisoning, non-foodborne diarrhoea, and enterocolitis. The strains of this opportunistic pathogen are known to secrete over 20 identified toxins that are considered its principal virulence factors. C. perfringens belongs to the anaerobic bacteria community but can also survive in the presence of oxygen. The short time between generations, the multi-production capability of toxins and heat-resistant spores, the location of many virulence genes on mobile genetic elements, and the inhabitance of this opportunistic pathogen in different ecological niches make C. perfringens a very important microorganism for public health protection. The epidemiological evidence for the association of these strains with C. perfringens-meditated food poisoning and some cases of non-foodborne diseases is very clear and well-documented. However, the genetic diversity and physiology of C. perfringens should still be studied in order to confirm the importance of suspected novel virulence traits. A very significant problem is the growing antibiotic resistance of C. perfringens strains. The aim of this review is to show the current basic information about the toxins, epidemiology, and genetic and molecular diversity of this opportunistic pathogen.
Collapse
Affiliation(s)
- Tomasz Grenda
- Department of Hygiene of Animal Feeding Stuffs, National Veterinary Research Institute in Pulawy, Partyzantow 57, 24-100 Pulawy, Poland
| | - Aleksandra Jarosz
- Department of Hygiene of Animal Feeding Stuffs, National Veterinary Research Institute in Pulawy, Partyzantow 57, 24-100 Pulawy, Poland
| | - Magdalena Sapała
- Department of Hygiene of Animal Feeding Stuffs, National Veterinary Research Institute in Pulawy, Partyzantow 57, 24-100 Pulawy, Poland
| | - Anna Grenda
- Department of Pneumonology, Oncology and Allergology, Medical University in Lublin, Jaczewskiego 8, 20-950 Lublin, Poland
| | - Ewelina Patyra
- Department of Hygiene of Animal Feeding Stuffs, National Veterinary Research Institute in Pulawy, Partyzantow 57, 24-100 Pulawy, Poland
| | - Krzysztof Kwiatek
- Department of Hygiene of Animal Feeding Stuffs, National Veterinary Research Institute in Pulawy, Partyzantow 57, 24-100 Pulawy, Poland
| |
Collapse
|
9
|
Shafiei N, Mahmoodzadeh Hosseini H, Amani J, Mirhosseini SA, Jafary H. Screening and Identification of DNA Nanostructure Aptamer Using the SELEX Method for Detection of Epsilon Toxin. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2023; 22:e140505. [PMID: 38444705 PMCID: PMC10912870 DOI: 10.5812/ijpr-140505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 03/07/2024]
Abstract
Background Epsilon toxin (ETX), produced by Clostridium perfringens, is one of the most potent toxins known, with a lethal potency approaching that of botulinum neurotoxins. Epsilon toxin is responsible for enteritis. Therefore, the development of rapid and simple methods to detect ETX is imperative. Aptamers are single-stranded oligonucleotides that can bind tightly to specific target molecules with an affinity comparable to that of monoclonal antibodies (mAbs). DNA aptamers can serve as tools for the molecular identification of organisms, such as pathogen subspecies. Objectives This study aimed to isolate high-affinity single-stranded DNA (ssDNA) aptamers against ETX. Methods This study identified aptamers using the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) method, enzyme-linked apta-sorbent assay (ELASA), and surface plasmon resonance (SPR) to determine the affinity and specificity of the newly obtained aptamers targeting ETX. Results Several aptamers obtained through the SELEX process were studied. Among them, 2 aptamers, ETX clone 3 (ETX3; dissociation constant (Kd = 8.4 ± 2.4E-9M) and ETX11 (Kd = 6.3 ± 1.3E-9M) had favorable specificity for ETX. The limits of detection were 0.21 and 0.08 μg/mL for ETX3 and ETX11, respectively.. Conclusions The discovered aptamers can be used in various aptamer-based rapid diagnostic tests for the detection of ETX.
Collapse
Affiliation(s)
- Nafiseh Shafiei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamideh Mahmoodzadeh Hosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Mirhosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hanieh Jafary
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
10
|
Mondal AK, Lata K, Singh M, Chatterjee S, Chauhan A, Puravankara S, Chattopadhyay K. Cryo-EM elucidates mechanism of action of bacterial pore-forming toxins. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184013. [PMID: 35908609 DOI: 10.1016/j.bbamem.2022.184013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/05/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Pore-forming toxins (PFTs) rupture plasma membranes and kill target cells. PFTs are secreted as soluble monomers that undergo drastic structural rearrangements upon interacting with the target membrane and generate transmembrane oligomeric pores. A detailed understanding of the molecular mechanisms of the pore-formation process remains unclear due to limited structural insights regarding the transmembrane oligomeric pore states of the PFTs. However, recent advances in the field of cryo-electron microscopy (cryo-EM) have led to the high-resolution structure determination of the oligomeric pore forms of diverse PFTs. Here, we discuss the pore-forming mechanisms of various PFTs, specifically the mechanistic details contributed by the cryo-EM-based structural studies.
Collapse
Affiliation(s)
- Anish Kumar Mondal
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali 140306, Punjab, India
| | - Kusum Lata
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali 140306, Punjab, India
| | - Mahendra Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali 140306, Punjab, India
| | - Shamaita Chatterjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali 140306, Punjab, India
| | - Aakanksha Chauhan
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali 140306, Punjab, India
| | - Sindhoora Puravankara
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali 140306, Punjab, India
| | - Kausik Chattopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali 140306, Punjab, India.
| |
Collapse
|
11
|
The choanoflagellate pore-forming lectin SaroL-1 punches holes in cancer cells by targeting the tumor-related glycosphingolipid Gb3. Commun Biol 2022; 5:954. [PMID: 36097056 PMCID: PMC9468336 DOI: 10.1038/s42003-022-03869-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/22/2022] [Indexed: 11/15/2022] Open
Abstract
Choanoflagellates are primitive protozoa used as models for animal evolution. They express a large variety of multi-domain proteins contributing to adhesion and cell communication, thereby providing a rich repertoire of molecules for biotechnology. Adhesion often involves proteins adopting a β-trefoil fold with carbohydrate-binding properties therefore classified as lectins. Sequence database screening with a dedicated method resulted in TrefLec, a database of 44714 β-trefoil candidate lectins across 4497 species. TrefLec was searched for original domain combinations, which led to single out SaroL-1 in the choanoflagellate Salpingoeca rosetta, that contains both β-trefoil and aerolysin-like pore-forming domains. Recombinant SaroL-1 is shown to bind galactose and derivatives, with a stronger affinity for cancer-related α-galactosylated epitopes such as the glycosphingolipid Gb3, when embedded in giant unilamellar vesicles or cell membranes. Crystal structures of complexes with Gb3 trisaccharide and GalNAc provided the basis for building a model of the oligomeric pore. Finally, recognition of the αGal epitope on glycolipids required for hemolysis of rabbit erythrocytes suggests that toxicity on cancer cells is achieved through carbohydrate-dependent pore-formation. A curated lectin database, structural characterization, and in vitro assays show that choanoflagellate lectin SaroL-1 binds to cancer-related α-galactosylated epitopes and can be toxic to cancer cells through a carbohydrate-dependent pore-formation mechanism.
Collapse
|
12
|
Pathology and Pathogenesis of Brain Lesions Produced by Clostridium perfringens Type D Epsilon Toxin. Int J Mol Sci 2022; 23:ijms23169050. [PMID: 36012315 PMCID: PMC9409160 DOI: 10.3390/ijms23169050] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022] Open
Abstract
Clostridium perfringens type D epsilon toxin (ETX) produces severe, and frequently fatal, neurologic disease in ruminant livestock. The disorder is of worldwide distribution and, although vaccination has reduced its prevalence, ETX still causes substantial economic loss in livestock enterprises. The toxin is produced in the intestine as a relatively inactive prototoxin, which is subsequently fully enzymatically activated to ETX. When changed conditions in the intestinal milieu, particularly starch overload, favor rapid proliferation of this clostridial bacterium, large amounts of ETX can be elaborated. When sufficient toxin is absorbed from the intestine into the systemic circulation and reaches the brain, two neurologic syndromes can develop from this enterotoxemia. If the brain is exposed to large amounts of ETX, the lesions are fundamentally vasculocentric. The neurotoxin binds to microvascular endothelial receptors and other brain cells, the resulting damage causing increased vascular permeability and extravasation of plasma protein and abundant fluid into the brain parenchyma. While plasma protein, particularly albumin, pools largely perivascularly, the vasogenic edema becomes widely distributed in the brain, leading to a marked rise in intracranial pressure, coma, sometimes cerebellar herniation, and, eventually, often death. When smaller quantities of ETX are absorbed into the bloodstream, or livestock are partially immune, a more protracted clinical course ensues. The resulting brain injury is characterized by bilaterally symmetrical necrotic foci in certain selectively vulnerable neuroanatomic sites, termed focal symmetrical encephalomalacia. ETX has also been internationally listed as a potential bioterrorism agent. Although there are no confirmed human cases of ETX intoxication, the relatively wide species susceptibility to this toxin and its high toxicity mean it is likely that human populations would also be vulnerable to its neurotoxic actions. While the pathogenesis of ETX toxicity in the brain is incompletely understood, the putative mechanisms involved in neural lesion development are discussed.
Collapse
|
13
|
Zafar Khan MU, Khalid S, Humza M, Yang S, Alvi MA, Munir T, Ahmad W, Iqbal MZ, Tahir MF, Liu Y, Zhang J. Infection Dynamics of Clostridium perfringens Fingerprinting in Buffalo and Cattle of Punjab Province, Pakistan. Front Vet Sci 2022; 9:762449. [PMID: 35937290 PMCID: PMC9353052 DOI: 10.3389/fvets.2022.762449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/12/2022] [Indexed: 12/04/2022] Open
Abstract
Clostridium perfringens produces core virulence factors that are responsible for causing hemorrhagic abomasitis and enterotoxemia making food, animals, and humans susceptible to its infection. In this study, C. perfringens was isolated from necropsied intestinal content of buffalo and cattle belonging to four major bovine-producing regions in the Punjab Province of Pakistan for the purpose offind out the genetic variation. Out of total 160 bovine samples (n: 160), thirty-three (n: 33) isolates of C. perfringens were obtained from buffalo (Bubales bubalis) and cattle (Bos indicus) that were further subjected to biochemical tests; 16S rRNA based identification and toxinotyping was done using PCR (Polymerase Chain Reaction) and PFGE (Pulse Field Gel Electrophoresis) pulsotypesfor genetic diversity. Occurrence of C. perfringens was found to be maximum in zone-IV (Bhakkar and Dera Ghazi Khan) according to the heatmap. Correlation was found to be significant and positive among the toxinotypes (α-toxin, and ε-toxin). Response surface methodology (RSM) via central composite design (CCD) and Box-Behnken design (BBD) demonstrated substantial frequency of C. perfringens based toxinotypes in all sampling zones. PFGE distinguished all isolates into 26 different pulsotypes using SmaI subtyping. Co-clustering analysis based on PFGE further decoded a diversegenetic relationship among the collected isolates. This study could help us to advance toward disease array of C. perfringens and its probable transmission and control. This study demonstrates PFGE patterns from Pakistan, and typing of C. perfringens by PFGE helps illustrate and mitigate the incidence of running pulsotypes.
