1
|
Quiroga J, Lambrese YS, García MG, Ochoa NA, Calvente VE. Enhancing apple postharvest protection: Efficacy of pectin coatings containing Cryptococcus laurentii against Penicillium expansum. Int J Food Microbiol 2025; 426:110934. [PMID: 39405798 DOI: 10.1016/j.ijfoodmicro.2024.110934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/27/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024]
Abstract
The aim of this work is the application of pectin coatings containing Cryptococcus laurentii as a method of biocontrol of Penicillium expansum for postharvest protection of apples. For this purpose, the yeast was incorporated into a pectin matrix, and its viability and biocontrol activity in vitro and in vivo against P. expansum was evaluated over time. In addition, the influence of the sterilization process on coating thickness was studied. Results showed that pectin coating with C. laurentii enhanced mycelial growth inhibition in vitro studies, while no significant differences were observed in disease incidence and severity reduction in vivo studies. The sterilization process reduced the viscosity of the pectin solution, resulting in coating thicknesses ranging from 0.5 to 1 μm. As a general evaluation, in vitro and in vivo, biocontrol assays were useful in demonstrating better postharvest protection of the yeast at 7 °C concerning 25 °C.
Collapse
Affiliation(s)
- Julieta Quiroga
- Instituto de Física Aplicada, CCT San Luis, CONICET, Argentina; Área de Tecnología Química y Biotecnología, Departamento de Química, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de los Andes 950, San Luis CP 5700, Argentina
| | - Yésica Sabrina Lambrese
- Instituto Nacional de Tecnología Industrial, INTI San Luis, INTI, Argentina; Área de Básicas Agronómicas, Departamento de Ciencias Agropecuarias, Facultad de Ingeniería y Ciencias Agropecuarias, Universidad Nacional de San Luis, Ruta Prov. N° 55 (Ex. 148) Extremo Norte, Villa Mercedes CP 5730, Argentina.
| | - María Guadalupe García
- Instituto de Física Aplicada, CCT San Luis, CONICET, Argentina; Área de Tecnología Química y Biotecnología, Departamento de Química, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de los Andes 950, San Luis CP 5700, Argentina
| | - Nelio Ariel Ochoa
- Instituto de Física Aplicada, CCT San Luis, CONICET, Argentina; Área de Tecnología Química y Biotecnología, Departamento de Química, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de los Andes 950, San Luis CP 5700, Argentina
| | - Viviana Edith Calvente
- Área de Tecnología Química y Biotecnología, Departamento de Química, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de los Andes 950, San Luis CP 5700, Argentina
| |
Collapse
|
2
|
Jiang Y, Wu Y, Zheng X, Yu T, Yan F. Current insights into yeast application for reduction of patulin contamination in foods: A comprehensive review. Compr Rev Food Sci Food Saf 2024; 23:e70044. [PMID: 39437191 DOI: 10.1111/1541-4337.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/13/2024] [Accepted: 09/29/2024] [Indexed: 10/25/2024]
Abstract
Patulin, a fungal secondary metabolite with multiple toxicities, is widely existed in a variety of fruits and their products. This not only causes significant economic losses to the agricultural and food industries but also poses a serious threat to human health. Conventional techniques mainly involved physical and chemical methods present several challenges include incomplete patulin degradation, high technical cost, and fruit quality decline. In comparison, removal of mycotoxin through biodegradation is regarded as a greener and safer strategy which has become popular research. Among them, yeast has a unique advantage in detoxification effect and application, which has attracted our attention. Therefore, this review provides a comprehensive account of the yeast species that can degrade patulin, degradation mechanism, current application status, and future challenges. Yeasts can efficiently convert patulin into nontoxic or low-toxic substances through biodegradation. Alternatively, it can use physical adsorption, which has the advantages of safety, high efficiency, and environmental friendliness. Nevertheless, due to the inherent complexity of the production environment, the sole utilization of yeast as a control agent remains inherently unstable and challenging to implement on a large scale in a practical manner. Integration control, enhancement of yeast resilience, improvement of yeast cell wall adsorption capacity, and research on additional patulin-degrading enzymes will facilitate the practical application of this approach. Furthermore, we analyzed the feasibility of the yeast commercial application in patulin reduction and provided suggestions on how to enhance its commercial value, which is of great significance for the control of mycotoxins in food products.
Collapse
Affiliation(s)
- Yiwei Jiang
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yalan Wu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Ting Yu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Fujie Yan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Kot AM, Laszek P, Kieliszek M, Pobiega K, Błażejak S. Biotechnological potential of red yeast isolated from birch forests in Poland. Biotechnol Lett 2024; 46:641-669. [PMID: 38687405 PMCID: PMC11217099 DOI: 10.1007/s10529-024-03482-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/25/2024] [Accepted: 03/10/2024] [Indexed: 05/02/2024]
Abstract
OBJECTIVES This study aimed to isolate red yeast from sap, bark and slime exudates collected from Polish birch forests and then assessment of their biotechnological potential. RESULTS 24 strains of red yeast were isolated from the bark, sap and spring slime fluxes of birch (Betula pendula). Strains belonging to Rhodotorula mucilaginosa (6), Rhodosporidiobolus colostri (4), Cystrofilobasidium capitaum (3), Phaffia rhodozyma (3) and Cystobasidium psychroaquaticum (3) were dominant. The highest efficiency of carotenoid biosynthesis (5.04 mg L-1) was obtained by R. mucilaginosa CMIFS 004, while lipids were most efficiently produced by two strains of P. rhodozyma (5.40 and 5.33 g L-1). The highest amount of exopolysaccharides (3.75 g L-1) was produced by the R. glutinis CMIFS 103. Eleven strains showed lipolytic activity, nine amylolytic activity, and only two proteolytic activity. The presence of biosurfactants was not found. The growth of most species of pathogenic moulds was best inhibited by Rhodotorula yeasts. CONCLUSION Silver birch is a good natural source for the isolation of new strains of red yeast with wide biotechnological potential.
