1
|
Shang Z, Li X. Human cytomegalovirus: pathogenesis, prevention, and treatment. MOLECULAR BIOMEDICINE 2024; 5:61. [PMID: 39585514 PMCID: PMC11589059 DOI: 10.1186/s43556-024-00226-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024] Open
Abstract
Human cytomegalovirus (HCMV) infection remains a significant global health challenge, particularly for immunocompromised individuals and newborns. This comprehensive review synthesizes current knowledge on HCMV pathogenesis, prevention, and treatment strategies. We examine the molecular mechanisms of HCMV entry, focusing on the structure and function of key envelope glycoproteins (gB, gH/gL/gO, gH/gL/pUL128-131) and their interactions with cellular receptors such as PDGFRα, NRP2, and THBD. The review explores HCMV's sophisticated immune evasion strategies, including interference with pattern recognition receptor signaling, modulation of antigen presentation, and regulation of NK and T cell responses. We highlight recent advancements in developing neutralizing antibodies, various vaccine strategies (live-attenuated, subunit, vector-based, DNA, and mRNA), antiviral compounds (both virus-targeted and host-targeted), and emerging cellular therapies such as TCR-T cell approaches. By integrating insights from structural biology, immunology, and clinical research, we identify critical knowledge gaps and propose future research directions. This analysis aims to stimulate cross-disciplinary collaborations and accelerate the development of more effective prevention and treatment strategies for HCMV infections, addressing a significant unmet medical need.
Collapse
Affiliation(s)
- Zifang Shang
- Research Experiment Center, Meizhou Academy of Medical Sciences, Meizhou People's Hospital, Meizhou, 514031, Guangdong, China.
- Guangdong Engineering Technological Research Center of Clinical Molecular Diagnosis and Antibody Drugs, Meizhou, 514031, Guangdong, China.
| | - Xin Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| |
Collapse
|
2
|
Mihalić A, Železnjak J, Lisnić B, Jonjić S, Juranić Lisnić V, Brizić I. Immune surveillance of cytomegalovirus in tissues. Cell Mol Immunol 2024; 21:959-981. [PMID: 39134803 PMCID: PMC11364667 DOI: 10.1038/s41423-024-01186-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/14/2024] [Indexed: 09/01/2024] Open
Abstract
Cytomegalovirus (CMV), a representative member of the Betaherpesvirinae subfamily of herpesviruses, is common in the human population, but immunocompetent individuals are generally asymptomatic when infected with this virus. However, in immunocompromised individuals and immunologically immature fetuses and newborns, CMV can cause a wide range of often long-lasting morbidities and even death. CMV is not only widespread throughout the population but it is also widespread in its hosts, infecting and establishing latency in nearly all tissues and organs. Thus, understanding the pathogenesis of and immune responses to this virus is a prerequisite for developing effective prevention and treatment strategies. Multiple arms of the immune system are engaged to contain the infection, and general concepts of immune control of CMV are now reasonably well understood. Nonetheless, in recent years, tissue-specific immune responses have emerged as an essential factor for resolving CMV infection. As tissues differ in biology and function, so do immune responses to CMV and pathological processes during infection. This review discusses state-of-the-art knowledge of the immune response to CMV infection in tissues, with particular emphasis on several well-studied and most commonly affected organs.
Collapse
Affiliation(s)
- Andrea Mihalić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Jelena Železnjak
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Berislav Lisnić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Stipan Jonjić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Department of Biomedical Sciences, Croatian Academy of Sciences and Arts, Rijeka, Croatia
| | - Vanda Juranić Lisnić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| | - Ilija Brizić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| |
Collapse
|
3
|
Stevens A, Cruz-Cosme R, Armstrong N, Tang Q, Zhou ZH. Structure-guided mutagenesis targeting interactions between pp150 tegument protein and small capsid protein identify five lethal and two live-attenuated HCMV mutants. Virology 2024; 596:110115. [PMID: 38805802 PMCID: PMC11260070 DOI: 10.1016/j.virol.2024.110115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/01/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
Human cytomegalovirus (HCMV) replication relies on a nucleocapsid coat of the 150 kDa, subfamily-specific tegument phosphoprotein (pp150) to regulate cytoplasmic virion maturation. While recent structural studies revealed pp150-capsid interactions, the role of specific amino-acids involved in these interactions have not been established experimentally. In this study, pp150 and the small capsid protein (SCP), one of pp150's binding partners found atop the major capsid protein (MCP), were subjected to mutational and structural analyses. Mutations to clusters of polar or hydrophobic residues along the pp150-SCP interface abolished viral replication, with no replication detected in mutant virus-infected cells. Notably, a single amino acid mutation (pp150 K255E) at the pp150-MCP interface significantly attenuated viral replication, unlike in pp150-deletion mutants where capsids degraded outside host nuclei. These functionally significant mutations targeting pp150-capsid interactions, particularly the pp150 K255E replication-attenuated mutant, can be explored to overcome the historical challenges of developing effective antivirals and vaccines against HCMV infection.
Collapse
Affiliation(s)
- Alexander Stevens
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Ruth Cruz-Cosme
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA
| | - Najealicka Armstrong
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA
| | - Z Hong Zhou
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
4
|
Costa B, Gouveia MJ, Vale N. Safety and Efficacy of Antiviral Drugs and Vaccines in Pregnant Women: Insights from Physiologically Based Pharmacokinetic Modeling and Integration of Viral Infection Dynamics. Vaccines (Basel) 2024; 12:782. [PMID: 39066420 PMCID: PMC11281481 DOI: 10.3390/vaccines12070782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Addressing the complexities of managing viral infections during pregnancy is essential for informed medical decision-making. This comprehensive review delves into the management of key viral infections impacting pregnant women, namely Human Immunodeficiency Virus (HIV), Hepatitis B Virus/Hepatitis C Virus (HBV/HCV), Influenza, Cytomegalovirus (CMV), and SARS-CoV-2 (COVID-19). We evaluate the safety and efficacy profiles of antiviral treatments for each infection, while also exploring innovative avenues such as gene vaccines and their potential in mitigating viral threats during pregnancy. Additionally, the review examines strategies to overcome challenges, encompassing prophylactic and therapeutic vaccine research, regulatory considerations, and safety protocols. Utilizing advanced methodologies, including PBPK modeling, machine learning, artificial intelligence, and causal inference, we can amplify our comprehension and decision-making capabilities in this intricate domain. This narrative review aims to shed light on diverse approaches and ongoing advancements, this review aims to foster progress in antiviral therapy for pregnant women, improving maternal and fetal health outcomes.
Collapse
Affiliation(s)
- Bárbara Costa
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Centre for Parasite Biology and Immunology, Department of Infectious Diseases, National Health Institute Dr. Ricardo Jorge, 4000-055 Porto, Portugal;
| | - Maria João Gouveia
- Centre for Parasite Biology and Immunology, Department of Infectious Diseases, National Health Institute Dr. Ricardo Jorge, 4000-055 Porto, Portugal;
- Center for the Study in Animal Science (CECA/ICETA), University of Porto, 4051-401 Porto, Portugal
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
5
|
Kobayashi R, Hashida N. Overview of Cytomegalovirus Ocular Diseases: Retinitis, Corneal Endotheliitis, and Iridocyclitis. Viruses 2024; 16:1110. [PMID: 39066272 PMCID: PMC11281654 DOI: 10.3390/v16071110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/24/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Cytomegalovirus (CMV) infection is a significant clinical concern in newborns, immunocompromised patients with acquired immunodeficiency syndrome (AIDS), and patients undergoing immunosuppressive therapy or chemotherapy. CMV infection affects many organs, such as the lungs, digestive organs, the central nerve system, and eyes. In addition, CMV infection sometimes occurs in immunocompetent individuals. CMV ocular diseases includes retinitis, corneal endotheliitis, and iridocyclitis. CMV retinitis often develops in infected newborns and immunocompromised patients. CMV corneal endotheliitis and iridocyclitis sometimes develop in immunocompetent individuals. Systemic infections and CMV ocular diseases often require systemic treatment in addition to topical treatment.
Collapse
Affiliation(s)
| | - Noriyasu Hashida
- Department of Ophthalmology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
6
|
Malherbe V, Celen S, Carkeek K, Carapancea E, Auriti C, Piersigilli F. Unusual cerebral intraventricular hemorrhage and cardiomyopathy related to congenital cytomegalovirus from non-primary maternal infection: a case report. Ital J Pediatr 2024; 50:71. [PMID: 38627855 PMCID: PMC11020339 DOI: 10.1186/s13052-024-01637-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 03/28/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Congenital cytomegalovirus (cCMV) infection, resulting from non-primary maternal infection or reactivation during pregnancy, can cause serious fetal abnormalities, complications in the immediate neonatal period, and severe sequelae later in childhood. Maternal non-primary cytomegalovirus infection in pregnancy is transmitted to the fetus in 0.5-2% of cases (1). CASE PRESENTATION An African full term male newbornwas delivered by emergency caesarean section. Due to signs of asphyxia at birth and clinical moderate encephalopathy, he underwent therapeutic hypothermia. Continuous full video-electroencephalography monitoring showed no seizures during the first 72 h, however, soon after rewarming, he presented refractory status epilepticus due to an intracranial hemorrhage, related to severe thrombocytopenia. The patient also presented signs of sepsis (hypotension and signs of reduced perfusions). An echocardiography revealed severe cardiac failure with an ejection fraction of 33% and signs suggestive of cardiomyopathy. Research for CMV DNA Polymerase Chain Reaction (PCR) on urine, blood, cerebrospinal fluid, and nasopharyngeal secretions was positive.The mother had positive CMV IgG with negative IgM shortly before pregnancy. Serology for CMV was therefore not repeated during pregnancy, but CMV DNA performed on the Guthrie bloodspot taken at birth yielded a positive result, confirming the intrauterine transmission and congenital origin of the infection. The baby was discharged in good general condition and follow up showed a normal neurodevelopmental outcome at 9 months. CONCLUSION Although uncommon, congenital cytomegalovirus infection should be included in the differential diagnosis of intraventricular hemorrhage and cardiomyopathy. Furthermore, this case highlights the possible severity of congenital cytomegalovirus infection, even in cases of previous maternal immunity.
Collapse
Affiliation(s)
- Victoria Malherbe
- Department of Pediatrics, Cliniques Universitaires St Luc, Brussels, Belgium
| | - Stefanie Celen
- Department of Neonatology, Cliniques Universitaires St Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Katherine Carkeek
- Department of Neonatology, Cliniques Universitaires St Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Evelina Carapancea
- Department of Pediatric Neurology, Cliniques Universitaires St Luc, Institute of NeuroScience, Université Catholique de Louvain, Brussels, Belgium
| | - Cinzia Auriti
- Saint Camillus International University of Health Sciences, Rome, Italy
- Department of Neonatology, Villa Margherita Private Clinic, Rome, Italy
| | - Fiammetta Piersigilli
- Department of Neonatology, Cliniques Universitaires St Luc, Université Catholique de Louvain, Brussels, Belgium.
- Neonatal intensive care unit, Department of Neonatology, Cliniques Universitaires St Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium.
| |
Collapse
|
7
|
Rodríguez-Muñoz MF, Martín-Martín C, Kovacheva K, Olivares ME, Izquierdo N, Pérez-Romero P, García-Ríos E. Hygiene-based measures for the prevention of cytomegalovirus infection in pregnant women: a systematic review. BMC Pregnancy Childbirth 2024; 24:172. [PMID: 38424481 PMCID: PMC10905865 DOI: 10.1186/s12884-024-06367-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/23/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Human Cytomegalovirus (HCMV) is the most frequent congenital infection worldwide causing important sequelae. However, no vaccine or antiviral treatments are currently available, thus interventions are restricted to behavioral measures. The aim of this systematic review was to assess evidence from available intervention studies using hygiene-based measures to prevent HCMV infection during pregnancy. METHODS Studies published from 1972 to 2023 were searched in Medline, PsycInfo, and Clinical Trials (PROSPERO, CRD42022344840) according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Methodological quality was assessed by two authors, using ROBE-2 and MINORS. RESULTS After reviewing 6 selected articles, the outcome analysis suggested that implementation of hygiene-based interventions during pregnancy prevent, to some extent, the acquisition of congenital HCMV. CONCLUSIONS However, these conclusions are based on limited and low-quality evidence available from few studies using this type of intervention in clinical practice. Thus, it would be necessary to perform effective and homogeneous intervention studies using hygiene-based measures, evaluated in high-quality randomized controlled trials (RCTs).
Collapse
Affiliation(s)
| | - Clara Martín-Martín
- National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Carretera Majadahonda - Pozuelo km. 2, Majadahonda, Madrid, 28220, Spain
| | - Katina Kovacheva
- Faculty of Psychology, Universidad Nacional de Educación a Distancia, (UNED), Madrid, Spain
| | | | - Nuria Izquierdo
- Department of Gynecology and Obstetrics, Hospital Clínico San Carlos, Madrid, Spain
| | - Pilar Pérez-Romero
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Estéfani García-Ríos
- National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Carretera Majadahonda - Pozuelo km. 2, Majadahonda, Madrid, 28220, Spain.