Collapse
Affiliation(s)
- Muhammad Umar Zafar Khan
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Shumaila Khalid
- Livestock and Dairy Development Department, Lahore, Pakistan
| | - Muhammad Humza
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Plant Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Shunli Yang
- State Key Laboratory of Veterinary Etiological Biology of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Mughees Aizaz Alvi
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, Pakistan
| | - Tahir Munir
- Livestock and Dairy Development Department, Lahore, Pakistan
| | - Waqar Ahmad
- The Equine Clinic, Al-Hashar Stables, Muscat, Oman
| | - Muhammad Zahid Iqbal
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | | | - Yongsheng Liu
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
- *Correspondence: Yongsheng Liu
| | - Jie Zhang
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
- Jie Zhang
| |
Collapse
|
14
|
Saadh MJ, Lafi FF, Dahadha AA, Albannan MS. Immunogenicity of a newly developed vaccine against Clostridium perfringens alpha-toxin in rabbits and cattle. Vet World 2022; 15:1617-1623. [PMID: 36185515 PMCID: PMC9394151 DOI: 10.14202/vetworld.2022.1617-1623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Clostridium perfringens type A is an anaerobic bacterium that produces four major toxins (alpha, beta, epsilon, and iota) that cause various diseases. Most of the important C. perfringens-associated diseases of farm animals are caused by alpha-toxin. This study aimed to produce a vaccine against alpha-toxin using C. perfringens type A (ATCC 13124) and investigate its potency, stability, and safety.
Materials and Methods: The vaccine was formulated of its constituents for 1 h. Each milliliter of the final vaccine product contained alpha toxoid 15 lecithovitellinase activity (Lv) by adding (0.375 mL containing 40 Lv) and approximately 0.2 mL from 3% concentrated aluminum hydroxide gel, <0.001% W/V thiomersal, <0.05% W/V formaldehyde, and nearly 0.425 mL phosphate-buffered saline (pH 7.2). The vaccine efficacy was evaluated in rabbits and cattle by performing potency, stability, and safety tests.
Results: The vaccine produced approximately 8.8 and 4.9 IU/mL neutralizing antibodies in rabbits and cattle, respectively. These concentrations were higher than the lowest concentration recommended by various international protocols and the United States Department of Agriculture by 2.20-fold in rabbits and 1.23-fold in cattle. Interestingly, the formulated vaccine enhanced immune responses by 1.80-fold in rabbits compared with that in cattle; the difference was statistically significant (p < 0.0001). The vaccine was stable for 30 months. In vaccinated rabbits, the body temperature slightly increased temporarily during the first 10 h of vaccination; however, the temperature difference was not statistically significant (p > 0.05).
Conclusion: This study describes a manufacturing process to obtain sufficient amounts of a vaccine against C. perfringens alpha-toxin. The formulated vaccine effectively elicited a higher level of neutralizing antibody response than the international standards. Furthermore, the vaccine was found to be stable, safe, and effective in preventing C. perfringens-related diseases in rabbits and cattle. Further studies are necessary to evaluate the efficacy of this vaccine in other farm animals.
Collapse
Affiliation(s)
- Mohamed J. Saadh
- Department of Pharmacy, Faculty of Pharmacy, Middle East University, Amman, Jordan
| | - Feras F. Lafi
- Department of Pharmacy, Faculty of Pharmacy, Middle East University, Amman, Jordan
| | - Adnan A. Dahadha
- Department of Genetic Engineering and Biotechnology, Faculty of Science, Philadelphia University, Jordan
| | - Mohamed S. Albannan
- Department of Research and development, Biotechnology Research Center, 23 July St., Industrial Zone, New Damietta, 34517, Egypt
| |
Collapse
|
15
|
Ulhuq FR, Mariano G. Bacterial pore-forming toxins. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001154. [PMID: 35333704 PMCID: PMC9558359 DOI: 10.1099/mic.0.001154] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/03/2022] [Indexed: 12/11/2022]
Abstract
Pore-forming toxins (PFTs) are widely distributed in both Gram-negative and Gram-positive bacteria. PFTs can act as virulence factors that bacteria utilise in dissemination and host colonisation or, alternatively, they can be employed to compete with rival microbes in polymicrobial niches. PFTs transition from a soluble form to become membrane-embedded by undergoing large conformational changes. Once inserted, they perforate the membrane, causing uncontrolled efflux of ions and/or nutrients and dissipating the protonmotive force (PMF). In some instances, target cells intoxicated by PFTs display additional effects as part of the cellular response to pore formation. Significant progress has been made in the mechanistic description of pore formation for the different PFTs families, but in several cases a complete understanding of pore structure remains lacking. PFTs have evolved recognition mechanisms to bind specific receptors that define their host tropism, although this can be remarkably diverse even within the same family. Here we summarise the salient features of PFTs and highlight where additional research is necessary to fully understand the mechanism of pore formation by members of this diverse group of protein toxins.
Collapse
Affiliation(s)
- Fatima R. Ulhuq
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Giuseppina Mariano
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
16
|
Branching out the aerolysin, ETX/MTX-2 and Toxin_10 family of pore forming proteins. J Invertebr Pathol 2021; 186:107570. [PMID: 33775676 DOI: 10.1016/j.jip.2021.107570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/15/2020] [Accepted: 03/09/2021] [Indexed: 01/28/2023]
Abstract
Organisms have evolved mechanisms in which cellular membranes can both be targeted and punctured thereby killing the targeted cell. One such mechanism involves the deployment of pore forming proteins (PFPs) which function by oligomerizing on cell membranes and inserting a physical pore spanning the membrane. This pore can lead to cell death by either causing osmotic flux or allowing the delivery of a secondary toxin. Pore forming proteins can be broadly classified into different families depending on the structure of the final pore; either α-PFPs using channels made from α -helices or β-PFPs using channels made from β-barrels. There are many different β-PFPs and an emerging superfamily is the aerolysin-ETX/MTX-2 superfamily. A comparison between the members of this superfamily reveals the pore forming domain is a common module yet the receptor binding region is highly variable. These structural and architectural variations lead to differences in the target recognition and determine the site of activity. Closer investigation of the topology of the family also suggests that the Toxin_10 family of PFPs could be considered as part of the aerolysin-ETX/MTX-2 superfamily. Comparatively, far less is known about how Toxin_10 proteins assemble into the final pore structure than aerolysin-ETX/MTX-2 proteins. This review aims to collate the pore forming protein members and bridge the structural similarities between the aerolysin-ETX/MTX-2 superfamily and the insecticidal Toxin_10 subfamily.
Collapse
|
17
|
Complete Genome Sequence Analysis of Brevibacillus laterosporus Bl-zj Reflects its Potential Algicidal Response. Curr Microbiol 2021; 78:1409-1417. [DOI: 10.1007/s00284-021-02378-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 02/05/2021] [Indexed: 12/14/2022]
|
18
|
Alsaab F, Wahdan A, Saeed EMA. Phenotypic detection and genotyping of Clostridium perfringens associated with enterotoxemia in sheep in the Qassim Region of Saudi Arabia. Vet World 2021; 14:578-584. [PMID: 33935400 PMCID: PMC8076464 DOI: 10.14202/vetworld.2021.578-584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/27/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND AIM Enterotoxemia caused by Clostridium perfringens toxinotypes is an often fatal disease of sheep of all ages, with a substantial economic loss to the sheep industry. This study was conducted to isolate C. perfringens from suspected cases of enterotoxemia in sheep in the central part of the Qassim Region, Saudi Arabia, and to determine the prevalent toxinotype by detecting alpha (cpA), beta (cpB), and epsilon (etX) toxin genes, which might help control this disease locally. MATERIALS AND METHODS A total of 93 rectal swabs and intestinal content samples were collected from diseased and animals suspected of having died of enterotoxemia in early 2020. Samples were subjected to bacteriological examination, biochemical analysis of isolates by VITEK 2, and molecular toxinotyping of isolates by LightCycler® real-time polymerase chain reaction (RT-PCR). RESULTS Our results revealed that only 14 isolates were confirmed by VITEK 2 as being C. perfringens, with excellent identification (probability of 95% and 97%). According to the toxinotyping of isolates by RT-PCR, all 14 isolates possessed both the cpA and etX toxin genes, while the cpB toxin gene was not detected in any of the isolates. CONCLUSION Our findings demonstrated that C. perfringens type D was the only toxinotype found in the central part of the Qassim Region in 2020; moreover, according to the culture method, only 15% (14/93) of the suspected cases of enterotoxemia were confirmed to be caused by C. perfringens infection, which highlighted the importance of clinical and laboratory differential diagnosis of enterotoxemia in sheep.
Collapse
Affiliation(s)
- Fehaid Alsaab
- Veterinarian at Ministry of Environment, Water and Agriculture, Kingdom of Saudi Arabia
| | - Ali Wahdan
- Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Egypt
| | - Elhassan M. A. Saeed
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
- Department of Microbiology, Faculty of Veterinary Medicine, Khartoum University, Sudan
| |
Collapse
|
19
|
Singh AP, Prabhu SN, Nagaleekar VK, Dangi SK, Prakash C, Singh VP. Immunogenicity assessment of Clostridium perfringens type D epsilon toxin epitope-based chimeric construct in mice and rabbit. 3 Biotech 2020; 10:406. [PMID: 32864287 PMCID: PMC7447850 DOI: 10.1007/s13205-020-02400-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 08/17/2020] [Indexed: 12/05/2022] Open
Abstract
Epsilon toxin (Etx) belongs to family of pore-forming toxin and is produced by Clostridium perfringens type D. The Etx toxin is responsible for the pathogenesis of enterotoxaemia in sheep and goats, and occasionally in other livestock animals. The present study aimed to develop a Clostridium perfringens epsilon toxin-based chimeric epitope construct having immunodominant B-cell epitope and universal T-cell epitope and its immunogenicity was evaluated in mice and rabbit. An artificial chimeric epitope construct (CEC) was prepared by joining tandem repeats of a peptide containing amino acids (aa) 134–145 of epsilon toxin B-cell epitope and universal T-cell epitopes. The CEC was expressed in the Escherichia coli following codon optimization for efficient translational efficiency and purified by affinity chromatography. The antigenic reactivity of r-CEC proteins was confirmed by western blot with rabbit anti-r-Etox hyperimmune sera. The immunogenicity of the recombinant single CEC was examined in mice and rabbit by indirect ELISA. It was found that r-CEC yielded high titers of neutralizing antibodies (≥ 1.035 IU/ml) in immunized mice and rabbit. The potency of chimeric protein immunized serum was observed to be higher than the recommended level (0.1–0.3 IU/ml) for protection in sheep and goats. This indicated the potential ability of the chimeric protein as a vaccine candidate. This further requires studying the immune response in targeted host species (sheep and goat).