Collapse
Affiliation(s)
- Anna M Kot
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776, Warsaw, Poland.
| | - Paulina Laszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Katarzyna Pobiega
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Stanisław Błażejak
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776, Warsaw, Poland
| |
Collapse
|
4
|
Zhao L, Hu Y, Liang L, Dhanasekaran S, Zhang X, Yang X, Wu M, Song Y, Zhang H. WSC1 Regulates the Growth, Development, Patulin Production, and Pathogenicity of Penicillium expansum Infecting Pear Fruits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1025-1034. [PMID: 38181197 DOI: 10.1021/acs.jafc.3c07566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
In this study, the role of WSC1 in the infection of pear fruit by Penicillium expansum was investigated. The WSC1 gene was knocked out and complemented by Agrobacterium-mediated homologous recombination technology. Then, the changes in growth, development, and pathogenic processes of the knockout mutant and the complement mutant were analyzed. The results indicated that deletion of WSC1 slowed the growth rate, reduced the mycelial and spore yield, and reduced the ability to produce toxins and pathogenicity of P. expansum in pear fruits. At the same time, the deletion of WSC1 reduced the tolerance of P. expansum to cell wall stress factors, enhanced antioxidant capacity, decreased hypertonic sensitivity, decreased salt stress resistance, and was more sensitive to most metal ions. Our results confirmed that WSC1 plays an important role in maintaining cell wall integrity and responding to stress, toxin production, and the pathogenicity of P. expansum.
Collapse
Affiliation(s)
- Lina Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
- Jinan Fruit Research Institute, All China Federation of Supply and Marketing Cooperatives, Jinan 250014, Shandong, People's Republic of China
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, People's Republic of China
| | - Yize Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Luyi Liang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Solairaj Dhanasekaran
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Xiaoyun Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Xiangzheng Yang
- Jinan Fruit Research Institute, All China Federation of Supply and Marketing Cooperatives, Jinan 250014, Shandong, People's Republic of China
- College of Agriculture & Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Maoyu Wu
- Jinan Fruit Research Institute, All China Federation of Supply and Marketing Cooperatives, Jinan 250014, Shandong, People's Republic of China
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, People's Republic of China
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| |
Collapse
|
5
|
Tang X, Cai YF, Yu XM, Zhou WW. Detoxification of aflatoxin B1 by Bacillus aryabhattai through conversion of double bond in terminal furan. J Appl Microbiol 2023; 134:lxad192. [PMID: 37634085 DOI: 10.1093/jambio/lxad192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 07/07/2023] [Accepted: 08/24/2023] [Indexed: 08/28/2023]
Abstract
AIMS This study aimed to screen a bacterial strain with high detoxifying capability for aflatoxin B1 (AFB1), verify its biotransformation efficiency, and detoxification process. METHODS AND RESULTS A total of 350 samples collected from different environmental niche were screened using coumarin as the sole carbon source. High Performance Liquid Chromatography (HPLC) was used to detect residues of AFB1, and 16S rRNA sequencing was performed on the isolated strain with the highest AFB1 removal ratio for identification. The detoxified products of this strain were tested for toxicity in Escherichia coli as well as LO2, Caco-2, and HaCaT human cell lines. HPLC-MS was applied to further confirm the AFB1 removal and detoxification process. CONCLUSIONS We identified a strain from plant leaf designated as DT with high AFB1-detoxifying ability that is highly homologous to Bacillus aryabhattai. The optimum detoxification conditions of this strain were 37°C and pH 8.0, resulting in 82.92% removal ratio of 2 μg mL-1 AFB1 in 72 h. The detoxified products were nontoxic for E. coli and significantly less toxic for the LO2, Caco-2, and HaCaT human cell lines. HPLC-MS analysis also confirmed the significant drop of the AFB1 characteristic peak. Two possible metabolic products, C19H15O8 (m/z 371) and C19H19O8 (m/z 375), were observed by mass spectrometry. Potential biotransformation pathway was based on the cleavage of double bond in the terminal furan of AFB1. These generated components had different chemical structures with AFB1, manifesting that the attenuation of AFB1 toxicity would be attributed to the destruction of lactone structure of AFB1 during the conversion process.
Collapse
Affiliation(s)
- Xi Tang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yi-Fan Cai
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xiao-Mei Yu
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Wen-Wen Zhou
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
6
|
Yang C, Peng B. Biodegradation characteristics of patulin by Saccharomyces cerevisiae during fermentation. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Ultraviolet Applications to Control Patulin Produced by Penicillium expansum CMP-1 in Apple Products and Study of Further Patulin Degradation Products Formation and Toxicity. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02943-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Abstract
Patulin is a mycotoxin whose presence in apple-derived products and fruit juices is legally regulated, being its maximum limits established in the legislation of multiple countries. However, the management of contaminated batches is still an issue for producers. This investigation aims to evaluate ultraviolet light (254 nm, UV-C254nm) irradiation to find solutions that can be applied at different stages of the apple juice production chain. In this regard, 8.8 (UV-1) and 35.1 (UV-2) kJ m−2 treatments inactivated spores of Penicillium expansum CMP-1 on the surface of apples. Although the same treatments applied to wounded apples (either before the infection or after the infection, immediately or when the lesion had appeared) did not show any effect on the growth rate of P. expansum during storage (up to 14 days, at 4 or 25 °C), they reduced patulin content per lesion size in apples treated after the infection had occurred (patulin decreased from 2.24 (control) to 0.65 µg kg−1 cm−2 (UV-2 treated apples)). Additionally, the treatment of juice with patulin with ultraviolet light up to 450.6 kJ m−2 resulted in more than 98 % reduction of patulin. Degradation products of patulin after UV-C254nm treatments were tentatively identified by HPLC–MS, and toxicity and biological activities were assessed in silico, and results indicated that such products did not pose an increased risk when compared to patulin.
