1
|
Li G, Facchini PJ. New frontiers in the biosynthesis of psychoactive specialized metabolites. CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102626. [PMID: 39288539 DOI: 10.1016/j.pbi.2024.102626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024]
Abstract
The recent relaxation of psychedelic drug regulations has prompted extensive clinical investigation into their potential use to treat diverse mental health conditions including anxiety, depression, post-traumatic stress, and substance-abuse disorders. Most clinical trials have relied on a small number of known molecules found in nature, such as psilocybin, or long-known synthetic analogs of natural metabolites, including lysergic acid diethylamide (LSD). Elucidation of biosynthetic pathways leading to several psychedelic compounds has established an opportunity to use synthetic biology as a complement to synthetic chemistry for the preparation of novel derivatives with potentially superior pharmacological properties compared with known drugs. Herein we review the metabolic biochemistry of pathways from plants, fungi and animals that yield the medicinally important hallucinogenic specialized metabolites ibogaine, mescaline, psilocybin, lysergic acid, and N,N-dimethyltryptamine (DMT). We also summarize the reconstitution of these pathways in microorganisms and comment on the integration of native and non-native enzymes to prepare novel derivatives.
Collapse
Affiliation(s)
- Ginny Li
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Peter J Facchini
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|
2
|
Cherewyk JE, Blakley BR, Al-Dissi AN. The C-8-S-isomers of ergot alkaloids - a review of biological and analytical aspects. Mycotoxin Res 2024; 40:1-17. [PMID: 37953416 PMCID: PMC10834577 DOI: 10.1007/s12550-023-00507-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/03/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023]
Abstract
Ergot alkaloids are secondary metabolites that are produced by fungi and contaminate cereal crops and grasses. The ergot alkaloids produced by Claviceps purpurea are the most abundant worldwide. The metabolites exist in two configurations, the C-8-R-isomer (R-epimer) and the C-8-S-isomer (S-epimer). These two configurations can interconvert to one another. Ergot alkaloids cause toxic effects after consumption of ergot-contaminated food and feed at various concentrations. For bioactivity reasons, the C-8-R-isomers have been studied to a greater extent than the C-8-S-isomer since the C-8-S-isomers were considered biologically inactive. However, recent studies suggest the contrary. Analytical assessment of ergot alkaloids now includes the C-8-S-isomers and high concentrations of specific C-8-S-isomers have been identified. The inclusion of the C-8-S-isomer in regulatory standards is reviewed. This review has identified that further research into the C-8-S-isomers of ergot alkaloids is warranted. In addition, the inclusion of the C-8-S-isomers into regulatory recommendations worldwide for food and feed should be implemented. The objectives of this review are to provide an overview of historic and current studies that have assessed the C-8-S-isomers. Specifically, this review will compare the C-8-R-isomers to the C-8-S-isomers with an emphasis on the biological activity and analytical assessment.
Collapse
Affiliation(s)
- Jensen E Cherewyk
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada.
| | - Barry R Blakley
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Ahmad N Al-Dissi
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| |
Collapse
|
3
|
Davis KA, Jones AM, Panaccione DG. Two Satellite Gene Clusters Enhance Ergot Alkaloid Biosynthesis Capacity of Aspergillus leporis. Appl Environ Microbiol 2023; 89:e0079323. [PMID: 37432119 PMCID: PMC10467348 DOI: 10.1128/aem.00793-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/25/2023] [Indexed: 07/12/2023] Open
Abstract
Ergot alkaloids are fungal specialized metabolites that are important in agriculture and serve as sources of several pharmaceuticals. Aspergillus leporis is a soil saprotroph that possesses two ergot alkaloid biosynthetic gene clusters encoding lysergic acid amide production. We identified two additional, partial biosynthetic gene clusters within the A. leporis genome containing some of the ergot alkaloid synthesis (eas) genes required to make two groups of clavine ergot alkaloids, fumigaclavines and rugulovasines. Clavines possess unique biological properties compared to lysergic acid derivatives. Bioinformatic analyses indicated the fumigaclavine cluster contained functional copies of easA, easG, easD, easM, and easN. Genes resembling easQ and easH, which are required for rugulovasine production, were identified in a separate gene cluster. The pathways encoded by these partial, or satellite, clusters would require intermediates from the previously described lysergic acid amide pathway to synthesize a product. Chemical analyses of A. leporis cultures revealed the presence of fumigaclavine A. However, rugulovasine was only detected in a single sample, prompting a heterologous expression approach to confirm functionality of easQ and easH. An easA knockout strain of Metarhizium brunneum, which accumulates the rugulovasine precursor chanoclavine-I aldehyde, was chosen as expression host. Strains of M. brunneum expressing easQ and easH from A. leporis accumulated rugulovasine as demonstrated through mass spectrometry analysis. These data indicate that A. leporis is exceptional among fungi in having the capacity to synthesize products from three branches of the ergot alkaloid pathway and for utilizing an unusual satellite cluster approach to achieve that outcome. IMPORTANCE Ergot alkaloids are chemicals produced by several species of fungi and are notable for their impacts on agriculture and medicine. The ability to make ergot alkaloids is typically encoded by a clustered set of genes that are physically adjacent on a chromosome. Different ergot alkaloid classes are formed via branching of a complex pathway that begins with a core set of the same five genes. Most ergot alkaloid-producing fungi have a single cluster of genes that is complete, or self-sufficient, and produce ergot alkaloids from one or occasionally two branches from that single cluster. Our data show that Aspergillus leporis is exceptional in having the genetic capacity to make products from three pathway branches. Moreover, it uses a satellite cluster approach, in which gene products of partial clusters rely on supplementation with a chemical intermediate produced via another gene cluster, to diversify its biosynthetic potential without duplicating all the steps.
Collapse
Affiliation(s)
- Kyle A. Davis
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - Abigail M. Jones
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - Daniel G. Panaccione
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
4
|
Zhgun AA. Fungal BGCs for Production of Secondary Metabolites: Main Types, Central Roles in Strain Improvement, and Regulation According to the Piano Principle. Int J Mol Sci 2023; 24:11184. [PMID: 37446362 PMCID: PMC10342363 DOI: 10.3390/ijms241311184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Filamentous fungi are one of the most important producers of secondary metabolites. Some of them can have a toxic effect on the human body, leading to diseases. On the other hand, they are widely used as pharmaceutically significant drugs, such as antibiotics, statins, and immunosuppressants. A single fungus species in response to various signals can produce 100 or more secondary metabolites. Such signaling is possible due to the coordinated regulation of several dozen biosynthetic gene clusters (BGCs), which are mosaically localized in different regions of fungal chromosomes. Their regulation includes several levels, from pathway-specific regulators, whose genes are localized inside BGCs, to global regulators of the cell (taking into account changes in pH, carbon consumption, etc.) and global regulators of secondary metabolism (affecting epigenetic changes driven by velvet family proteins, LaeA, etc.). In addition, various low-molecular-weight substances can have a mediating effect on such regulatory processes. This review is devoted to a critical analysis of the available data on the "turning on" and "off" of the biosynthesis of secondary metabolites in response to signals in filamentous fungi. To describe the ongoing processes, the model of "piano regulation" is proposed, whereby pressing a certain key (signal) leads to the extraction of a certain sound from the "musical instrument of the fungus cell", which is expressed in the production of a specific secondary metabolite.
Collapse
Affiliation(s)
- Alexander A Zhgun
- Group of Fungal Genetic Engineering, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninsky Prosp. 33-2, 119071 Moscow, Russia
| |
Collapse
|
5
|
Liu S, Nie Q, Liu Z, Patil S, Gao X. Fungal P450 Deconstructs the 2,5-Diazabicyclo[2.2.2]octane Ring En Route to the Complete Biosynthesis of 21 R-Citrinadin A. J Am Chem Soc 2023; 145:14251-14259. [PMID: 37352463 PMCID: PMC11025717 DOI: 10.1021/jacs.3c02109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
Abstract
Prenylated indole alkaloids (PIAs) possess great structural diversity and show biological activities. Despite significant efforts in investigating the biosynthetic mechanism, the key step in the transformation of 2,5-diazabicyclo[2.2.2]octane-containing PIAs into a distinct class of pentacyclic compounds remains unknown. Here, using a combination of gene deletion, heterologous expression, and biochemical characterization, we show that a unique fungal P450 enzyme CtdY catalyzes the cleavage of the amide bond in the 2,5-diazabicyclo[2.2.2]octane system, followed by a decarboxylation step to form the 6/5/5/6/6 pentacyclic ring in 21R-citrinadin A. We also demonstrate the function of a subsequent cascade of stereospecific oxygenases to further modify the 6/5/5/6/6 pentacyclic intermediate en route to the complete 21R-citrinadin A biosynthesis. Our findings reveal a key enzyme CtdY for the pathway divergence in the biosynthesis of PIAs and uncover the complex late-stage post-translational modifications in 21R-citrinadin A biosynthesis.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
| | - Qiuyue Nie
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
| | - Zhiwen Liu
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
| | - Siddhant Patil
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
| | - Xue Gao
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| |
Collapse
|
6
|
Ramachanderan R, Schramm S, Schaefer B. Migraine drugs. CHEMTEXTS 2023. [DOI: 10.1007/s40828-023-00178-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
AbstractAccording to recent studies, migraine affects more than 1 billion people worldwide, making it one of the world’s most prevalent diseases. Although this highly debilitating illness has been known since ancient times, the first therapeutic drugs to treat migraine, ergotamine (Gynergen) and dihydroergotamine (Dihydergot), did not appear on the market until 1921 and 1946, respectively. Both drugs originated from Sandoz, the world’s leading pharmaceutical company in ergot alkaloid research at the time. Historically, ergot alkaloids had been primarily used in obstetrics, but with methysergide (1-methyl-lysergic acid 1′-hydroxy-butyl-(2S)-amide), it became apparent that they also held some potential in migraine treatment. Methysergide was the first effective prophylactic drug developed specifically to prevent migraine attacks in 1959. On the basis of significantly improved knowledge of migraine pathophysiology and the discovery of serotonin and its receptors, Glaxo was able to launch sumatriptan in 1992. It was the first member from the class of triptans, which are selective 5-HT1B/1D receptor agonists. Recent innovations in acute and preventive migraine therapy include lasmiditan, a selective 5-HT1F receptor agonist from Eli Lilly, the gepants, which are calcitonin gene-related peptide (CGRP) receptor antagonists discovered at Merck & Co and BMS, and anti-CGRP/receptor monoclonal antibodies from Amgen, Pfizer, Eli Lilly, and others.
