1
|
Saade DI, Liu CC, Mills EP, Stanfield B, Thieulent CJ, Chouljenko VN, Emelogu U, Carter RT, Camacho-Luna P, Lewin AC. Replication kinetics and cytopathic effect of feline calicivirus in feline corneal epithelial cells. Vet Ophthalmol 2024. [PMID: 39379194 DOI: 10.1111/vop.13289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/22/2024] [Accepted: 09/28/2024] [Indexed: 10/10/2024]
Abstract
OBJECTIVE To determine the replication kinetics and cytopathic effect (CPE) of feline calicivirus (FCV) in feline corneal epithelial cells (FCEC). ANIMALS STUDIED Seven archived FCV isolates and one archived feline herpesvirus type 1 (FHV-1) isolate, previously obtained from eight domestic short hair cats. PROCEDURES FCV RNA was extracted for sequencing using Illumina MiSeq, to identify three genomically diverse isolates for further testing. Following reference-based assembly, viral genomes were annotated and assessed. Superficial keratectomies were performed to isolate the corneal epithelium of cats and the cells were cultured in vitro. FCEC were infected with the three chosen FCV isolates and one FHV-1 isolate at two different multiplicity of infection ratios (MOIs, 0.1 and 0.01 PFU/cell) and virus titration was assessed at 0, 2, 6, 12, 24, and 48 h post-infection (hpi). Viral identity was confirmed by RT-qPCR. RESULTS Three genomically diverse FCV isolates were chosen for further assessment in the FCEC model. All infections of FCEC with FCV led to visible CPE, characterized by epithelial cell rounding and detachment from the plate by 24 hpi, while FHV-1 led to visible CPE within 48 hpi. All three of the FCV isolates replicated effectively in FCEC at both 0.1 and 0.01 MOI, with a peak increase in titer approximately 12-24 hpi. CONCLUSIONS The results support the possible role of FCV as a primary pathogen of the feline ocular surface. FCV replicates in FCEC in vitro, leading to profound CPE.
Collapse
Affiliation(s)
- Daniela I Saade
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Chin-Chi Liu
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Erinn P Mills
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Brent Stanfield
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Côme J Thieulent
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Vladimir N Chouljenko
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Ugochi Emelogu
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Renee T Carter
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Pilar Camacho-Luna
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Andrew C Lewin
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
2
|
Wei Y, Zeng Q, Gou H, Bao S. Update on feline calicivirus: viral evolution, pathogenesis, epidemiology, prevention and control. Front Microbiol 2024; 15:1388420. [PMID: 38756726 PMCID: PMC11096512 DOI: 10.3389/fmicb.2024.1388420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
Feline calicivirus (FCV) is a prevalent and impactful viral pathogen affecting domestic cats. As an RNA virus, FCV exhibits high mutability and genetic plasticity, enabling its persistence within cat populations. Viral genetic diversity is associated with a broad spectrum of clinical manifestations, ranging from asymptomatic infections and mild oral and upper respiratory tract diseases to the potential development of virulent systemic, and even fatal conditions. This diversity poses distinctive challenges in diagnosis, treatment, and prevention of diseases caused by FCV. Over the past four decades, research has significantly deepened understanding of this pathogen, with an emphasis on molecular biology, evolutionary dynamics, vaccine development, and disease management strategies. This review discusses various facets of FCV, including its genomic structure, evolution, innate immunity, pathogenesis, epidemiology, and approaches to disease management. FCV remains a complex and evolving concern in feline health, requiring continuous research to enhance understanding of its genetic diversity, to improve vaccine efficacy, and to explore novel treatment options.