Collapse
Affiliation(s)
- Ajay Pratap Singh
- Department of Veterinary Microbiology, College of Veterinary and Animal Science, COVSc.&AH, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, UP 281001 India
| | - Shyama N. Prabhu
- Department of Veterinary Pathology, COVSc.&AH, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, UP 281001 India
| | - Viswas K. Nagaleekar
- Division Bacteriology and Mycology, Indian Veterinary Reaserch Institute (IVRI), Izatnagar, Bareilly, Uttar Pradesh 243 122 India
| | - Saroj K. Dangi
- Division Bacteriology and Mycology, Indian Veterinary Reaserch Institute (IVRI), Izatnagar, Bareilly, Uttar Pradesh 243 122 India
| | - Chandan Prakash
- Centre for Advance Animal Research and Diagnosis, Indian Veterinary Reaserch Institute (IVRI), Izatnagar, Bareilly, Uttar Pradesh 243 122 India
| | - Vijendra Pal Singh
- National Institute of High Security Animal Disease (NISHAD), Bhopal, Madhya Pradesh 462021 India
| |
Collapse
|
20
|
Geng Z, Huang J, Kang L, Gao S, Yuan Y, Li Y, Wang J, Xin W, Wang J. Clostridium perfringens epsilon toxin binds to erythrocyte MAL receptors and triggers phosphatidylserine exposure. J Cell Mol Med 2020; 24:7341-7352. [PMID: 32463157 PMCID: PMC7339222 DOI: 10.1111/jcmm.15315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 12/12/2022] Open
Abstract
Epsilon toxin (ETX) is a 33-kDa pore-forming toxin produced by type B and D strains of Clostridium perfringens. We previously found that ETX caused haemolysis of human red blood cells, but not of erythrocytes from other species. The cellular and molecular mechanisms of ETX-mediated haemolysis are not well understood. Here, we investigated the effects of ETX on erythrocyte volume and the role of the putative myelin and lymphocyte (MAL) receptors in ETX-mediated haemolysis. We observed that ETX initially decreased erythrocyte size, followed by a gradual increase in volume until lysis. Moreover, ETX triggered phosphatidylserine (PS) exposure and enhanced ceramide abundance in erythrocytes. Cell shrinkage, PS exposure and enhanced ceramide abundance were preceded by increases in intracellular Ca2+ concentration. Interestingly, lentivirus-mediated RNA interference studies in the human erythroleukaemia cell line (HEL) cells confirmed that MAL contributes to ETX-induced cytotoxicity. Additionally, ETX was shown to bind to MAL in vitro. The results of this study recommend that ETX-mediated haemolysis is associated with MAL receptor activation in human erythrocytes. These data imply that interventions affecting local MAL-mediated autocrine and paracrine signalling may prevent ETX-mediated erythrocyte damage.
Collapse
Affiliation(s)
- Zhijun Geng
- Graduate College, Anhui Medical University, Anhui, China.,State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Jing Huang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing, China.,Life Science Institute of Hebei Normal University, Shijiazhuang, China
| | - Lin Kang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Shan Gao
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Yuan Yuan
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Yanwei Li
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Jing Wang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Wenwen Xin
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Jinglin Wang
- Graduate College, Anhui Medical University, Anhui, China.,State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| |
Collapse
|
21
|
Babele P, Kumar RB, Rajoria S, Rashid F, Malakar D, Bhagyawant SS, Kamboj DV, Alam SI. Putative serum protein biomarkers for epsilon toxin exposure in mouse model using LC-MS/MS analysis. Anaerobe 2020; 63:102209. [PMID: 32387808 DOI: 10.1016/j.anaerobe.2020.102209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/21/2020] [Accepted: 05/01/2020] [Indexed: 11/17/2022]
Abstract
Epsilon toxin (ETX), produced by Clostridium perfringens Type B or type D strains, is a potential biological and toxin warfare (BTW) agent, largely for its very high toxicity. The toxin is implicated in several animal diseases. Using LC-MS/MS analysis, we report here elucidation of putative serum maker proteins for ETX exposure with an objective of the early diagnosis of intoxication. Of 166 consensus proteins (488 peptides), showing ETX-induced alterations, 119 proteins exhibited increase and 47 proteins showed decreased abundance in serum, as revealed by SWATH (DIA) acquisition on LC-MS/MS and label free quantitative analysis of control and test samples. Complement and coagulation cascade, nitrogen metabolism, negative regulation of peptidase activity, and response to ROS were among the biological processes and pathways perturbed by the ETX exposure. Interaction network indicated enzyme inhibitor activity, detoxification of ROS, and steroid binding functions were the major interaction networks for the proteins with increased abundance, while, hemostasis and structural molecule activity were the prominent networks for the down-regulated proteins. Validation studies were carried out by immunoprecipitation, ELISA, and Western blot analysis of selected proteins to demonstrate diagnostic potential of the putative marker proteins of ETX exposure.
Collapse
Affiliation(s)
- Prabhakar Babele
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Ravi Bhushan Kumar
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Sakshi Rajoria
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Faraz Rashid
- Sciex, 121 DHR, Udyog Vihar, Gurugram, Haryana, India
| | - Dipankar Malakar
- School of Studies in Biotechnology, Jiwaji University, Gwalior, India
| | | | - Dev Vrat Kamboj
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Syed Imteyaz Alam
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India.
| |
Collapse
|
22
|
Bossu JL, Wioland L, Doussau F, Isope P, Popoff MR, Poulain B. Epsilon Toxin from Clostridium perfringens Causes Inhibition of Potassium inward Rectifier (Kir) Channels in Oligodendrocytes. Toxins (Basel) 2020; 12:toxins12010036. [PMID: 31935961 PMCID: PMC7020416 DOI: 10.3390/toxins12010036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/20/2019] [Accepted: 01/04/2020] [Indexed: 12/13/2022] Open
Abstract
Epsilon toxin (ETX), produced by Clostridium perfringens types B and D, causes serious neurological disorders in animals. ETX can bind to the white matter of the brain and the oligodendrocytes, which are the cells forming the myelin sheath around neuron axons in the white matter of the central nervous system. After binding to oligodendrocytes, ETX causes demyelination in rat cerebellar slices. We further investigated the effects of ETX on cerebellar oligodendrocytes and found that ETX induced small transmembrane depolarization (by ~ +6.4 mV) in rat oligodendrocytes primary cultures. This was due to partial inhibition of the transmembrane inward rectifier potassium current (Kir). Of the two distinct types of Kir channel conductances (~25 pS and ~8.5 pS) recorded in rat oligodendrocytes, we found that ETX inhibited the large-conductance one. This inhibition did not require direct binding of ETX to a Kir channel. Most likely, the binding of ETX to its membrane receptor activates intracellular pathways that block the large conductance Kir channel activity in oligodendrocyte. Altogether, these findings and previous observations pinpoint oligodendrocytes as a major target for ETX. This supports the proposal that ETX might be a cause for Multiple Sclerosis, a disease characterized by myelin damage.
Collapse
Affiliation(s)
- Jean Louis Bossu
- Institut des Neurosciences Cellulaires et Intégratives, (INCI)-CNRS, UPR 3212 Strasbourg, France; (J.L.B.); (L.W.); (F.D.); (P.I.)
| | - Laetitia Wioland
- Institut des Neurosciences Cellulaires et Intégratives, (INCI)-CNRS, UPR 3212 Strasbourg, France; (J.L.B.); (L.W.); (F.D.); (P.I.)
| | - Frédéric Doussau
- Institut des Neurosciences Cellulaires et Intégratives, (INCI)-CNRS, UPR 3212 Strasbourg, France; (J.L.B.); (L.W.); (F.D.); (P.I.)
| | - Philippe Isope
- Institut des Neurosciences Cellulaires et Intégratives, (INCI)-CNRS, UPR 3212 Strasbourg, France; (J.L.B.); (L.W.); (F.D.); (P.I.)
| | - Michel R. Popoff
- Institut Pasteur, Bactéries Anaérobies et Toxines, 28 rue du Docteur Roux, Paris 75724, France;
| | - Bernard Poulain
- Institut des Neurosciences Cellulaires et Intégratives, (INCI)-CNRS, UPR 3212 Strasbourg, France; (J.L.B.); (L.W.); (F.D.); (P.I.)
- Correspondence:
| |
Collapse
|
23
|
Linden JR, Flores C, Schmidt EF, Uzal FA, Michel AO, Valenzuela M, Dobrow S, Vartanian T. Clostridium perfringens epsilon toxin induces blood brain barrier permeability via caveolae-dependent transcytosis and requires expression of MAL. PLoS Pathog 2019; 15:e1008014. [PMID: 31703116 PMCID: PMC6867657 DOI: 10.1371/journal.ppat.1008014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 11/20/2019] [Accepted: 08/01/2019] [Indexed: 12/13/2022] Open
Abstract
Clostridium perfringens epsilon toxin (ETX) is responsible for causing the economically devastating disease, enterotoxaemia, in livestock. It is well accepted that ETX causes blood brain barrier (BBB) permeability, however the mechanisms involved in this process are not well understood. Using in vivo and in vitro methods, we determined that ETX causes BBB permeability in mice by increasing caveolae-dependent transcytosis in brain endothelial cells. When mice are intravenously injected with ETX, robust ETX binding is observed in the microvasculature of the central nervous system (CNS) with limited to no binding observed in the vasculature of peripheral organs, indicating that ETX specifically targets CNS endothelial cells. ETX binding to CNS microvasculature is dependent on MAL expression, as ETX binding to CNS microvasculature of MAL-deficient mice was not detected. ETX treatment also induces extravasation of molecular tracers including 376Da fluorescein salt, 60kDA serum albumin, 70kDa dextran, and 155kDA IgG. Importantly, ETX-induced BBB permeability requires expression of both MAL and caveolin-1, as mice deficient in MAL or caveolin-1 did not exhibit ETX-induced BBB permeability. Examination of primary murine brain endothelial cells revealed an increase in caveolae in ETX-treated cells, resulting in dynamin and lipid raft-dependent vacuolation without cell death. ETX-treatment also results in a rapid loss of EEA1 positive early endosomes and accumulation of large, RAB7-positive late endosomes and multivesicular bodies. Based on these results, we hypothesize that ETX binds to MAL on the apical surface of brain endothelial cells, causing recruitment of caveolin-1, triggering caveolae formation and internalization. Internalized caveolae fuse with early endosomes which traffic to late endosomes and multivesicular bodies. We believe that these multivesicular bodies fuse basally, releasing their contents into the brain parenchyma. Clostridium perfringens epsilon toxin (ETX) is an extremely lethal bacterial toxin known to cause a devastating disease in livestock animals and may be a possible cause of multiple sclerosis in humans. ETX is well known to cause disruption of the blood-brain barrier (BBB), a critical structure necessary for proper brain function. Deterioration of this barrier allows entry of toxic blood-borne material to enter the brain. Although ETX-induced BBB dysfunction is well accepted, how this happens is unknown. Here, we demonstrate that ETX causes BBB permeability by inducing formation of cell-surface invaginations called caveolae in endothelial cells, the cells that line blood vessels. Importantly, only endothelial cells from the brain and other central nervous system organs appear to be a target of ETX, as the toxin only binds to blood vessels in these organs and not blood vessels from other organs. These ETX-induced caveolae fuse with other caveolae and specialized intracellular vesicles called endosomes. We predict that these endosomes engulf blood-borne material during their internalization, allowing material to travel from the blood, through the cell, and into brain tissue. We also show that expression of the protein MAL and caveolin-1 is necessary for ETX-induced BBB permeability.