Graphical abstract
Collapse
|
7
|
Panaccione DG. Derivation of the multiply-branched ergot alkaloid pathway of fungi. Microb Biotechnol 2023; 16:742-756. [PMID: 36636806 PMCID: PMC10034635 DOI: 10.1111/1751-7915.14214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/16/2022] [Accepted: 01/02/2023] [Indexed: 01/14/2023] Open
Abstract
Ergot alkaloids are a large family of fungal specialized metabolites that are important as toxins in agriculture and as the foundation of powerful pharmaceuticals. Fungi from several lineages and diverse ecological niches produce ergot alkaloids from at least one of several branches of the ergot alkaloid pathway. The biochemical and genetic bases for the different branches have been established and are summarized briefly herein. Several pathway branches overlap among fungal lineages and ecological niches, indicating activities of ergot alkaloids benefit fungi in different environments and conditions. Understanding the functions of the multiple genes in each branch of the pathway allows researchers to parse the abundant genomic sequence data available in public databases in order to assess the ergot alkaloid biosynthesis capacity of previously unexplored fungi. Moreover, the characterization of the genes involved in the various branches provides opportunities and resources for the biotechnological manipulation of ergot alkaloids for experimentation and pharmaceutical development.
Collapse
Affiliation(s)
- Daniel G Panaccione
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
8
|
Chiang CY, Ohashi M, Tang Y. Deciphering chemical logic of fungal natural product biosynthesis through heterologous expression and genome mining. Nat Prod Rep 2023; 40:89-127. [PMID: 36125308 PMCID: PMC9906657 DOI: 10.1039/d2np00050d] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Covering: 2010 to 2022Heterologous expression of natural product biosynthetic gene clusters (BGCs) has become a widely used tool for genome mining of cryptic pathways, bottom-up investigation of biosynthetic enzymes, and engineered biosynthesis of new natural product variants. In the field of fungal natural products, heterologous expression of a complete pathway was first demonstrated in the biosynthesis of tenellin in Aspergillus oryzae in 2010. Since then, advances in genome sequencing, DNA synthesis, synthetic biology, etc. have led to mining, assignment, and characterization of many fungal BGCs using various heterologous hosts. In this review, we will highlight key examples in the last decade in integrating heterologous expression into genome mining and biosynthetic investigations. The review will cover the choice of heterologous hosts, prioritization of BGCs for structural novelty, and how shunt products from heterologous expression can reveal important insights into the chemical logic of biosynthesis. The review is not meant to be exhaustive but is rather a collection of examples from researchers in the field, including ours, that demonstrates the usefulness and pitfalls of heterologous biosynthesis in fungal natural product discovery.
Collapse
Affiliation(s)
- Chen-Yu Chiang
- Dept. of Chemical and Biomolecular Engineering, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095, USA.
| | - Masao Ohashi
- Dept. of Chemical and Biomolecular Engineering, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095, USA.
| | - Yi Tang
- Dept. of Chemical and Biomolecular Engineering, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095, USA.
- Dept. of Chemistry and Biochemistry, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| |
Collapse
|
9
|
Ma Y, Yan J, Yang L, Yao Y, Wang L, Gao SS, Cui C. A hybrid system for the overproduction of complex ergot alkaloid chanoclavine. Front Bioeng Biotechnol 2022; 10:1095464. [PMID: 36619381 PMCID: PMC9811125 DOI: 10.3389/fbioe.2022.1095464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Synthetic biology-based methods (Sbio) and chemical synthesis (Csyn) are two independent approaches that are both widely used for synthesizing biomolecules. In the current study, two systems were combined for the overproduction of chanoclavine (CC), a structurally complex ergot alkaloid. The whole synthetic pathway for CC was split into three sections: enzymatic synthesis of 4-Br-Trp (4-Bromo-trptophan) using cell-lysate catalysis (CLC), chemical synthesis of prechanoclavine (PCC) from 4-Br-Trp, and overproduction CC from PCC using a whole-cell catalysis (WCC) platform. The final titer of the CC is over 3 g/L in this Sbio-Csyn hybrid system, the highest yield reported so far, to the best of our knowledge. The development of such a combined route could potentially avoid the limitations of both Sbio and Csyn systems and boost the overproduction of complex natural products.
Collapse
Affiliation(s)
- Yaqing Ma
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China,University of Chinese Academy of Sciences, Beijing, China
| | - Juzhang Yan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Lujia Yang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yongpeng Yao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Luoyi Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China,*Correspondence: Luoyi Wang, ; Shu-Shan Gao, ; Chengsen Cui,
| | - Shu-Shan Gao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China,National Technology Innovation Center of Synthetic Biology, Tianjin, China,*Correspondence: Luoyi Wang, ; Shu-Shan Gao, ; Chengsen Cui,
| | - Chengsen Cui
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China,National Technology Innovation Center of Synthetic Biology, Tianjin, China,*Correspondence: Luoyi Wang, ; Shu-Shan Gao, ; Chengsen Cui,
| |
Collapse
|
10
|
Yu ZP, An C, Yao Y, Wang CY, Sun Z, Cui C, Liu L, Gao SS. A combined strategy for the overproduction of complex ergot alkaloid agroclavine. Synth Syst Biotechnol 2022; 7:1126-1132. [PMID: 36092273 PMCID: PMC9428804 DOI: 10.1016/j.synbio.2022.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022] Open
Abstract
Microbial cell factories (MCFs) and cell-free systems (CFSs) are generally considered as two unrelated approaches for the biosynthesis of biomolecules. In the current study, two systems were combined together for the overproduction of agroclavine (AC), a structurally complex ergot alkaloid. The whole biosynthetic pathway for AC was split into the early pathway and the late pathway at the point of the FAD-linked oxidoreductase EasE, which was reconstituted in an MCF (Aspergillus nidulans) and a four-enzyme CFS, respectively. The final titer of AC of this combined system is 1209 mg/L, which is the highest one that has been reported so far, to the best of our knowledge. The development of such a combined route could potentially avoid the limitations of both MCF and CFS systems, and boost the production of complex ergot alkaloids with polycyclic ring systems.
Collapse
Affiliation(s)
- Zhi-Pu Yu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, Institute of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, PR China
| | - Chunyan An
- Beijing Institute for Drug Control, NMPA Key Laboratory for Research and Evaluation of Generic Drugs, Beijing Key Laboratory of Analysis and Evaluation on Chinese Medicine, Beijing, 102206, PR China
| | - Yongpeng Yao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, Institute of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, PR China
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, PR China
| | - Chengsen Cui
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, PR China
| | - Ling Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
- Corresponding author.
| | - Shu-Shan Gao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, PR China
- Corresponding author.
| |
Collapse
|
11
|
Zhou C, Cao X, Ge Y, Wu X, Zhang Z, Ma Y, Dickschat JS, Wu B. Talaropeptins A and B, Tripeptides with an N- trans-Cinnamoyl Moiety from the Marine-Derived Fungus Talaromyces purpureogenus CX11. JOURNAL OF NATURAL PRODUCTS 2022; 85:2620-2625. [PMID: 36318598 DOI: 10.1021/acs.jnatprod.2c00638] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We report the discovery of talaropeptins A (1) and B (2), tripeptides with an unusual 5/6/5 heterocyclic scaffold and an N-trans-cinnamoyl moiety, which were identified from the marine-derived fungus Talaromyces purpureogenus CX11. A bioinformatic analysis of the genome of T. purpureogenus CX11 and gene inactivation revealed that the biosynthesis of talaropeptins involves a nonribosomal peptide synthase gene cluster. Their chemical structures were elucidated using a combination of 1D and 2D NMR spectroscopy and mass spectrometry. The absolute configurations of 1 and 2 were established by electronic circular dichroism calculations and Marfey's method. The plausible biosynthesis of 1 and 2 is also proposed on the basis of gene deletion, substrate feeding, and heterologous expression. Compounds 1 and 2 showed moderate antifungal activity against phytopathogenic fungus Fusarium oxysporum with MIC values of 12.5 and 25 μg/mL, respectively.
Collapse
Affiliation(s)
- Chengzeng Zhou
- Ocean College, Zhejiang University, Hangzhou 310058, China
| | - Xun Cao
- Ocean College, Zhejiang University, Hangzhou 310058, China
| | - Yichao Ge
- Ocean College, Zhejiang University, Hangzhou 310058, China
| | - Xiaodan Wu
- Center of Analysis and Measurement, Zhejiang University, Hangzhou 310058, China
| | - Zunjing Zhang
- Ocean College, Zhejiang University, Hangzhou 310058, China
| | - Yihan Ma
- Ocean College, Zhejiang University, Hangzhou 310058, China
| | - Jeroen S Dickschat
- Kekule-Institute for Organic Chemistry and Biochemistry, University of Bonn, 53121 Bonn, Germany
| | - Bin Wu
- Ocean College, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
12
|
Jastrzębski MK, Kaczor AA, Wróbel TM. Methods of Lysergic Acid Synthesis-The Key Ergot Alkaloid. Molecules 2022; 27:7322. [PMID: 36364148 PMCID: PMC9654825 DOI: 10.3390/molecules27217322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/10/2022] [Accepted: 10/21/2022] [Indexed: 11/30/2022] Open
Abstract
Ergot is the spore form of the fungus Claviceps purpurea. Ergot alkaloids are indole compounds that are biosynthetically derived from L-tryptophan and represent the largest group of fungal nitrogen metabolites found in nature. The common part of ergot alkaloids is lysergic acid. This review shows the importance of lysergic acid as a representative of ergot alkaloids. The subject of ergot and its alkaloids is presented, with a particular focus on lysergic acid. All methods of total lysergic acid synthesis-through Woodward, Hendrickson, and Szantay intermediates and Heck coupling methods-are presented. The topic of biosynthesis is also discussed.
Collapse
Affiliation(s)
- Michał K. Jastrzębski
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland
| | - Agnieszka A. Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Tomasz M. Wróbel
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
13
|
Eaton SA, Ronnebaum TA, Roose BW, Christianson DW. Structural Basis of Substrate Promiscuity and Catalysis by the Reverse Prenyltransferase N-Dimethylallyl-l-tryptophan Synthase from Fusarium fujikuroi. Biochemistry 2022; 61:2025-2035. [PMID: 36084241 PMCID: PMC9648991 DOI: 10.1021/acs.biochem.2c00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The regiospecific prenylation of an aromatic amino acid catalyzed by a dimethylallyl-l-tryptophan synthase (DMATS) is a key step in the biosynthesis of many fungal and bacterial natural products. DMATS enzymes share a common "ABBA" fold with divergent active site contours that direct alternative C-C, C-N, and C-O bond-forming trajectories. DMATS1 from Fusarium fujikuroi catalyzes the reverse N-prenylation of l-Trp by generating an allylic carbocation from dimethylallyl diphosphate (DMAPP) that then alkylates the indole nitrogen of l-Trp. DMATS1 stands out among the greater DMATS family because it exhibits unusually broad substrate specificity: it can utilize geranyl diphosphate (GPP) or l-Tyr as an alternative prenyl donor or acceptor, respectively; it can catalyze both forward and reverse prenylation, i.e., at C1 or C3 of DMAPP; and it can catalyze C-N and C-O bond-forming reactions. Here, we report the crystal structures of DMATS1 and its complexes with l-Trp or l-Tyr and unreactive thiolodiphosphate analogues of the prenyl donors DMAPP and GPP. Structures of ternary complexes mimic Michaelis complexes with actual substrates and illuminate active site features that govern prenylation regiochemistry. Comparison with CymD, a bacterial enzyme that catalyzes the reverse N-prenylation of l-Trp with DMAPP, indicates that bacterial and fungal DMATS enzymes share a conserved reaction mechanism. However, the narrower active site contour of CymD enforces narrower substrate specificity. Structure-function relationships established for DMATS enzymes will ultimately inform protein engineering experiments that will broaden the utility of these enzymes as useful tools for synthetic biology.