Collapse
|
8
|
Zhao L, Shu Y, Quan S, Dhanasekaran S, Zhang X, Zhang H. Screening and Regulation Mechanism of Key Transcription Factors of Penicillium expansum Infecting Postharvest Pears by ATAC-Seq Analysis. Foods 2022; 11:foods11233855. [PMID: 36496662 PMCID: PMC9738651 DOI: 10.3390/foods11233855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Transcription factors play a key role in Penicillium expansum infection process. Although the crucial characteristics of some transcription factors of pathogenic fungi have been found, many transcription factors involved in P. expansum infections have not been explored and studied. This study aimed to screen the transcription factors of P. expansum involved in postharvest pear infections by ATAC-seq analysis and to analyze the differentially expressed peak-related genes by GO enrichment and KEGG pathway analysis. Our results found the up-regulation of differentially expressed peak-related genes involved in the MAPK signaling pathway, pentose phosphate pathway, starch and sucrose metabolism, and pentose and glucuronate interconversions. Our study especially confirmed the differential regulation of transcription factors MCM1, Ste12 and gene WSC in the MAPK signaling pathway and PG1, RPE1 in the pentose and glucuronate interconversions pathway. These transcription factors and related genes might play an essential role in pear fruit infection by P. expansum. RT-qPCR validation of twelve expressed peak-related genes in P. expansum showed that the expression levels of these twelve genes were compatible with the ATAC-Seq. Our findings might shed some light on the regulatory molecular networks consisting of transcription factors that engaged in P. expansum invasion and infection of pear fruits.
Collapse
|
9
|
Ndiaye S, Zhang M, Fall M, Ayessou NM, Zhang Q, Li P. Current Review of Mycotoxin Biodegradation and Bioadsorption: Microorganisms, Mechanisms, and Main Important Applications. Toxins (Basel) 2022; 14:729. [PMID: 36355979 PMCID: PMC9694041 DOI: 10.3390/toxins14110729] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/08/2022] [Accepted: 09/28/2022] [Indexed: 01/26/2023] Open
Abstract
Mycotoxins are secondary metabolites produced by fungi. Food/feed contamination by mycotoxins is a great threat to food safety. The contamination can occur along the food chain and can cause many diseases in humans and animals, and it also can cause economic losses. Many detoxification methods, including physical, chemical, and biological techniques, have been established to eliminate mycotoxins in food/feed. The biological method, with mycotoxin detoxification by microorganisms, is reliable, efficient, less costly, and easy to use compared with physical and chemical ones. However, it is important to discover the metabolite's toxicity resulting from mycotoxin biodegradation. These compounds can be less or more toxic than the parent. On the other hand, mechanisms involved in a mycotoxin's biological control remain still unclear. Mostly, there is little information about the method used by microorganisms to control mycotoxins. Therefore, this article presents an overview of the most toxic mycotoxins and the different microorganisms that have a mycotoxin detoxification ability. At the same time, different screening methods for degradation compound elucidation are given. In addition, the review summarizes mechanisms of mycotoxin biodegradation and gives some applications.
Collapse
Affiliation(s)
- Seyni Ndiaye
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Laboratoire D’Analyses et D’Essai, Ecole Supérieure Polytechnique, Université Cheikh Anta Diop, Fann-Dakar 5085, Senegal
| | - Minhui Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Mouhamed Fall
- Key Laboratory of Agro-Products Processing, Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100193, China
| | - Nicolas M. Ayessou
- Laboratoire D’Analyses et D’Essai, Ecole Supérieure Polytechnique, Université Cheikh Anta Diop, Fann-Dakar 5085, Senegal
| | - Qi Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Peiwu Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
10
|
Li N, Cui R, Zhang F, Meng X, Liu B. Current situation and future challenges of patulin reduction-a review. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
11
|
Wang Z, Wang L, Ming Q, Yue T, Ge Q, Yuan Y, Gao Z, Cai R. Reduction the contamination of patulin during the brewing of apple cider and its characteristics. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:1149-1162. [PMID: 35343883 DOI: 10.1080/19440049.2022.2055155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Patulin is one of the most significant food safety problems in fruit and derived products. The reduction of patulin contamination in food processing has always been the focus of research. In this study, nine yeast strains were applied for the brewing of apple cider and the fate of patulin was determined. In this process, the patulin contamination can be decreased by adsorption onto and degradation of yeast cells in the main fermentation (20.8-49.1%), as well as the adsorption removal during clarification (18.7-58%), inverted cans (21.3-31.4%) and aging (1.0-5.8%). Saccharomyces cerevisiae (1027) was selected to reveal the elimination mechanism of patulin in main fermentation. The decrease of patulin content was mainly due to degradation and the intracellular enzymes played a more important role than extracellular ones. In addition, the synthesis of enzymes was related to the induction of patulin. Furthermore, the degradation product of patulin in the main fermentation was identified as E-ascladiol, which is less toxic than patulin. Based on the representative strain of S. cerevisiae 1027, patulin contamination can be effectively eliminated during apple cider brewing. This study provides a new insight into eliminating patulin contamination in the brewing of apple cider.