Collapse
Affiliation(s)
- Jennifer R. Linden
- The Brain and Mind Research Institute and the Department of Neurology, Weill Cornell Medical College, New York, New York, United States of America
| | - Claudia Flores
- The Brain and Mind Research Institute and the Department of Neurology, Weill Cornell Medical College, New York, New York, United States of America
| | - Eric F. Schmidt
- Laboratory of Molecular Biology, The Rockefeller University, New York, New York, United States of America
| | - Francisco A. Uzal
- California Animal Health & Food Safety Laboratory System, San Bernardino Branch, University of California, Davis, San Bernardino, California, United States of America
| | - Adam O. Michel
- Laboratory of Comparative Pathology, Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center, The Rockefeller University, Weill Cornell Medicine, New York, New York, United States of America
| | - Marissa Valenzuela
- The Brain and Mind Research Institute and the Department of Neurology, Weill Cornell Medical College, New York, New York, United States of America
| | - Sebastian Dobrow
- The Brain and Mind Research Institute and the Department of Neurology, Weill Cornell Medical College, New York, New York, United States of America
| | - Timothy Vartanian
- The Brain and Mind Research Institute and the Department of Neurology, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
24
|
|
25
|
Kaushik H, Deshmukh SK, Solanki AK, Bhatia B, Tiwari A, Garg LC. Immunization with recombinant fusion of LTB and linear epitope (40-62) of epsilon toxin elicits protective immune response against the epsilon toxin of Clostridium perfringens type D. AMB Express 2019; 9:105. [PMID: 31300915 PMCID: PMC6626085 DOI: 10.1186/s13568-019-0824-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/26/2019] [Indexed: 11/10/2022] Open
Abstract
Epsilon toxin (Etx) produced by Clostridium perfringens types B and D, a major causative agent of enterotoxaemia causes significant economic losses to animal industry. Conventional vaccines against these pathogens generally employ formalin-inactivated culture supernatants. However, immunization with the culture supernatant and full length toxin subjects the animal to antigenic load and often have adverse effect due to incomplete inactivation of the toxins. In the present study, an epitope-based vaccine against Clostridium perfringens Etx, comprising 40-62 amino acid residues of the toxin in translational fusion with heat labile enterotoxin B subunit (LTB) of E. coli, was evaluated for its protective potential. The ability of the fusion protein rLTB.Etx40-62 to form pentamers and biologically active holotoxin with LTA of E. coli indicated that the LTB present in the fusion protein retained its biological activity. Antigenicity of both the components in the fusion protein was retained as anti-fusion protein antisera detected both the wild type Etx and LTB in Western blot analysis. Immunization of BALB/c mice with the fusion protein resulted in a significant increase in all isotypes, predominantly IgG1, IgG2a and IgG2b. Anti-fusion protein antisera neutralized the cytotoxicity of epsilon toxin both in vitro and in vivo. Thus, the results demonstrate the potential of rLTB.Etx40-62 as a candidate vaccine against C. perfringens.
Collapse
|
26
|
Babele P, Verma S, Kumar RB, Bhagyawant SS, Kamboj DV, Alam SI. Elucidation of protein biomarkers in plasma and urine for epsilon toxin exposure in mouse model. Anaerobe 2019; 59:76-91. [PMID: 31145997 DOI: 10.1016/j.anaerobe.2019.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/02/2019] [Accepted: 05/22/2019] [Indexed: 01/09/2023]
Abstract
Epsilon toxin (ETX) is the major virulence determinant of C. perfringens type B or type D strains, causing diseases in animals, besides being a listed biological and toxin warfare (BTW) agent. Keeping in mind the high lethality and the rapid onset of clinical manifestations, early diagnosis of epsilon toxin exposure is of paramount importance for implementation of appropriate medical countermeasures. Using a 2DE-MS approach, the present study is the first comprehensive proteomic elucidation of ETX-induced protein markers in the mouse model, providing putative targets for early diagnosis of ETX exposure. A total of 52 unique proteins showing ETX-induced modulations were identified in plasma and urine samples. Fibrinogen, apolipoprotein, serum amyloid protein, plasminogen, serum albumin, glutathione peroxidase, transferrin, major urinary protein 2, haptoglobin, transthyretin, and vitamin D-binding protein were among the proteins observed in more than one dataset with altered abundance after the ETX-intoxication. The predicted localization, function, and interaction of the ETX-modulated proteins in the plasma and urine indicated involvement of multiple pathways; extracellular proteins, followed by macromolecular complexes associated with blood coagulation and plasminogen activating cascade, being the most prominent among others. The putative markers elucidated here warrants further validation and can be of immense value for the early diagnosis of ETX exposure.
Collapse
Affiliation(s)
- Prabhakar Babele
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Smarti Verma
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Ravi Bhushan Kumar
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | | | - Dev Vrat Kamboj
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Syed Imteyaz Alam
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India.
| |
Collapse
|
27
|
Gao J, Xin W, Huang J, Ji B, Gao S, Chen L, Kang L, Yang H, Shen X, Zhao B, Wang J. Research articleHemolysis in human erythrocytes by Clostridium perfringens epsilon toxin requires activation of P2 receptors. Virulence 2019; 9:1601-1614. [PMID: 30277122 PMCID: PMC6276848 DOI: 10.1080/21505594.2018.1528842] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Epsilon-toxin (ETX) is produced by types B and D strains of Clostridium perfringens, which cause fatal enterotoxaemia in sheep, goats and cattle. Previous studies showed that only a restricted number of cell lines are sensitive to ETX and ETX-induced hemolysis has not previously been reported. In this study, the hemolytic ability of ETX was examined using erythrocytes from 10 species including murine, rabbit, sheep, monkey and human. We found that ETX caused hemolysis in human erythrocytes (HC50 = 0.2 μM) but not erythrocytes from the other test species. Moreover, the mechanism of ETX-induced hemolysis was further explored. Recent studies showed that some bacterial toxins induce hemolysis through purinergic receptor (P2) activation. Hence, the function of purinergic receptors in ETX-induced hemolysis was tested, and we found that the non-selective P2 receptor antagonists PPADS inhibited ETX-induced lysis of human erythrocytes in a concentration-dependent manner, indicating that ETX-induced hemolysis requires activation of purinergic receptors. P2 receptors comprise seven P2X (P2X1-7) and eight P2Y (P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11-P2Y14) receptor subtypes. The pattern of responsiveness to more selective P2-antagonists implies that both P2Y13 and P2X7 receptors are involved in ETX-induced hemolysis in human species. Furthermore, we demonstrated that extracellular ATP is likely not involved in ETX-induced hemolysis and the activation of P2 receptors. These findings clarified the mechanism of ETX-induced hemolysis and provided new insight into the activities and ETX mode of action.
Collapse
Affiliation(s)
- Jie Gao
- a State Key Laboratory of Pathogen and Biosecurity , Institute of Microbiology and Epidemiology, AMMS , Beijing , China.,b College of Life Sciences , Hebei Normal University , Shijiazhuang , China
| | - Wenwen Xin
- a State Key Laboratory of Pathogen and Biosecurity , Institute of Microbiology and Epidemiology, AMMS , Beijing , China
| | - Jing Huang
- a State Key Laboratory of Pathogen and Biosecurity , Institute of Microbiology and Epidemiology, AMMS , Beijing , China.,b College of Life Sciences , Hebei Normal University , Shijiazhuang , China
| | - Bin Ji
- a State Key Laboratory of Pathogen and Biosecurity , Institute of Microbiology and Epidemiology, AMMS , Beijing , China
| | - Shan Gao
- a State Key Laboratory of Pathogen and Biosecurity , Institute of Microbiology and Epidemiology, AMMS , Beijing , China
| | - Liang Chen
- a State Key Laboratory of Pathogen and Biosecurity , Institute of Microbiology and Epidemiology, AMMS , Beijing , China
| | - Lin Kang
- a State Key Laboratory of Pathogen and Biosecurity , Institute of Microbiology and Epidemiology, AMMS , Beijing , China
| | - Hao Yang
- a State Key Laboratory of Pathogen and Biosecurity , Institute of Microbiology and Epidemiology, AMMS , Beijing , China
| | - Xin Shen
- a State Key Laboratory of Pathogen and Biosecurity , Institute of Microbiology and Epidemiology, AMMS , Beijing , China
| | - Baohua Zhao
- b College of Life Sciences , Hebei Normal University , Shijiazhuang , China
| | - Jinglin Wang
- a State Key Laboratory of Pathogen and Biosecurity , Institute of Microbiology and Epidemiology, AMMS , Beijing , China
| |
Collapse
|
28
|
Janik E, Ceremuga M, Saluk-Bijak J, Bijak M. Biological Toxins as the Potential Tools for Bioterrorism. Int J Mol Sci 2019; 20:E1181. [PMID: 30857127 PMCID: PMC6429496 DOI: 10.3390/ijms20051181] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 02/24/2019] [Accepted: 03/03/2019] [Indexed: 12/16/2022] Open
Abstract
Biological toxins are a heterogeneous group produced by living organisms. One dictionary defines them as "Chemicals produced by living organisms that have toxic properties for another organism". Toxins are very attractive to terrorists for use in acts of bioterrorism. The first reason is that many biological toxins can be obtained very easily. Simple bacterial culturing systems and extraction equipment dedicated to plant toxins are cheap and easily available, and can even be constructed at home. Many toxins affect the nervous systems of mammals by interfering with the transmission of nerve impulses, which gives them their high potential in bioterrorist attacks. Others are responsible for blockage of main cellular metabolism, causing cellular death. Moreover, most toxins act very quickly and are lethal in low doses (LD50 < 25 mg/kg), which are very often lower than chemical warfare agents. For these reasons we decided to prepare this review paper which main aim is to present the high potential of biological toxins as factors of bioterrorism describing the general characteristics, mechanisms of action and treatment of most potent biological toxins. In this paper we focused on six most danger toxins: botulinum toxin, staphylococcal enterotoxins, Clostridium perfringens toxins, ricin, abrin and T-2 toxin. We hope that this paper will help in understanding the problem of availability and potential of biological toxins.