- Department of Food Biotechnology, Instituto de Agroquimica y Tecnologia de los Alimentos (IATA), CSIC, Agustín Escardino 7, Paterna, Valencia, 46980, Spain.
| |
Collapse
|
8
|
Mirsalehi N, Yavarian J, Ghavami N, Naseri M, Khodakhah F, Shatizadeh Malekshahi S, Zadheidar S, Mokhtari-Azad T, Shafiei-Jandaghi NZ. Congenital cytomegalovirus infection in newborns suspected of congenital rubella syndrome in Iran: a cross-sectional study. BMC Pediatr 2024; 24:31. [PMID: 38200453 PMCID: PMC10777647 DOI: 10.1186/s12887-023-04502-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Following rubella virus control, the most important cause of congenital infections is human cytomegalovirus (HCMV). Congenital CMV (cCMV) may happen both in primary and non-primary maternal infections. The present study aimed to screen cCMV in symptomatic newborns suspected of congenital rubella syndrome (CRS) in Iran. METHODS Out of 1629 collected infants' serum samples suspected of CRS but negative for rubella IgM, 524 samples were selected regarding cCMV complications. These samples were divided into two age groups: 1- one month and younger, 2- older than 1 month up to one year. Anti-HCMV IgM detection was performed on these serums. Then HCMV IgG avidity assay and HCMV DNA detection were carried out on all samples with positive and borderline results in IgM detection. RESULTS Herein, 3.67% of symptomatic infants aged one month and younger had positive and borderline HCMV IgM, 12.5% of which had a low avidity index (AI). HCMV IgM detection rate among symptomatic infants older than one month to one year was 14.5%. Identified genotypes in this study were gB-1(63.63%), gB2 (18.18%), and gB3 (18.18%), respectively. CONCLUSIONS This comprehensive study was performed on serum samples of symptomatic infants clinically suspected of cCMV from all over Iran. There was a good correlation between serology findings and PCR.
Collapse
Affiliation(s)
- Negar Mirsalehi
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Jila Yavarian
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Ghavami
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Naseri
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshad Khodakhah
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Sevrin Zadheidar
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Talat Mokhtari-Azad
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazanin-Zahra Shafiei-Jandaghi
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
9
|
Purandare N, Ghosalkar E, Grossman LI, Aras S. Mitochondrial Oxidative Phosphorylation in Viral Infections. Viruses 2023; 15:2380. [PMID: 38140621 PMCID: PMC10747082 DOI: 10.3390/v15122380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Mitochondria have been identified as the "powerhouse" of the cell, generating the cellular energy, ATP, for almost seven decades. Research over time has uncovered a multifaceted role of the mitochondrion in processes such as cellular stress signaling, generating precursor molecules, immune response, and apoptosis to name a few. Dysfunctional mitochondria resulting from a departure in homeostasis results in cellular degeneration. Viruses hijack host cell machinery to facilitate their own replication in the absence of a bonafide replication machinery. Replication being an energy intensive process necessitates regulation of the host cell oxidative phosphorylation occurring at the electron transport chain in the mitochondria to generate energy. Mitochondria, therefore, can be an attractive therapeutic target by limiting energy for viral replication. In this review we focus on the physiology of oxidative phosphorylation and on the limited studies highlighting the regulatory effects viruses induce on the electron transport chain.
Collapse
Affiliation(s)
- Neeraja Purandare
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (N.P.); (E.G.); (L.I.G.)
| | - Esha Ghosalkar
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (N.P.); (E.G.); (L.I.G.)
| | - Lawrence I. Grossman
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (N.P.); (E.G.); (L.I.G.)
| | - Siddhesh Aras
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (N.P.); (E.G.); (L.I.G.)
- Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Oncology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
10
|
Nappi F, Alzamil A, Avtaar Singh SS, Spadaccio C, Bonnet N. Current Knowledge on the Interaction of Human Cytomegalovirus Infection, Encoded miRNAs, and Acute Aortic Syndrome. Viruses 2023; 15:2027. [PMID: 37896804 PMCID: PMC10611417 DOI: 10.3390/v15102027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Aortic dissection is a clinicopathological entity caused by rupture of the intima, leading to a high mortality if not treated. Over time, diagnostic and investigative methods, antihypertensive therapy, and early referrals have resulted in improved outcomes according to registry data. Some data have also emerged from recent studies suggesting a link between Human Cytomegalovirus (HCMV) infection and aortic dissection. Furthermore, the use of microRNAs has also become increasingly widespread in the literature. These have been noted to play a role in aortic dissections with elevated levels noted in studies as early as 2017. This review aims to provide a broad and holistic overview of the role of miRNAs, while studying the role of HCMV infection in the context of aortic dissections. The roles of long non-coding RNAs, circular RNAs, and microRNAs are explored to identify changes in expression during aortic dissections. The use of such biomarkers may one day be translated into clinical practice to allow early detection and prognostication of outcomes and drive preventative and therapeutic options in the future.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France; (A.A.); (N.B.)
| | - Almothana Alzamil
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France; (A.A.); (N.B.)
| | | | - Cristiano Spadaccio
- Department of Cardiothoracic Surgery, Mayo Clinic, Rochester, Rochester, MN 55905, USA;
| | - Nicolas Bonnet
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France; (A.A.); (N.B.)
| |
Collapse
|
11
|
McMahon‑Cole H, Johnson A, Sadat Aghamiri S, Helikar T, Crawford LB. Modeling and Remodeling the Cell: How Digital Twins and HCMV Can Elucidate the Complex Interactions of Viral Latency, Epigenetic Regulation, and Immune Responses. CURRENT CLINICAL MICROBIOLOGY REPORTS 2023; 10:141-151. [PMID: 37901689 PMCID: PMC10601359 DOI: 10.1007/s40588-023-00201-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 10/31/2023]
Abstract
Purpose of Review Human cytomegalovirus (HCMV), while asymptomatic in most, causes significant complications during fetal development, following transplant or in immunosuppressed individuals. The host-virus interactions regulating viral latency and reactivation and viral control of the cellular environment (immune regulation, differentiation, epigenetics) are highly complex. Understanding these processes is essential to controlling infection and can be leveraged as a novel approach for understanding basic cell biology. Recent Findings Immune digital twins (IDTs) are digital simulations integrating knowledge of human immunology, physiology, and patient-specific clinical data to predict individualized immune responses and targeted treatments. Recent studies used IDTs to elucidate mechanisms of T cells, dendritic cells, and epigenetic control-all key to HCMV biology. Summary Here, we discuss how leveraging the unique biology of HCMV and IDTs will clarify immune response dynamics, host-virus interactions, and viral latency and reactivation and serve as a powerful IDT-validation platform for individualized and holistic health management.
Collapse
Affiliation(s)
- Hana McMahon‑Cole
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Alicia Johnson
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Sara Sadat Aghamiri
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Tomáš Helikar
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Lindsey B. Crawford
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Center for Virology, Lincoln, NE, USA
- Nebraska Center for Integrated Biomolecular Communication, Lincoln, NE, USA
| |
Collapse
|
12
|
Moy MA, Collins-McMillen D, Crawford L, Parkins C, Zeltzer S, Caviness K, Zaidi SSA, Caposio P, Goodrum F. Stabilization of the human cytomegalovirus UL136p33 reactivation determinant overcomes the requirement for UL135 for replication in hematopoietic cells. J Virol 2023; 97:e0014823. [PMID: 37565749 PMCID: PMC10506481 DOI: 10.1128/jvi.00148-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/20/2023] [Indexed: 08/12/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a beta herpesvirus that persists indefinitely in the human host through a latent infection. The polycistronic UL133-UL138 gene locus of HCMV encodes genes regulating latency and reactivation. While UL138 is pro-latency, restricting virus replication in CD34+ hematopoietic progenitor cells (HPCs), UL135 overcomes this restriction and is required for reactivation. By contrast, UL136 is expressed with later kinetics and encodes multiple proteins with differential roles in latency and reactivation. Like UL135, the largest UL136 isoform, UL136p33, is required for reactivation from latency in HPCs; viruses failing to express either protein are unresponsive to reactivation stimuli. Furthermore, UL136p33 is unstable, and its instability is important for the establishment of latency, and sufficient accumulation of UL136p33 is a checkpoint for reactivation. We hypothesized that stabilizing UL136p33 might overcome the requirement of UL135 for replication. We generated recombinant viruses lacking UL135 that expressed a stabilized variant of UL136p33. Stabilizing UL136p33 did not impact the replication of the UL135 mutant virus in fibroblasts. However, in the context of infection in HPCs, stabilization of UL136p33 strikingly compensated for the loss of UL135, resulting in increased replication in CD34+ HPCs and in humanized NOD-scid IL2Rγcnull (huNSG) mice. This finding suggests that while UL135 is essential for replication in HPCs, it functions largely at steps preceding the accumulation of UL136p33, and that stabilized expression of UL136p33 largely overcomes the requirement for UL135. Taken together, our genetic evidence indicates an epistatic relationship between UL136p33 and UL135, whereby UL135 may initiate events early in reactivation that drive the accumulation of UL136p33 to a threshold required for productive reactivation. IMPORTANCE Human cytomegalovirus (HCMV) is one of nine human herpesviruses and a significant human pathogen. While HCMV establishes a lifelong latent infection that is typically asymptomatic in healthy individuals, its reactivation from latency can have devastating consequences in the immunocompromised. Defining viral genes important in the establishment of or reactivation from latency is important to defining the molecular basis of latent and replicative states and in controlling infection and CMV disease. Here we define a genetic relationship between two viral genes in controlling virus reactivation from latency using primary human hematopoietic progenitor cells and humanized mouse models.
Collapse
Affiliation(s)
- Melissa A. Moy
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, USA
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Donna Collins-McMillen
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Lindsey Crawford
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Christopher Parkins
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Sebastian Zeltzer
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Katie Caviness
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
- Graduate Interdisciplinary Program in Genetics, University of Arizona, Tucson, Arizona, USA
| | | | - Patrizia Caposio
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Felicia Goodrum
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, USA
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
- Graduate Interdisciplinary Program in Genetics, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
13
|
Hu J, Ding Y, Liu W, Liu S. When AHR signaling pathways meet viral infections. Cell Commun Signal 2023; 21:42. [PMID: 36829212 PMCID: PMC9951170 DOI: 10.1186/s12964-023-01058-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/27/2023] [Indexed: 02/26/2023] Open
Abstract
Aryl hydrocarbon receptor (AHR) is a ligand-dependent transcriptional factor widely expressed among immune, epithelial, endothelial and stromal cells in barrier tissues. It can be activated by small molecules provided by pollutants, microorganisms, food, and metabolism. It has been demonstrated that AHR plays an important role in modulating the response to many microbial pathogens, and the abnormal expression of AHR signaling pathways may disrupt endocrine, cause immunotoxicity, and even lead to the occurrence of cancer. Most humans are infected with at least one known human cancer virus. While the initial infection with these viruses does not cause major disease, the metabolic activity of infected cells changes, thus affecting the activation of oncogenic signaling pathways. In the past few years, lots of studies have shown that viral infections can affect disease progression by regulating the transmission of multiple signaling pathways. This review aims to discuss the potential effects of virus infections on AHR signaling pathways so that we may find a new strategy to minimize the adverse effects of the AHR pathway on diseases. Video Abstract.
Collapse
Affiliation(s)
- Jieke Hu
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266555, China.,Department of Pathogenic Biology, Qingdao University Medical College, 308 Ningxia Road, Qingdao, 266071, China
| | - Yuan Ding
- Department of Special Examination, Qingdao Women & Children Hospital, Qingdao, 266035, China
| | - Wen Liu
- Department of Pathogenic Biology, Qingdao University Medical College, 308 Ningxia Road, Qingdao, 266071, China.
| | - Shuzhen Liu
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266555, China.
| |
Collapse
|
14
|
Yee JL, Strelow LI, White JA, Rosenthal AN, Barry PA. Horizontal transmission of endemic viruses among rhesus macaques (Macaca mulatta): Implications for human cytomegalovirus vaccine/challenge design. J Med Primatol 2023; 52:53-63. [PMID: 36151734 PMCID: PMC9825633 DOI: 10.1111/jmp.12621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Rhesus macaques are natural hosts to multiple viruses including rhesus cytomegalovirus (RhCMV), rhesus rhadinovirus (RRV), and Simian Foamy Virus (SFV). While viral infections are ubiquitous, viral transmissions to uninfected animals are incompletely defined. Management procedures of macaque colonies include cohorts that are Specific Pathogen Free (SPF). Greater understanding of viral transmission would augment SPF protocols. Moreover, vaccine/challenge studies of human viruses would be enhanced by leveraging transmission of macaque viruses to recapitulate expected challenges of human vaccine trials. MATERIALS AND METHODS This study characterizes viral transmissions to uninfected animals following inadvertent introduction of RhCMV/RRV/SFV-infected adults to a cohort of uninfected juveniles. Following co-housing with virus-positive adults, juveniles were serially evaluated for viral infection. RESULTS Horizontal viral transmission was rapid and absolute, reaching 100% penetrance between 19 and 78 weeks. CONCLUSIONS This study provides insights into viral natural histories with implications for colony management and modeling vaccine-mediated immune protection studies.