Collapse
Affiliation(s)
- Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, China
| | - Leran Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, China
| | - Qiaoying Ming
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, China
| | - Qian Ge
- Institute of Quality Standards and Testing Technology for Agricultural Products (Ningxia), Yinchuan, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, China
| | - Rui Cai
- College of Food Science and Technology, Northwest University, Xi'an, China
| |
Collapse
|
12
|
|
13
|
He Q, Liang J, Zhao Y, Yuan Y, Wang Z, Gao Z, Wei J, Yue T. Enzymatic degradation of mycotoxin patulin by an extracellular lipase from Ralstonia and its application in apple juice. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
14
|
Analysis of Stored Wheat Grain-Associated Microbiota Reveals Biocontrol Activity among Microorganisms against Mycotoxigenic Fungi. J Fungi (Basel) 2021; 7:jof7090781. [PMID: 34575819 PMCID: PMC8470753 DOI: 10.3390/jof7090781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/09/2021] [Accepted: 09/17/2021] [Indexed: 02/01/2023] Open
Abstract
Wheat grains are colonized by complex microbial communities that have the potential to affect seed quality and susceptibility to disease. Some of the beneficial microbes in these communities have been shown to protect plants against pathogens through antagonism. We evaluated the role of the microbiome in seed health: in particular, against mycotoxin-producing fungi. Amplicon sequencing was used to characterize the seed microbiome and determine if epiphytes and endophytes differ in their fungal and bacterial diversity and community composition. We then isolated culturable fungal and bacterial species and evaluated their antagonistic activity against mycotoxigenic fungi. The most prevalent taxa were found to be shared between the epiphytic and endophytic microbiota of stored wheat seeds. Among the isolated bacteria, Bacillus strains exhibited strong antagonistic properties against fungal pathogens with noteworthy fungal load reduction in wheat grain samples of up to a 3.59 log10 CFU/g compared to untreated controls. We also found that a strain of the yeast, Rhodotorula glutinis, isolated from wheat grains, degrades and/or metabolizes aflatoxin B1, one of the most dangerous mycotoxins that negatively affects physiological processes in animals and humans. The mycotoxin level in grain samples was significantly reduced up to 65% in the presence of the yeast strain, compared to the untreated control. Our study demonstrates that stored wheat grains are a rich source of bacterial and yeast antagonists with strong inhibitory and biodegradation potential against mycotoxigenic fungi and the mycotoxins they produce, respectively. Utilization of these antagonistic microorganisms may help reduce fungal and mycotoxin contamination, and potentially replace traditionally used synthetic chemicals.
Collapse
|
15
|
Kosakonia radicincitans and Cryptococcus laurentii controlled Penicillium expansum rot and decreased patulin production at 4 and 25 °C. Food Microbiol 2021; 100:103863. [PMID: 34416963 DOI: 10.1016/j.fm.2021.103863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 11/24/2022]
Abstract
In the present work, we evaluated the effects of a mixture of biocontrol agents against two toxigenic strains of Penicillium expansum isolated in Argentine Patagonia from pome fruits. The two strains, INTA-5 and INTA-10, were previusly selected among ten strains coming from the Alto Valle (Rio Negro-Argentina) for their high production of patulin. For the biocontrol, Kosakonia radicincitans, Cryptococcus laurentii, and Rhodosporidium fluviale were tested in vitro experiments on Potato Dextrose Agar (PDA) dishes against the INTA-5 and INTA-10 strains. The bacterium K. radicincitans and the yeast C. laurentii were selected to be used in a mixture due to their capacity to control the fungus and reduce the mycotoxin severely. In vitro assays with the mixture showed a high antagonism against P. expansum INTA-5 and INTA-10, at 21 d of incubation at 25 °C and a patulin reduction of 98%. The mixture of microorganisms was also effective in apples stored at 25 °C for 10 d and 4 °C for 30 d. At cold storage, the mixture controlled moderately the development of rot and decreased patulin concentration. At 25 °C, the pathogen's optimal growth temperature, the mixture of Biological Control Agent (BCAs) assured both the control of rot and decrease of patulin concentration. The combination of two microorganisms, with different requirements and abilities, resulted in a mix with a strong antagonism against P. expansum with the capability to decrease the patulin concentration. Treatment with the selected mixture could be a good option for controlling strains with different behaviours and in different environmental conditions.
Collapse
|
16
|
Yang Q, Pang B, Solairaj D, Hu W, Legrand NNG, Ma J, Huang S, Wu X, Zhang H. Effect of Rhodotorula mucilaginosa on patulin degradation and toxicity of degradation products. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 38:1427-1439. [PMID: 34043492 DOI: 10.1080/19440049.2021.1923821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Rhodotorula mucilaginosa is an antagonistic yeast for which our research team has recently reported interesting biocontrol activities against blue mould decay of apples and a strong ability to decrease the patulin concentration in vivo. However, the possible mechanisms of patulin degradation by R. mucilaginosa and the toxicity of patulin degradation products remain unclear. In this study, the effect of R. mucilaginosa on patulin degradation and toxicity of degradation products were investigated, the results showed that viable cells of R. mucilaginosa are essential to patulin degradation. Also, R. mucilaginosa eliminated patulin without adsorbing it through its cell wall. The extracellular metabolites of R. mucilaginosa stimulated by patulin showed little degradation activity for patulin. Cycloheximide addition into the medium significantly decreased the patulin degradation capacity of R. mucilaginosa cells. The main patulin degradation product by R. mucilaginosa was ascladiol, which was proved non-toxic to human hepatoma (HepG2) cells at 0.625-10 g/mL. Furthermore, toxicological analysis using a confocal laser scanning microscope revealed that the degradation product induced cellular apoptosis to a lesser extent than patulin itself. This result offers an innovative method to detoxify patulin and limit the risks of patulin in fruits and vegetables using R. mucilaginosa.