Collapse
Affiliation(s)
- Edyta Janik
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Michal Ceremuga
- CBRN Reconnaissance and Decontamination Department, Military Institute of Chemistry and Radiometry, Antoniego Chrusciela "Montera" 105, 00-910 Warsaw, Poland.
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Michal Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| |
Collapse
|
29
|
Krueger E, Brown AC. Inhibition of bacterial toxin recognition of membrane components as an anti-virulence strategy. J Biol Eng 2019; 13:4. [PMID: 30820243 PMCID: PMC6380060 DOI: 10.1186/s13036-018-0138-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/27/2018] [Indexed: 12/21/2022] Open
Abstract
Over recent years, the development of new antibiotics has not kept pace with the rate at which bacteria develop resistance to these drugs. For this reason, many research groups have begun to design and study alternative therapeutics, including molecules to specifically inhibit the virulence of pathogenic bacteria. Because many of these pathogenic bacteria release protein toxins, which cause or exacerbate disease, inhibition of the activity of bacterial toxins is a promising anti-virulence strategy. In this review, we describe several approaches to inhibit the initial interactions of bacterial toxins with host cell membrane components. The mechanisms by which toxins interact with the host cell membrane components have been well-studied over the years, leading to the identification of therapeutic targets, which have been exploited in the work described here. We review efforts to inhibit binding to protein receptors and essential membrane lipid components, complex assembly, and pore formation. Although none of these molecules have yet been demonstrated in clinical trials, the in vitro and in vivo results presented here demonstrate their promise as novel alternatives and/or complements to traditional antibiotics.
Collapse
Affiliation(s)
- Eric Krueger
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015 USA
| | - Angela C. Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015 USA
| |
Collapse
|
30
|
Abstract
Introduction The aim of this study was examination of honey samples collected from apiaries situated in all Polish provinces for occurrence of Clostridium spp., especially C. perfringens. Material and Methods The study was carried out on 240 honey samples (15 samples/province). Estimation of Clostridium titre, its cultures and C. perfringens isolate characterisation were performed according to the standard PN-R-64791:1994. A multiplex PCR method for detection of genes coding cpa (α toxin), cpb (β), cpb2 (β2), etx (ε), iap (ι), and cpe (enterotoxin) toxins was used. Results Clostridium spp. was noticed in 56% (136/240) of samples, and its titres ranged between 0.1 g and 0.001 g. Clostridium perfringens occurrence was evidenced in 27.5% (66/240) of samples. All isolates were classified to toxinotype A. Conclusions Evidence of a high number of positive samples with occurrence of Clostridium spp. indicates a potential risk to consumers’ health. The infective number of Clostridium spp. is unknown; however, the obtained results have shown that a risk assessment on the entire honey harvesting process should be made in order to ensure microbiological safety. Moreover, a detailed study should be undertaken on the antibiotic resistance of C. perfringens isolates from honey samples.
Collapse
|
31
|
Bonet S, Delgado-Bermúdez A, Yeste M, Pinart E. Study of boar sperm interaction with Escherichia coli and Clostridium perfringens in refrigerated semen. Anim Reprod Sci 2018; 197:134-144. [DOI: 10.1016/j.anireprosci.2018.08.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 08/08/2018] [Accepted: 08/15/2018] [Indexed: 01/19/2023]
|
32
|
Regan SB, Anwar Z, Miraflor P, Williams LB, Shetty S, Sepulveda J, Moreh J, Bogdanov S, Haigh S, Lustig A, Gaehde S, Vartanian A, Rubin N, Linden JR. Identification of epsilon toxin-producing Clostridium perfringens strains in American retail food. Anaerobe 2018; 54:124-127. [PMID: 30170047 DOI: 10.1016/j.anaerobe.2018.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/10/2018] [Accepted: 08/17/2018] [Indexed: 01/05/2023]
Abstract
Food samples (n = 216) from New York city were tested for the presence of C. perfringens via PCR for specific toxin genes. Thirty-four (16%) samples were positive for C. perfringens. Of these 34, 31 (91.2%) were type A or E, one (2.9%) was type B, and two (5.9%) were type D.
Collapse
Affiliation(s)
- Samantha B Regan
- Brain and Mind Institute, Weill Cornell Medical College, 1300 York Ave, New York, 10065, NY, USA
| | - Zuha Anwar
- Brain and Mind Institute, Weill Cornell Medical College, 1300 York Ave, New York, 10065, NY, USA
| | - Patricia Miraflor
- Brain and Mind Institute, Weill Cornell Medical College, 1300 York Ave, New York, 10065, NY, USA
| | - Libra B Williams
- Brain and Mind Institute, Weill Cornell Medical College, 1300 York Ave, New York, 10065, NY, USA
| | - Sarah Shetty
- Brain and Mind Institute, Weill Cornell Medical College, 1300 York Ave, New York, 10065, NY, USA
| | - Juan Sepulveda
- Brain and Mind Institute, Weill Cornell Medical College, 1300 York Ave, New York, 10065, NY, USA
| | - Jake Moreh
- Brain and Mind Institute, Weill Cornell Medical College, 1300 York Ave, New York, 10065, NY, USA
| | - Sam Bogdanov
- Brain and Mind Institute, Weill Cornell Medical College, 1300 York Ave, New York, 10065, NY, USA
| | - Sylvia Haigh
- Brain and Mind Institute, Weill Cornell Medical College, 1300 York Ave, New York, 10065, NY, USA
| | - Abigail Lustig
- Brain and Mind Institute, Weill Cornell Medical College, 1300 York Ave, New York, 10065, NY, USA
| | - Steffi Gaehde
- Brain and Mind Institute, Weill Cornell Medical College, 1300 York Ave, New York, 10065, NY, USA
| | - Anthony Vartanian
- Brain and Mind Institute, Weill Cornell Medical College, 1300 York Ave, New York, 10065, NY, USA
| | - Noah Rubin
- Brain and Mind Institute, Weill Cornell Medical College, 1300 York Ave, New York, 10065, NY, USA
| | - Jennifer R Linden
- Brain and Mind Institute, Weill Cornell Medical College, 1300 York Ave, New York, 10065, NY, USA.
| |
Collapse
|
33
|
Latorre JD, Adhikari B, Park SH, Teague KD, Graham LE, Mahaffey BD, Baxter MFA, Hernandez-Velasco X, Kwon YM, Ricke SC, Bielke LR, Hargis BM, Tellez G. Evaluation of the Epithelial Barrier Function and Ileal Microbiome in an Established Necrotic Enteritis Challenge Model in Broiler Chickens. Front Vet Sci 2018; 5:199. [PMID: 30186844 PMCID: PMC6110846 DOI: 10.3389/fvets.2018.00199] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022] Open
Abstract
Necrotic enteritis (NE) is a recognized multifactorial disease that cost annually to the poultry industry around $2 billion. However, diverse aspects related to its presentation are not completely understood, requiring further studies using known induction experimental models. Therefore, the purpose of this study was to measure the changes occurring in performance, intestinal integrity and ileal microbiome using a previously established NE-challenge model. Chickens were assigned to a negative control group (NC) or a positive control group (PC). In the PC, broilers were orally gavaged with Salmonella Typhimurium (ST) (1 × 107 cfu/chick) at day 1, Eimeria maxima (EM) (2.5 × 104 oocyst/chick) at day 18 and Clostridium perfringens (CP) (1 × 108 cfu/chick/day) at 23-24 days of age. Weekly, body weight (BW), body weight gain (BWG), feed intake (FI) and feed conversion ratio (FCR) were evaluated. Morbidity and mortality were determined throughout the study, and NE lesion scores were recorded at day 25. Additionally, blood and liver samples were collected to measure gut permeability as determined by levels of serum fluorescein isothiocyanate-dextran (FITC-d) and bacterial translocation (BT). Ileal contents were processed for 16S rRNA gene-based microbiome analysis. Performance parameters and intestinal permeability measurements were negatively impacted in the PC resulting in elevated serum FITC-d and BT with a -6.4% difference in BWG. The NE lesion score in PC (1.97 vs. 0.00) was significantly higher in comparison to NC, although there was no difference in mortality. The microbiome analysis showed a dramatic shift of ileal microbiomes in PC groups as compared to NC (ANOSIM: R = 0.76, P = 0.001). The shift was characterized by reduced abundance of the phylum Actinobacteria (P < 0.01), and increased abundance of the genera Butyrivibrio, Lactobacillus, Prevotella and Ruminococcus in PC compared to NC (P < 0.05). Expectedly, Clostridium was found higher in PC (2.98 ± 0.71%) as compared to NC (1.84 ± 0.36%), yet the difference was not significant. In conclusion, results of the present study showed the different intestinal epithelial and microbiological alterations occurring in an established NE-challenge model that considers paratyphoid Salmonella infections in young chicks as an important predisposing factor for presentation of NE.
Collapse
Affiliation(s)
- Juan D. Latorre
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Bishnu Adhikari
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Si H. Park
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, United States
| | - Kyle D. Teague
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Lucas E. Graham
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Brittany D. Mahaffey
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Mikayla F. A. Baxter
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | | | - Young M. Kwon
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Steven C. Ricke
- Department of Food Science, Center of Food Safety, University of Arkansas, Fayetteville, AR, United States
| | - Lisa R. Bielke
- Department of Animal Science, The Ohio State University, Columbus, OH, United States
| | - Billy M. Hargis
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Guillermo Tellez
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
34
|
Affiliation(s)
- Katharine M Simpson
- Livestock Medicine and Surgery, Department of Clinical Sciences, College of Veterinary Medicine and Biological Sciences, Colorado State University, 300 West Drake Road, Fort Collins, CO 80523-1678, USA.
| | - Robert J Callan
- Livestock Medicine and Surgery, Department of Clinical Sciences, College of Veterinary Medicine and Biological Sciences, Colorado State University, 300 West Drake Road, Fort Collins, CO 80523-1678, USA
| | - David C Van Metre
- Livestock Medicine and Surgery, Department of Clinical Sciences, College of Veterinary Medicine and Biological Sciences, Colorado State University, 300 West Drake Road, Fort Collins, CO 80523-1678, USA
| |
Collapse
|
35
|
In Vitro Culture of the Insect Endosymbiont Spiroplasma poulsonii Highlights Bacterial Genes Involved in Host-Symbiont Interaction. mBio 2018; 9:mBio.00024-18. [PMID: 29559567 PMCID: PMC5874924 DOI: 10.1128/mbio.00024-18] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Endosymbiotic bacteria associated with eukaryotic hosts are omnipresent in nature, particularly in insects. Studying the bacterial side of host-symbiont interactions is, however, often limited by the unculturability and genetic intractability of the symbionts. Spiroplasma poulsonii is a maternally transmitted bacterial endosymbiont that is naturally associated with several Drosophila species. S. poulsonii strongly affects its host’s physiology, for example by causing male killing or by protecting it against various parasites. Despite intense work on this model since the 1950s, attempts to cultivate endosymbiotic Spiroplasma in vitro have failed so far. Here, we developed a method to sustain the in vitro culture of S. poulsonii by optimizing a commercially accessible medium. We also provide a complete genome assembly, including the first sequence of a natural plasmid of an endosymbiotic Spiroplasma species. Last, by comparing the transcriptome of the in vitro culture to the transcriptome of bacteria extracted from the host, we identified genes putatively involved in host-symbiont interactions. This work provides new opportunities to study the physiology of endosymbiotic Spiroplasma and paves the way to dissect insect-endosymbiont interactions with two genetically tractable partners. The discovery of insect bacterial endosymbionts (maternally transmitted bacteria) has revolutionized the study of insects, suggesting novel strategies for their control. Most endosymbionts are strongly dependent on their host to survive, making them uncultivable in artificial systems and genetically intractable. Spiroplasma poulsonii is an endosymbiont of Drosophila that affects host metabolism, reproduction, and defense against parasites. By providing the first reliable culture medium that allows a long-lasting in vitro culture of Spiroplasma and by elucidating its complete genome, this work lays the foundation for the development of genetic engineering tools to dissect endosymbiosis with two partners amenable to molecular study. Furthermore, the optimization method that we describe can be used on other yet uncultivable symbionts, opening new technical opportunities in the field of host-microbes interactions.