Collapse
Affiliation(s)
- JoAnn L Yee
- California National Primate Research Center, Davis, California, USA
- University of California, Davis, Davis, California, USA
| | - Lisa I Strelow
- California National Primate Research Center, Davis, California, USA
- University of California, Davis, Davis, California, USA
- Center for Immunology and Infectious Diseases, Davis, California, USA
| | - Jessica A White
- California National Primate Research Center, Davis, California, USA
- University of California, Davis, Davis, California, USA
| | - Ann N Rosenthal
- California National Primate Research Center, Davis, California, USA
- University of California, Davis, Davis, California, USA
| | - Peter A Barry
- California National Primate Research Center, Davis, California, USA
- University of California, Davis, Davis, California, USA
- Center for Immunology and Infectious Diseases, Davis, California, USA
| |
Collapse
|
15
|
Moy MA, Collins-McMillen D, Crawford L, Parkins C, Zeltzer S, Caviness K, Caposio P, Goodrum F. UL135 and UL136 Epistasis Controls Reactivation of Human Cytomegalovirus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.24.525282. [PMID: 36747736 PMCID: PMC9900790 DOI: 10.1101/2023.01.24.525282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Human cytomegalovirus (HCMV) is beta herpesvirus that persists indefinitely in the human host through a protracted, latent infection. The polycistronic UL133-UL138 gene locus of HCMV encodes genes regulating latency and reactivation. While UL138 is pro-latency, restricting virus replication in CD34+ hematopoietic progenitor cells (HPCs), UL135 overcomes this restriction for reactivation. By contrast, UL136 is expressed with later kinetics and encodes multiple protein isoforms with differential roles in latency and reactivation. Like UL135, the largest UL136 isoform, UL136p33, is required for reactivation from latency in hematopoietic cells. Furthermore, UL136p33 is unstable, and its instability is important for the establishment of latency and sufficient accumulation of UL136p33 is a checkpoint for reactivation. We hypothesized that stabilizing UL136p33 might overcome the requirement of UL135 for reactivation. To test this, we generated recombinant viruses lacking UL135 that expressed a stabilized variant of UL136p33. Stabilizing UL136p33 did not impact replication of the UL135-mutant virus in fibroblasts. However, in the context of infection in hematopoietic cells, stabilization of UL136p33 strikingly compensated for the loss of UL135, resulting in increased replication in CD34+ HPCs and in humanized NOD- scid IL2Rγ c null (NSG) mice. This finding suggests that while UL135 is essential for reactivation, it functions at steps preceding the accumulation of UL136p33 and that stabilized expression of UL136p33 largely overcomes the requirement for UL135 in reactivation. Taken together, our genetic evidence indicates an epistatic relationship between UL136p33 and UL135 whereby UL135 may initiate events early in reactivation that will result in the accumulation of UL136p33 to a threshold required for productive reactivation. SIGNIFICANCE Human cytomegalovirus (HCMV) is one of nine human herpesviruses and a significant human pathogen. While HCMV establishes a life-long latent infection that is typically asymptomatic in healthy individuals, its reactivation from latency can have devastating consequences in the immune compromised. Defining virus-host and virus-virus interactions important for HCMV latency, reactivation and replication is critical to defining the molecular basis of latent and replicative states and in controlling infection and CMV disease. Here we define a genetic relationship between two viral genes in controlling virus reactivation from latency using primary human hematopoietic progenitor cell and humanized mouse models.
Collapse
|
16
|
Nuévalos M, García-Ríos E, Mancebo FJ, Martín-Martín C, Pérez-Romero P. Novel monoclonal antibody-based therapies: implications for the treatment and prevention of HCMV disease. Trends Microbiol 2023; 31:480-497. [PMID: 36624009 DOI: 10.1016/j.tim.2022.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023]
Abstract
Human cytomegalovirus (HCMV) is an important pathogen worldwide. Although HCMV infection is often asymptomatic in immunocompetent individuals, it can cause severe or even life-threatening symptoms in immunocompromised patients. Due to limitations of antiviral treatments, it is necessary to search for new therapeutic alternatives. Recent studies have highlighted the contribution of antibodies in protecting against HCMV disease, including neutralizing and non-neutralizing antibodies. Given the immunocompromised target population, monoclonal antibodies (mAbs) may represent an alternative to the clinical management of HCMV infection. In this context, we provide a synthesis of recent data revising the literature supporting and arguing about the role of the humoral immunity in controlling HCMV infection. Additionally, we review the state of the art in the development of therapies based on mAbs.
Collapse
Affiliation(s)
- Marcos Nuévalos
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Estéfani García-Ríos
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; Department of Science, Universidad Internacional de Valencia-VIU, 46002 Valencia, Spain.
| | - Francisco J Mancebo
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Clara Martín-Martín
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Pilar Pérez-Romero
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain.
| |
Collapse
|
17
|
Chen J, Zhou Y, Tang J, Xu C, Chen L, Xu B, Dai Y, Hu Y, Zhou YH. Minimal adverse outcomes of postnatal cytomegalovirus infection in term or moderate and late preterm infants. Front Pediatr 2023; 11:1048282. [PMID: 36816367 PMCID: PMC9936240 DOI: 10.3389/fped.2023.1048282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE The aim of study was to investigate at what extent breastfeeding and vaginal delivery can increase mother-to-child transmission of cytomegalovirus (CMV) and to observe the clinical outcomes of postnatal infection in term or moderate and late preterm infants. METHODS In this retrospective study of prospectively collected clinical data and serum samples, during 2012-2015, 380 women with CMV IgG positive/IgM negative and their 384 infants (4 twin pairs) with gestational age ≥32 weeks were included. CMV IgG and IgM were measured with enzyme-linked immunosorbent assay. RESULTS Of 384 infants followed up at 10.2 ± 2.3 months age, 177 (46.1%) were defined with CMV infection based on the presence of higher CMV IgG levels than in their mothers. The infection rate in 190 breastfed infants was higher than in 194 formula-fed infants (62.6% vs. 29.9%, P < 0.001). Vaginally delivered infants (172) had higher CMV infection rate than 212 infants delivered by caesarean section (55.2% vs. 38.7%, P = 0.001). Compared with formula feeding and caesarean section, breastfeeding and vaginal delivery increased postnatal CMV infection respectively (OR = 3.801, 95% CI 2.474-5.840, P < 0.001; OR = 1.818, 95% CI 1.182-2.796, P = 0.007). Nevertheless, compared to uninfected infants, CMV-infected infants had comparable height and body weight and showed no adverse effect on the liver enzymes. CONCLUSION Breastfeeding and vaginal delivery can increase postnatal CMV infection; however, the infection does not influence the growth of the term infants or preterm infants with gestational age ≥32 weeks. Thus, breastfeeding should be encouraged in these infants regardless of maternal CMV IgG status.
Collapse
Affiliation(s)
- Jie Chen
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Yineng Zhou
- Department of Internal Medicine, Wuxi Children's Hospital, Wuxi, China
| | - Jie Tang
- Department of Obstetrics and Gynecology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China.,Department of Obstetrics and Gynecology, The Wujin Clinical College of Xuzhou Medical University, Changzhou, China
| | - Chenyu Xu
- Department of Obstetrics and Gynecology, Zhenjiang Fourth People's Hospital, Zhenjiang, China
| | - Liping Chen
- Department of Obstetrics and Gynecology, The First People's Hospital of Nantong, Nantong, China
| | - Biyun Xu
- Medical Statistics and Analysis Center, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Yimin Dai
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Yali Hu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Yi-Hua Zhou
- Departments of Laboratory Medicine and Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| |
Collapse
|
18
|
Carmona AS, Kakkar F, Gantt S. Perinatal Cytomegalovirus Infection. CURRENT TREATMENT OPTIONS IN PEDIATRICS 2022; 8:395-411. [PMID: 36465883 PMCID: PMC9684878 DOI: 10.1007/s40746-022-00261-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/29/2022] [Indexed: 06/17/2023]
Abstract
PURPOSE OF REVIEW There have been recent advances in the field of congenital CMV infection (cCMV) related to antiviral treatment of pregnant women and infants, the implementation of newborn CMV screening programs, and the frequency and diagnosis of complications among infected children. In addition, postnatal CMV infection (pCMV) is increasingly recognized as a potential cause of long-term sequelae in addition to acute complications among preterm infants, raising important questions related to treatment, and prevention. RECENT FINDINGS High-dose valacyclovir appears to be safe and effective for the prevention of cCMV among women with first-trimester primary CMV infection. New studies reveal high rates of vestibular dysfunction and neuropsychiatric manifestations among children with cCMV. Some studies report associations between pCMV and long-term consequences, including neurodevelopmental delay and bronchopulmonary dysplasia, among very low birth weight infants, in addition to high risk of sepsis and death acutely, which has motivated efforts to eliminate the virus from breast milk by different methods. SUMMARY More long-term complications of cCMV are increasingly recognized among children previously thought to be asymptomatic. Although a preventive CMV vaccine may be achievable, strategies to reduce the burden of cCMV disease include maternal education about risk-reduction behaviors, antiviral treatment of pregnant women with primary infection, and newborn screening to allow timely, appropriate care. Similarly, although it remains unclear if pCMV causes long-term problems, there is growing interest in identifying and preventing disease from CMV infections among preterm infants.
Collapse
Affiliation(s)
- Alejandra Sandoval Carmona
- Department of Pediatrics, 3175 Ch. de La Côte-Sainte-Catherine, Université de Montréal, Montréal, Canada
| | - Fatima Kakkar
- Department of Pediatrics, 3175 Ch. de La Côte-Sainte-Catherine, Université de Montréal, Montréal, Canada
- Centre de Recherche du CHU Sainte-Justine, 3175 Ch. de La Côte-Sainte-Catherine, Montréal, Canada
| | - Soren Gantt
- Department of Pediatrics, 3175 Ch. de La Côte-Sainte-Catherine, Université de Montréal, Montréal, Canada
- Centre de Recherche du CHU Sainte-Justine, 3175 Ch. de La Côte-Sainte-Catherine, Montréal, Canada
| |
Collapse
|
19
|
Brosh-Nissimov T, Benshalom-Tirosh N, Bucris E, Morad H, Zuckerman NS, Tepperberg Oikawa M. Recurrent congenital cytomegalovirus infection in a sequential pregnancy with severe sequelae, and a possible association with prophylactic valacyclovir treatment: a case report. Int J Infect Dis 2022; 125:93-95. [PMID: 36229004 DOI: 10.1016/j.ijid.2022.09.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/24/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022] Open
Abstract
Recurrent congenital cytomegalovirus infections in consecutive pregnancies are rarely reported. Due to the risk of fetal infection from preconception maternal infection, a 6-month interval after primary maternal infection is generally advised before a new conception. Recently, high-dose valacyclovir treatment was shown to prevent fetal infection in first trimester primary infections. We present a case of first trimester primary infection treated with high-dose valacyclovir but resulting in polymerase chain reaction-confirmed fetal infection. Cytomegalovirus-specific immunoglobulin G titers remained very low during treatment and rose only after cessation of antiviral treatment. Six months after primary seroconversion, in a sequential pregnancy, recurrent fetal infection was diagnosed and resulted in severe fetal sequella. Whole genome sequencing of both amniotic fluid isolates proved them to be identical. Both pregnancies were terminated. We hypothesize that valacyclovir treatment, although unsuccessful in preventing fetal infection, had delayed the adaptive maternal immune response and might have contributed to fetal infection during the sequential pregnancy. We suggest that a longer delay might be warranted after valacyclovir treatment and before a new conception.
Collapse
Affiliation(s)
- Tal Brosh-Nissimov
- Infectious Diseases Unit, Samson Assuta Ashdod University Hospital, Ashdod, Israel; Faculty of Health Sciences, Ben Gurion University in the Negev, Beer Sheva, Israel.
| | - Neta Benshalom-Tirosh
- Faculty of Health Sciences, Ben Gurion University in the Negev, Beer Sheva, Israel; Department of Obstetrics and Gynecology, Samson Assuta Ashdod University Hospital, Ashdod, Israel.
| | - Efrat Bucris
- Central Virology Laboratory, Ministry of Health, Tel Hashomer, Israel.
| | - Hagar Morad
- Central Virology Laboratory, Ministry of Health, Tel Hashomer, Israel.
| | - Neta S Zuckerman
- Central Virology Laboratory, Ministry of Health, Tel Hashomer, Israel.
| | | |
Collapse
|
20
|
Plotogea M, Isam AJ, Frincu F, Zgura A, Bacinschi X, Sandru F, Duta S, Petca RC, Edu A. An Overview of Cytomegalovirus Infection in Pregnancy. Diagnostics (Basel) 2022; 12:diagnostics12102429. [PMID: 36292118 PMCID: PMC9600407 DOI: 10.3390/diagnostics12102429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
The objective of this review was to bring to attention cytomegalovirus (CMV) infection during pregnancy, taking into consideration all relevant aspects, such as maternal diagnosis, fetal infection and prevention, prenatal diagnosis, and postnatal prognosis. A literature review was performed regarding adult and congenital infection. General information regarding this viral infection and potential related medical conditions was provided, considering the issues of maternal infection during pregnancy, transmission to the fetus, and associated congenital infection management. Prenatal diagnosis includes maternal serum testing and the confirmation of the infection in amniotic fluid or fetal blood. Additionally, prenatal diagnosis requires imaging techniques, ultrasound, and complementary magnetic resonance to assess cortical and extracortical anomalies. Imaging findings can predict both fetal involvement and the postnatal prognosis of the newborn, but they are difficult to assess, even for highly trained physicians. In regard to fetal sequelae, the early diagnosis of a potential fetal infection is crucial, and methods to decrease fetal involvement should be considered. Postnatal evaluation is also important, because many newborns may be asymptomatic and clinical anomalies can be diagnosed when sequelae are permanent.