Collapse
Affiliation(s)
| | | | - Huitian Gou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Shijun Bao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
3
|
Yan Y, Yang M, Jiao Y, Li L, Liu Z, Shi J, Shen Z, Peng G. Drug screening identified that handelin inhibits feline calicivirus infection by inhibiting HSP70 expression in vitro. J Gen Virol 2024; 105. [PMID: 38175184 DOI: 10.1099/jgv.0.001936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
Feline calicivirus (FCV) is considered one of the major pathogens of cats worldwide and causes upper respiratory tract disease in all cats. In some cats, infection is by a highly virulent strain of FCV (vs.-FCV), which can cause severe and fatal systemic disease symptoms. At present, few antiviral drugs are approved for clinical treatment against FCV. Therefore, there is an imminent need for effective FCV antiviral agents. Here, we used observed a cytopathic effect (CPE) assay to screen 1746 traditional Chinese medicine monomer compounds and found one that can effectively inhibit FCV replication, namely, handelin, with an effective concentration (EC50) value of approximately 2.5 µM. Further study showed that handelin inhibits FCV replication via interference with heat shock protein 70 (HSP70), which is a crucial host factor and plays a positive role in regulating viral replication. Moreover, handelin and HSP70 inhibitors have broad-spectrum antiviral activity. These findings indicate that handelin is a potential candidate for the treatment of FCV infection and that HSP70 may be an important drug target.
Collapse
Affiliation(s)
- Yuanyuan Yan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, PR China
| | - Mengfang Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, PR China
| | - Yuzhou Jiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, PR China
| | - Lisha Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, PR China
| | - Zirui Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, PR China
| | - Jiale Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, PR China
| | - Zhou Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, PR China
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, PR China
| |
Collapse
|
4
|
Lu C, Liu X, Song R, Tao W, Yu Y, Yang H, Shan H, Zhang C. Genetic and pathogenicity analysis for the two FCV strains isolated from Eastern China. Vet Res Commun 2023; 47:2127-2136. [PMID: 37454000 DOI: 10.1007/s11259-023-10167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
In this study, the diversity and regularity of two new feline calicivirus (FCV) isolates, QD-7 and QD-164, were investigated. The genomes of these new strains were compared with 39 strains from the NCBI database including isolates from China, United States, Germany, South Korea, the United Kingdom and Japan. The nucleotide sequence identities ranged from 75-88%, indicating a high degree of variability. These variations were not related to distributions of the virus by time of isolation and geographical location. Cats that were experimentally infected with the new isolate QD-164 showed typical clinical symptoms of sneezing, fever and conjunctivitis and all recovered within 30 days. In contrast, QD-7 infections were asymptomatic and the virus was cleared within 16 days. These results indicate that QD-7 and QD-164 were naturally attenuated strains. NNS mutations characteristic of highly virulent strains at positions 441-443 were absent in QD-7 while QD-164 possessed an N at position 442. This indicated that mutations in regions 441-443 may be linked to disease severity.
Collapse
Affiliation(s)
- Chengyun Lu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Xuejiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Ranran Song
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Weijie Tao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Yongle Yu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Haiyan Yang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Hu Shan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Chuanmei Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
5
|
Lewin AC, Hicks SK, Carter RT. A review of evidence-based management of infectious ocular surface disease in shelter-housed domestic cats. Vet Ophthalmol 2023; 26 Suppl 1:47-58. [PMID: 36749144 DOI: 10.1111/vop.13063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 02/08/2023]
Abstract
Infectious ocular surface disease (IOSD) is a common problem in shelter-housed domestic cats and has a widespread negative impact on animal welfare. While the common etiological agents are well-described, addressing IOSD in large groups of animals presents a management challenge to the clinician and logistical challenges to shelter employees. Treatments, diagnostics, and prevention strategies that are effective in privately owned or experimental animals may be impractical or ineffective in the shelter environment. This review article focuses on the relative prevalence of etiological agents in feline IOSD, practical diagnostic testing protocols, prevention strategies, and treatment of IOSD in shelter-housed cats. Discrepancies between experimental laboratory-based studies and clinical trials assessing therapeutics for treatment of feline herpes virus are highlighted. Further high-quality clinical trials are necessary to determine optimal preventative and therapeutic protocols for IOSD in shelter-housed cats.