Collapse
|
36
|
Duracova M, Klimentova J, Fucikova A, Dresler J. Proteomic Methods of Detection and Quantification of Protein Toxins. Toxins (Basel) 2018; 10:toxins10030099. [PMID: 29495560 PMCID: PMC5869387 DOI: 10.3390/toxins10030099] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 12/11/2022] Open
Abstract
Biological toxins are a heterogeneous group of compounds that share commonalities with biological and chemical agents. Among them, protein toxins represent a considerable, diverse set. They cover a broad range of molecular weights from less than 1000 Da to more than 150 kDa. This review aims to compare conventional detection methods of protein toxins such as in vitro bioassays with proteomic methods, including immunoassays and mass spectrometry-based techniques and their combination. Special emphasis is given to toxins falling into a group of selected agents, according to the Centers for Disease Control and Prevention, such as Staphylococcal enterotoxins, Bacillus anthracis toxins, Clostridium botulinum toxins, Clostridium perfringens epsilon toxin, ricin from Ricinus communis, Abrin from Abrus precatorius or control of trade in dual-use items in the European Union, including lesser known protein toxins such as Viscumin from Viscum album. The analysis of protein toxins and monitoring for biological threats, i.e., the deliberate spread of infectious microorganisms or toxins through water, food, or the air, requires rapid and reliable methods for the early identification of these agents.
Collapse
Affiliation(s)
- Miloslava Duracova
- Faculty of Military Health Sciences, University of Defense in Brno, Třebešská 1575, CZ-500 01 Hradec Králové, Czech Republic.
| | - Jana Klimentova
- Faculty of Military Health Sciences, University of Defense in Brno, Třebešská 1575, CZ-500 01 Hradec Králové, Czech Republic.
| | - Alena Fucikova
- Faculty of Military Health Sciences, University of Defense in Brno, Třebešská 1575, CZ-500 01 Hradec Králové, Czech Republic.
| | - Jiri Dresler
- Military Health Institute, Military Medical Agency, Tychonova 1, CZ-160 00 Prague 6, Czech Republic.
| |
Collapse
|
37
|
Woudstra C, Le Maréchal C, Souillard R, Anniballi F, Auricchio B, Bano L, Bayon-Auboyer MH, Koene M, Mermoud I, Brito RB, Lobato FCF, Silva ROS, Dorner MB, Fach P. Investigation of Clostridium botulinum group III's mobilome content. Anaerobe 2017; 49:71-77. [PMID: 29287670 DOI: 10.1016/j.anaerobe.2017.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 02/08/2023]
Abstract
Clostridium botulinum group III is mainly responsible for botulism in animals. It could lead to high animal mortality rates and, therefore, represents a major environmental and economic concern. Strains of this group harbor the botulinum toxin locus on an unstable bacteriophage. Since the release of the first complete C. botulinum group III genome sequence (strain BKT015925), strains have been found to contain others mobile elements encoding for toxin components. In this study, seven assays targeting toxin genes present on the genetic mobile elements of C. botulinum group III were developed with the objective to better characterize C. botulinum group III strains. The investigation of 110 C. botulinum group III strains and 519 naturally contaminated samples collected during botulism outbreaks in Europe showed alpha-toxin and C2-I/C2-II markers to be systematically associated with type C/D bont-positive samples, which may indicate an important role of these elements in the pathogenicity mechanisms. On the contrary, bont type D/C strains and the related positive samples appeared to contain almost none of the markers tested. Interestingly, 31 bont-negative samples collected on farms after a botulism outbreak revealed to be positive for some of the genetic mobile elements tested. This suggests loss of the bont phage, either in farm environment after the outbreak or during laboratory handling.
Collapse
Affiliation(s)
- Cédric Woudstra
- Université Paris-Est, Anses, Laboratory for Food Safety, Maisons-Alfort, France
| | - Caroline Le Maréchal
- ANSES, French Agency for Food Environmental and Occupational Health Safety, Hygiene and Quality of Poultry and Pig Products Unit, University of Bretagne Loire, BP 53, 22440 Ploufragan, France; UBL, Brittany and Loire University, France
| | - Rozenn Souillard
- ANSES, French Agency for Food Environmental and Occupational Health Safety, Avian and Rabbit Epidemiology and Welfare Unit, University of Bretagne Loire, BP 53, 22440 Ploufragan, France; ANSES, French Agency for Food Environmental and Occupational Health Safety, Hygiene and Quality of Poultry and Pig Products Unit, University of Bretagne Loire, BP 53, 22440 Ploufragan, France
| | - Fabrizio Anniballi
- Istituto Superiore di Sanità (ISS) Department of Food Safety, Nutrition and Veterinary Public Health, National Reference Centre for Botulism, Rome, Italy
| | - Bruna Auricchio
- Istituto Superiore di Sanità (ISS) Department of Food Safety, Nutrition and Veterinary Public Health, National Reference Centre for Botulism, Rome, Italy
| | - Luca Bano
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Laboratorio di Treviso, Italy
| | | | - Miriam Koene
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | | | - Roseane B Brito
- Brazilian Ministry of Agriculture, Livestock and Food Supply (MAPA), National Agricultural Laboratory (LANAGRO/MG), Brazil
| | | | - Rodrigo O S Silva
- Robert Koch-Institut (RKI) Centre for Biological Threats and Special Pathogens, Biological Toxins, Consultant Laboratory for Neurotoxin-producing Clostridia (botulism, tetanus), Berlin, Germany
| | - Martin B Dorner
- ANSES, French Agency for Food Environmental and Occupational Health Safety, Hygiene and Quality of Poultry and Pig Products Unit, University of Bretagne Loire, BP 53, 22440 Ploufragan, France
| | - Patrick Fach
- Université Paris-Est, Anses, Laboratory for Food Safety, Maisons-Alfort, France.
| |
Collapse
|
38
|
Nazki S, Wani SA, Parveen R, Ahangar SA, Kashoo ZA, Hamid S, Dar ZA, Dar TA, Dar PA. Isolation, molecular characterization and prevalence of Clostridium perfringens in sheep and goats of Kashmir Himalayas, India. Vet World 2017; 10:1501-1507. [PMID: 29391693 PMCID: PMC5771177 DOI: 10.14202/vetworld.2017.1501-1507] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/21/2017] [Indexed: 11/17/2022] Open
Abstract
Aim: The study was conducted to report the occurrence of the Clostridium perfringens in sheep and goats of the Kashmir valley for the 1st time and to characterize them molecularly with respect to toxin genes to determine the prevalence of the various toxinotypes. Materials and Methods: A total of 177 samples (152 from sheep and 25 from goats) collected from healthy, diarrheic animals, and morbid material of animals suspected to have died of enterotoxaemia were screened for C. perfringens toxinotypes. The presumptive positive isolates were confirmed using 16S rRNA gene-based polymerase chain reaction (PCR). All the confirmed isolates were screened for six toxin genes, namely; cpa, cpb, etx, cpi, cpb2, and cpe using a multiplex PCR. Results: The PCR amplification of 16S rRNA gene revealed that out of 177 samples collected, 125 (70.62%) were found positive for C. perfringens, of which 110 (72.36%) were from sheep and 15 (60%) were from goats. The highest prevalence of C. perfringens toxinotype D was observed in lambs (56.16%) and kids (46.16%) followed by 3.84% in adult sheep while it was absent in samples obtained from adult goats. The multiplex PCR revealed that 67 (60.90%) isolates from sheep and 8 (53.33%) isolates from goats belonged to toxinotype A, while 43 (39.09%) isolates from sheep and 7 (46.66%) isolates from goats were detected as toxinotype D. None of the isolates was found to be toxinotype B, C, or E. All the C. perfringens toxinotype A isolates from sheep were negative for both cpb2 and cpe genes, however, 27.90% toxinotype D isolates from sheep carried cpb2 gene, and 6.97% possessed cpe gene. In contrast, 12.50% C. perfringens toxinotype A isolates from goats harbored cpb2 and cpe genes while 14.28% isolates belonging to toxinotype D carried cpb2 and cpe genes, respectively. Conclusion: The high prevalence of C. perfringens was observed, even in day-old lambs. The toxinotypes A and D are prevalent in both sheep and goats. The severity of disease and mortality may be associated with the presence of minor toxins in both the detected toxinotypes.