Collapse
Affiliation(s)
- Mihaela Plotogea
- Department of Obstetrics and Gynecology, “Nicolae Malaxa” Clinical Hospital, 022441 Bucharest, Romania
| | - Al Jashi Isam
- Faculty of Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
- Correspondence: (A.J.I.); (F.F.)
| | - Francesca Frincu
- Department of Obstetrics and Gynecology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Correspondence: (A.J.I.); (F.F.)
| | - Anca Zgura
- Department of Obstetrics and Gynecology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Xenia Bacinschi
- Department of Obstetrics and Gynecology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Florica Sandru
- Department of Obstetrics and Gynecology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Simona Duta
- Department of Obstetrics and Gynecology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Razvan Cosmin Petca
- Department of Obstetrics and Gynecology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Antoine Edu
- Department of Obstetrics and Gynecology, “Nicolae Malaxa” Clinical Hospital, 022441 Bucharest, Romania
- Department of Obstetrics and Gynecology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
21
|
Raynor EM, Martin HL, Poehlein E, Lee H, Lantos P. Impact of maternal cytomegalovirus seroconversion on newborn and childhood hearing loss. Laryngoscope Investig Otolaryngol 2022; 7:1626-1633. [PMID: 36258861 PMCID: PMC9575047 DOI: 10.1002/lio2.904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Objectives/hypothesis The objective of this study is to describe long-term hearing outcomes in infants born to mothers with a known cytomegalovirus (CMV) positivity who were not tested for congenital CMV. Study type Clinical research study. Design Retrospective cohort study. Methods Retrospective chart review was performed for mothers seropositive to CMV. Mother-infant dyads (130) were identified between January 1, 2013 and January 1, 2017. Outcomes data was collected through June 1, 2020. Demographics, risk factors for hearing loss, evidence of CMV infection, other causes of hearing loss, need for speech therapy services, and results of all hearing tests were collected. Results All 130 infants were asymptomatic and 5 were tested for congenital CMV. Five were negative for CMV and excluded from analyses. Of the remaining 125, only 1 had low-viral avidity IgG antibodies. None had IgM antibodies. Four children (3.2%) had hearing loss at last audiogram and one child had delayed onset SNHL due to an enlarged vestibular aqueduct. Speech therapy for communication was required for 33 children (26.4%). Conclusions Knowledge of maternal perinatal CMV status can allow for education about possible sequelae of cCMV, as well as trigger an alert for testing babies born to mothers with low-viral avidity IgG during the first trimester, when the risk of vertical transmission is highest. Also, babies born to CMV positive mothers may be more at risk for communication delays necessitating intervention. Studies focusing on the impact of maternal CMV related to childhood communication deficits could elucidate any direct relationships.
Collapse
Affiliation(s)
- Eileen M. Raynor
- Department of Head and Neck Surgery and Communication SciencesDuke UniversityDurhamNorth CarolinaUSA
| | - Hannah L. Martin
- Department of Head and Neck Surgery and Communication SciencesDuke UniversityDurhamNorth CarolinaUSA
| | - Emily Poehlein
- Department of Biostatistics and BioinformaticsDuke UniversityDurhamNorth CarolinaUSA
| | - Hui‐Jie Lee
- Department of Biostatistics and BioinformaticsDuke UniversityDurhamNorth CarolinaUSA
| | - Paul Lantos
- Department of Pediatric Infectious DiseaseDuke UniversityDurhamNorth CarolinaUSA
| |
Collapse
|
22
|
Jin Y, Liu X, Chen S, Xiang J, Peng Z, Sun Y. Analysis of the Results of Cytomegalovirus Testing Combined with Genetic Testing in Children with Congenital Hearing Loss. J Clin Med 2022; 11:jcm11185335. [PMID: 36142981 PMCID: PMC9504080 DOI: 10.3390/jcm11185335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 11/28/2022] Open
Abstract
To improve the etiological diagnosis of congenital hearing loss by combining whole-exome sequencing (WES) with cytomegalovirus (CMV) testing and to explore the potential benefits of adding CMV screening to newborn hearing screening, 80 children under 2 years of age with bilateral sensorineural hearing loss were recruited. Peripheral venous blood was extracted from the children for WES analysis. Saliva after mouthwash and the first urine in the morning were collected and used as samples to quantify CMV DNA copy number in urine and saliva by qPCR; among the 80 children with congenital deafness, 59 (74%) were found to have genetic variants that may cause congenital deafness, including 44 with GJB2 or SLC26A4 gene variant, 1 with STRC gene variant, and 14 with other genetic variants. A total of 12 children carried deafness gene variants associated with a syndrome; CMV test results showed that in two children, the CMV DNA copy number in saliva was >1000/mL, which indicates that they were CMV-positive, and their genetic test results were negative. A neonatal CMV test combined with genetic screening can improve the etiological diagnosis rate of congenital deafness, and the direct evidence of neonatal CMV infection deserves further verification.
Collapse
Affiliation(s)
- Yuan Jin
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaozhou Liu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Sen Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiale Xiang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyu Peng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Correspondence:
| |
Collapse
|
23
|
Puhakka L, Lappalainen M, Lönnqvist T, Nieminen T, Boppana S, Saxen H, Niemensivu R. Hearing outcome in congenitally CMV infected children in Finland - Results from follow-up after three years age. Int J Pediatr Otorhinolaryngol 2022; 156:111099. [PMID: 35276528 DOI: 10.1016/j.ijporl.2022.111099] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 11/12/2021] [Accepted: 03/01/2022] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Cytomegalovirus (CMV) is the most common congenital infection affecting about 0.6% of all newborns in developed countries. Vertical transmission to fetus can take place either after maternal primary or non-primary CMV infection during pregnancy. It is the most common infectious agent for sensorineural hearing loss (SNHL) in young children. The hearing loss after congenital CMV (cCMV) may be present at birth, or may develop after months or even years. In this study, we evaluated hearing outcome at 3-4 years of age in children (n 32) with cCMV identified in universal saliva CMV-PCR-based screening. METHODS Study population consisted of mainly asymptomatic children (median age 3.1 years) with cCMV identified in newborn CMV screening. The type of maternal CMV infection (primary or non-primary) was determined by analyzing CMV antibodies (IgM, IgG and IgG avidity) from preserved maternal serum samples drawn in the end of first trimester of pregnancy. Hearing was evaluated with pure tone audiometry (PTA), or transient-evoked otoacoustic emission (TEOAE) and sound field audiometry (SF). RESULTS Unilateral hearing loss occurred in 5/32 (16%) of the children with cCMV. None of the subjects in our cohort had bilateral hearing loss. Hearing loss occurred in 3/15 (20%) of children who were born to mothers with non-primary CMV infection during pregnancy, and in 2/10 (20%) of children whose mother had had a primary CMV infection during the 2-3 trimester. None of the additional 6 children, whose mother had primary infection in the first trimester, had hearing loss by age of 3-4 years. Two children with normal hearing at 1 years age had developed unilateral hearing loss by the age of three. CONCLUSIONS Unilateral hearing loss was relatively common among the mainly asymptomatic children with cCMV identified in screening. Long-term follow up of children with cCMV is essential to identify the children with late-onset hearing loss.
Collapse
Affiliation(s)
- Laura Puhakka
- Department of Pediatric Infectious Diseases, New Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| | - Maija Lappalainen
- HUS Diagnostic Center, HUSLAB, Clinical Microbiology, University of Helsinki and Helsinki University Hospital, Finland
| | - Tuula Lönnqvist
- Department of Child Neurology, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tea Nieminen
- Department of Pediatric Infectious Diseases, New Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Suresh Boppana
- Pediatrics and Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Harri Saxen
- Department of Pediatric Infectious Diseases, New Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Riina Niemensivu
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
24
|
Differences in RNA polymerase II complexes and their interactions with surrounding chromatin on human and cytomegalovirus genomes. Nat Commun 2022; 13:2006. [PMID: 35422111 PMCID: PMC9010409 DOI: 10.1038/s41467-022-29739-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/21/2022] [Indexed: 12/29/2022] Open
Abstract
Interactions of the RNA polymerase II (Pol II) preinitiation complex (PIC) and paused early elongation complexes with the first downstream (+1) nucleosome are thought to be functionally important. However, current methods are limited for investigating these relationships, both for cellular chromatin and the human cytomegalovirus (HCMV) genome. Digestion with human DNA fragmentation factor (DFF) before immunoprecipitation (DFF-ChIP) precisely revealed both similarities and major differences in PICs driven by TBP on the host genome in comparison with PICs driven by TBP or the viral-specific, late initiation factor UL87 on the viral genome. Host PICs and paused Pol II complexes are frequently found in contact with the +1 nucleosome and paused Pol II can also be found in a complex involved in the initial invasion of the +1 nucleosome. In contrast, viral transcription complexes have very limited nucleosomal interactions, reflecting a relative lack of chromatinization of transcriptionally active regions of HCMV genomes. Here the authors digested chromatin with DNA fragmentation factor (DFF) prior to chromatin immunoprecipitation (DFF-ChIP) to depict transcription complex interactions with neighboring nucleosomes in cells. Applying this method to human cytomegalovirus (HMCV)-infected cells, they find that the viral genome is underchromatinized, leading to fewer transcription complex interactions with nucleosomes.
Collapse
|
25
|
Abstract
Cellular lipid metabolism plays a pivotal role in human cytomegalovirus (HCMV) infection, as increased lipogenesis in HCMV-infected cells favors the envelopment of newly synthesized viral particles. As all cells are equipped with restriction factors (RFs) able to exert a protective effect against invading pathogens, we asked whether a similar defense mechanism would also be in place to preserve the metabolic compartment from HCMV infection. Here, we show that gamma interferon (IFN-γ)-inducible protein 16 (IFI16), an RF able to block HCMV DNA synthesis, can also counteract HCMV-mediated metabolic reprogramming in infected primary human foreskin fibroblasts (HFFs), thereby limiting virion infectivity. Specifically, we find that IFI16 downregulates the transcriptional activation of the glucose transporter 4 (GLUT4) through cooperation with the carbohydrate-response element-binding protein (ChREBP), thereby reducing HCMV-induced transcription of lipogenic enzymes. The resulting decrease in glucose uptake and consumption leads to diminished lipid synthesis, which ultimately curbs the de novo formation of enveloped viral particles in infected HFFs. Consistently, untargeted lipidomic analysis shows enhanced cholesteryl ester levels in IFI16 KO versus wild-type (WT) HFFs. Overall, our data unveil a new role of IFI16 in the regulation of glucose and lipid metabolism upon HCMV replication and uncover new potential targets for the development of novel antiviral therapies.
Collapse
|
26
|
Li J, Wellnitz S, Chi XS, Yue Y, Schmidt KA, Nguyen N, Chen W, Yurgelonis I, Rojas E, Liu Y, Loschko J, Pollozi E, Matsuka YV, Needle E, Vidunas E, Donald RGK, Moran J, Jansen KU, Dormitzer PR, Barry PA, Yang X. Horizontal transmission of cytomegalovirus in a rhesus model despite high-level, vaccine-elicited neutralizing antibody and T cell responses. J Infect Dis 2022; 226:585-594. [PMID: 35413121 PMCID: PMC10147388 DOI: 10.1093/infdis/jiac129] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/07/2022] [Indexed: 11/14/2022] Open
Abstract
The development of a vaccine to prevent congenital human cytomegalovirus (HCMV) disease is a public health priority. We tested rhesus CMV (RhCMV) prototypes of HCMV vaccine candidates in a seronegative macaque oral challenge model. Immunogens included a recombinant pentameric complex (PC; gH/gL/pUL128/pUL130/pUL131A), a postfusion gB ectodomain, and a DNA plasmid that encodes pp65-2. Immunization with QS21-adjuvanted PC alone or with the other immunogens elicited neutralizing titers comparable to those elicited by RhCMV infection. Similarly, immunization with all three immunogens elicited pp65-specific cytotoxic T cell responses comparable to those elicited by RhCMV infection. RhCMV readily infected immunized animals and was detected in saliva, blood and urine after challenge in quantities similar to those in placebo-immunized animals. If HCMV evades vaccine-elicited immunity in humans as RhCMV evaded immunity in macaques, a HCMV vaccine must elicit immunity superior to, or different from, that elicited by the prototype RhCMV vaccine to block horizontal transmission.