Collapse
Affiliation(s)
- Andrew C Lewin
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Sarah K Hicks
- Shelter Medicine Program University of Wisconsin-Madison, School of Veterinary Medicine, Madison, Wisconsin, USA
| | - Renee T Carter
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
6
|
Adaptive Mutation in the Main Protease Cleavage Site of Feline Coronavirus Renders the Virus More Resistant to Main Protease Inhibitors. J Virol 2022; 96:e0090722. [PMID: 36000844 PMCID: PMC9472640 DOI: 10.1128/jvi.00907-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rapid global emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused serious health problems, highlighting the urgent need for antiviral drugs. The viral main protease (Mpro) plays an important role in viral replication and thus remains the target of choice for the prevention or treatment of several viral diseases due to high sequence and structural conservation. Prolonged use of viral protease inhibitors can lead to the development of mutants resistant to those inhibitors and to many of the available antiviral drugs. Here, we used feline infectious peritonitis virus (FIPV) as a model to investigate its development of resistance under pressure from the Mpro inhibitor GC376. Passage of wild-type (WT) FIPV in the presence of GC376 selected for a mutation in the nsp12 region where Mpro cleaves the substrate between nsp12 and nsp13. This mutation confers up to 3-fold resistance to GC376 and nirmatrelvir, as determined by EC50 assay. In vitro biochemical and cellular experiments confirmed that FIPV adapts to the stress of GC376 by mutating the nsp12 and nsp13 hydrolysis site to facilitate cleavage by Mpro and release to mediate replication and transcription. Finally, we demonstrate that GC376 cannot treat FIP-resistant mutants that cause FIP in animals. Taken together, these results suggest that Mpro affects the replication of coronaviruses (CoVs) and the drug resistance to GC376 by regulating the amount of RdRp from a distant site. These findings provide further support for the use of an antiviral drug combination as a broad-spectrum therapy to protect against contemporary and emerging CoVs. IMPORTANCE CoVs cause serious human infections, and antiviral drugs are currently approved to treat these infections. The development of protease-targeting therapeutics for CoV infection is hindered by resistance mutations. Therefore, we should pay attention to its resistance to antiviral drugs. Here, we identified possible mutations that lead to relapse after clinical treatment of FIP. One amino acid substitution in the nsp12 polymerase at the Mpro cleavage site provided low-level resistance to GC376 after selection exposure to the GC376 parental nucleoside. Resistance mutations enhanced FIPV viral fitness in vitro and attenuated the therapeutic effect of GC376 in an animal model of FIPV infection. Our research explains the evolutionary characteristics of coronaviruses under antiviral drugs, which is helpful for a more comprehensive understanding of the molecular basis of virus resistance and provides important basic data for the effective prevention and control of CoVs.
Collapse
|
7
|
Pro108Ser mutation of SARS-CoV-2 3CL pro reduces the enzyme activity and ameliorates the clinical severity of COVID-19. Sci Rep 2022; 12:1299. [PMID: 35079088 PMCID: PMC8789791 DOI: 10.1038/s41598-022-05424-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
Recently, an international randomized controlled clinical trial showed that patients with SARS-CoV-2 infection treated orally with the 3-chymotrypsin-like protease (3CLpro) inhibitor PF-07321332 within three days of symptom onset showed an 89% lower risk of COVID-19-related hospital admission/ death from any cause as compared with the patients who received placebo. Lending support to this critically important result of the aforementioned trial, we demonstrated in our study that patients infected with a SARS-Cov-2 sub-lineage (B.1.1.284) carrying the Pro108Ser mutation in 3CLpro tended to have a comparatively milder clinical course (i.e., a smaller proportion of patients required oxygen supplementation during the clinical course) than patients infected with the same sub-lineage of virus not carrying the mutation. Characterization of the mutant 3CLpro revealed that the Kcat/Km of the 3CLpro enzyme containing Ser108 was 58% lower than that of Pro108 3CLpro. Hydrogen/deuterium-exchange mass spectrometry (HDX-MS) revealed that the reduced activity was associated with structural perturbation surrounding the substrate-binding region of the enzyme, which is positioned behind and distant from the 108th amino acid residue. Our findings of the attenuated clinical course of COVID-19 in patients infected with SARS-CoV-2 strains with reduced 3CLpro enzymatic activity greatly endorses the promising result of the aforementioned clinical trial of the 3CLpro inhibitor.