Collapse
Affiliation(s)
- Samuel A. Eaton
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Trey A. Ronnebaum
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Benjamin W. Roose
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - David W. Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| |
Collapse
|
14
|
Eggbauer B, Schrittwieser JH, Kerschbaumer B, Macheroux P, Kroutil W. Regioselective Biocatalytic C4-Prenylation of Unprotected Tryptophan Derivatives. Chembiochem 2022; 23:e202200311. [PMID: 35770709 PMCID: PMC9540666 DOI: 10.1002/cbic.202200311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/23/2022] [Indexed: 11/25/2022]
Abstract
Regioselective carbon-carbon bond formation belongs to the challenging tasks in organic synthesis. In this context, C-C bond formation catalyzed by 4-dimethylallyltryptophan synthases (4-DMATSs) represents a possible tool to regioselectively synthesize C4-prenylated indole derivatives without site-specific preactivation and circumventing the need of protection groups as used in chemical synthetic approaches. In this study, a toolbox of 4-DMATSs to produce a set of 4-dimethylallyl tryptophan and indole derivatives was identified. Using three wild-type enzymes as well as variants, various C5-substituted tryptophan derivatives as well as N-methyl tryptophan were successfully prenylated with conversions up to 90 %. Even truncated tryptophan derivatives like tryptamine and 3-indole propanoic acid were regioselectively prenylated in position C4. The acceptance of C5-substituted tryptophan derivatives was improved up to 5-fold by generating variants (e. g. T108S). The feasibility of semi-preparative prenylation of selected tryptophan derivatives was successfully demonstrated on 100 mg scale at 15 mM substrate concentration, allowing to reduce the previously published multistep chemical synthetic sequence to just a single step.
Collapse
Affiliation(s)
- Bettina Eggbauer
- Institute of ChemistryUniversity of Graz NAWI GrazHeinrichstraße 288010GrazAustria
| | | | - Bianca Kerschbaumer
- Institute of BiochemistryGraz University of TechnologyPetersgasse 10–128010GrazAustria
| | - Peter Macheroux
- Institute of BiochemistryGraz University of TechnologyPetersgasse 10–128010GrazAustria
| | - Wolfgang Kroutil
- Institute of ChemistryUniversity of Graz NAWI GrazHeinrichstraße 288010GrazAustria
- BioTechMed Graz8010GrazAustria
- Field of Excellence BioHealth University of Graz8010GrazAustria
| |
Collapse
|
15
|
Qi B, Zhang Y, Xu B, Zhang Y, Fei G, Lin L, Li Q. Metabolomic Characterization of Acute Ischemic Stroke Facilitates Metabolomic Biomarker Discovery. Appl Biochem Biotechnol 2022; 194:5443-5455. [DOI: 10.1007/s12010-022-04024-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2022] [Indexed: 11/29/2022]
|
16
|
Britton KN, Steen CR, Davis KA, Sampson JK, Panaccione DG. Contribution of a novel gene to lysergic acid amide synthesis in Metarhizium brunneum. BMC Res Notes 2022; 15:183. [PMID: 35585609 PMCID: PMC9118626 DOI: 10.1186/s13104-022-06068-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/05/2022] [Indexed: 12/04/2022] Open
Abstract
Objective The fungus Metarhizium brunneum produces ergot alkaloids of the lysergic acid amide class, most abundantly lysergic acid α-hydroxyethylamide (LAH). Genes for making ergot alkaloids are clustered in the genomes of producers. Gene clusters of LAH-producing fungi contain an α/β hydrolase fold protein-encoding gene named easP whose presence correlates with LAH production but whose contribution to LAH synthesis in unknown. We tested whether EasP contributes to LAH accumulation through gene knockout studies. Results We knocked out easP in M. brunneum via a CRISPR/Cas9-based approach, and accumulation of LAH was reduced to less than half the amount observed in the wild type. Because LAH accumulation was reduced and not eliminated, we identified and mutated the only close homolog of easP in the M. brunneum genome, a gene we named estA. An easP/estA double mutant did not differ from the easP mutant in lysergic acid amide accumulation, indicating estA had no role in the pathway. We conclude EasP contributes to LAH accumulation but is not absolutely required. Either a gene encoding redundant function and lacking sequence identity with easP resides outside the ergot alkaloid synthesis gene cluster, or EasP plays an accessory role in the synthesis of LAH. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-022-06068-2.
Collapse
Affiliation(s)
- Kelcie N Britton
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Chey R Steen
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Kyle A Davis
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Jessi K Sampson
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Daniel G Panaccione
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
17
|
Bartoccini F, Regni A, Retini M, Piersanti G. Asymmetric Total Synthesis of All Rugulovasine Stereoisomers and Preliminary Evaluation of their Biological Properties. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Francesca Bartoccini
- Universita degli Studi di Urbino Carlo Bo Department of Biomolecular Sciences Urbino ITALY
| | - Alessio Regni
- Universita degli Studi di Urbino Carlo Bo Department of Biomolecular Sciences ITALY
| | - Michele Retini
- Universita degli Studi di Urbino Carlo Bo Department of Biomolecular Sciences ITALY
| | - Giovanni Piersanti
- Universita degli Studi di Urbino Carlo Bo Department of Biomolecular Sciences P.zza Rinascimento 6 61029 Urbino ITALY
| |
Collapse
|
18
|
Chen CL, Li WC, Chuang YC, Liu HC, Huang CH, Lo KY, Chen CY, Chang FM, Chang GA, Lin YL, Yang WD, Su CH, Yeh TM, Wang TF. Sexual Crossing, Chromosome-Level Genome Sequences, and Comparative Genomic Analyses for the Medicinal Mushroom Taiwanofungus Camphoratus (Syn. Antrodia Cinnamomea, Antrodia Camphorata). Microbiol Spectr 2022; 10:e0203221. [PMID: 35196809 PMCID: PMC8865532 DOI: 10.1128/spectrum.02032-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/27/2022] [Indexed: 12/24/2022] Open
Abstract
Taiwanofungus camphoratus mushrooms are a complementary and alternative medicine for hangovers, cancer, hypertension, obesity, diabetes, and inflammation. Though Taiwanofungus camphoratus has attracted considerable biotechnological and pharmacological attention, neither classical genetic nor genomic approaches have been properly established for it. We isolated four sexually competent monokaryons from two T. camphoratus dikaryons used for the commercial cultivation of orange-red (HC1) and milky-white (SN1) mushrooms, respectively. We also sequenced, annotated, and comparatively analyzed high-quality and chromosome-level genome sequences of these four monokaryons. These genomic resources represent a valuable basis for understanding the biology, evolution, and secondary metabolite biosynthesis of this economically important mushrooms. We demonstrate that T. camphoratus has a tetrapolar mating system and that HC1 and SN1 represent two intraspecies isolates displaying karyotypic variation. Compared with several edible mushroom model organisms, T. camphoratus underwent a significant contraction in the gene family and individual gene numbers, most notably for plant, fungal, and bacterial cell-wall-degrading enzymes, explaining why T. camphoratus mushrooms are rare in natural environments, are difficult and time-consuming to artificially cultivate, and are susceptible to fungal and bacterial infections. Our results lay the foundation for an in-depth T. camphoratus study, including precise genetic manipulation, improvements to mushroom fruiting, and synthetic biology applications for producing natural medicinal products. IMPORTANCETaiwanofungus camphoratus (Tc) is a basidiomycete fungus that causes brown heart rot of the aromatic tree Cinnamomum kanehirae. The Tc fruiting bodies have been used to treat hangovers, abdominal pain, diarrhea, hypertension, and other diseases first by aboriginal Taiwanese and later by people in many countries. To establish classical genetic and genomic approaches for this economically important medicinal mushroom, we first isolated and characterized four sexually competent monokaryons from two dikaryons wildly used for commercial production of Tc mushrooms. We applied PacBio single molecule, real-time sequencing technology to determine the near-completed genome sequences of four monokaryons. These telomere-to-telomere and gapless haploid genome sequences reveal all genomic variants needed to be studied and discovered, including centromeres, telomeres, retrotransposons, mating type loci, biosynthetic, and metabolic gene clusters. Substantial interspecies diversities are also discovered between Tc and several other mushroom model organisms, including Agrocybe aegerita, Coprinopsis cinerea, and Schizophyllum commune, and Ganoderma lucidum.
Collapse
Affiliation(s)
- Chia-Ling Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Wan-Chen Li
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Chien Chuang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Hou-Cheng Liu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chien-Hao Huang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ko-Yun Lo
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chung-Yu Chen
- Shen Nong Fungal Biotechnology Co. Ltd., Taoyuan City, Taiwan
| | - Fang-Mo Chang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | - Ching-Hua Su
- Department of Microbiology and Immunology, Taipei Medical University, Taipei, Taiwan
| | - Tsung-Ming Yeh
- Shen Nong Fungal Biotechnology Co. Ltd., Taoyuan City, Taiwan
| | - Ting-Fang Wang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
19
|
Ferguson TD, Vanzant ES, McLeod KR. Endophyte Infected Tall Fescue: Plant Symbiosis to Animal Toxicosis. Front Vet Sci 2022; 8:774287. [PMID: 35004925 PMCID: PMC8740028 DOI: 10.3389/fvets.2021.774287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/29/2021] [Indexed: 01/01/2023] Open
Abstract
Endophyte-infected fescue is a major cool season forage used for livestock production in the United States and through other areas of the world. A unique aspect of this forage resource is the symbiotic relationship with an endophytic fungus (Epichloë coenophiala) that has detrimental impact on herbivores due to toxic ergot alkaloids. Research over the past 50 years has unveiled details regarding this symbiotic relationship. This review focuses on the origin of tall fescue in the United States and the consequences of its wide-spread utilization as a livestock forage, along with the discovery and toxicodynamics of ergot alkaloids produced by E. coenophiala. The majority of past ergot alkaloid research has focused on observing phenotypic changes that occur in livestock affected by ergot alkaloids, but recent investigation of the metabolome, transcriptome, and proteome have shown that fescue toxicity-related illnesses are much more complex than previous research suggests.