Collapse
Affiliation(s)
- Julia Li
- Vaccine Research and Development, Pfizer Inc., Pearl River, New York 10965, USA
| | - Sabine Wellnitz
- Vaccine Research and Development, Pfizer Inc., Pearl River, New York 10965, USA
| | - Xiaoyuan S Chi
- Vaccine Research and Development, Pfizer Inc., Pearl River, New York 10965, USA
| | - Yujuan Yue
- Center for Comparative Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Kimberli A Schmidt
- Center for Comparative Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Nancy Nguyen
- Center for Comparative Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Wei Chen
- Vaccine Research and Development, Pfizer Inc., Pearl River, New York 10965, USA
| | - Irina Yurgelonis
- Vaccine Research and Development, Pfizer Inc., Pearl River, New York 10965, USA
| | - Eduardo Rojas
- Vaccine Research and Development, Pfizer Inc., Pearl River, New York 10965, USA
| | - Yuhang Liu
- Groton Center for Chemistry, Pfizer Inc., Groton, CT 06340, USA
| | - Jakob Loschko
- Vaccine Research and Development, Pfizer Inc., Pearl River, New York 10965, USA
| | - Eneida Pollozi
- Vaccine Research and Development, Pfizer Inc., Pearl River, New York 10965, USA
| | - Yury V Matsuka
- Vaccine Research and Development, Pfizer Inc., Pearl River, New York 10965, USA
| | - Elie Needle
- Vaccine Research and Development, Pfizer Inc., Pearl River, New York 10965, USA
| | - Eugene Vidunas
- Vaccine Research and Development, Pfizer Inc., Pearl River, New York 10965, USA
| | - Robert G K Donald
- Vaccine Research and Development, Pfizer Inc., Pearl River, New York 10965, USA
| | - Justin Moran
- Vaccine Research and Development, Pfizer Inc., Pearl River, New York 10965, USA
| | - Kathrin U Jansen
- Vaccine Research and Development, Pfizer Inc., Pearl River, New York 10965, USA
| | - Philip R Dormitzer
- Vaccine Research and Development, Pfizer Inc., Pearl River, New York 10965, USA
| | - Peter A Barry
- Center for Comparative Medicine, University of California, Davis, Davis, CA 95616, USA.,Department of Pathology and Laboratory Medicine, University of California, Davis, Davis, CA 95616, USA.,California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| | - Xinzhen Yang
- Vaccine Research and Development, Pfizer Inc., Pearl River, New York 10965, USA
| |
Collapse
|
27
|
Niu J, Wang Z, Liu L, Zhang X, Niu D, Liu T, Qiao H, Lu R, Nan F, Tian Z, Wang B. Human cytomegalovirus IE2 may impair the cognitive ability of the hippocampus through the GluNRs/CaMKIIα/CREB signaling pathway in the Rosa26-LSL-IE2/Cre mouse. Behav Brain Res 2022; 419:113683. [PMID: 34838933 DOI: 10.1016/j.bbr.2021.113683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/19/2021] [Accepted: 11/20/2021] [Indexed: 11/02/2022]
Abstract
Nowadays, there are few studies in vivo to explore the effects of Human Cytomegalovirus (HCMV) single gene such as immediate early protein 2 (IE2) on the nervous system, let alone the mechanism that IE2 causes cognitive impairment. In this study, the Rosa26-LSL-IE2/Cre mouse was used to show the effects of IE2 on the cognitive ability and the GluNRs/CaMKIIα/CREB signaling pathway in the hippocampus. We divided the mice into experimental and control groups based on the results of PCR firstly. After that, the cognitive abilities of the two groups were compared through new object recognition (NOR) and Morris water maze (MWM) tests. The results of the behavioral tests showed that the cognitive ability of the experimental mice was lower than that of the control group. It is known that changes in the expression levels of N-methyl D-aspartate receptor 1, 2A, and 2B (GluN1, GluN2A, GluN2B) affect synaptic plasticity and cause cognitive changes. Finally, we analyzed the expression levels of GluN1, GluN2A, GluN2B, and related signaling pathway molecules by qPCR and western blot. We found that the expression levels of the GluNRs/CaMKIIα/CREB signaling pathway were decreased in the experimental group. These results indicated that IE2 could affect the expression levels of GluNRs/CaMKIIα/CREB signaling pathway, which was closely related to the cognitive impairment of the experimental group. In summary, we used this novel mouse model to show that IE2 could cause cognitive impairment in the hippocampus, which might be related to the GluNRs/CaMKIIα/CREB signaling pathway. It is helpful to further understand the mechanism of the cognitive impairment induced by HCMV IE2.
Collapse
Affiliation(s)
- Junyun Niu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, PR China
| | - Zhifei Wang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, PR China
| | - Lili Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, PR China
| | - Xianjuan Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, PR China
| | - Delei Niu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, PR China
| | - Ting Liu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, PR China
| | - Hongye Qiao
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, PR China
| | - Ran Lu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, PR China
| | - Fulong Nan
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, PR China
| | - Zibin Tian
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, PR China.
| | - Bin Wang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, PR China.
| |
Collapse
|
28
|
Talavera-Barber M, Flint K, Graber B, Dhital R, Kaptsan I, Medoro AK, Sánchez PJ, Shimamura M. Antibody Titers Against Human Cytomegalovirus gM/gN and gB Among Pregnant Women and Their Infants. Front Pediatr 2022; 10:846254. [PMID: 35813379 PMCID: PMC9259787 DOI: 10.3389/fped.2022.846254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
Congenital CMV (cCMV) infection can affect infants born to mothers with preconceptional seroimmunity. To prevent cCMV due to nonprimary maternal infection, vaccines eliciting responses exceeding natural immunity may be required. Anti-gM/gN antibodies have neutralizing capacity in-vitro and in animal models, but anti-gM/gN antibodies have not been characterized among seroimmune pregnant women. Paired maternal and infant cord sera from 92 CMV seropositive mothers and their full-term or preterm infants were tested for anti-gM/gN antibody titers in comparison with anti-gB titers and neutralizing activity. Anti-gM/gN titers were significantly lower than anti-gB titers for all groups and did not correlate with serum neutralizing capacity. Further study is needed to determine if higher anti-gM/gN antibody titers might enhance serum neutralizing capacity among seropositive adults.
Collapse
Affiliation(s)
- Maria Talavera-Barber
- Avera McKennan Hospital and University Medical Center, Avera Research Institute, Sioux Falls, SD, United States
| | - Kaitlyn Flint
- Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Brianna Graber
- Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Ravi Dhital
- Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Irina Kaptsan
- Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Alexandra K Medoro
- Division of Neonatology, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH, United States.,Division of Infectious Diseases, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Pablo J Sánchez
- Division of Neonatology, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH, United States.,Division of Infectious Diseases, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH, United States.,Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Masako Shimamura
- Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Division of Infectious Diseases, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
29
|
Congenital Cytomegalovirus Infections Mother-Newborn Pair Study in Southern Ethiopia. CANADIAN JOURNAL OF INFECTIOUS DISEASES AND MEDICAL MICROBIOLOGY 2021; 2021:4646743. [PMID: 35003406 PMCID: PMC8739911 DOI: 10.1155/2021/4646743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/08/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022]
Abstract
Introduction. Congenital cytomegalovirus (cCMV) is a common cause of neurodevelopmental delays and sensorineural hearing loss of infants, yet the prevalence of cCMV and the associated factors in Ethiopia are not studied. Hence, this study was to assess the prevalence and associated factors of cCMV in Southern Ethiopia. Methodology. A mother-newborn pair cross-sectional study was conducted at Hawassa University Comprehensive and Specialized Hospital, Ethiopia. Newborn’s saliva sample was tested for cCMV using Alethia CMV molecular assay. Mothers’ serum was tested serologically for anti-CMV IgM and IgG by EUROIMMUN ELISA. Pregnant women responded to a questionnaire about their previous and current obstetric history and sociodemographic characteristics. The chi-square (χ2) test and independent-sample t-test were used to determine the associations between infections and possible risk factors; then, potential variables were screened for multivariable analysis. Results. A total of 593 mother-newborn pairs were assessed. CMV was detected in 14 of 593 newborn saliva swabs (2.4%; 95% CI 1.2–3.7). As assessed by CMV IgM-positive results, maternal CMV seropositivity was 8.3% (49/593); thus, the rate of mother-to-child transmission of CMV was 28% (14/49) among CMV IgM-positive women. Congenital CMV infection was significantly associated with maternal exposure through nursery school children in the household, women sharing a feeding cup with children, and any of the detected curable STIs during pregnancy. Birth weight was negatively associated with CMV infection. Maternal age, gravidity, level of education, and sharing of children feeding utensils were not associated with cCMV infection. Conclusion. A high rate of cCMV infection in the absence of awareness demands further in-depth investigation in Ethiopia. Thus, policymakers must take appropriate action through the antenatal care system for prevention strategies and put in place a constant health education and awareness creation of pregnant women about the causes of infection and hygienic measures.
Collapse
|
30
|
Hyde K, Sultana N, Tran AC, Bileckaja N, Donald CL, Kohl A, Stanton RJ, Strang BL. Limited replication of human cytomegalovirus in a trophoblast cell line. J Gen Virol 2021; 102. [PMID: 34816792 PMCID: PMC8742992 DOI: 10.1099/jgv.0.001683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several viruses, including human cytomegalovirus (HCMV), are thought to replicate in the placenta. However, there is little understanding of the molecular mechanisms involved in HCMV replication in this tissue. We investigated replication of HCMV in the extravillous trophoblast cell line SGHPL-4, a commonly used model of HCMV replication in the placenta. We found limited HCMV protein expression and virus replication in SGHPL-4 cells. This was associated with a lack of trophoblast progenitor cell protein markers in SGHPL-4 cells, suggesting a relationship between trophoblast differentiation and limited HCMV replication. We proposed that limited HCMV replication in trophoblast cells is advantageous to vertical transmission of HCMV, as there is a greater opportunity for vertical transmission when the placenta is intact and functional. Furthermore, when we investigated the replication of other vertically transmitted viruses in SGHPL-4 cells we found some limitation to replication of Zika virus, but not herpes simplex virus. Thus, limited replication of some, but not all, vertically transmitted viruses may be a feature of trophoblast cells.
Collapse
Affiliation(s)
- Kadeem Hyde
- Institute for Infection and Immunity, St George's, University of London, London, UK
| | - Nowshin Sultana
- Institute for Infection and Immunity, St George's, University of London, London, UK
| | - Andy C Tran
- Institute for Infection and Immunity, St George's, University of London, London, UK
| | - Narina Bileckaja
- Institute for Infection and Immunity, St George's, University of London, London, UK
| | - Claire L Donald
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Richard J Stanton
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Blair L Strang
- Institute for Infection and Immunity, St George's, University of London, London, UK
| |
Collapse
|
31
|
Witney AA, Aller S, Strang BL. Metagenomic profiling of placental tissue suggests DNA virus infection of the placenta is rare. J Gen Virol 2021; 102. [PMID: 34723784 PMCID: PMC8742990 DOI: 10.1099/jgv.0.001677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It is widely recognized that pathogens can be transmitted across the placenta from mother to foetus. Recent re-evaluation of metagenomic studies indicates that the placenta has no unique microbiome of commensal bacteria. However, viral transmission across the placenta, including transmission of DNA viruses such as the human herpesviruses, is possible. A fuller understanding of which DNA virus sequence can be found in the placenta is required. We employed a metagenomic analysis to identify viral DNA sequences in placental metagenomes from full-term births (20 births), pre-term births (13 births), births from pregnancies associated with antenatal infections (12 births) or pre-term births with antenatal infections (three births). Our analysis found only a small number of DNA sequences corresponding to the genomes of human herpesviruses in four of the 48 metagenomes analysed. Therefore, our data suggest that DNA virus infection of the placenta is rare and support the concept that the placenta is largely free of pathogen infection.
Collapse
Affiliation(s)
- Adam A Witney
- Institute for Infection and Immunity, St George's, University of London, London SW17 0RE, UK
| | - Sean Aller
- Institute for Infection and Immunity, St George's, University of London, London SW17 0RE, UK
| | - Blair L Strang
- Institute for Infection and Immunity, St George's, University of London, London SW17 0RE, UK
| |
Collapse
|
32
|
Zenebe MH, Mekonnen Z, Loha E, Padalko E. Seroprevalence and associated factors of maternal cytomegalovirus in Southern Ethiopia: a cross-sectional study. BMJ Open 2021; 11:e051390. [PMID: 34675017 PMCID: PMC8532544 DOI: 10.1136/bmjopen-2021-051390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES The aim of this study was to assess the seroprevalence and associated factors of cytomegalovirus (CMV) among pregnant women in Southern Ethiopia. DESIGN Cross-sectional study. SETTING The study was conducted in Hawassa University comprehensive and specialised hospital. Hawassa, Southern Ethiopia. PARTICIPANTS A total of 600 consecutive pregnant women attending the delivery ward were recruited for the study from August to October 2020. OUTCOME MEASURES The study assessed the rate of maternal anti-CMV IgG and IgM antibodies. The association of obstetric history, sociodemographic and behavioural characteristics with seropositivity of CMV was also evaluated based on the collected data using structured questioners. RESULTS Seropositivity for CMV IgM antibodies was 8.2% (49/600) (95% CI 6% to 10.5%), whereas the CMV IgG was 88.7% (532/600), (95% CI 89.5% to 94.0%). Seroprevalence of CMV IgM was higher in women of older age, currently unmarried, having nursery schooled children and with any of the detected curable sexually transmitted infections, while seroprevalence of CMV IgG was significantly associated only with women having nursery schooled children. Seroprevalence was not significantly associated with previous adverse pregnancy outcome, gravidity, being a child daycare occupant mother and newborn birth weight. CONCLUSION In the present study, we identified a high rate of CMV IgM and CMV IgG seroprevalence among pregnant women in Southern Ethiopia. Given that there is no existing CMV diagnosis, special attention should be designed to pregnant women in parallel to the existing antenatal care facility. Besides, training healthcare professionals will support awareness conception among pregnant women concerning the sequels of CMV infection during pregnancy.