Collapse
Affiliation(s)
- Salik Nazki
- Bacteriology Laboratory, Division of Veterinary Microbiology and Immunology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-Kashmir, Shuhama, Srinagar - 190 006, Jammu and Kashmir, India.,Laboratory of Veterinary Immunology, College of Veterinary Medicine, Chonbuk National University, Iksan 54596, South Korea
| | - Shakil A Wani
- Bacteriology Laboratory, Division of Veterinary Microbiology and Immunology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-Kashmir, Shuhama, Srinagar - 190 006, Jammu and Kashmir, India
| | - Rafia Parveen
- Bacteriology Laboratory, Division of Veterinary Microbiology and Immunology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-Kashmir, Shuhama, Srinagar - 190 006, Jammu and Kashmir, India
| | - Showkat A Ahangar
- Bacteriology Laboratory, Division of Veterinary Microbiology and Immunology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-Kashmir, Shuhama, Srinagar - 190 006, Jammu and Kashmir, India
| | - Zahid A Kashoo
- Bacteriology Laboratory, Division of Veterinary Microbiology and Immunology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-Kashmir, Shuhama, Srinagar - 190 006, Jammu and Kashmir, India
| | - Syed Hamid
- Bacteriology Laboratory, Division of Veterinary Microbiology and Immunology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-Jammu, R.S. Pora, Jammu - 181 102, India
| | - Zahoor A Dar
- Bacteriology Laboratory, Division of Veterinary Microbiology and Immunology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-Kashmir, Shuhama, Srinagar - 190 006, Jammu and Kashmir, India
| | - Tanveer A Dar
- Division of Veterinary Pathology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-Kashmir, Shuhama, Srinagar - 190 006, Jammu and Kashmir, India
| | - Pervaiz A Dar
- Bacteriology Laboratory, Division of Veterinary Microbiology and Immunology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-Kashmir, Shuhama, Srinagar - 190 006, Jammu and Kashmir, India
| |
Collapse
|
39
|
Robinson TM, Jicsinszky L, Karginov AV, Karginov VA. Inhibition of Clostridium perfringens epsilon toxin by β-cyclodextrin derivatives. Int J Pharm 2017; 531:714-717. [PMID: 28750897 DOI: 10.1016/j.ijpharm.2017.07.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 07/18/2017] [Accepted: 07/23/2017] [Indexed: 01/08/2023]
Abstract
Clostridium perfringens epsilon toxin (ETX) is considered as one of the most dangerous potential biological weapons. The goal of this work was to identify inhibitors of ETX using a novel approach for the inactivation of pore-forming toxins. The approach is based on the blocking of the target pore with molecules having the same symmetry as the pore itself. About 200 various β-cyclodextrin derivatives were screened for inhibitors of ETX activity using a colorimetric cell viability assay. Several compounds with dose-dependent activities at low micromolar concentrations have been identified. The same compounds were also able to inhibit lethal toxin of Bacillus anthracis.
Collapse
Affiliation(s)
| | - Laszlo Jicsinszky
- Innovative Biologics, Inc., Herndon, VA, USA; Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Turin, Italy
| | - Andrei V Karginov
- Department of Pharmacology, University of Illinois at Chicago, Illinois, USA
| | | |
Collapse
|
40
|
Kang J, Gao J, Yao W, Kang L, Gao S, Yang H, Ji B, Li P, Liu J, Yao J, Xin W, Zhao B, Wang J. F199E substitution reduced toxicity of Clostridium perfringens epsilon toxin by depriving the receptor binding capability. Hum Vaccin Immunother 2017; 13:1598-1608. [PMID: 28304231 DOI: 10.1080/21645515.2017.1303022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epsilon toxin (ETX), a potent toxin, is produced by types B and D strains of Clostridium perfringens, which could cause severe diseases in humans and domestic animals. Mutant rETXF199E was previously demonstrated to be a good vaccine candidate. However, the mechanism concerned remains unknown. To clarify how F199E substitution reduced ETX toxicity, we performed a series of experiments. The results showed that the cell-binding and pore-forming ability of rETXF199E was almost abolished. We speculated that F199E substitution reduced toxicity by depriving the receptor binding capability of ETX, which contributed to the hypothesis that domain I of ETX is responsible for cell binding. In addition, our data suggested that ETX could cause Ca2+ release from intracellular Ca2+ stores, which may underlie an alternate pathway leading to cell death. Furthermore, ETX induced crenation of the MDCK cells was observed, with sags and crests first appearing on the surface of condensed MDCK cells, according to scanning electron microscopy. The data also demonstrated the safety and potentiality of rETXF199E as a vaccine candidate for humans. In summary, findings of this work potentially contribute to a better understanding of the pathogenic mechanism of ETX and the development of vaccine against diseases caused by ETX, using mutant proteins.
Collapse
Affiliation(s)
- Jingjing Kang
- a Life Science Institute of Hebei Normal University , Shijiazhuang, Hebei Province , PR China
| | - Jie Gao
- a Life Science Institute of Hebei Normal University , Shijiazhuang, Hebei Province , PR China
| | - Wenwu Yao
- b State Key Laboratory of Pathogen and Biosecurity , Institute of Microbiology and Epidemiology , Beijing , PR China
| | - Lin Kang
- b State Key Laboratory of Pathogen and Biosecurity , Institute of Microbiology and Epidemiology , Beijing , PR China
| | - Shan Gao
- b State Key Laboratory of Pathogen and Biosecurity , Institute of Microbiology and Epidemiology , Beijing , PR China
| | - Hao Yang
- b State Key Laboratory of Pathogen and Biosecurity , Institute of Microbiology and Epidemiology , Beijing , PR China
| | - Bin Ji
- b State Key Laboratory of Pathogen and Biosecurity , Institute of Microbiology and Epidemiology , Beijing , PR China
| | - Ping Li
- b State Key Laboratory of Pathogen and Biosecurity , Institute of Microbiology and Epidemiology , Beijing , PR China
| | - Jing Liu
- b State Key Laboratory of Pathogen and Biosecurity , Institute of Microbiology and Epidemiology , Beijing , PR China
| | - Jiahao Yao
- b State Key Laboratory of Pathogen and Biosecurity , Institute of Microbiology and Epidemiology , Beijing , PR China
| | - Wenwen Xin
- b State Key Laboratory of Pathogen and Biosecurity , Institute of Microbiology and Epidemiology , Beijing , PR China
| | - Baohua Zhao
- a Life Science Institute of Hebei Normal University , Shijiazhuang, Hebei Province , PR China
| | - Jinglin Wang
- b State Key Laboratory of Pathogen and Biosecurity , Institute of Microbiology and Epidemiology , Beijing , PR China
| |
Collapse
|
41
|
Yang NJ, Chiu IM. Bacterial Signaling to the Nervous System through Toxins and Metabolites. J Mol Biol 2017; 429:587-605. [PMID: 28065740 PMCID: PMC5325782 DOI: 10.1016/j.jmb.2016.12.023] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/21/2016] [Accepted: 12/29/2016] [Indexed: 12/31/2022]
Abstract
Mammalian hosts interface intimately with commensal and pathogenic bacteria. It is increasingly clear that molecular interactions between the nervous system and microbes contribute to health and disease. Both commensal and pathogenic bacteria are capable of producing molecules that act on neurons and affect essential aspects of host physiology. Here we highlight several classes of physiologically important molecular interactions that occur between bacteria and the nervous system. First, clostridial neurotoxins block neurotransmission to or from neurons by targeting the SNARE complex, causing the characteristic paralyses of botulism and tetanus during bacterial infection. Second, peripheral sensory neurons-olfactory chemosensory neurons and nociceptor sensory neurons-detect bacterial toxins, formyl peptides, and lipopolysaccharides through distinct molecular mechanisms to elicit smell and pain. Bacteria also damage the central nervous system through toxins that target the brain during infection. Finally, the gut microbiota produces molecules that act on enteric neurons to influence gastrointestinal motility, and metabolites that stimulate the "gut-brain axis" to alter neural circuits, autonomic function, and higher-order brain function and behavior. Furthering the mechanistic and molecular understanding of how bacteria affect the nervous system may uncover potential strategies for modulating neural function and treating neurological diseases.
Collapse
Affiliation(s)
- Nicole J Yang
- Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Isaac M Chiu
- Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
42
|
Structural pierce into molecular mechanism underlying Clostridium perfringens Epsilon toxin function. Toxicon 2017; 127:90-99. [PMID: 28089770 DOI: 10.1016/j.toxicon.2017.01.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 12/17/2022]
Abstract
Epsilon toxin of the Clostridium perfringens garnered a lot of attention due to its potential for toxicity in humans, extreme potency for cytotoxicity in mice and lack of any approved therapeutics prescribed for human. However, the intricacies of the Epsilon toxin action mechanism are yet to be understood. In this regard, various in silico tools have been exploited to model and refine the 3D structure of the toxin and its two receptors. The receptor proteins were embedded into designed lipid membranes within an aqueous and ionized environment. Thereafter, the modeled structures subjected to series of consecutive molecular dynamics runs to achieve the most natural like coordination for each model. Ultimately, protein-protein interaction analyses were performed to understand the probable action mechanism. The obtained results successfully confirmed the accuracy of employed methods to achieve high quality models for the toxin and its receptors within their lipid bilayers. Molecular dynamics analyses lead the structures to a more native like coordination. Moreover, the results of previous empirical studies were confirmed, while new insights for action mechanisms including the detailed roles of Hepatitis A virus cellular receptor 1 (HAVCR1) and Myelin and lymphocyte protein (MAL) proteins were achieved. In light of previous and our observations, we suggested novel models which elucidated the existing interplay between potential players of Epsilon toxin action mechanism with detailed structural evidences. These models would pave the way to have more robust understanding of the Epsilon toxin biology, more precise vaccine construction and more successful drug (inhibitor) design.
Collapse
|
43
|
Pinart E, Domènech E, Bussalleu E, Yeste M, Bonet S. A comparative study of the effects of Escherichia coli and Clostridium perfringens upon boar semen preserved in liquid storage. Anim Reprod Sci 2016; 177:65-78. [PMID: 27988080 DOI: 10.1016/j.anireprosci.2016.12.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/16/2016] [Accepted: 12/12/2016] [Indexed: 11/18/2022]
Abstract
The present study compares the sperm quality of boar seminal doses artificially inoculated with Escherichia coli and Clostridium perfringens, and maintained in liquid storage at 15°C for a 9-day period. Seminal doses from 10 sexually mature Piétrain boars were diluted in a Beltsville Thawing Solution (BTS)-based extender and infected either with E. coli or C. perfringens, with bacterial loads ranging from 101 to 107cfumL-1. During storage, the changes in sperm quality were determined by assessing pH, sperm viability, sperm motiliy, sperm morphology, sperm agglutination degree, and sperm-bacteria interaction. The infection of seminal doses led to an alkalinization of the medium, which was of higher extend in doses infected with C. perfringens. The effect of contamination on sperm viability and motility relied on bacterial type and load. Therefore, while E. coli was more harmful than C. perfringens in bacterial loads ranging from 101 to 106cfumL-1, the detrimental impact of C. perfringens was more apparent than that of E. coli at a bacterial load of 107cfumL-1. Despite sperm morphology not being affected by either bacterial type or load, sperm agglutination and sperm-bacteria interaction were characteristic of doses infected with E. coli, and increased concomintantly with bacterial load and along storage period. In conclusion, the effects of infection by E. coli on sperm quality were dependent of both bacterial load and storage period, whereas the effects of C. perfringens were mainly dependent on the bacterial load, with a threshold at 107cfumL-1 from which the sperm quality of seminal doses was greatly impaired.