Collapse
Affiliation(s)
- Taylor D Ferguson
- Ruminant Nutrition Laboratory, Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| | - Eric S Vanzant
- Ruminant Nutrition Laboratory, Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| | - Kyle R McLeod
- Ruminant Nutrition Laboratory, Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
20
|
Abstract
Ergot alkaloids derived from lysergic acid have impacted humanity as contaminants of crops and as the bases of pharmaceuticals prescribed to treat dementia, migraines, and other disorders. Several plant-associated fungi in the Clavicipitaceae produce lysergic acid derivatives, but many of these fungi are difficult to culture and manipulate. Some Aspergillus species, which may be more ideal experimental and industrial organisms, contain an alternate branch of the ergot alkaloid pathway, but none were known to produce lysergic acid derivatives. We mined the genomes of Aspergillus species for ergot alkaloid synthesis (eas) gene clusters and discovered that three species, A. leporis, A. homomorphus, and A. hancockii, had eas clusters indicative of the capacity to produce a lysergic acid amide. In culture, A. leporis, A. homomorphus, and A. hancockii produced lysergic acid amides, predominantly lysergic acid α-hydroxyethylamide (LAH). Aspergillus leporis and A. homomorphus produced high concentrations of LAH and secreted most of their ergot alkaloid yield into the culture medium. Phylogenetic analyses indicated that genes encoding enzymes leading to the synthesis of lysergic acid were orthologous to those of the lysergic acid amide-producing Clavicipitaceae; however, genes to incorporate lysergic acid into an amide derivative evolved from different ancestral genes in the Aspergillus species. Our data demonstrate that fungi outside the Clavicipitaceae produce lysergic acid amides and indicate that the capacity to produce lysergic acid evolved once, but the ability to insert it into LAH evolved independently in Aspergillus species and the Clavicipitaceae. The LAH-producing Aspergillus species may be useful for the study and production of these pharmaceutically important compounds. IMPORTANCE Lysergic acid derivatives are specialized metabolites with historical, agricultural, and medical significance and were known heretofore only from fungi in one family, the Clavicipitaceae. Our data show that several Aspergillus species, representing a different family of fungi, also produce lysergic acid derivatives and that the ability to put lysergic acid into its amide forms evolved independently in the two lineages of fungi. From microbiological and pharmaceutical perspectives, the Aspergillus species may represent better experimental and industrial organisms than the currently employed lysergic acid producers of the plant-associated Clavicipitaceae. The observation that both lineages independently evolved the derivative lysergic acid α-hydroxyethylamide (LAH), among many possible lysergic acid amides, suggests selection for this metabolite.
Collapse
|
21
|
Banfalvi G. Janus-Faced Molecules against Plant Pathogenic Fungi. Int J Mol Sci 2021; 22:12323. [PMID: 34830204 PMCID: PMC8623416 DOI: 10.3390/ijms222212323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
The high cytotoxicity of the secondary metabolites of mycotoxins is capable of killing microbes and tumour cells alike, similarly to the genotoxic effect characteristic of Janus-faced molecules. The "double-edged sword" effect of several cytotoxins is known, and these agents have, therefore, been utilized only reluctantly against fungal infections. In this review, consideration was given to (a) toxins that could be used against plant and human pathogens, (b) animal models that measure the effect of antifungal agents, (c) known antifungal agents that have been described and efficiently prevent the growth of fungal cells, and (d) the chemical interactions that are characteristic of antifungal agents. The utilization of apoptotic effects against tumour growth by agents that, at the same time, induce mutations may raise ethical issues. Nevertheless, it deserves consideration despite the mutagenic impact of Janus-faced molecules for those patients who suffer from plant pathogenic fungal infections and are older than their fertility age, in the same way that the short-term cytotoxicity of cancer treatment is favoured over the long-term mutagenic effect.
Collapse
Affiliation(s)
- Gaspar Banfalvi
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, 1 Egyetem Square, 4010 Debrecen, Hungary
| |
Collapse
|
22
|
A Baeyer-Villiger Monooxygenase Gene Involved in the Synthesis of Lysergic Acid Amides Affects the Interaction of the Fungus Metarhizium brunneum with Insects. Appl Environ Microbiol 2021; 87:e0074821. [PMID: 34160271 DOI: 10.1128/aem.00748-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Several fungi, including the plant root symbiont and insect pathogen Metarhizium brunneum, produce lysergic acid amides via a branch of the ergot alkaloid pathway. Lysergic acid amides include important pharmaceuticals and pharmaceutical lead compounds and have potential ecological significance, making knowledge of their biosynthesis relevant. Many steps in the biosynthesis of lysergic acid amides have been determined, but terminal steps in the synthesis of lysergic acid α-hydroxyethylamide (LAH)-by far the most abundant lysergic acid amide in M. brunneum-are unknown. Ergot alkaloid synthesis (eas) genes are clustered in the genomes of fungi that produce these compounds, and the eas clusters of LAH producers contain two uncharacterized genes (easO and easP) not found in fungi that do not produce LAH. Knockout of easO via a CRISPR-Cas9 approach eliminated LAH and resulted in accumulation of the alternate lysergic acid amides lysergyl-alanine and ergonovine. Despite the elimination of LAH, the total concentration of lysergic acid derivatives was not affected significantly by the mutation. Complementation with a wild-type allele of easO restored the ability to synthesize LAH. Substrate feeding studies indicated that neither lysergyl-alanine nor ergonovine were substrates for the product of easO (EasO). EasO had structural similarity to Baeyer-Villiger monooxygenases (BVMOs), and labeling studies with deuterated alanine supported a role for a BVMO in LAH biosynthesis. The easO knockout had reduced virulence to larvae of the insect Galleria mellonella, indicating that LAH contributes to virulence of M. brunneum on insects and that LAH has biological activities different from ergonovine and lysergyl-alanine. IMPORTANCE Fungi in the genus Metarhizium are important plant root symbionts and insect pathogens. They are formulated commercially to protect plants from insect pests. Several Metarhizium species, including M. brunneum, were recently shown to produce ergot alkaloids, a class of specialized metabolites studied extensively in other fungi because of their importance in agriculture and medicine. A biological role for ergot alkaloids in Metarhizium species had not been demonstrated previously. Moreover, the types of ergot alkaloids produced by Metarhizium species are lysergic acid amides, which have served directly or indirectly as important pharmaceutical compounds. The terminal steps in the synthesis of the most abundant lysergic acid amide in Metarhizium species and several other fungi (LAH) have not been determined. The results of this study demonstrate the role of a previously unstudied gene in LAH synthesis and indicate that LAH contributes to virulence of M. brunneum on insects.
Collapse
|
23
|
Gao B, Yang B, Feng X, Li C. Recent advances in the biosynthesis strategies of nitrogen heterocyclic natural products. Nat Prod Rep 2021; 39:139-162. [PMID: 34374396 DOI: 10.1039/d1np00017a] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Covering: 2015 to 2020Nitrogen heterocyclic natural products (NHNPs) are primary or secondary metabolites containing nitrogen heterocyclic (N-heterocyclic) skeletons. Due to the existence of the N-heterocyclic structure, NHNPs exhibit various bioactivities such as anticancer and antibacterial, which makes them widely used in medicines, pesticides, and food additives. However, the low content of these NHNPs in native organisms severely restricts their commercial application. Although a variety of NHNPs have been produced through extraction or chemical synthesis strategies, these methods suffer from several problems. The development of biotechnology provides new options for the production of NHNPs. This review introduces the recent progress of two strategies for the biosynthesis of NHNPs: enzymatic biosynthesis and microbial cell factory. In the enzymatic biosynthesis part, the recent progress in the mining of enzymes that synthesize N-heterocyclic skeletons (e.g., pyrrole, piperidine, diketopiperazine, and isoquinoline), the engineering of tailoring enzymes, and enzyme cascades constructed to synthesize NHNPs are discussed. In the microbial cell factory part, with tropane alkaloids (TAs) and tetrahydroisoquinoline (THIQ) alkaloids as the representative compounds, the strategies of unraveling unknown natural biosynthesis pathways of NHNPs in plants are summarized, and various metabolic engineering strategies to enhance their production in microbes are introduced. Ultimately, future perspectives for accelerating the biosynthesis of NHNPs are discussed.
Collapse
Affiliation(s)
- Bo Gao
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China.
| | - Bo Yang
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xudong Feng
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China.
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China. and SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China and Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
24
|
Jamieson CS, Misa J, Tang Y, Billingsley JM. Biosynthesis and synthetic biology of psychoactive natural products. Chem Soc Rev 2021; 50:6950-7008. [PMID: 33908526 PMCID: PMC8217322 DOI: 10.1039/d1cs00065a] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Psychoactive natural products play an integral role in the modern world. The tremendous structural complexity displayed by such molecules confers diverse biological activities of significant medicinal value and sociocultural impact. Accordingly, in the last two centuries, immense effort has been devoted towards establishing how plants, animals, and fungi synthesize complex natural products from simple metabolic precursors. The recent explosion of genomics data and molecular biology tools has enabled the identification of genes encoding proteins that catalyze individual biosynthetic steps. Once fully elucidated, the "biosynthetic pathways" are often comparable to organic syntheses in elegance and yield. Additionally, the discovery of biosynthetic enzymes provides powerful catalysts which may be repurposed for synthetic biology applications, or implemented with chemoenzymatic synthetic approaches. In this review, we discuss the progress that has been made toward biosynthetic pathway elucidation amongst four classes of psychoactive natural products: hallucinogens, stimulants, cannabinoids, and opioids. Compounds of diverse biosynthetic origin - terpene, amino acid, polyketide - are identified, and notable mechanisms of key scaffold transforming steps are highlighted. We also provide a description of subsequent applications of the biosynthetic machinery, with an emphasis placed on the synthetic biology and metabolic engineering strategies enabling heterologous production.
Collapse
Affiliation(s)
- Cooper S Jamieson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Joshua Misa
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Yi Tang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA. and Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| | - John M Billingsley
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA. and Invizyne Technologies, Inc., Monrovia, CA, USA
| |
Collapse
|
25
|
Kuhnert E, Navarro-Muñoz J, Becker K, Stadler M, Collemare J, Cox R. Secondary metabolite biosynthetic diversity in the fungal family Hypoxylaceae and Xylaria hypoxylon. Stud Mycol 2021; 99:100118. [PMID: 34527085 PMCID: PMC8403587 DOI: 10.1016/j.simyco.2021.100118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To date little is known about the genetic background that drives the production and diversification of secondary metabolites in the Hypoxylaceae. With the recent availability of high-quality genome sequences for 13 representative species and one relative (Xylaria hypoxylon) we attempted to survey the diversity of biosynthetic pathways in these organisms to investigate their true potential as secondary metabolite producers. Manual search strategies based on the accumulated knowledge on biosynthesis in fungi enabled us to identify 783 biosynthetic pathways across 14 studied species, the majority of which were arranged in biosynthetic gene clusters (BGC). The similarity of BGCs was analysed with the BiG-SCAPE engine which organised the BGCs into 375 gene cluster families (GCF). Only ten GCFs were conserved across all of these fungi indicating that speciation is accompanied by changes in secondary metabolism. From the known compounds produced by the family members some can be directly correlated with identified BGCs which is highlighted herein by the azaphilone, dihydroxynaphthalene, tropolone, cytochalasan, terrequinone, terphenyl and brasilane pathways giving insights into the evolution and diversification of those compound classes. Vice versa, products of various BGCs can be predicted through homology analysis with known pathways from other fungi as shown for the identified ergot alkaloid, trigazaphilone, curvupallide, viridicatumtoxin and swainsonine BGCs. However, the majority of BGCs had no obvious links to known products from the Hypoxylaceae or other well-studied biosynthetic pathways from fungi. These findings highlight that the number of known compounds strongly underrepresents the biosynthetic potential in these fungi and that a tremendous number of unidentified secondary metabolites is still hidden. Moreover, with increasing numbers of genomes for further Hypoxylaceae species becoming available, the likelihood of revealing new biosynthetic pathways that encode new, potentially useful compounds will significantly improve. Reaching a better understanding of the biology of these producers, and further development of genetic methods for their manipulation, will be crucial to access their treasures.