Collapse
Affiliation(s)
- Mengistu Hailemariam Zenebe
- Medical Laboratory Sciences, Hawassa University College of Medicine and Health Sciences, Hawassa, South Ethiopia, Ethiopia
- Department of Diagnostic Sciences, Ghent University Faculty of Medicine and Health Sciences, Gent, Belgium
- Medical Laboratory Sciences, Jimma University Institute of Health, Jimma, Ethiopia
| | - Zeleke Mekonnen
- Medical Laboratory Sciences, Jimma University Institute of Health, Jimma, Ethiopia
| | - Eskindir Loha
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- Chr Michelson Institute, Bergen, Norway
| | - Elizaveta Padalko
- Department of Diagnostic Sciences, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
33
|
Weil C, Bilavsky E, Sinha A, Chodick G, Goodman E, Wang WV, Calhoun SR, Marks MA. Epidemiology of cytomegalovirus infection in pregnancy in Israel: Real-world data from a large healthcare organization. J Med Virol 2021; 94:713-719. [PMID: 34665462 DOI: 10.1002/jmv.27403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/30/2021] [Accepted: 10/16/2021] [Indexed: 11/09/2022]
Abstract
Congenital cytomegalovirus infection (cCMVi) is the leading cause of nonhereditary sensorineural hearing loss among newborns. Women newly acquiring cytomegalovirus infection (CMVi) during pregnancy have the highest risk of vertical transmission. This study aimed to describe the epidemiology of CMVi in pregnancy in a large healthcare database. A retrospective cohort study was performed using the Maccabi Healthcare Services database (Israel). Women aged 18-44 years old on July 1, 2013 with no record of pregnancy in the prior 6 months were followed through December 31, 2017 for first pregnancy occurrence. Pregnancy outcomes (live birth, spontaneous/therapeutic abortions, stillbirth, and uncertain outcomes) were captured. CMV test results were obtained to assess serostatus at the start of pregnancy (SoP) and primary CMV infection (CMVi) during pregnancy. Associations of demographic and reproductive factors with pCMVi were investigated (multivariable logistic regression). The study included 84 699 pregnant women (median age = 31 years; interquartile range = 28-35). Live birth, fetal loss, and uncertain pregnancy outcomes accounted for 76.8%, 18.2%, and 5.0%, respectively. The seroprevalence of CMV at the start of pregnancy in this cohort was 63.4% (95% confidence interval [CI]: 63.1-63.7). Among seronegative women with available test results (n = 10 657), CMVi incidence was 14.5 per 1000 (95% CI = 12.2-16.7). In multivariate logistic regression models adjusting for maternal age, CMVi was significantly associated with having one or more prior live births (odds ratio [OR]: 3.8 [95% CI: 2.6-5.4]) and having a child less than 6 years of age (OR: 4.3 [95%CI: 3.0-6.1]). One in three pregnant women in Israel is at risk for primary CMVi. This study demonstrates that real-world electronic healthcare data can be leveraged to support clinical management and development of interventions for congenital CMV by identifying women at high risk for CMVi during pregnancy.
Collapse
Affiliation(s)
- Clara Weil
- Maccabi Institute for Research and Innovation (Maccabitech), Maccabi Healthcare Services, Tel Aviv, Israel
| | - Efraim Bilavsky
- Schneider Children's Medical Center, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Gabriel Chodick
- Maccabi Institute for Research and Innovation (Maccabitech), Maccabi Healthcare Services, Tel Aviv, Israel.,Schneider Children's Medical Center, Petah Tikva, Israel
| | | | | | | | | |
Collapse
|
34
|
Hale AE, Moorman NJ. The Ends Dictate the Means: Promoter Switching in Herpesvirus Gene Expression. Annu Rev Virol 2021; 8:201-218. [PMID: 34129370 DOI: 10.1146/annurev-virology-091919-072841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Herpesvirus gene expression is dynamic and complex, with distinct complements of viral genes expressed at specific times in different infection contexts. These complex patterns of viral gene expression arise in part from the integration of multiple cellular and viral signals that affect the transcription of viral genes. The use of alternative promoters provides an increased level of control, allowing different promoters to direct the transcription of the same gene in response to distinct temporal and contextual cues. While once considered rare, herpesvirus alternative promoter usage was recently found to be far more pervasive and impactful than previously thought. Here we review several examples of promoter switching in herpesviruses and discuss the functional consequences on the transcriptional and post-transcriptional regulation of viral gene expression.
Collapse
Affiliation(s)
- Andrew E Hale
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Nathaniel J Moorman
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| |
Collapse
|
35
|
Optimization of a Lambda-RED Recombination Method for Rapid Gene Deletion in Human Cytomegalovirus. Int J Mol Sci 2021; 22:ijms221910558. [PMID: 34638896 PMCID: PMC8508972 DOI: 10.3390/ijms221910558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 11/25/2022] Open
Abstract
Human cytomegalovirus (HCMV) continues to be a major cause of morbidity in transplant patients and newborns. However, the functions of many of the more than 282 genes encoded in the HCMV genome remain unknown. The development of bacterial artificial chromosome (BAC) technology contributes to the genetic manipulation of several organisms including HCMV. The maintenance of the HCMV BAC in E. coli cells permits the rapid generation of recombinant viral genomes that can be used to produce viral progeny in cell cultures for the study of gene function. We optimized the Lambda-Red Recombination system to construct HCMV gene deletion mutants rapidly in the complete set of tested genes. This method constitutes a useful tool that allows for the quick generation of a high number of gene deletion mutants, allowing for the analysis of the whole genome to improve our understanding of HCMV gene function. This may also facilitate the development of novel vaccines and therapeutics.
Collapse
|
36
|
STING facilitates nuclear import of herpesvirus genome during infection. Proc Natl Acad Sci U S A 2021; 118:2108631118. [PMID: 34385328 DOI: 10.1073/pnas.2108631118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Once inside the host cell, DNA viruses must overcome the physical barrier posed by the nuclear envelope to establish a successful infection. The mechanism underlying this process remains unclear. Here, we show that the herpesvirus exploits the immune adaptor stimulator of interferon genes (STING) to facilitate nuclear import of the viral genome. Following the entry of the viral capsid into the cell, STING binds the viral capsid, mediates capsid docking to the nuclear pore complex via physical interaction, and subsequently enables accumulation of the viral genome in the nucleus. Silencing STING in human cytomegalovirus (HCMV)-susceptible cells inhibited nuclear import of the viral genome and reduced the ensuing viral gene expression. Overexpressing STING increased the host cell's susceptibility to HCMV and herpes simplex virus 1 by improving the nuclear delivery of viral DNA at the early stage of infection. These observations suggest that the proviral activity of STING is conserved and exploited by the herpesvirus family. Intriguingly, in monocytes, which act as latent reservoirs of HCMV, STING deficiency negatively regulated the establishment of HCMV latency and reactivation. Our findings identify STING as a proviral host factor regulating latency and reactivation of herpesviruses.
Collapse
|
37
|
Abstract
Despite the prevalence and medical significance of human cytomegalovirus (HCMV) infections, a systematic analysis of the targets of T cell recognition in humans that spans the entire genome and includes recently described potential novel ORFs is not available. Here, we screened a library of epitopes predicted to bind HLA class II that spans over 350 different HCMV ORFs and includes ∼150 previously described and ∼200 recently described potential novel ORFs using an ex vivo IFNγ fluorospot assay. We identified 235 unique HCMV specific epitopes derived from 100 ORFs, some previously described as immunodominant and others that were not previously described to be immunogenic. Of those, 41 belong to the set of recently reported novel ORFs, thus providing evidence that at least some of these are actually expressed in vivo in humans. These data reveal that the breadth of the human T cell response to HCMV is much greater than previously thought. The ORFs and epitopes identified will help elucidate how T cell immunity relates to HCMV pathogenesis and instruct ongoing HCMV vaccine research. Importance To understand the crucial role of adaptive immunity in controlling cytomegalovirus infection and disease, we systematically analyzed the CMV 'ORFeome' to identify new CMV epitopes targeted primarily by CD4 T cells in humans. Our study identified >200 new T cell epitopes derived from both canonical and novel ORFs, highlighting the substantial breadth of anti-CMV T cell response and providing new targets for vaccine design.
Collapse
|
38
|
Balegamire SJ, Renaud C, Mâsse B, Zinszer K, Gantt S, Giguere Y, Forest JC, Boucoiran I. Frequency, timing and risk factors for primary maternal cytomegalovirus infection during pregnancy in Quebec. PLoS One 2021; 16:e0252309. [PMID: 34170911 PMCID: PMC8232530 DOI: 10.1371/journal.pone.0252309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 05/13/2021] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Maternal Cytomegalovirus (CMV) infection in the first trimester (T1) of pregnancy is a public health concern, as it increases the risk of severe neurodevelopmental outcomes associated with congenital infection compared to infections occurring later during pregnancy. OBJECTIVES To determine CMV seroprevalence in T1 of pregnancy, its trend, risk factors and the incidence rate of primary infection during pregnancy. METHODS Using the biobank of the prospective cohort "Grossesse en Santé de Québec" collected between April 2005 and March 2010 at the Québec-Laval Hospital, Québec, Canada, maternal CMV serology was determined using Abbott Architect Chemiluminescence microparticle immunoassays for immunoglobulin G(IgG), immunoglobulin M(IgM) titration and IgG avidity testing. Changepoint detection analysis was used to assess temporal trends. Risk factors associated with seropositivity were determined by multivariable logistic regression. RESULTS CMV seroprevalence in T1 of pregnancy was 23.4% (965/4111, 95% CI, 22.1-24.7%). The incidence rate for CMV primary infection during pregnancy was 1.8 (95% CI, 1.2-2.6) per 100 person-years. No changepoint was identified in the maternal CMV-seroprevalence trend. Multivariable analyses showed that T1 maternal CMV seropositivity was associated with having one child OR 1.3 (95% CI, 1.10-1.73) or two or more children OR 1.5 (95%CI, 1.1-2.1), ethnicity other than Caucasian OR 2.1 (95% CI, 1.1-3.8) and country of birth other than Canada and the USA OR 2.8 (95% CI, 1.5-4.9). CONCLUSIONS In this cohort, maternal seroprevalence in T1 of pregnancy and seroconversion rate were low. This information and identified risk factors could help guide the development and implementation of preventive actions and evidence-based health policies to prevent CMV infection during pregnancy.