Collapse
Affiliation(s)
- Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Bo Pang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Dhanasekaran Solairaj
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Weicheng Hu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai'an, Jiangsu, People's Republic of China
| | | | - Junfang Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Siyao Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Xiangyang Wu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| |
Collapse
|
17
|
Zhong L, Carere J, Mats L, Lu Z, Lu F, Zhou T. Formation of glutathione patulin conjugates associated with yeast fermentation contributes to patulin reduction. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Critical Assessment of Mycotoxins in Beverages and Their Control Measures. Toxins (Basel) 2021; 13:toxins13050323. [PMID: 33946240 PMCID: PMC8145492 DOI: 10.3390/toxins13050323] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/01/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Mycotoxins are secondary metabolites of filamentous fungi that contaminate food products such as fruits, vegetables, cereals, beverages, and other agricultural commodities. Their occurrence in the food chain, especially in beverages, can pose a serious risk to human health, due to their toxicity, even at low concentrations. Mycotoxins, such as aflatoxins (AFs), ochratoxin A (OTA), patulin (PAT), fumonisins (FBs), trichothecenes (TCs), zearalenone (ZEN), and the alternaria toxins including alternariol, altenuene, and alternariol methyl ether have largely been identified in fruits and their derived products, such as beverages and drinks. The presence of mycotoxins in beverages is of high concern in some cases due to their levels being higher than the limits set by regulations. This review aims to summarize the toxicity of the major mycotoxins that occur in beverages, the methods available for their detection and quantification, and the strategies for their control. In addition, some novel techniques for controlling mycotoxins in the postharvest stage are highlighted.
Collapse
|
19
|
The characteristics of patulin detoxification by Lactobacillus plantarum 13M5. Food Chem Toxicol 2020; 146:111787. [PMID: 33031840 DOI: 10.1016/j.fct.2020.111787] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/03/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023]
Abstract
Patulin (PAT) is a widespread mycotoxin that harms the health of both humans and animals. In this study, among the 17 tested Lactobacillus plantarum strains, L. plantarum 13M5, isolated from traditional Chinese fermented foods, showed the highest PAT degradation rate of up to 43.8% (PAT 5 mg/L). Evaluation of the living and dead 13M5 cells revealed that only the living cells had the ability to remove PAT and degrade it into E-ascladiol. A cell-based assay revealed that L. plantarum 13M5 administration alleviated PAT-induced injuries in Caco-2 cells, including cytotoxicity, oxidative stress, and tight junction disruption. Our results suggest that L. plantarum 13M5 has the potential to reduce PAT toxicity and can thus be used as a probiotic supplement to reduce or eliminate the toxicity of PAT ingested from diet.
Collapse
|
20
|
Wei C, Yu L, Qiao N, Zhao J, Zhang H, Zhai Q, Tian F, Chen W. Progress in the distribution, toxicity, control, and detoxification of patulin: A review. Toxicon 2020; 184:83-93. [DOI: 10.1016/j.toxicon.2020.05.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/24/2020] [Accepted: 05/15/2020] [Indexed: 01/09/2023]
|
21
|
Ngolong Ngea GL, Yang Q, Castoria R, Zhang X, Routledge MN, Zhang H. Recent trends in detecting, controlling, and detoxifying of patulin mycotoxin using biotechnology methods. Compr Rev Food Sci Food Saf 2020; 19:2447-2472. [PMID: 33336983 DOI: 10.1111/1541-4337.12599] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 01/09/2023]
Abstract
Patulin (PAT) is a mycotoxin that can contaminate many foods and especially fruits and fruit-based products. Therefore, accurate and effective testing is necessary to enable producers to comply with regulations and promote food safety. Traditional approaches involving the use of chemical compounds or physical treatments in food have provided practical methods that have been used to date. However, growing concerns about environmental and health problems associated with these approaches call for new alternatives. In contrast, recent advances in biotechnology have revolutionized the understanding of living organisms and brought more effective biological tools. This review, therefore, focuses on the study of biotechnology approaches for the detection, control, and mitigation of PAT in food. Future aspects of biotechnology development to overcome the food safety problem posed by PAT were also examined. We find that biotechnology advances offer novel, more effective, and environmental friendly approaches for the control and elimination of PAT in food compared to traditional methods. Biosensors represent the future of PAT detection and use biological tools such as aptamer, enzyme, and antibody. PAT prevention strategies include microbial biocontrol, the use of antifungal biomolecules, and the use of microorganisms in combination with antifungal molecules. PAT detoxification aims at the breakdown and removal of PAT in food by using enzymes, microorganisms, and various adsorbent biopolymers. Finally, biotechnology advances will be dependent on the understanding of fundamental biology of living organisms regarding PAT synthesis and resistance mechanisms.