Collapse
Affiliation(s)
- E. Kuhnert
- Centre of Biomolecular Drug Research (BMWZ), Institute for Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167, Hannover, Germany
| | - J.C. Navarro-Muñoz
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - K. Becker
- Centre of Biomolecular Drug Research (BMWZ), Institute for Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167, Hannover, Germany
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - M. Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - J. Collemare
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - R.J. Cox
- Centre of Biomolecular Drug Research (BMWZ), Institute for Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167, Hannover, Germany
| |
Collapse
|
26
|
Durieux MF, Melloul É, Jemel S, Roisin L, Dardé ML, Guillot J, Dannaoui É, Botterel F. Galleria mellonella as a screening tool to study virulence factors of Aspergillus fumigatus. Virulence 2021; 12:818-834. [PMID: 33682618 PMCID: PMC7946008 DOI: 10.1080/21505594.2021.1893945] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
The invertebrate Galleria mellonella has increasingly and widely been used in the last few years to study complex host–microbe interactions. Aspergillus fumigatus is one of the most pathogenic fungi causing life-threatening diseases in humans and animals. Galleria mellonella larvae has been proven as a reliable model for the analysis of pathogenesis and virulence factors, enable to screen a large number of A. fumigatus strains. This review describes the different uses of G. mellonella to study A. fumigatus and provides a comparison of the different protocols to trace fungal pathogenicity. The review also includes a summary of the diverse mutants tested in G. mellonella, and their respective contribution to A. fumigatus virulence. Previous investigations indicated that G. mellonella should be considered as an interesting tool even though a mammalian model may be required to complete and verify initial data.
Collapse
Affiliation(s)
- Marie-Fleur Durieux
- Laboratoire de Parasitologie - Mycologie, CHU de Limoges, Limoges, France.,EA 7380 Dynamic, Université Paris Est Créteil, EnvA, USC ANSES, Créteil, France
| | - Élise Melloul
- EA 7380 Dynamic, Université Paris Est Créteil, EnvA, USC ANSES, Créteil, France
| | - Sana Jemel
- EA 7380 Dynamic, Université Paris Est Créteil, EnvA, USC ANSES, Créteil, France
| | - Lolita Roisin
- EA 7380 Dynamic, Université Paris Est Créteil, EnvA, USC ANSES, Créteil, France
| | - Marie-Laure Dardé
- Laboratoire de Parasitologie - Mycologie, CHU de Limoges, Limoges, France
| | - Jacques Guillot
- EA 7380 Dynamic, Université Paris Est Créteil, EnvA, USC ANSES, Créteil, France.,École Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Éric Dannaoui
- EA 7380 Dynamic, Université Paris Est Créteil, EnvA, USC ANSES, Créteil, France.,Unité de Parasitologie-mycologie, Service de Microbiologie, Université Paris Descartes, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Françoise Botterel
- EA 7380 Dynamic, Université Paris Est Créteil, EnvA, USC ANSES, Créteil, France.,Unité de Mycologie, Département de Prévention, Diagnostic Et Traitement Des Infections, Groupe Hospitalier Henri Mondor - Albert Chenevier, APHP, France
| |
Collapse
|
27
|
The Impact of Alkaloid-Producing Epichloë Endophyte on Forage Ryegrass Breeding: A New Zealand Perspective. Toxins (Basel) 2021; 13:toxins13020158. [PMID: 33670470 PMCID: PMC7922046 DOI: 10.3390/toxins13020158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/28/2021] [Accepted: 02/06/2021] [Indexed: 12/02/2022] Open
Abstract
For 30 years, forage ryegrass breeding has known that the germplasm may contain a maternally inherited symbiotic Epichloë endophyte. These endophytes produce a suite of secondary alkaloid compounds, dependent upon strain. Many produce ergot and other alkaloids, which are associated with both insect deterrence and livestock health issues. The levels of alkaloids and other endophyte characteristics are influenced by strain, host germplasm, and environmental conditions. Some strains in the right host germplasm can confer an advantage over biotic and abiotic stressors, thus acting as a maternally inherited desirable ‘trait’. Through seed production, these mutualistic endophytes do not transmit into 100% of the crop seed and are less vigorous than the grass seed itself. This causes stability and longevity issues for seed production and storage should the ‘trait’ be desired in the germplasm. This makes understanding the precise nature of the relationship vitally important to the plant breeder. These Epichloë endophytes cannot be ‘bred’ in the conventional sense, as they are asexual. Instead, the breeder may modulate endophyte characteristics through selection of host germplasm, a sort of breeding by proxy. This article explores, from a forage seed company perspective, the issues that endophyte characteristics and breeding them by proxy have on ryegrass breeding, and outlines the methods used to assess the ‘trait’, and the application of these through the breeding, production, and deployment processes. Finally, this article investigates opportunities for enhancing the utilisation of alkaloid-producing endophytes within pastures, with a focus on balancing alkaloid levels to further enhance pest deterrence and improving livestock outcomes.
Collapse
|
28
|
Mirza Alizadeh A, Golzan SA, Mahdavi A, Dakhili S, Torki Z, Hosseini H. Recent advances on the efficacy of essential oils on mycotoxin secretion and their mode of action. Crit Rev Food Sci Nutr 2021; 62:4726-4751. [PMID: 33523705 DOI: 10.1080/10408398.2021.1878102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Essential oils, as extracted compounds from plants, are volatile and aromatic liquids which their unique aromatic compounds give each essential oil its distinctive essence. Fungi toxins can induce various adverse health effects like allergy, cancer, and immunosuppression. Moreover, fungal spoilage impacts pharmaceutical and food industries economic state. A drop in the utilization of synthetic compounds as food prophylaxis has occurred due to several factors such as hygiene agents' alerts and stricter legal regulations. Therefore, the applications of natural substances such as essential oils have increased in recent years. Oregano, cinnamon, thyme, rosemary, fennel, clove, palmarosa, and eucalyptus have been the highest employed essential oils against mycotoxigenic fungi and their mycotoxins in studies conducted in the past decade. Essential oils inhibit fungi growth and mycotoxin synthesis via diverse pathways including modified fungal growth rate and extended lag phase, disruption of cell permeability, disruption of the electron transport chain and manipulating gene expression patterns and metabolic processes. In the present review, we will investigate the implications and efficacy of essential oils in preventing the growth of mycotoxigenic fungi, eliminating mycotoxins and their mechanism of actions conducted in the last decade. HighlightsThe most investigated toxigenic genera are Aspergillus, Fusarium and Penicillium Spp.AB1, AG1, OTA and AB2 are the most frequently studied toxinsOregano, cinnamon and thyme are mostly exploited EOs on toxigenic fungi & mycotoxinsOregano, thyme & cinnamon are the most significant antifungals on toxigenic generaCinnamon, oregano & cinnamaldehyde are the fittest antimycotoxins on DON, OTA & AFB1.
Collapse
Affiliation(s)
- Adel Mirza Alizadeh
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - S Amirhossein Golzan
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aida Mahdavi
- Department of Food Science and Technology, Takestan Branch, Islamic Azad University, Qazvin, Iran
| | - Samira Dakhili
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Torki
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Genetic Manipulation of the Ergot Alkaloid Pathway in Epichloë festucae var. lolii and Its Effect on Black Beetle Feeding Deterrence. Toxins (Basel) 2021; 13:toxins13020076. [PMID: 33498584 PMCID: PMC7909537 DOI: 10.3390/toxins13020076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 01/05/2023] Open
Abstract
Epichloë endophytes are filamentous fungi (family Clavicipitaceae) that live in symbiotic associations with grasses in the sub family Poöideae. In New Zealand, E. festucae var. lolii confers significant resistance to perennial ryegrass (Lolium perenne) against insect and animal herbivory and is an essential component of pastoral agriculture, where ryegrass is a major forage species. The fungus produces in planta a range of bioactive secondary metabolites, including ergovaline, which has demonstrated bioactivity against the important pasture pest black beetle, but can also cause mammalian toxicosis. We genetically modified E. festucae var. lolii strain AR5 to eliminate key enzymatic steps in the ergovaline pathway to determine if intermediate ergot alkaloid compounds can still provide insecticidal benefits in the absence of the toxic end product ergovaline. Four genes (dmaW, easG, cloA, and lpsB) spanning the pathway were deleted and each deletion mutant was inoculated into five different plant genotypes of perennial ryegrass, which were later harvested for a full chemical analysis of the ergot alkaloid compounds produced. These associations were also used in a black beetle feeding deterrence study. Deterrence was seen with just chanoclavine present, but was cumulative as more intermediate compounds in the pathway were made available. Ergovaline was not detected in any of the deletion associations, indicating that bioactivity towards black beetle can be obtained in the absence of this mammalian toxin.
Collapse
|
30
|
Biosynthesis, total synthesis, and biological profiles of Ergot alkaloids. THE ALKALOIDS: CHEMISTRY AND BIOLOGY 2021; 85:1-112. [DOI: 10.1016/bs.alkal.2020.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
31
|
Lünne F, Niehaus EM, Lipinski S, Kunigkeit J, Kalinina SA, Humpf HU. Identification of the polyketide synthase PKS7 responsible for the production of lecanoric acid and ethyl lecanorate in Claviceps purpurea. Fungal Genet Biol 2020; 145:103481. [DOI: 10.1016/j.fgb.2020.103481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/14/2020] [Accepted: 10/23/2020] [Indexed: 12/25/2022]
|
32
|
Lenz C, Sherwood A, Kargbo R, Hoffmeister D. Taking Different Roads: l-Tryptophan as the Origin of Psilocybe Natural Products. Chempluschem 2020; 86:28-35. [PMID: 33237633 DOI: 10.1002/cplu.202000581] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/30/2020] [Indexed: 12/20/2022]
Abstract
Psychotropic fungi of the genus Psilocybe, colloquially referred to as "magic mushrooms", are best known for their l-tryptophan-derived major natural product, psilocybin. Yet, recent research has revealed a more diverse secondary metabolism that originates from this amino acid. In this minireview, the focus is laid on l-tryptophan and the various Psilocybe natural products and their metabolic routes are highlighted. Psilocybin and its congeners, the heterogeneous blue-colored psilocyl oligomers, alongside β-carbolines and N,N-dimethyl-l-tryptophan, are presented as well as current knowledge on their biosynthesis is provided. The multidisciplinary character of natural product research is demonstrated, and pharmacological, medicinal, ecological, biochemical, and evolutionary aspects are included.