Collapse
Affiliation(s)
- Safari Joseph Balegamire
- Department of Social and Preventive Medicine, École de Santé Publique de Université de Montréal, Montreal, QC, Canada
- Women and Children’s Infectious Diseases Center, CHU Sainte-Justine Research Center, Montreal, Canada
| | - Christian Renaud
- Women and Children’s Infectious Diseases Center, CHU Sainte-Justine Research Center, Montreal, Canada
- Department of Microbiology, CHU Sainte-Justine, Université de Montréal, Montréal, Canada
| | - Benoît Mâsse
- Department of Social and Preventive Medicine, École de Santé Publique de Université de Montréal, Montreal, QC, Canada
- Applied Clinical Research Unit, CHU Sainte Justine Research Center, Montreal, Canada
| | - Kate Zinszer
- Department of Social and Preventive Medicine, École de Santé Publique de Université de Montréal, Montreal, QC, Canada
- Centre de recherche en santé publique, Université de Montréal, Montreal, Canada
| | - Soren Gantt
- Women and Children’s Infectious Diseases Center, CHU Sainte-Justine Research Center, Montreal, Canada
- Department of Microbiology, CHU Sainte-Justine, Université de Montréal, Montréal, Canada
| | - Yves Giguere
- CHU de Québec-Université Laval Research Center, Quebec City, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Jean-Claude Forest
- CHU de Québec-Université Laval Research Center, Quebec City, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Isabelle Boucoiran
- Department of Social and Preventive Medicine, École de Santé Publique de Université de Montréal, Montreal, QC, Canada
- Women and Children’s Infectious Diseases Center, CHU Sainte-Justine Research Center, Montreal, Canada
- Department of Obstetrics and Gynecology, Division of Maternofetal Medicine, Université de Montréal, Montreal, Canada
- * E-mail:
| |
Collapse
|
39
|
Abstract
The abundance, localization, modifications, and protein-protein interactions of many host cell and virus proteins can change dynamically throughout the course of any viral infection. Studying these changes is critical for a comprehensive understanding of how viruses replicate and cause disease, as well as for the development of antiviral therapeutics and vaccines. Previously, we developed a mass spectrometry-based technique called quantitative temporal viromics (QTV), which employs isobaric tandem mass tags (TMTs) to allow precise comparative quantification of host and virus proteomes through a whole time course of infection. In this review, we discuss the utility and applications of QTV, exemplified by numerous studies that have since used proteomics with a variety of quantitative techniques to study virus infection through time. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
| | - Michael P Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom;
| |
Collapse
|
40
|
Auriti C, De Rose DU, Santisi A, Martini L, Piersigilli F, Bersani I, Ronchetti MP, Caforio L. Pregnancy and viral infections: Mechanisms of fetal damage, diagnosis and prevention of neonatal adverse outcomes from cytomegalovirus to SARS-CoV-2 and Zika virus. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166198. [PMID: 34118406 PMCID: PMC8883330 DOI: 10.1016/j.bbadis.2021.166198] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/07/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023]
Abstract
Some maternal infections, contracted before or during pregnancy, can be transmitted to the fetus, during gestation (congenital infection), during labor and childbirth (perinatal infection) and through breastfeeding (postnatal infection). The agents responsible for these infections can be viruses, bacteria, protozoa, fungi. Among the viruses most frequently responsible for congenital infections are Cytomegalovirus (CMV), Herpes simplex 1–2, Herpes virus 6, Varicella zoster. Moreover Hepatitis B and C virus, HIV, Parvovirus B19 and non-polio Enteroviruses when contracted during pregnancy may involve the fetus or newborn at birth. Recently, new viruses have emerged, SARS-Cov-2 and Zika virus, of which we do not yet fully know the characteristics and pathogenic power when contracted during pregnancy. Viral infections in pregnancy can damage the fetus (spontaneous abortion, fetal death, intrauterine growth retardation) or the newborn (congenital anomalies, organ diseases with sequelae of different severity). Some risk factors specifically influence the incidence of transmission to the fetus: the timing of the infection in pregnancy, the order of the infection, primary or reinfection or chronic, the duration of membrane rupture, type of delivery, socio-economic conditions and breastfeeding. Frequently infected neonates, symptomatic at birth, have worse outcomes than asymptomatic. Many asymptomatic babies develop long term neurosensory outcomes. The way in which the virus interacts with the maternal immune system, the maternal-fetal interface and the placenta explain these results and also the differences that are observed from time to time in the fetal‑neonatal outcomes of maternal infections. The maternal immune system undergoes functional adaptation during pregnancy, once thought as physiological immunosuppression. This adaptation, crucial for generating a balance between maternal immunity and fetus, is necessary to promote and support the pregnancy itself and the growth of the fetus. When this adaptation is upset by the viral infection, the balance is broken, and the infection can spread and lead to the adverse outcomes previously described. In this review we will describe the main viral harmful infections in pregnancy and the potential mechanisms of the damages on the fetus and newborn.
Collapse
Affiliation(s)
- Cinzia Auriti
- Neonatal Intensive Care Unit, Medical and Surgical Department of Fetus, Newborn and Infant - "Bambino Gesù" Children's Hospital IRCCS, Rome, Italy.
| | - Domenico Umberto De Rose
- Neonatal Intensive Care Unit, Medical and Surgical Department of Fetus, Newborn and Infant - "Bambino Gesù" Children's Hospital IRCCS, Rome, Italy.
| | - Alessandra Santisi
- Neonatal Intensive Care Unit, Medical and Surgical Department of Fetus, Newborn and Infant - "Bambino Gesù" Children's Hospital IRCCS, Rome, Italy.
| | - Ludovica Martini
- Neonatal Intensive Care Unit, Medical and Surgical Department of Fetus, Newborn and Infant - "Bambino Gesù" Children's Hospital IRCCS, Rome, Italy.
| | - Fiammetta Piersigilli
- Department of Neonatology, St-Luc University Hospital, Catholic University of Louvain, Brussels, Belgium.
| | - Iliana Bersani
- Neonatal Intensive Care Unit, Medical and Surgical Department of Fetus, Newborn and Infant - "Bambino Gesù" Children's Hospital IRCCS, Rome, Italy.
| | - Maria Paola Ronchetti
- Neonatal Intensive Care Unit, Medical and Surgical Department of Fetus, Newborn and Infant - "Bambino Gesù" Children's Hospital IRCCS, Rome, Italy.
| | - Leonardo Caforio
- Fetal and Perinatal Medicine and Surgery Unit, Medical and Surgical Department of Fetus, Newborn and Infant - "Bambino Gesù" Children's Hospital IRCCS, Rome, Italy.
| |
Collapse
|
41
|
Krstanović F, Britt WJ, Jonjić S, Brizić I. Cytomegalovirus Infection and Inflammation in Developing Brain. Viruses 2021; 13:1078. [PMID: 34200083 PMCID: PMC8227981 DOI: 10.3390/v13061078] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a highly prevalent herpesvirus that can cause severe disease in immunocompromised individuals and immunologically immature fetuses and newborns. Most infected newborns are able to resolve the infection without developing sequelae. However, in severe cases, congenital HCMV infection can result in life-threatening pathologies and permanent damage of organ systems that possess a low regenerative capacity. Despite the severity of the problem, HCMV infection of the central nervous system (CNS) remains inadequately characterized to date. Cytomegaloviruses (CMVs) show strict species specificity, limiting the use of HCMV in experimental animals. Infection following intraperitoneal administration of mouse cytomegalovirus (MCMV) into newborn mice efficiently recapitulates many aspects of congenital HCMV infection in CNS. Upon entering the CNS, CMV targets all resident brain cells, consequently leading to the development of widespread histopathology and inflammation. Effector functions from both resident cells and infiltrating immune cells efficiently resolve acute MCMV infection in the CNS. However, host-mediated inflammatory factors can also mediate the development of immunopathologies during CMV infection of the brain. Here, we provide an overview of the cytomegalovirus infection in the brain, local immune response to infection, and mechanisms leading to CNS sequelae.
Collapse
Affiliation(s)
- Fran Krstanović
- Center for Proteomics and Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (F.K.); (S.J.)
| | - William J. Britt
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Stipan Jonjić
- Center for Proteomics and Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (F.K.); (S.J.)
| | - Ilija Brizić
- Center for Proteomics and Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (F.K.); (S.J.)
| |
Collapse
|
42
|
Ghassabian H, Falchi F, Timmoneri M, Mercorelli B, Loregian A, Palù G, Alvisi G. Divide et impera: An In Silico Screening Targeting HCMV ppUL44 Processivity Factor Homodimerization Identifies Small Molecules Inhibiting Viral Replication. Viruses 2021; 13:v13050941. [PMID: 34065234 PMCID: PMC8160850 DOI: 10.3390/v13050941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a leading cause of severe diseases in immunocompromised individuals, including AIDS patients and transplant recipients, and in congenitally infected newborns. The utility of available drugs is limited by poor bioavailability, toxicity, and emergence of resistant strains. Therefore, it is crucial to identify new targets for therapeutic intervention. Among the latter, viral protein–protein interactions are becoming increasingly attractive. Since dimerization of HCMV DNA polymerase processivity factor ppUL44 plays an essential role in the viral life cycle, being required for oriLyt-dependent DNA replication, it can be considered a potential therapeutic target. We therefore performed an in silico screening and selected 18 small molecules (SMs) potentially interfering with ppUL44 homodimerization. Antiviral assays using recombinant HCMV TB4-UL83-YFP in the presence of the selected SMs led to the identification of four active compounds. The most active one, B3, also efficiently inhibited HCMV AD169 strain in plaque reduction assays and impaired replication of an AD169-GFP reporter virus and its ganciclovir-resistant counterpart to a similar extent. As assessed by Western blotting experiments, B3 specifically reduced viral gene expression starting from 48 h post infection, consistent with the inhibition of viral DNA synthesis measured by qPCR starting from 72 h post infection. Therefore, our data suggest that inhibition of ppUL44 dimerization could represent a new class of HCMV inhibitors, complementary to those targeting the DNA polymerase catalytic subunit or the viral terminase complex.
Collapse
Affiliation(s)
- Hanieh Ghassabian
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; (H.G.); (M.T.); (B.M.); (A.L.); (G.P.)
| | | | - Martina Timmoneri
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; (H.G.); (M.T.); (B.M.); (A.L.); (G.P.)
| | - Beatrice Mercorelli
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; (H.G.); (M.T.); (B.M.); (A.L.); (G.P.)
| | - Arianna Loregian
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; (H.G.); (M.T.); (B.M.); (A.L.); (G.P.)
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; (H.G.); (M.T.); (B.M.); (A.L.); (G.P.)
| | - Gualtiero Alvisi
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; (H.G.); (M.T.); (B.M.); (A.L.); (G.P.)
- Correspondence:
| |
Collapse
|
43
|
Cell type-specific biogenesis of novel vesicles containing viral products in human cytomegalovirus infection. J Virol 2021; 95:JVI.02358-20. [PMID: 33762413 PMCID: PMC8139684 DOI: 10.1128/jvi.02358-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human cytomegalovirus (HCMV), while highly restricted for the human species, infects an diverse array of cell types in the host. Patterns of infection are dictated by the cell type infected, but cell type-specific factors and how they impact tropism for specific cell types is poorly understood. Previous studies in primary endothelial cells showed that HCMV infection induces large multivesicular-like bodies (MVBs) that incorporate viral products, including dense bodies (DBs) and virions. Here we define the nature of these large vesicles using a recombinant virus where UL32, encoding the pp150 tegument protein, is fused in frame with green fluorescent protein (GFP, TB40/E-UL32-GFP). In fibroblasts, UL32-GFP-positive vesicles were marked with classical markers of MVBs, including CD63 and lysobisphosphatidic acid (LBPA), both classical MVB markers, as well as the clathrin and LAMP1. Unexpectedly, UL32-GFP-positive vesicles in primary human microvascular endothelial cells (HMVECs) were not labeled by CD63, and LBPA was completely lost from infected cells. We defined these UL32-positive vesicles in endothelial cells using markers for the cis-Golgi (GM130), lysosome (LAMP1), and autophagy (LC3B). These findings suggest that UL32-GFP containing MVBs in fibroblasts are derived from the canonical endocytic pathway and takeover classical exosomal release pathway. However, UL32-GFP containing MVBs in HMVECs are derived from the early biosynthetic pathway and exploit a less characterized early Golgi-LAMP1-associated non- canonical secretory autophagy pathway. These results reveal striking cell-type specific membrane trafficking differences in host pathways that are exploited by HCMV, which may reflect distinct pathways for virus egress.ImportanceHuman cytomegalovirus (HCMV) is a herpesvirus that, like all herpesvirus, that establishes a life-long infection. HCMV remains a significant cause of morbidity and mortality in the immunocompromised and HCMV seropositivity is associated with age-related pathology. HCMV infects many cells in the human host and the biology underlying the different patterns of infection in different cell types is poorly understood. Endothelial cells are important target of infection that contribute to hematogenous spread of the virus to tissues. Here we define striking differences in the biogenesis of large vesicles that incorporate virions in fibroblasts and endothelial cells. In fibroblasts, HCMV is incorporated into canonical MVBs derived from an endocytic pathway, whereas HCMV matures through vesicles derived from the biosynthetic pathway in endothelial cells. This work defines basic biological differences between these cell types that may impact how progeny virus is trafficked out of infected cells.
Collapse
|
44
|
Galitska G, Coscia A, Forni D, Steinbrueck L, De Meo S, Biolatti M, De Andrea M, Cagliani R, Leone A, Bertino E, Schulz T, Santoni A, Landolfo S, Sironi M, Cerboni C, Dell'Oste V. Genetic Variability of Human Cytomegalovirus Clinical Isolates Correlates With Altered Expression of Natural Killer Cell-Activating Ligands and IFN-γ. Front Immunol 2021; 12:532484. [PMID: 33897679 PMCID: PMC8062705 DOI: 10.3389/fimmu.2021.532484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/23/2021] [Indexed: 01/03/2023] Open
Abstract
Human cytomegalovirus (HCMV) infection often leads to systemic disease in immunodeficient patients and congenitally infected children. Despite its clinical significance, the exact mechanisms contributing to HCMV pathogenesis and clinical outcomes have yet to be determined. One of such mechanisms involves HCMV-mediated NK cell immune response, which favors viral immune evasion by hindering NK cell-mediated cytolysis. This process appears to be dependent on the extent of HCMV genetic variation as high levels of variability in viral genes involved in immune escape have an impact on viral pathogenesis. However, the link between viral genome variations and their functional effects has so far remained elusive. Thus, here we sought to determine whether inter-host genetic variability of HCMV influences its ability to modulate NK cell responses to infection. For this purpose, five HCMV clinical isolates from a previously characterized cohort of pediatric patients with confirmed HCMV congenital infection were evaluated by next-generation sequencing (NGS) for genetic polymorphisms, phylogenetic relationships, and multiple-strain infection. We report variable levels of genetic characteristics among the selected clinical strains, with moderate variations in genome regions associated with modulation of NK cell functions. Remarkably, we show that different HCMV clinical strains differentially modulate the expression of several ligands for the NK cell-activating receptors NKG2D, DNAM-1/CD226, and NKp30. Specifically, the DNAM-1/CD226 ligand PVR/CD155 appears to be predominantly upregulated by fast-replicating (“aggressive”) HCMV isolates. On the other hand, the NGK2D ligands ULBP2/5/6 are downregulated regardless of the strain used, while other NK cell ligands (i.e., MICA, MICB, ULBP3, Nectin-2/CD112, and B7-H6) are not significantly modulated. Furthermore, we show that IFN-γ; production by NK cells co-cultured with HCMV-infected fibroblasts is directly proportional to the aggressiveness of the HCMV clinical isolates employed. Interestingly, loss of NK cell-modulating genes directed against NK cell ligands appears to be a common feature among the “aggressive” HCMV strains, which also share several gene variants across their genomes. Overall, even though further studies based on a higher number of patients would offer a more definitive scenario, our findings provide novel mechanistic insights into the impact of HCMV genetic variability on NK cell-mediated immune responses.