Collapse
Affiliation(s)
- Guillaume Legrand Ngolong Ngea
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,Institute of Fisheries Sciences, University of Douala, Douala, Cameroon
| | - Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Raffaello Castoria
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,Department of Agricultural, Environmental and Food Sciences, Università degli Studi del Molise, Campobasso, Italy
| | - Xiaoyun Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Michael N Routledge
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
22
|
Zheng X, Wei W, Rao S, Gao L, Li H, Yang Z. Degradation of patulin in fruit juice by a lactic acid bacteria strain Lactobacillus casei YZU01. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107147] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Rapid Metabolome and Bioactivity Profiling of Fungi Associated with the Leaf and Rhizosphere of the Baltic Seagrass Zostera marina. Mar Drugs 2019; 17:md17070419. [PMID: 31330983 PMCID: PMC6669648 DOI: 10.3390/md17070419] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 01/30/2023] Open
Abstract
Zostera marina (eelgrass) is a marine foundation species with key ecological roles in coastal habitats. Its bacterial microbiota has been well studied, but very little is known about its mycobiome. In this study, we have isolated and identified 13 fungal strains, dominated by Penicillium species (10 strains), from the leaf and the root rhizosphere of Baltic Z. marina. The organic extracts of the fungi that were cultured by an OSMAC (One-Strain–Many-Compounds) regime using five liquid culture media under both static and shaking conditions were investigated for their chemical and bioactivity profiles. All extracts showed strong anti-quorum sensing activity, and the majority of the Penicillium extracts displayed antimicrobial or anti-biofilm activity against Gram-negative environmental marine and human pathogens. HPLC-DAD-MS-based rapid metabolome analyses of the extracts indicated the high influence of culture conditions on the secondary metabolite (SM) profiles. Among 69 compounds detected in all Penicillium sp. extracts, 46 were successfully dereplicated. Analysis of SM relatedness in culture conditions by Hierarchical Cluster Analysis (HCA) revealed generally low similarity and showed a strong effect of medium selection on chemical profiles of Penicillium sp. This is the first study assessing both the metabolite and bioactivity profile of the fungi associated with Baltic eelgrass Z. marina.
Collapse
|
24
|
Alvarez A, Gelezoglo R, Garmendia G, González ML, Magnoli AP, Arrarte E, Cavaglieri LR, Vero S. Role of Antarctic yeast in biocontrol of Penicillium expansum and patulin reduction of apples. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s42398-019-00081-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Sajid M, Mehmood S, Yuan Y, Yue T. Mycotoxin patulin in food matrices: occurrence and its biological degradation strategies. Drug Metab Rev 2019; 51:105-120. [PMID: 30857445 DOI: 10.1080/03602532.2019.1589493] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Patulin is a mycotoxin produced by a number of filamentous fungal species. It is a polyketide secondary metabolite which can gravely cause human health problems and food safety issues. This review deals with the occurrence of patulin in major food commodities from 2008 to date, including historical aspects, source, occurrence, regulatory limits and its toxicity. Most importantly, an overview of the recent research progress about the biodegradation strategies for contaminated food matrices is provided. The physical and chemical approaches have some drawbacks such as safety issues, possible losses in the nutritional quality, chemical hazards, limited efficacy, and high cost. The biological decontamination based on elimination or degradation of patulin using yeast, bacteria, and fungi has shown good results and it seems to be attractive since it works under mild and environment-friendly conditions. Further studies are needed to make clear the detoxification pathways by available potential biosorbents and to determine the practical applications of these methods at a commercial level to remove patulin from food products with special reference to their effects on sensory characteristics of foods.
Collapse
Affiliation(s)
- Marina Sajid
- a College of Food Science and Engineering , Northwest A&F University , Yangling , China.,b Laboratory of Quality & Safety Risk Assessment for Agro Products (Yangling), Ministry of Agriculture , Yangling , China.,c National Engineering Research Center of Agriculture Integration Test (Yangling) , Yangling , China
| | - Sajid Mehmood
- d State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection , Northwest A&F University , Yangling , China
| | - Yahong Yuan
- a College of Food Science and Engineering , Northwest A&F University , Yangling , China.,b Laboratory of Quality & Safety Risk Assessment for Agro Products (Yangling), Ministry of Agriculture , Yangling , China.,c National Engineering Research Center of Agriculture Integration Test (Yangling) , Yangling , China
| | - Tianli Yue
- a College of Food Science and Engineering , Northwest A&F University , Yangling , China.,b Laboratory of Quality & Safety Risk Assessment for Agro Products (Yangling), Ministry of Agriculture , Yangling , China.,c National Engineering Research Center of Agriculture Integration Test (Yangling) , Yangling , China
| |
Collapse
|
26
|
Pinedo C, Wright SAI, Collado IG, Goss RJM, Castoria R, Hrelia P, Maffei F, Durán-Patrón R. Isotopic Labeling Studies Reveal the Patulin Detoxification Pathway by the Biocontrol Yeast Rhodotorula kratochvilovae LS11. JOURNAL OF NATURAL PRODUCTS 2018; 81:2692-2699. [PMID: 30460844 DOI: 10.1021/acs.jnatprod.8b00539] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Patulin (1) is a mycotoxin contaminant in fruit and vegetable products worldwide. Biocontrol agents, such as the yeast Rhodotorula kratochvilovae strain LS11, can reduce patulin (1) contamination in food. R. kratochvilovae LS11 converts patulin (1) into desoxypatulinic acid (DPA) (5), which is less cytotoxic than the mycotoxin (1) to in vitro human lymphocytes. In the present study, we report our investigations into the pathway of degradation of patulin (1) to DPA (5) by R. kratochvilovae. Isotopic labeling experiments revealed that 5 derives from patulin (1) through the hydrolysis of the γ-lactone ring and subsequent enzymatic modifications. The ability of patulin (1) and DPA (5) to cause genetic damage was also investigated by the cytokinesis-block micronucleus cytome assay on in vitro human lymphocytes. Patulin (1) was demonstrated to cause much higher chromosomal damage than DPA (5).