Collapse
Affiliation(s)
- Claudius Lenz
- Department Pharmaceutical Microbiology at the Hans-Knöll-Institute, Friedrich-Schiller-Universität, Beutenbergstrasse 11a, 07745, Jena, Germany
| | | | - Robert Kargbo
- The Usona Institute, 2800 Woods Hollow Road, Madison, 53711, WI, USA
| | - Dirk Hoffmeister
- Department Pharmaceutical Microbiology at the Hans-Knöll-Institute, Friedrich-Schiller-Universität, Beutenbergstrasse 11a, 07745, Jena, Germany
| |
Collapse
|
33
|
Natural Ergot Alkaloids in Ocular Pharmacotherapy: Known Molecules for Novel Nanoparticle-Based Delivery Systems. Biomolecules 2020; 10:biom10070980. [PMID: 32630018 PMCID: PMC7408209 DOI: 10.3390/biom10070980] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 02/06/2023] Open
Abstract
Several pharmacological properties are attributed to ergot alkaloids as a result of their antibacterial, antiproliferative, and antioxidant effects. Although known for their biomedical applications (e.g., for the treatment of glaucoma), most ergot alkaloids exhibit high toxicological risk and may even be lethal to humans and animals. Their pharmacological profile results from the structural similarity between lysergic acid-derived compounds and noradrenalin, dopamine, and serotonin neurotransmitters. To reduce their toxicological risk, while increasing their bioavailability, improved delivery systems were proposed. This review discusses the safety aspects of using ergot alkaloids in ocular pharmacology and proposes the development of lipid and polymeric nanoparticles for the topical administration of these drugs to enhance their therapeutic efficacy for the treatment of glaucoma.
Collapse
|
34
|
Shahid MG, Nadeem M, Gulzar A, Saleem M, Rehman HU, Ghafoor GZ, Hayyat MU, Shahzad L, Arif R, Nelofer R. Novel Ergot Alkaloids Production from Penicillium citrinum Employing Response Surface Methodology Technique. Toxins (Basel) 2020; 12:toxins12070427. [PMID: 32610508 PMCID: PMC7405006 DOI: 10.3390/toxins12070427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 11/23/2022] Open
Abstract
Ergot alkaloids are novel pharmaceutical and therapeutic agents synthesized in this study using fungal species Penicillium citrinum. To get the maximum yield of ergot alkaloids a statistical process of response surface methodology was employed using surface culture fermentation technique. Initially, the strain of Penicillium was improved using physical (ultraviolet (UV) and chemical (ethyl methane sulfonate (EMS) treatments to get the maximum yield of ergot alkaloids through surface culture fermentation technique. After improving the strain, survival rate of colonies of Penicillium citrinum treated with UV and EMS was observed. Only 2.04% living colonies were observed after 150 min of exposure of Penicillium citrinum in UV light and 3.2% living colonies were observed after 20 min of the exposure in EMS. The mutated strains of Penicillium citrinum were screened for their production of ergot alkaloids and after fermentation experiments, maximum yield was obtained from PCUV-4 and PCEMS-1 strains. After strain improvement, Plackett–Burman design (PBD) and Box–Behnken design (BBD) of RSM were employed and 10-fold yield enhancement (35.60 mg/100 mL) of ergot alkaloids was achieved. This enhancement in yield of ergot alkaloids proved the positive impacts of RSM and UV on the yield of ergot alkaloids. The study provides a cost effective, economical and sustainable process to produce medically important ergot alkaloids which can be used in various pharmaceutical formulations to treat human diseases.
Collapse
Affiliation(s)
| | - Muhammad Nadeem
- Food and Biotechnology Research Center, PCSIR Laboratories Complex, Lahore 54000, Pakistan; (M.N.); (R.N.)
| | - Ahmed Gulzar
- Department of Economics, University of Management & Technology, Lahore 54000, Pakistan; (A.G.); (H.u.R.)
| | - Muhammad Saleem
- Department of Botany, University of the Punjab, New Campus, Lahore 54000, Pakistan; (M.S.); (R.A.)
| | - Hafeez ur Rehman
- Department of Economics, University of Management & Technology, Lahore 54000, Pakistan; (A.G.); (H.u.R.)
| | - Gul Zareen Ghafoor
- Sustainable Development Study Center, GC University, Lahore 54000, Pakistan; (G.Z.G.); (M.U.H.); (L.S.)
| | - Muhammad Umar Hayyat
- Sustainable Development Study Center, GC University, Lahore 54000, Pakistan; (G.Z.G.); (M.U.H.); (L.S.)
| | - Laila Shahzad
- Sustainable Development Study Center, GC University, Lahore 54000, Pakistan; (G.Z.G.); (M.U.H.); (L.S.)
| | - Rabia Arif
- Department of Botany, University of the Punjab, New Campus, Lahore 54000, Pakistan; (M.S.); (R.A.)
| | - Rubina Nelofer
- Food and Biotechnology Research Center, PCSIR Laboratories Complex, Lahore 54000, Pakistan; (M.N.); (R.N.)
| |
Collapse
|
35
|
Chen KL, Lai CY, Pham MT, Chein RJ, Tang Y, Lin HC. Enzyme-Catalyzed Azepinoindole Formation in Clavine Alkaloid Biosynthesis. Org Lett 2020; 22:3302-3306. [PMID: 32243182 PMCID: PMC8092377 DOI: 10.1021/acs.orglett.0c01132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
(-)-Aurantioclavine (1), which contains a characteristic seven-membered ring fused to an indole ring, belongs to the azepinoindole class of fungal clavine alkaloids. Here we show that starting from a 4-dimethylallyl-l-tryptophan precursor, a flavin adenine dinucleotide (FAD)-binding oxidase and a catalase-like heme-containing protein are involved in the biosynthesis of 1. The function of these two enzymes was characterized by heterologous expression, in vitro characterization, and deuterium labeling experiments.
Collapse
Affiliation(s)
- Kuan-Lin Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan R.O.C
| | - Chen-Yu Lai
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan R.O.C
| | - Mai-Truc Pham
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan R.O.C
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan R.O.C
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan R.O.C
| | - Rong-Jie Chein
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan R.O.C
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan R.O.C
| | - Yi Tang
- Departments of Chemical and Biomolecular Engineering and Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Hsiao-Ching Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan R.O.C
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan R.O.C
| |
Collapse
|
36
|
Comparative Ergot Alkaloid Elaboration by Selected Plectenchymatic Mycelia of Claviceps purpurea through Sequential Cycles of Axenic Culture and Plant Parasitism. BIOLOGY 2020; 9:biology9030041. [PMID: 32106581 PMCID: PMC7150745 DOI: 10.3390/biology9030041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/21/2020] [Accepted: 02/23/2020] [Indexed: 11/17/2022]
Abstract
Ergot alkaloids have an established place in plant pathology and toxicology. As pharmaceuticals, their sourcing is via natural or managed agricultural occurrence of sclerotia of Claviceps purpurea (Fr.) Tul. or through industrial fermentation processes with other Claviceps. The key factor for biosynthesis is differentiation of a particular mycelial anatomy. Previous study of these fungi from two disparate English grass genera, Spartina and Phragmites, has shown that only mycelia expressing a plectenchymatic sclerotium-like anatomy in specific axenic culture conditions elaborated ergot alkaloids, and then only as far as lysergic acid. The present report describes sequential cycles of axenic and parasitic cultivation for wild isolates from Dactylis and Alopecurus with intervention of a single ascospore step. This confirms the homozygous character of C. purpurea and defines several potential experimental axenic and parasitic conditions within the species for comparing genomic aspects of partial or full biosynthesis of cyclic tri-peptide alkaloids. Whereas Alopecurus ergot isolates readily parasitized rye, use of Dactylis isolates as inoculum for rye ovaries failed to cause the usual sphacelial fructification but supported growth of exceptionally thin sclerotia, sometimes two in a floret, with low alkaloid content attributed to reduced medullary component. However, after two cycles of axenic and rye-parasitic cultivation, and consistent re-selection of the plectenchymatic character in axenic mycelia, typical growth of ergot sclerotia occurred on rye. Caution thus seems necessary in tests for putative host specificity in any taxonomic realignments within the classical concept of C. purpurea. A Dactylis ergot isolate was also uniquely shown to parasitise the plumule of germinating rye seeds confirming the susceptibility of apical tissues. A key biosynthetic feature of a mycelial glyceride oil, rich in ricinoleic acid, as a prelude to axenic and parasitic formation of ergot alkaloids by C. purpurea is emphasised.
Collapse
|
37
|
Oberti H, Dalla Rizza M, Reyno R, Murchio S, Altier N, Abreo E. Diversity of Claviceps paspali reveals unknown lineages and unique alkaloid genotypes. Mycologia 2020; 112:230-243. [PMID: 31910144 DOI: 10.1080/00275514.2019.1694827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Claviceps species affecting Paspalum spp. are a serious problem, as they infect forage grasses such as Paspalum dilatatum and P. plicatulum, producing the ergot disease. The ascomycete C. paspali is known to be the pathogen responsible for this disease in both grasses. This fungus produces alkaloids, including ergot alkaloids and indole-diterpenes, that have potent neurotropic activities in mammals. A total of 32 isolates from Uruguay were obtained from infected P. dilatatum and P. plicatulum. Isolates were phylogenetically identified using partial sequences of the genes coding for the second largest subunit of RNA polymerase subunit II (RPB2), translation elongation factor 1-α (TEF1), β-tubulin (TUB2), and the nuc rDNA 28S subunit (28S). Isolates were also genotyped by randomly amplified polymorphic DNA (RAPD) and presence of genes within the ergot alkaloid (EAS) and indole-diterpene (IDT) biosynthetic gene clusters. This study represents the first genetic characterization of several isolates of C. paspali. The results from this study provide insight into the genetic and genotypic diversity of Claviceps paspali present in P. dilatatum and suggest that isolates from P. plicatulum could be considered an ecological subspecies or specialized variant of C. paspali. Some of these isolates show hypothetical alkaloid genotypes never reported before.
Collapse
Affiliation(s)
- H Oberti
- Unidad de Biotecnología, Instituto Nacional de Investigación Agropecuaria, Las Brujas, Uruguay
| | - M Dalla Rizza
- Unidad de Biotecnología, Instituto Nacional de Investigación Agropecuaria, Las Brujas, Uruguay
| | - R Reyno
- Programa Nacional de Forraje y Pasturas, Instituto Nacional de Investigación Agropecuaria Tacuarembó, Tacuarembó, Uruguay
| | - S Murchio
- Unidad de Biotecnología, Instituto Nacional de Investigación Agropecuaria, Las Brujas, Uruguay
| | - N Altier
- Laboratorio de Bioproducción, Instituto Nacional de Investigación Agropecuaria, Las Brujas, Uruguay
| | - E Abreo
- Laboratorio de Bioproducción, Instituto Nacional de Investigación Agropecuaria, Las Brujas, Uruguay
| |
Collapse
|
38
|
Yao Y, An C, Evans D, Liu W, Wang W, Wei G, Ding N, Houk KN, Gao SS. Catalase Involved in Oxidative Cyclization of the Tetracyclic Ergoline of Fungal Ergot Alkaloids. J Am Chem Soc 2019; 141:17517-17521. [PMID: 31621316 DOI: 10.1021/jacs.9b10217] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A dedicated enzyme for the formation of the central C ring in the tetracyclic ergoline of clinically important ergot alkaloids has never been found. Herein, we report a dual role catalase (EasC), unexpectedly using O2 as the oxidant, that catalyzes the oxidative cyclization of the central C ring from a 1,3-diene intermediate. Our study showcases how nature evolves the common catalase for enantioselective C-C bond construction of complex polycyclic scaffolds.