Collapse
|
8
|
Feline Calicivirus Virulent Systemic Disease: Clinical Epidemiology, Analysis of Viral Isolates and In Vitro Efficacy of Novel Antivirals in Australian Outbreaks. Viruses 2021; 13:v13102040. [PMID: 34696470 PMCID: PMC8537534 DOI: 10.3390/v13102040] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 12/31/2022] Open
Abstract
Feline calicivirus (FCV) causes upper respiratory tract disease (URTD) and sporadic outbreaks of virulent systemic disease (FCV-VSD). The basis for the increased pathogenicity of FCV-VSD viruses is incompletely understood, and antivirals for FCV-VSD have yet to be developed. We investigated the clinicoepidemiology and viral features of three FCV-VSD outbreaks in Australia and evaluated the in vitro efficacy of nitazoxanide (NTZ), 2′-C-methylcytidine (2CMC) and NITD-008 against FCV-VSD viruses. Overall mortality among 23 cases of FCV-VSD was 39%. Metagenomic sequencing identified five genetically distinct FCV lineages within the three outbreaks, all seemingly evolving in situ in Australia. Notably, no mutations that clearly distinguished FCV-URTD from FCV-VSD phenotypes were identified. One FCV-URTD strain likely originated from a recombination event. Analysis of seven amino-acid residues from the hypervariable E region of the capsid in the cultured viruses did not support the contention that properties of these residues can reliably differentiate between the two pathotypes. On plaque reduction assays, dose–response inhibition of FCV-VSD was obtained with all antivirals at low micromolar concentrations; NTZ EC50, 0.4–0.6 µM, TI = 21; 2CMC EC50, 2.7–5.3 µM, TI > 18; NITD-008, 0.5 to 0.9 µM, TI > 111. Investigation of these antivirals for the treatment of FCV-VSD is warranted.
Collapse
|
9
|
Li X, Peng T. Strategy, Progress, and Challenges of Drug Repurposing for Efficient Antiviral Discovery. Front Pharmacol 2021; 12:660710. [PMID: 34017257 PMCID: PMC8129523 DOI: 10.3389/fphar.2021.660710] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
Emerging or re-emerging viruses are still major threats to public health. Prophylactic vaccines represent the most effective way to prevent virus infection; however, antivirals are more promising for those viruses against which vaccines are not effective enough or contemporarily unavailable. Because of the slow pace of novel antiviral discovery, the high disuse rates, and the substantial cost, repurposing of the well-characterized therapeutics, either approved or under investigation, is becoming an attractive strategy to identify the new directions to treat virus infections. In this review, we described recent progress in identifying broad-spectrum antivirals through drug repurposing. We defined the two major categories of the repurposed antivirals, direct-acting repurposed antivirals (DARA) and host-targeting repurposed antivirals (HTRA). Under each category, we summarized repurposed antivirals with potential broad-spectrum activity against a variety of viruses and discussed the possible mechanisms of action. Finally, we proposed the potential investigative directions of drug repurposing.
Collapse
Affiliation(s)
- Xinlei Li
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, College of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| | - Tao Peng
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, College of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
10
|
Wang Z, Yang L. Chinese herbal medicine: Fighting SARS-CoV-2 infection on all fronts. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113869. [PMID: 33485973 PMCID: PMC7825841 DOI: 10.1016/j.jep.2021.113869] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/07/2021] [Accepted: 01/18/2021] [Indexed: 05/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes coronavirus disease 2019 (COVID-19), a highly pathogenic virus that has spread rapidly across the entire world. There is a critical need to develop safe and effective drugs, especially broad-spectrum antiviral and organ protection agents in order to treat and prevent this dangerous disease. It is possible that Chinese herbal medicine may play an essential role in the treatment of patients with SARS-CoV-2 infection. AIM OF THE REVIEW We aim to review the use of Chinese herbal medicine in the treatment of COVID-19 both in vitro and in clinical practice. Our goal was to provide a better understanding of the potential therapeutic effects of Chinese herbal medicine and to establish a "Chinese protocol" for the treatment of COVID-19. MATERIALS AND METHODS We systematically reviewed published research relating to traditional Chinese herbal medicines and the treatment of SARS-CoV-2 from inception to the 6th January 2021 by screening a range of digital databases (Web of Science, bioRxiv, medRxiv, China National Knowledge Infrastructure, X-MOL, Wanfang Data, Google Scholar, PubMed, Elsevier, and other resources) and public platforms relating to the management of clinical trials. We included the active ingredients of Chinese herbal medicines, monomer preparations, crude extracts, and formulas for the treatment of COVID-19. RESULTS In mainland China, a range of Chinese herbal medicines have been recognized as very promising anti-SARS-CoV-2 agents, including active ingredients (quercetagetin, osajin, tetrandrine, proscillaridin A, and dihydromyricetin), monomer preparations (xiyanping injection, matrine-sodium chloride injection, diammonium glycyrrhizinate enteric-coated capsules, and sodium aescinate injection), crude extracts (Scutellariae Radix extract and garlic essential oil), and formulas (Qingfei Paidu decoction, Lianhuaqingwen capsules, and Pudilan Xiaoyan oral liquid). All these agents have potential activity against SARS-CoV-2 and have attracted significant attention due to their activities both in vitro and in clinical practice. CONCLUSIONS As a key component of the COVID-19 treatment regimen, Chinese herbal medicines have played an irreplaceable role in the treatment of SARS-CoV-2 infection. The "Chinese protocol" has already demonstrated clear clinical importance. The use of Chinese herbal medicines that are capable of inhibiting SARS-Cov-2 infection may help to address this immediate unmet clinical need and may be attractive to other countries that are also seeking new options for effective COVID-19 treatment. Our analyses suggest that countries outside of China should also consider protocols involving Chinese herbal medicines combat this fast-spreading viral infection.