Collapse
Affiliation(s)
- Cristina Pinedo
- Departamento de Química Orgánica, Facultad de Ciencias , Universidad de Cádiz , Campus Universitario Río San Pedro s/n, Torre sur, 4a planta, 11510 , Puerto Real , Cádiz , Spain
| | - Sandra A I Wright
- Section of Biology, Faculties of Health and Occupational Studies & Engineering and Sustainable Development , University of Gävle , 801 76 Gävle , Sweden
| | - Isidro G Collado
- Departamento de Química Orgánica, Facultad de Ciencias , Universidad de Cádiz , Campus Universitario Río San Pedro s/n, Torre sur, 4a planta, 11510 , Puerto Real , Cádiz , Spain
| | - Rebecca J M Goss
- School of Chemistry, Biomedical Sciences Research Complex , University of St Andrews , Fife , Scotland KY169ST , United Kingdom
| | - Raffaello Castoria
- Dipartimento Agricoltura, Ambiente, Alimenti , Università degli Studi del Molise , Via F. De Sanctis snc , 86100 Campobasso , Italy
| | - Patrizia Hrelia
- Dipartimento di Farmacia e Biotecnologie , Alma Mater Studiorum-Università di Bologna , Via Irnerio, 48 , 40126 Bologna , Italy
| | - Francesca Maffei
- Dipartimento di Scienze per la Qualità della Vita , Alma Mater Studiorum-Università di Bologna , Campus Rimini, Corso D'Augusto 237 , 47921 Rimini , Italy
| | - Rosa Durán-Patrón
- Departamento de Química Orgánica, Facultad de Ciencias , Universidad de Cádiz , Campus Universitario Río San Pedro s/n, Torre sur, 4a planta, 11510 , Puerto Real , Cádiz , Spain
| |
Collapse
|
27
|
Zhong L, Carere J, Lu Z, Lu F, Zhou T. Patulin in Apples and Apple-Based Food Products: The Burdens and the Mitigation Strategies. Toxins (Basel) 2018; 10:E475. [PMID: 30445713 PMCID: PMC6267208 DOI: 10.3390/toxins10110475] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/09/2018] [Accepted: 11/09/2018] [Indexed: 01/09/2023] Open
Abstract
Apples and apple-based products are among the most popular foods around the world for their delightful flavors and health benefits. However, the commonly found mold, Penicillium expansum invades wounded apples, causing the blue mold decay and ensuing the production of patulin, a mycotoxin that negatively affects human health. Patulin contamination in apple products has been a worldwide problem without a satisfactory solution yet. A comprehensive understanding of the factors and challenges associated with patulin accumulation in apples is essential for finding such a solution. This review will discuss the effects of the pathogenicity of Penicillium species, quality traits of apple cultivars, and environmental conditions on the severity of apple blue mold and patulin contamination. Moreover, beyond the complicated interactions of the three aforementioned factors, patulin control is also challenged by the lack of reliable detection methods in food matrices, as well as unclear degradation mechanisms and limited knowledge about the toxicities of the metabolites resulting from the degradations. As apple-based products are mainly produced with stored apples, pre- and post-harvest strategies are equally important for patulin mitigation. Before storage, disease-resistance breeding, orchard-management, and elicitor(s) application help control the patulin level by improving the storage qualities of apples and lowering fruit rot severity. From storage to processing, patulin mitigation strategies could benefit from the optimization of apple storage conditions, the elimination of rotten apples, and the safe and effective detoxification or biodegradation of patulin.
Collapse
Affiliation(s)
- Lei Zhong
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Xuanwu District, Nanjing 210095, China.
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada.
| | - Jason Carere
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada.
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Xuanwu District, Nanjing 210095, China.
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Xuanwu District, Nanjing 210095, China.
| | - Ting Zhou
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada.
| |
Collapse
|
28
|
Fermentative degradation of Patulin by Saccharomyces cerevisiae in aqueous solution. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.07.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
Characterization of fungus microbial diversity in healthy and diarrheal yaks in Gannan region of Tibet Autonomous Prefecture. Acta Trop 2018; 182:14-26. [PMID: 29454733 DOI: 10.1016/j.actatropica.2018.02.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/12/2018] [Accepted: 02/12/2018] [Indexed: 12/27/2022]
Abstract
Diarrhea is a serious epidemic in yaks on Qinghai Tibet plateau, but the exact pathogen is not confirmed. Diarrhea is related to the changes in diversity of intestinal flora. The current study herein is performed for high-throughput sequencing of fungus microbial diversity in healthy adult yaks, diarrheal adult yaks and diarrheal yak calves in Gannan Tibetan Autonomous Prefecture. A total 446726 optimized sequences were achieved. Over 250 OTUs in species level have been indentified for each sample. The Shannon and Simpson index revealed that there was no visible difference in the flora between different yak groups (p > 0.05). However, obvious difference was watched in the principal component of microbial community structure in different yak groups by PCA analysis, especially between healthy adult yak group and diarrheal adult yak groups. There were 248 fungus species shared in three groups. Interestingly, there were 97 fungus species shared in the diarrheal groups (calves and adult yaks), which were not found in the healthy yaks, while there were 212 fungus species only found in the healthy yaks. In the Phylum level, 1 phylum (Neocallimastigomycota) was discovered to have significant difference between healthy yaks and diarrheal yak calves (p < 0.05). In the genus level, 23 genus were found obvious difference between healthy adult yaks and diarrheal adults yaks (p < 0.05); 28 genus were found significant difference between healthy adult yaks and diarrheal yak calves (p < 0.05); 23 genus were found obvious difference between diarrheal adult yaks and diarrheal yak calves (p < 0.05). The present study herein first reported an insight of the change of microbial diversity of fungus in diarrhea yaks at altitude regions, which contributed towards the solid prevention of diarrhea in yaks.