Collapse
Affiliation(s)
- Yongpeng Yao
- State Key Laboratory of Microbial Resources , Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , P. R. China
| | - Chunyan An
- State Key Laboratory of Microbial Resources , Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , P. R. China
| | - Declan Evans
- Department of Chemistry and Biochemistry , University of California , Los Angeles California 90095 , United States
| | - Weiwei Liu
- State Key Laboratory of Microbial Resources , Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , P. R. China
| | - Wei Wang
- State Key Laboratory of Microbial Resources , Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Guangzheng Wei
- State Key Laboratory of Microbial Resources , Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Ning Ding
- School of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 , P. R. China
| | - K N Houk
- Department of Chemistry and Biochemistry , University of California , Los Angeles California 90095 , United States
| | - Shu-Shan Gao
- State Key Laboratory of Microbial Resources , Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , P. R. China
| |
Collapse
|
39
|
Marine Fungi: Biotechnological Perspectives from Deep-Hypersaline Anoxic Basins. DIVERSITY 2019. [DOI: 10.3390/d11070113] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Deep-sea hypersaline anoxic basins (DHABs) are one of the most hostile environments on Earth. Even though DHABs have hypersaline conditions, anoxia and high hydrostatic pressure, they host incredible microbial biodiversity. Among eukaryotes inhabiting these systems, recent studies demonstrated that fungi are a quantitatively relevant component. Here, fungi can benefit from the accumulation of large amounts of organic material. Marine fungi are also known to produce bioactive molecules. In particular, halophilic and halotolerant fungi are a reservoir of enzymes and secondary metabolites with valuable applications in industrial, pharmaceutical, and environmental biotechnology. Here we report that among the fungal taxa identified from the Mediterranean and Red Sea DHABs, halotolerant halophilic species belonging to the genera Aspergillus and Penicillium can be used or screened for enzymes and bioactive molecules. Fungi living in DHABs can extend our knowledge about the limits of life, and the discovery of new species and molecules from these environments can have high biotechnological potential.
Collapse
|
40
|
Ergot Alkaloid Synthesis Capacity of Penicillium camemberti. Appl Environ Microbiol 2018; 84:AEM.01583-18. [PMID: 30076193 DOI: 10.1128/aem.01583-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 07/26/2018] [Indexed: 11/20/2022] Open
Abstract
Ergot alkaloids are specialized fungal metabolites with potent biological activities. They are encoded by well-characterized gene clusters in the genomes of producing fungi. Penicillium camemberti plays a major role in the ripening of Brie and Camembert cheeses. The P. camemberti genome contains a cluster of five genes shown in other fungi to be required for synthesis of the important ergot alkaloid intermediate chanoclavine-I aldehyde and two additional genes (easH and easQ) that may control modification of chanoclavine-I aldehyde into other ergot alkaloids. We analyzed samples of Brie and Camembert cheeses, as well as cultures of P. camemberti, and did not detect chanoclavine-I aldehyde or its derivatives. To create a functioning facsimile of the P. camembertieas cluster, we expressed P. camemberti easH and easQ in a chanoclavine-I aldehyde-accumulating easA knockout mutant of Neosartorya fumigata The easH-easQ-engineered N. fumigata strain accumulated a pair of compounds of m/z 269.1288 in positive-mode liquid chromatography-mass spectrometry (LC-MS). The analytes fragmented in a manner typical of the stereoisomeric ergot alkaloids rugulovasine A and B, and the related rugulovasine producer Penicillium biforme accumulated the same isomeric pair of analytes. The P. camemberti eas genes were transcribed in culture, but comparison of the P. camemberti eas cluster with the functional cluster from P. biforme indicated 11 polymorphisms. Whereas other P. camembertieas genes functioned when expressed in N. fumigata, P. camembertieasC did not restore ergot alkaloids when expressed in an easC mutant. The data indicate that P. camemberti formerly had the capacity to produce the ergot alkaloids rugulovasine A and B.IMPORTANCE The presence of ergot alkaloid synthesis genes in the genome of Penicillium camemberti is significant, because the fungus is widely consumed in Brie and Camembert cheeses. Our results show that, although the fungus has several functional genes from the ergot alkaloid pathway, it produces only an early pathway intermediate in culture and does not produce ergot alkaloids in cheese. Penicillium biforme, a close relative of P. camemberti, contains a similar but fully functional set of ergot alkaloid synthesis genes and produces ergot alkaloids chanoclavine-I, chanoclavine-I aldehyde, and rugulovasine A and B. Our reconstruction of the P. camemberti pathway in the model fungus Neosartorya fumigata indicated that P. camemberti formerly had the capacity to produce these same ergot alkaloids. Neither P. camemberti nor P. biforme produced ergot alkaloids in cheese, indicating that nutritionally driven gene regulation prevents these fungi from producing ergot alkaloids in a dairy environment.
Collapse
|
41
|
Hallas-Møller M, Nielsen KF, Frisvad JC. Secondary metabolite production by cereal-associated penicillia during cultivation on cereal grains. Appl Microbiol Biotechnol 2018; 102:8477-8491. [PMID: 29995241 DOI: 10.1007/s00253-018-9213-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/29/2018] [Accepted: 06/30/2018] [Indexed: 11/25/2022]
Abstract
Cereals are vulnerable substrates for fungal growth and subsequent mycotoxin contamination. One of the major fungal genera to colonize the ecosystem of stored grain is Penicillium, especially species in the series of Viridicata and Verrucosa. Culturing these species on grains, we hoped to induce the production of relevant secondary metabolites produced by these fungi in the early stage of cereal breakdown. In a multivariate setup six different cereal grains (wheat, rye, barley, oat, rice, and maize), one kind of white beans, and two standard fungal media, Yeast Extract Sucrose agar (YES agar) and Czapek Yeast Autolysate agar (CYA agar), were inoculated with the ten most important cereal-associated species from Penicillium (P. aurantiogriseum, P. cyclopium, P. freii, P. melanoconidium, P. neoechinulatum, P. polonicum, P. tricolor, P. viridicatum, P. hordei, and P. verrucosum). P. nordicum is a meat-associated species, which was included due to its chemical association with P. verrucosum, in addition to see if a substrate change would alter the profile of known chemistry. We found that cereals function very well as substrates for secondary metabolite production, but did not present significantly different secondary metabolite profiles, concerning known chemistry, as compared to standard laboratory agar media. However, white beans altered the semi-quantitative secondary metabolite profiles for several species. Correlations between substrates and certain metabolites were observed, as illuminated by principal component analysis. Many bioactive secondary metabolites were observed for the first time in the analyzed fungal species, including ergot type alkaloids in P. hordei.
Collapse
Affiliation(s)
- Magnus Hallas-Møller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Kristian Fog Nielsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jens Christian Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
42
|
Banfalvi G. Improved and adopted murine models to combat pulmonary aspergillosis. Appl Microbiol Biotechnol 2018; 102:6865-6875. [DOI: 10.1007/s00253-018-9161-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/05/2018] [Accepted: 06/05/2018] [Indexed: 12/20/2022]
|
43
|
Yoshimi A, Yamaguchi S, Fujioka T, Kawai K, Gomi K, Machida M, Abe K. Heterologous Production of a Novel Cyclic Peptide Compound, KK-1, in Aspergillus oryzae. Front Microbiol 2018; 9:690. [PMID: 29686660 PMCID: PMC5900794 DOI: 10.3389/fmicb.2018.00690] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/23/2018] [Indexed: 11/13/2022] Open
Abstract
A novel cyclic peptide compound, KK-1, was originally isolated from the plant-pathogenic fungus Curvularia clavata. It consists of 10 amino acid residues, including five N-methylated amino acid residues, and has potent antifungal activity. Recently, the genome-sequencing analysis of C. clavata was completed, and the biosynthetic genes involved in KK-1 production were predicted by using a novel gene cluster mining tool, MIDDAS-M. These genes form an approximately 75-kb cluster, which includes nine open reading frames, containing a non-ribosomal peptide synthetase (NRPS) gene. To determine whether the predicted genes were responsible for the biosynthesis of KK-1, we performed heterologous production of KK-1 in Aspergillus oryzae by introduction of the cluster genes into the genome of A. oryzae. The NRPS gene was split in two fragments and then reconstructed in the A. oryzae genome, because the gene was quite large (approximately 40 kb). The remaining seven genes in the cluster, excluding the regulatory gene kkR, were simultaneously introduced into the strain of A. oryzae in which NRPS had already been incorporated. To evaluate the heterologous production of KK-1 in A. oryzae, gene expression was analyzed by RT-PCR and KK-1 productivity was quantified by HPLC. KK-1 was produced in variable quantities by a number of transformed strains, along with expression of the cluster genes. The amount of KK-1 produced by the strain with the greatest expression of all genes was lower than that produced by the original producer, C. clavata. Therefore, expression of the cluster genes is necessary and sufficient for the heterologous production of KK-1 in A. oryzae, although there may be unknown factors limiting productivity in this species.
Collapse
Affiliation(s)
- Akira Yoshimi
- ABE-Project, New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| | | | | | | | - Katsuya Gomi
- Laboratory of Bioindustrial Genomics, Department of Bioindustrial Informatics and Genomics, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Masayuki Machida
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Keietsu Abe
- ABE-Project, New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Department of Microbial Resources, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
44
|
Abstract
This review discusses various biological and chemical aspects of the non-monoterpenoid azepinoindole class of alkaloids, including their isolation, biosynthesis and total synthesis.