Collapse
Affiliation(s)
- Ganna Galitska
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Alessandra Coscia
- Neonatal Unit, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Diego Forni
- Laboratory of Bioinformatics, Scientific Institute IRCCS E. Medea, Bosisio Parini, Italy
| | - Lars Steinbrueck
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Simone De Meo
- Laboratory of Molecular Immunology and Immunopathology, Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Matteo Biolatti
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Marco De Andrea
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy.,Center for Translational Research on Autoimmune and Allergic Disease - CAAD, University of Piemonte Orientale, Novara, Italy
| | - Rachele Cagliani
- Laboratory of Bioinformatics, Scientific Institute IRCCS E. Medea, Bosisio Parini, Italy
| | - Agata Leone
- Neonatal Unit, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Enrico Bertino
- Neonatal Unit, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Thomas Schulz
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Angela Santoni
- Laboratory of Molecular Immunology and Immunopathology, Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Santo Landolfo
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Manuela Sironi
- Laboratory of Bioinformatics, Scientific Institute IRCCS E. Medea, Bosisio Parini, Italy
| | - Cristina Cerboni
- Laboratory of Molecular Immunology and Immunopathology, Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Valentina Dell'Oste
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| |
Collapse
|
45
|
Gao Z, Zhou L, Bai J, Ding M, Liu D, Zheng S, Li Y, Li X, Wang X, Jin M, Shangting H, Qiu C, Wang C, Zhang X, Zhang C, Chen X. Assessment of HCMV-encoded microRNAs in plasma as potential biomarkers in pregnant women with adverse pregnancy outcomes. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:638. [PMID: 33987336 PMCID: PMC8106018 DOI: 10.21037/atm-20-7354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Background Human cytomegalovirus (HCMV) is the most frequent cause of congenital infections and can lead to adverse pregnancy outcomes (APOs). HCMV encodes multiple microRNAs (miRNAs) that have been reported to be partially related to host immune responses, cell cycle regulation, viral replication, and viral latency, and can be detected in human plasma. However, the relevance for HCMV-encoded miRNAs in maternal plasma as an indicator for APOs has never been evaluated. Methods Expression profiles of 22 HCMV-encoded miRNAs were first measured in plasma samples from 20 pregnant women with APOs and 28 normal controls using quantitative reverse-transcription polymerase chain reaction. Next, markedly changed miRNAs were validated in another independent validation set consisting of 20 pregnant women with APOs and 27 control subjects. Markedly changed miRNAs were further assessed in the placenta tissues. HCMV DNA in peripheral blood leukocytes (PBLs) and anti-HCMV immunoglobulin M (IgM) and anti-HCMV immunoglobulin G (IgG) in plasma were also examined in both training and validation sets. Diagnostic value and risk factors were compared between APO cohorts and normal controls. Results Analysis of the training and validation data sets revealed that plasma concentrations of hcmv-miR-UL148D, hcmv-miR-US25-1-5p and hcmv-miR-US5-1 were significantly increased in pregnant women with APOs compared with normal controls. Hcmv-miR-US25-1-5p presented the largest area under the receiver-operating characteristic (ROC) curve (AUC) (0.735; 95% CI, 0.635–0.836), with a sensitivity of 68% and specificity of 71%. Furthermore, plasma levels of hcmv-miR-US25-1-5p and hcmv-miR-US5-1 correlated positively with APOs (P=0.029 and 0.035, respectively). Hcmv-miR-US25-1-5p in the placenta tissues were dramatically increased in APOs, and correlated with plasma hcmv-miR-US25-1-5p. Nevertheless, neither the concentration of HCMV DNA in PBLs nor the positivity rates of anti-HCMV IgM and anti-HCMV IgG in plasma showed a statistically significant correlation with APOs. Conclusions We identified a unique signature of HCMV-encoded miRNAs in pregnant women with APOs that may be useful as a potential noninvasive biomarker for predicting and monitoring APOs during HCMV infection.
Collapse
Affiliation(s)
- Zhiying Gao
- The Institute of Medicine, Qiqihar Medical University, Qiqihar, China.,State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Likun Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Jing Bai
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Meng Ding
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Deshui Liu
- The Institute of Medicine, Qiqihar Medical University, Qiqihar, China
| | - Shaohai Zheng
- Department of Obstetrics and Gynecology, Qiqihar Jianhua Hospital, Qiqihar, China
| | - Yuewen Li
- Department of Obstetrics and Gynecology, the Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Xiulan Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Xiaojuan Wang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Ming Jin
- The Institute of Medicine, Qiqihar Medical University, Qiqihar, China
| | - Huizi Shangting
- The Institute of Medicine, Qiqihar Medical University, Qiqihar, China
| | - Changchun Qiu
- The Institute of Medicine, Qiqihar Medical University, Qiqihar, China
| | - Cheng Wang
- Department of Clinical Laboratory, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | | | - Chenyu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Xi Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
46
|
The aryl hydrocarbon receptor facilitates the human cytomegalovirus-mediated G1/S block to cell cycle progression. Proc Natl Acad Sci U S A 2021; 118:2026336118. [PMID: 33723080 DOI: 10.1073/pnas.2026336118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The tryptophan metabolite, kynurenine, is known to be produced at elevated levels within human cytomegalovirus (HCMV)-infected fibroblasts. Kynurenine is an endogenous aryl hydrocarbon receptor (AhR) ligand. Here we show that the AhR is activated following HCMV infection, and pharmacological inhibition of AhR or knockdown of AhR RNA reduced the accumulation of viral RNAs and infectious progeny. RNA-seq analysis of infected cells following AhR knockdown showed that the receptor alters the levels of numerous RNAs, including RNAs related to cell cycle progression. AhR knockdown alleviated the G1/S cell cycle block that is normally instituted in HCMV-infected fibroblasts, consistent with its known ability to regulate cell cycle progression and cell proliferation. In sum, AhR is activated by kynurenine and perhaps other ligands produced during HCMV infection, it profoundly alters the infected-cell transcriptome, and one outcome of its activity is a block to cell cycle progression, providing mechanistic insight to a long-known element of the virus-host cell interaction.
Collapse
|
47
|
Fulkerson HL, Nogalski MT, Collins-McMillen D, Yurochko AD. Overview of Human Cytomegalovirus Pathogenesis. Methods Mol Biol 2021; 2244:1-18. [PMID: 33555579 DOI: 10.1007/978-1-0716-1111-1_1] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human cytomegalovirus (HCMV) is a betaherpesvirus with a global seroprevalence of 60-90%. HCMV is the leading cause of congenital infections and poses a great health risk to immunocompromised individuals. Although HCMV infection is typically asymptomatic in the immunocompetent population, infection can result in mononucleosis and has also been associated with the development of certain cancers, as well as chronic inflammatory diseases such as various cardiovascular diseases. In immunocompromised patients, including AIDS patients, transplant recipients, and developing fetuses, HCMV infection is associated with increased rates of morbidity and mortality. Currently there is no vaccine for HCMV and there is a need for new pharmacological treatments. Ongoing research seeks to further define the complex aspects of HCMV pathogenesis, which could potentially lead to the generation of new therapeutics to mitigate the disease states associated with HCMV infection. The following chapter reviews the advancements in our understanding of HCMV pathogenesis in the immunocompetent and immunocompromised hosts.
Collapse
Affiliation(s)
- Heather L Fulkerson
- Department of Microbiology & Immunology, Center for Molecular and Tumor Virology, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
- Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Maciej T Nogalski
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | - Andrew D Yurochko
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA.
| |
Collapse
|
48
|
Boppana SB, Britt WJ. Recent Approaches and Strategies in the Generation of Anti-human Cytomegalovirus Vaccines. Methods Mol Biol 2021; 2244:403-463. [PMID: 33555597 DOI: 10.1007/978-1-0716-1111-1_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Human cytomegalovirus is the largest human herpesvirus and shares many core features of other herpesviruses such as tightly regulated gene expression during genome replication and latency as well as the establishment of lifelong persistence following infection. In contrast to stereotypic clinical syndromes associated with alpha-herpesvirus infections, almost all primary HCMV infections are asymptomatic and acquired early in life in most populations in the world. Although asymptomatic in most individuals, HCMV is a major cause of disease in hosts with deficits in adaptive and innate immunity such as infants who are infected in utero and allograft recipients following transplantation. Congenital HCMV is a commonly acquired infection in the developing fetus that can result in a number of neurodevelopmental abnormalities. Similarly, HCMV is a major cause of disease in allograft recipients in the immediate and late posttransplant period and is thought to be a major contributor to chronic allograft rejection. Even though HCMV induces robust innate and adaptive immune responses, it also encodes a vast array of immune evasion functions that are thought aid in its persistence. Immune correlates of protective immunity that prevent or modify intrauterine HCMV infection remain incompletely defined but are thought to consist primarily of adaptive responses in the pregnant mother, thus making congenital HCMV a potentially vaccine modifiable disease. Similarly, HCMV infection in allograft recipients is often more severe in recipients without preexisting adaptive immunity to HCMV. Thus, there has been a considerable effort to modify HCMV specific immunity in transplant recipient either through active immunization or passive transfer of adaptive effector functions. Although efforts to develop an efficacious vaccine and/or passive immunotherapy to limit HCMV disease have been underway for nearly six decades, most have met with limited success at best. In contrast to previous efforts, current HCMV vaccine development has relied on observations of unique properties of HCMV in hopes of reproducing immune responses that at a minimum will be similar to that following natural infection. However, more recent findings have suggested that immunity following naturally acquired HCMV infection may have limited protective activity and almost certainly, is not sterilizing. Such observations suggest that either the induction of natural immunity must be specifically tailored to generate protective activity or alternatively, that providing targeted passive immunity to susceptible populations could be prove to be more efficacious.
Collapse
Affiliation(s)
- Suresh B Boppana
- Departments of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL, USA.,Departments of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - William J Britt
- Departments of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL, USA. .,Departments of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA. .,Departments of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
49
|
Demmler Harrison GJ. Newborn Screening for Congenital Cytomegalovirus Infection…It Is Time. Clin Infect Dis 2020; 70:1385-1387. [PMID: 31107963 DOI: 10.1093/cid/ciz415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 05/19/2019] [Indexed: 12/13/2022] Open
Affiliation(s)
- Gail J Demmler Harrison
- Department of Pediatrics, Section Infectious Diseases, Baylor College of Medicine, Texas Children's Hospital, Houston.,Infectious Diseases Service, Texas Children's Hospital, Houston
| |
Collapse
|
50
|
Osterholm EA, Schleiss MR. Impact of breast milk-acquired cytomegalovirus infection in premature infants: Pathogenesis, prevention, and clinical consequences? Rev Med Virol 2020; 30:1-11. [PMID: 32662174 PMCID: PMC8173712 DOI: 10.1002/rmv.2117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023]
Abstract
Maternal-fetal transmission of cytomegalovirus (CMV) represents the most common infectious cause of long-term neurodevelopmental disability in children. Congenital CMV (cCMV) infection is associated with microcephaly, seizure disorders, cognitive disability, developmental delay, and sensorineural hearing loss (SNHL). Of these disabilities, SNHL is the most common, affecting approximately 10% of infants with cCMV. Although the sequelae of cCMV are well recognized, it is much less clear what long-term morbidities may occur in neonates that acquire post-natal CMV infection. Post-natal CMV (pCMV) infection is most commonly transmitted by breast-feeding, and in full-term infants is of little consequence. However, in preterm, very-low birthweight (VLBW) infants (<1500 g), pCMV can result in a severe sepsis-like syndrome, with wide-ranging end-organ disease manifestations. Although such short-term complications are well recognized among clinicians caring for premature infants, the long-term risks with respect to adverse neurodevelopmental outcomes remain controversial. In this review, we provide an overview of the clinical manifestations of breast milk-acquired pCMV infection. In particular, we summarize studies that have examined-sometimes with conflicting conclusions-the risks of long-term adverse neurodevelopmental outcome in VLBW infants that acquire pCMV from breast milk. We highlight proposed preventive strategies and antiviral interventions, and offer recommendations for high-priority areas for future basic science and clinical research.
Collapse
Affiliation(s)
- Erin A. Osterholm
- Department of Pediatrics, Division of Neonatology, University of Minnesota, Minneapolis, Minnesota
| | - Mark R. Schleiss
- Department of Pediatrics, Division of Infectious Diseases and Immunology, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|