Collapse
Affiliation(s)
- Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, PR China; School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, PR China.
| | - Liyan Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165, PR China.
| |
Collapse
|
11
|
Cui Z, Li D, Xie Y, Wang K, Zhang Y, Li G, Zhang Q, Chen X, Teng Y, Zhao S, Shao J, Xingmeng F, Zhao Y, Du D, Guo Y, Huang H, Dong H, Hu G, Zhang S, Zhao Y. Nitazoxanide protects cats from feline calicivirus infection and acts synergistically with mizoribine in vitro. Antiviral Res 2020; 182:104827. [PMID: 32579897 PMCID: PMC7306210 DOI: 10.1016/j.antiviral.2020.104827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 04/14/2020] [Accepted: 05/27/2020] [Indexed: 12/16/2022]
Abstract
Feline calicivirus (FCV) is a highly contagious pathogen that causes acute upper respiratory infections and oral disease in cats, thus seriously endangering feline health. Recently, there have been outbreaks of particularly virulent variant strains of FCV, which can cause both acute symptoms and fatal systemic disease. The discovery of effective antiviral agents to treat FCV infection is, therefore, gradually assuming increased importance. In this study, we showed that both nitazoxanide and mizoribine had antiviral activity in F81 cells infected with different strains of FCV and also demonstrated a synergistic effect between the two drugs. Experiments in cats challenged with FCV showed that nitazoxanide significantly reduced the clinical symptoms of FCV infection, reduced viral load in the trachea and lungs, and reduced viral shedding. Our results showed that nitazoxanide and mizoribine could potentially be used as therapeutic agents to treat FCV infection.
Collapse
Affiliation(s)
- Zhanding Cui
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Dengliang Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yinli Xie
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kai Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Ying Zhang
- College of Wildlife and Protected Area Northeast Forestry University, Harbin, Heilongjiang, 150040, China; Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, 666 Liuying West Road, Changchun, Jilin, 130122, China
| | - Guohua Li
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, China
| | - Qian Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xiaoxueying Chen
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yue Teng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Shihui Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jiang Shao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Fan Xingmeng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yanli Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Dongju Du
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yanbing Guo
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China; Animal Husbandry and Veterinary Science Research Institute of Jilin Province, Changchun, 130062, China
| | - Hailong Huang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Hao Dong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Guixue Hu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| | - Shuang Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| | - Yongkun Zhao
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, 666 Liuying West Road, Changchun, Jilin, 130122, China.