Collapse
Affiliation(s)
- Elisabeth Pinart
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Institute of Food and Agricultural Technology, University of Girona, E-17071 Girona, Spain.
| | - Esther Domènech
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Institute of Food and Agricultural Technology, University of Girona, E-17071 Girona, Spain
| | - Eva Bussalleu
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Institute of Food and Agricultural Technology, University of Girona, E-17071 Girona, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Institute of Food and Agricultural Technology, University of Girona, E-17071 Girona, Spain
| | - Sergi Bonet
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Institute of Food and Agricultural Technology, University of Girona, E-17071 Girona, Spain
| |
Collapse
|
44
|
Freedman JC, McClane BA, Uzal FA. New insights into Clostridium perfringens epsilon toxin activation and action on the brain during enterotoxemia. Anaerobe 2016; 41:27-31. [PMID: 27321761 DOI: 10.1016/j.anaerobe.2016.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/07/2016] [Accepted: 06/15/2016] [Indexed: 02/07/2023]
Abstract
Epsilon toxin (ETX), produced by Clostridium perfringens types B and D, is responsible for diseases that occur mostly in ruminants. ETX is produced in the form of an inactive prototoxin that becomes proteolytically-activated by several proteases. A recent ex vivo study using caprine intestinal contents demonstrated that ETX prototoxin is processed in a step-wise fashion into a stable, active ∼27 kDa band on SDS-PAGE. When characterized further by mass spectrometry, the stable ∼27 kDa band was shown to contain three ETX species with varying C-terminal residues; each of these ETX species is cytotoxic. This study also demonstrated that, in addition to trypsin and chymotrypsin, proteases such as carboxypeptidases are involved in processing ETX prototoxin. Once absorbed, activated ETX species travel to several internal organs, including the brain, where this toxin acts on the vasculature to cross the blood-brain barrier, produces perivascular edema and affects several types of brain cells including neurons, astrocytes, and oligodendrocytes. In addition to perivascular edema, affected animals show edema within the vascular walls. This edema separates the astrocytic end-feet from affected blood vessels, causing hypoxia of nervous system tissue. Astrocytes of rats and sheep affected by ETX show overexpression of aquaporin-4, a membrane channel protein that is believed to help remove water from affected perivascular spaces in an attempt to resolve the perivascular edema. Amyloid precursor protein, an early astrocyte damage indicator, is also observed in the brains of affected sheep. These results show that ETX activation in vivo seems to be more complex than previously thought and this toxin acts on the brain, affecting vascular permeability, but also damaging neurons and other cells.
Collapse
Affiliation(s)
- John C Freedman
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bruce A McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Francisco A Uzal
- California Animal Health and Food Safety Laboratory, San Bernardino Branch, School of Veterinary Medicine, University of California-Davis, San Bernardino, CA, USA.
| |
Collapse
|
45
|
Berger T, Eisenkraft A, Bar-Haim E, Kassirer M, Aran AA, Fogel I. Toxins as biological weapons for terror-characteristics, challenges and medical countermeasures: a mini-review. DISASTER AND MILITARY MEDICINE 2016; 2:7. [PMID: 28265441 PMCID: PMC5330008 DOI: 10.1186/s40696-016-0017-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/23/2016] [Indexed: 12/15/2022]
Abstract
Toxins are hazardous biochemical compounds derived from bacteria, fungi, or plants. Some have mechanisms of action and physical properties that make them amenable for use as potential warfare agents. Currently, some toxins are classified as potential biological weapons, although they have several differences from classic living bio-terror pathogens and some similarities to manmade chemical warfare agents. This review focuses on category A and B bio-terror toxins recognized by the Centers for Disease Control and Prevention: Botulinum neurotoxin, staphylococcal enterotoxin B, Clostridium perfringens epsilon toxin, and ricin. Their derivation, pathogenesis, mechanism of action, associated clinical signs and symptoms, diagnosis, and treatment are discussed in detail. Given their expected covert use, the primary diagnostic challenge in toxin exposure is the early detection of morbidity clusters, apart from background morbidity, after a relatively short incubation period. For this reason, it is important that clinicians be familiar with the clinical manifestations of toxins and the appropriate methods of management and countermeasures.
Collapse
Affiliation(s)
- Tamar Berger
- Surgeon General Headquarters, IDF Medical Corps, Tel Hashomer, Israel ; Department of Internal Medicine, Rabin Medical Center, Petah Tikva, Israel
| | - Arik Eisenkraft
- Surgeon General Headquarters, IDF Medical Corps, Tel Hashomer, Israel ; Institute for Research in Military Medicine, Faculty of Medicine, The Hebrew University, Jerusalem, Israel ; NBC Protection Division, IMOD, Tel-Aviv, Israel
| | - Erez Bar-Haim
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Michael Kassirer
- Surgeon General Headquarters, IDF Medical Corps, Tel Hashomer, Israel
| | - Adi Avniel Aran
- Surgeon General Headquarters, IDF Medical Corps, Tel Hashomer, Israel ; Pediatric Critical Care Unit, Children's Hospital, Montefiore Medical Center, Bronx, NY USA
| | - Itay Fogel
- Surgeon General Headquarters, IDF Medical Corps, Tel Hashomer, Israel
| |
Collapse
|
46
|
|
47
|
Immunization with a novel Clostridium perfringens epsilon toxin mutant rETX(Y196E)-C confers strong protection in mice. Sci Rep 2016; 6:24162. [PMID: 27048879 PMCID: PMC4822168 DOI: 10.1038/srep24162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/21/2016] [Indexed: 11/08/2022] Open
Abstract
Epsilon toxin (ETX) is produced by toxinotypes B and D of Clostridium perfringens. It can induce lethal enterotoxemia in domestic animals, mainly in sheep, goats and cattle, causing serious economic losses to global animal husbandry. In this study, a novel and stable epsilon toxin mutant rETXY196E-C, obtained by substituting the 196th tyrosine (Y196) with glutamic acid (E) and introducing of 23 amino acids long C-terminal peptide, was determined as a promising recombinant vaccine candidate against enterotoxemia. After the third vaccination, the antibody titers against recombinant wild type (rETX) could reach 1:105 in each immunized group, and the mice were completely protected from 100 × LD50 (50% lethal dose) of rETX challenge. The mice in 15 μg subcutaneously immunized group fully survived at the dose of 500 × LD50 of rETX challenge and 80% of mice survived at 180 μg (1000 × LD50) of rETX administration. In vitro, immune sera from 15 μg subcutaneously immunized group could completely protect MDCK cells from 16 × CT50 (50% lethal dose of cells) of rETX challenge and protect against 10 × LD50 dose (1.8 μg) of rETX challenge in mice. These data suggest that recombinant protein rETXY196E-C is a potential vaccine candidate for future applied researches.
Collapse
|
48
|
Bezrukov SM, Nestorovich EM. Inhibiting bacterial toxins by channel blockage. Pathog Dis 2016; 74:ftv113. [PMID: 26656888 PMCID: PMC4830228 DOI: 10.1093/femspd/ftv113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/15/2015] [Accepted: 11/24/2015] [Indexed: 01/01/2023] Open
Abstract
Emergent rational drug design techniques explore individual properties of target biomolecules, small and macromolecule drug candidates, and the physical forces governing their interactions. In this minireview, we focus on the single-molecule biophysical studies of channel-forming bacterial toxins that suggest new approaches for their inhibition. We discuss several examples of blockage of bacterial pore-forming and AB-type toxins by the tailor-made compounds. In the concluding remarks, the most effective rationally designed pore-blocking antitoxins are compared with the small-molecule inhibitors of ion-selective channels of neurophysiology.
Collapse
Affiliation(s)
- Sergey M Bezrukov
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
49
|
Thompson MK, Fridy PC, Keegan S, Chait BT, Fenyö D, Rout MP. Optimizing selection of large animals for antibody production by screening immune response to standard vaccines. J Immunol Methods 2016; 430:56-60. [PMID: 26775851 PMCID: PMC4769958 DOI: 10.1016/j.jim.2016.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/23/2015] [Accepted: 01/05/2016] [Indexed: 01/11/2023]
Abstract
Antibodies made in large animals are integral to many biomedical research endeavors. Domesticated herd animals like goats, sheep, donkeys, horses and camelids all offer distinct advantages in antibody production. However, their cost of use is often prohibitive, especially where poor antigen response is commonplace; choosing a non-responsive animal can set a research program back or even prevent experiments from moving forward entirely. Over the course of production of antibodies from llamas, we found that some animals consistently produced a higher humoral antibody response than others, even to highly divergent antigens, as well as to their standard vaccines. Based on our initial data, we propose that these "high level responders" could be pre-selected by checking antibody titers against common vaccines given to domestic farm animals. Thus, time and money can be saved by reducing the chances of getting poor responding animals and minimizing the use of superfluous animals.
Collapse
Affiliation(s)
- Mary K Thompson
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | - Peter C Fridy
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | - Sarah Keegan
- Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, NY, USA
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - David Fenyö
- Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, NY, USA
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
50
|
Gil C, Dorca-Arévalo J, Blasi J. Clostridium Perfringens Epsilon Toxin Binds to Membrane Lipids and Its Cytotoxic Action Depends on Sulfatide. PLoS One 2015; 10:e0140321. [PMID: 26452234 PMCID: PMC4599917 DOI: 10.1371/journal.pone.0140321] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/24/2015] [Indexed: 12/23/2022] Open
Abstract
Epsilon toxin (Etx) is one of the major lethal toxins produced by Clostridium perfringens types B and D, being the causal agent of fatal enterotoxemia in animals, mainly sheep and goats. Etx is synthesized as a non-active prototoxin form (proEtx) that becomes active upon proteolytic activation. Etx exhibits a cytotoxic effect through the formation of a pore in the plasma membrane of selected cell targets where Etx specifically binds due to the presence of specific receptors. However, the identity and nature of host receptors of Etx remain a matter of controversy. In the present study, the interactions between Etx and membrane lipids from the synaptosome-enriched fraction from rat brain (P2 fraction) and MDCK cell plasma membrane preparations were analyzed. Our findings show that both Etx and proEtx bind to lipids extracted from lipid rafts from the two different models as assessed by protein-lipid overlay assay. Lipid rafts are membrane microdomains enriched in cholesterol and sphingolipids. Binding of proEtx to sulfatide, phosphatidylserine, phosphatidylinositol (3)-phosphate and phosphatidylinositol (5)-phosphate was detected. Removal of the sulphate groups via sulfatase treatment led to a dramatic decrease in Etx-induced cytotoxicity, but not in proEtx-GFP binding to MDCK cells or a significant shift in oligomer formation, pointing to a role of sulfatide in pore formation in rafts but not in toxin binding to the target cell membrane. These results show for the first time the interaction between Etx and membrane lipids from host tissue and point to a major role for sulfatides in C. perfringens epsilon toxin pathophysiology.
Collapse
Affiliation(s)
- Carles Gil
- Departament de Bioquímica i Biologia Molecular and Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Catalunya, Spain
- * E-mail: (JB); (CG)
| | - Jonatan Dorca-Arévalo
- Laboratory of Cellular and Molecular Neuroscience, Department of Pathology and Experimental Therapeutics, School of Medicine, Universitat de Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain
- IDIBELL-Bellvitge Biomedical Research Institute, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Juan Blasi
- Laboratory of Cellular and Molecular Neuroscience, Department of Pathology and Experimental Therapeutics, School of Medicine, Universitat de Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain
- IDIBELL-Bellvitge Biomedical Research Institute, L’Hospitalet de Llobregat, Barcelona, Spain
- * E-mail: (JB); (CG)
| |
Collapse
|