Collapse
Affiliation(s)
- Ashley C. Lindsay
- School of Chemical Sciences
- University of Auckland
- Auckland
- New Zealand
| | - Se Hun Kim
- School of Chemical Sciences
- University of Auckland
- Auckland
- New Zealand
| | - Jonathan Sperry
- School of Chemical Sciences
- University of Auckland
- Auckland
- New Zealand
| |
Collapse
|
45
|
Gilbert MK, Medina A, Mack BM, Lebar MD, Rodríguez A, Bhatnagar D, Magan N, Obrian G, Payne G. Carbon Dioxide Mediates the Response to Temperature and Water Activity Levels in Aspergillus flavus during Infection of Maize Kernels. Toxins (Basel) 2017; 10:E5. [PMID: 29271897 PMCID: PMC5793092 DOI: 10.3390/toxins10010005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/17/2017] [Accepted: 12/14/2017] [Indexed: 12/20/2022] Open
Abstract
Aspergillus flavus is a saprophytic fungus that may colonize several important crops, including cotton, maize, peanuts and tree nuts. Concomitant with A. flavus colonization is its potential to secrete mycotoxins, of which the most prominent is aflatoxin. Temperature, water activity (aw) and carbon dioxide (CO₂) are three environmental factors shown to influence the fungus-plant interaction, which are predicted to undergo significant changes in the next century. In this study, we used RNA sequencing to better understand the transcriptomic response of the fungus to aw, temperature, and elevated CO₂ levels. We demonstrate that aflatoxin (AFB₁) production on maize grain was altered by water availability, temperature and CO₂. RNA-Sequencing data indicated that several genes, and in particular those involved in the biosynthesis of secondary metabolites, exhibit different responses to water availability or temperature stress depending on the atmospheric CO₂ content. Other gene categories affected by CO₂ levels alone (350 ppm vs. 1000 ppm at 30 °C/0.99 aw), included amino acid metabolism and folate biosynthesis. Finally, we identified two gene networks significantly influenced by changes in CO₂ levels that contain several genes related to cellular replication and transcription. These results demonstrate that changes in atmospheric CO₂ under climate change scenarios greatly influences the response of A. flavus to water and temperature when colonizing maize grain.
Collapse
Affiliation(s)
- Matthew K Gilbert
- USDA/Agricultural Research Service, 1100 Robert E Lee Blvd., New Orleans, LA 70124, USA.
| | - Angel Medina
- Applied Mycology Group, Biotechnology Centre, Cranfield University, Silsoe, Bedford MK45 4DT, UK.
| | - Brian M Mack
- USDA/Agricultural Research Service, 1100 Robert E Lee Blvd., New Orleans, LA 70124, USA.
| | - Matthew D Lebar
- USDA/Agricultural Research Service, 1100 Robert E Lee Blvd., New Orleans, LA 70124, USA.
| | - Alicia Rodríguez
- Food Hygiene and Safety, Meat and Meat products Research Institute, University of Extremadura, 10003 Caceres, Spain.
| | - Deepak Bhatnagar
- USDA/Agricultural Research Service, 1100 Robert E Lee Blvd., New Orleans, LA 70124, USA.
| | - Naresh Magan
- Applied Mycology Group, Biotechnology Centre, Cranfield University, Silsoe, Bedford MK45 4DT, UK.
| | - Gregory Obrian
- Department of Entomology and Plant Pathology, 223 Partners III, P.O. Box 7567, North Carolina State University, Raleigh, NC 27695, USA.
| | - Gary Payne
- Department of Entomology and Plant Pathology, 223 Partners III, P.O. Box 7567, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
46
|
Bragg PE, Maust MD, Panaccione DG. Ergot Alkaloid Biosynthesis in the Maize (Zea mays) Ergot Fungus Claviceps gigantea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10703-10710. [PMID: 29172518 PMCID: PMC5800402 DOI: 10.1021/acs.jafc.7b04272] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Biosynthesis of the dihydrogenated forms of ergot alkaloids is of interest because many of the ergot alkaloids used as pharmaceuticals may be derived from dihydrolysergic acid (DHLA) or its precursor dihydrolysergol. The maize (Zea mays) ergot pathogen Claviceps gigantea has been reported to produce dihydrolysergol, a hydroxylated derivative of the common ergot alkaloid festuclavine. We hypothesized expression of C. gigantea cloA in a festuclavine-accumulating mutant of the fungus Neosartorya fumigata would yield dihydrolysergol because the P450 monooxygenase CloA from other fungi performs similar oxidation reactions. We engineered such a strain, and high performance liquid chromatography and liquid chromatography-mass spectrometry analyses demonstrated the modified strain produced DHLA, the fully oxidized product of dihydrolysergol. Accumulation of high concentrations of DHLA in field-collected C. gigantea sclerotia and discovery of a mutation in the gene lpsA, downstream from DHLA formation, supported our finding that DHLA rather than dihydrolysergol is the end product of the C. gigantea pathway.
Collapse
Affiliation(s)
- Paige E. Bragg
- Division of Plant and Soil Sciences, Genetics and Developmental Biology Program, West Virginia University, 333 Evansdale Drive, Morgantown, West Virginia 26506, United States
| | - Matthew D. Maust
- Division of Plant and Soil Sciences, Genetics and Developmental Biology Program, West Virginia University, 333 Evansdale Drive, Morgantown, West Virginia 26506, United States
- Protea Biosciences, 1311 Pineview Drive, Morgantown, West Virginia 26505, United States
| | - Daniel G. Panaccione
- Protea Biosciences, 1311 Pineview Drive, Morgantown, West Virginia 26505, United States
| |
Collapse
|
47
|
Ergot alkaloids contribute to virulence in an insect model of invasive aspergillosis. Sci Rep 2017; 7:8930. [PMID: 28827626 PMCID: PMC5567044 DOI: 10.1038/s41598-017-09107-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/20/2017] [Indexed: 12/13/2022] Open
Abstract
Neosartorya fumigata (Aspergillus fumigatus) is the most common cause of invasive aspergillosis, a frequently fatal lung disease primarily affecting immunocompromised individuals. This opportunistic fungal pathogen produces several classes of specialised metabolites including products of a branch of the ergot alkaloid pathway called fumigaclavines. The biosynthesis of the N. fumigata ergot alkaloids and their relation to those produced by alternate pathway branches in fungi from the plant-inhabiting Clavicipitaceae have been well-characterised, but the potential role of these alkaloids in animal pathogenesis has not been studied extensively. We investigated the contribution of ergot alkaloids to virulence of N. fumigata by measuring mortality in the model insect Galleria mellonella. Larvae were injected with conidia (asexual spores) of two different wild-type strains of N. fumigata and three different ergot alkaloid mutants derived by previous gene knockouts and differing in ergot alkaloid profiles. Elimination of all ergot alkaloids significantly reduced virulence of N. fumigata in G. mellonella (P < 0.0001). Mutants accumulating intermediates but not the pathway end product fumigaclavine C also were less virulent than the wild type (P < 0.0003). The data indicate that ergot alkaloids contribute to virulence of N. fumigata in this insect model and that fumigaclavine C is important for full virulence.
Collapse
|
48
|
Arnold SL, Panaccione DG. Biosynthesis of the Pharmaceutically Important Fungal Ergot Alkaloid Dihydrolysergic Acid Requires a Specialized Allele of cloA. Appl Environ Microbiol 2017; 83:e00805-17. [PMID: 28476772 PMCID: PMC5494617 DOI: 10.1128/aem.00805-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/03/2017] [Indexed: 11/20/2022] Open
Abstract
Ergot alkaloids are specialized fungal metabolites that are important as the bases of several pharmaceuticals. Many ergot alkaloids are derivatives of lysergic acid (LA) and have vasoconstrictive activity, whereas several dihydrolysergic acid (DHLA) derivatives are vasorelaxant. The pathway to LA is established, with the P450 monooxygenase CloA playing a key role in oxidizing its substrate agroclavine to LA. We analyzed the activities of products of cloA alleles from different fungi relative to DHLA biosynthesis by expressing them in a mutant of the fungus Neosartorya fumigata that accumulates festuclavine, the precursor to DHLA. Transformants expressing CloA from Epichloë typhina × Epichloë festucae, which oxidizes agroclavine to LA, failed to oxidize festuclavine to DHLA. In substrate feeding experiments, these same transformants oxidized exogenously supplied agroclavine to LA, indicating that a functional CloA was produced. A genomic clone of cloA from Claviceps africana, a sorghum ergot fungus that produces a DHLA derivative, was cloned and expressed in the festuclavine-accumulating mutant of N. fumigata, but several introns in this genomic clone were not processed properly. Expression of a synthetic intron-free version of C. africanacloA resulted in the accumulation of DHLA as assessed by fluorescence high-pressure liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS). In substrate feeding experiments, the C. africana CloA also accepted agroclavine as the substrate, oxidizing it to LA. The data indicate that a specialized allele of cloA is required for DHLA biosynthesis and that the pharmaceutically important compound DHLA can be produced in engineered N. fumigataIMPORTANCE Ergot alkaloids are fungal metabolites that have impacted humankind historically as poisons and more recently as pharmaceuticals used to treat dementia, migraines, and other disorders. Much is known about the biosynthesis of ergot alkaloids that are derived from lysergic acid (LA), but important questions remain about a parallel pathway to ergot alkaloids derived from dihydrolysergic acid (DHLA). DHLA-derived alkaloids have minor structural differences compared to LA-derived alkaloids but can have very different activities. To understand how DHLA is made, we analyzed activities of a key enzyme in the DHLA pathway and found that it differed from its counterpart in the LA pathway. Our data indicate a critical difference between the two pathways and provide a strategy for producing DHLA by modifying a model fungus. The ability to produce DHLA in a model fungus may facilitate synthesis of DHLA-derived pharmaceuticals.
Collapse
Affiliation(s)
- Stephanie L Arnold
- West Virginia University, Division of Plant and Soil Sciences, Genetics and Developmental Biology Program, Morgantown, West Virginia, USA
| | - Daniel G Panaccione
- West Virginia University, Division of Plant and Soil Sciences, Genetics and Developmental Biology Program, Morgantown, West Virginia, USA
| |
Collapse
|
49
|
Liu H, Jia Y. Ergot alkaloids: synthetic approaches to lysergic acid and clavine alkaloids. Nat Prod Rep 2017; 34:411-432. [PMID: 28300233 DOI: 10.1039/c6np00110f] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: 2000 to 2017Ergot alkaloids are among the most important pharmaceuticals and natural toxins. Significant progress has been achieved in recent years on the research of ergot alkaloids. In this review, we re-introduced the history of ergot alkaloids. Meanwhile, we summarized all the natural products and semi-synthetic derivatives of ergot alkaloids. We also briefly described the biosynthesis and semi-synthesis of ergot alkaloid drugs from raw materials obtained by fermentation. Moreover, we reviewed the advances that have been made in the total synthesis of ergot alkaloids since 2000.
Collapse
Affiliation(s)
- Haichao Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | - Yanxing Jia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|
50
|
Microbial metabolites in nutrition, healthcare and agriculture. 3 Biotech 2017; 7:15. [PMID: 28391479 PMCID: PMC5385174 DOI: 10.1007/s13205-016-0586-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 12/07/2016] [Indexed: 12/31/2022] Open
Abstract
Microorganisms are a promising source of an enormous number of natural products, which have made significant contribution to almost each sphere of human, plant and veterinary life. Natural compounds obtained from microorganisms have proved their value in nutrition, agriculture and healthcare. Primary metabolites, such as amino acids, enzymes, vitamins, organic acids and alcohol are used as nutritional supplements as well as in the production of industrial commodities through biotransformation. Whereas, secondary metabolites are organic compounds that are largely obtained by extraction from plants or tissues. They are primarily used in the biopharmaceutical industry due to their capability to reduce infectious diseases in human beings and animals and thus increase the life expectancy. Additionally, microorganisms and their products inevitably play a significant role in sustainable agriculture development.
Collapse
|