Collapse
|
30
|
Abstract
Mycotoxins are secondary fungal metabolites associated with adverse human health and animal productivity consequences.[...].
Collapse
Affiliation(s)
- Yousef I Hassan
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada.
| | - Ting Zhou
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada.
| |
Collapse
|
31
|
Zheng X, Yang Q, Zhang X, Apaliya MT, Ianiri G, Zhang H, Castoria R. Biocontrol Agents Increase the Specific Rate of Patulin Production by Penicillium expansum but Decrease the Disease and Total Patulin Contamination of Apples. Front Microbiol 2017; 8:1240. [PMID: 28713362 PMCID: PMC5492354 DOI: 10.3389/fmicb.2017.01240] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 06/19/2017] [Indexed: 11/13/2022] Open
Abstract
Synthetic fungicides are commonly employed for the control of postharvest diseases of fruits. However, due to health concerns about the use of these chemicals, alternative control methods including biocontrol based on antagonistic yeasts are gaining in popularity. In this study, we investigated the effects of two biocontrol yeasts, Rhodotorula mucilaginosa strain 3617 and Rhodotorula kratochvilovae strain LS11, on blue mold and patulin (PAT) contamination caused by Penicillium expansum strains PY and FS7 in artificially inoculated Fuji apples stored at 20°C for 9 days. To correlate the development of the P. expansum strains in yeast-treated and untreated apples with PAT production, we quantified their biomass in the infected fruits using a recently published quantitative real-time polymerase chain reaction method based on specific primers for patF, a gene from P. expansum that is involved in PAT biosynthesis. Both yeasts significantly reduced the disease incidence caused by the two strains of P. expansum up to 5–7 days of incubation, and lowered their biomass and the progression of symptoms up to 9 days. Interestingly, both yeasts strains increased the rate of PAT production (expressed as ng patulin/μg fungal DNA) by the two pathogenic strains. Nevertheless, both biocontrol agents reduced the total PAT contamination, especially in the case of P. expansum strain FS7, the higher PAT producer of the two tested P. expansum strains. Comparing between the yeast strains, R. kratochvilovae LS11 was more effective than R. mucilaginosa 3617 for the control of P. expansum.
Collapse
Affiliation(s)
- Xiangfeng Zheng
- School of Food and Biological Engineering, Jiangsu UniversityZhenjiang, China
| | - Qiya Yang
- School of Food and Biological Engineering, Jiangsu UniversityZhenjiang, China
| | - Xiaoyun Zhang
- School of Food and Biological Engineering, Jiangsu UniversityZhenjiang, China
| | - Maurice T Apaliya
- School of Food and Biological Engineering, Jiangsu UniversityZhenjiang, China
| | - Giuseppe Ianiri
- Department of Agricultural, Environmental and Food Sciences, University of MoliseCampobasso, Italy
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu UniversityZhenjiang, China
| | - Raffaello Castoria
- School of Food and Biological Engineering, Jiangsu UniversityZhenjiang, China.,Department of Agricultural, Environmental and Food Sciences, University of MoliseCampobasso, Italy
| |
Collapse
|
32
|
Ioi JD, Zhou T, Tsao R, F Marcone M. Mitigation of Patulin in Fresh and Processed Foods and Beverages. Toxins (Basel) 2017; 9:E157. [PMID: 28492465 PMCID: PMC5450705 DOI: 10.3390/toxins9050157] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/13/2017] [Accepted: 05/03/2017] [Indexed: 11/16/2022] Open
Abstract
Patulin is a mycotoxin of food safety concern. It is produced by numerous species of fungi growing on fruits and vegetables. Exposure to the toxin is connected to issues neurological, immunological, and gastrointestinal in nature. Regulatory agencies worldwide have established maximum allowable levels of 50 µg/kg in foods. Despite regulations, surveys continue to find patulin in commercial food and beverage products, in some cases, to exceed the maximum limits. Patulin content in food can be mitigated throughout the food processing chain. Proper handling, storage, and transportation of food can limit fungal growth and patulin production. Common processing techniques including pasteurisation, filtration, and fermentation all have an effect on patulin content in food but individually are not sufficient safety measures. Novel methods to remove or detoxify patulin have been reviewed. Non-thermal processing techniques such as high hydrostatic pressure, UV radiation, enzymatic degradation, binding to microorganisms, and chemical degradation all have potential but have not been optimised. Until further refinement of these methods, the hurdle approach to processing should be used where food safety is concerned. Future development should focus on determining the nature and safety of chemicals produced from the breakdown of patulin in treatment techniques.
Collapse
Affiliation(s)
- J David Ioi
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G5C9, Canada.
- Department of Food Science, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Ting Zhou
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G5C9, Canada.
| | - Rong Tsao
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G5C9, Canada.
| | - Massimo F Marcone
- Department of Food Science, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|