| |
Collapse
|
12
|
Isac E, Picanço GA, Costa TL, Lima NF, Alves DSMM, Fraga CM, Lino Junior RS, Vinaud MC. In vitro nitazoxanide exposure affects energetic metabolism of Taenia crassiceps. Exp Parasitol 2019; 208:107792. [PMID: 31707003 DOI: 10.1016/j.exppara.2019.107792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 10/10/2019] [Accepted: 11/06/2019] [Indexed: 01/12/2023]
Abstract
Nitazoxanide (NTZ) is a broad-spectrum drug used in intestinal infections, but still poorly explored in the treatment of parasitic tissular infections. This study aimed to evaluate the in vitro responses of the energetic metabolism of T. crassiceps cysticerci induced by NTZ. The organic acids of the tricarboxylic acid cycle, products derived from fatty acids oxidation and protein catabolism were analyzed. These acids were quantified after 24 h of in vitro exposure to different NTZ concentrations. A positive control group was performed with albendazole sulfoxide (ABZSO). The significant alterations in citrate, fumarate and malate concentrations showed the NTZ influence in the tricarboxylic acid (TCA) cycle. The non-detection of acetate confirmed that the main mode of action of NTZ is effective against T. crassiceps cysticerci. The statistical differences in fumarate, urea and beta-hydroxybutyrate concentrations showed the NTZ effect on protein catabolism and fatty acid oxidation. Therefore, the main energetic pathways such as the TCA cycle, protein catabolism and fatty acids oxidation were altered after in vitro NTZ exposure. In conclusion, NTZ induced a significant metabolic stress in the parasite indicating that it may be used as an alternative therapeutic choice for cysticercosis treatment. The use of metabolic approaches to establish comparisons between anti parasitic drugs mode of actions is proposed.
Collapse
Affiliation(s)
- Eliana Isac
- Tropical Pathology and Public Health Institute, Federal University of Goias, Goiás, Rua 235, S/n, Setor Leste Universitário, CEP 74605-050, Brazil
| | - Guaraciara A Picanço
- Tropical Pathology and Public Health Institute, Federal University of Goias, Goiás, Rua 235, S/n, Setor Leste Universitário, CEP 74605-050, Brazil
| | - Tatiane L Costa
- Tropical Pathology and Public Health Institute, Federal University of Goias, Goiás, Rua 235, S/n, Setor Leste Universitário, CEP 74605-050, Brazil
| | - Nayana F Lima
- Tropical Pathology and Public Health Institute, Federal University of Goias, Goiás, Rua 235, S/n, Setor Leste Universitário, CEP 74605-050, Brazil
| | - Daniellade S M M Alves
- Tropical Pathology and Public Health Institute, Federal University of Goias, Goiás, Rua 235, S/n, Setor Leste Universitário, CEP 74605-050, Brazil
| | - Carolina M Fraga
- Tropical Pathology and Public Health Institute, Federal University of Goias, Goiás, Rua 235, S/n, Setor Leste Universitário, CEP 74605-050, Brazil
| | - Ruyde S Lino Junior
- Tropical Pathology and Public Health Institute, Federal University of Goias, Goiás, Rua 235, S/n, Setor Leste Universitário, CEP 74605-050, Brazil
| | - Marina C Vinaud
- Tropical Pathology and Public Health Institute, Federal University of Goias, Goiás, Rua 235, S/n, Setor Leste Universitário, CEP 74605-050, Brazil.
| |
Collapse
|
13
|
Synowiec A, Gryniuk I, Pachota M, Strzelec Ł, Roman O, Kłysik-Trzciańska K, Zając M, Drebot I, Gula K, Andruchowicz A, Rajfur Z, Szczubiałka K, Nowakowska M, Pyrc K. Cat flu: Broad spectrum polymeric antivirals. Antiviral Res 2019; 170:104563. [PMID: 31325462 DOI: 10.1016/j.antiviral.2019.104563] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 11/30/2022]
Abstract
Feline herpesvirus type 1 (FHV-1) and feline calicivirus (FCV) are considered as main causes of feline upper respiratory tract disease and the most common clinical manifestations include rhinotracheitis, conjunctivitis, and nasal/facial ulcerations. While the primary infection is relatively mild, secondary infections pose a threat to young or immunocompromised cats and may result in a fatal outcome. In this study, we made an effort to evaluate antiviral potency of poly(sodium 4-styrenesulfonates) (PSSNa) as potent FHV-1 and FCV inhibitors for topical use. Mechanistic studies showed that PSSNa exhibits a different mechanism of action depending on target species. While PSSNa acts directly on FHV-1 particles blocking their interaction with the host's cell and preventing the infection, the antiviral potency against FCV is based on inhibition at late stages of the viral replication cycle. Altogether, PSSNa polymers are promising drug candidates to be used in the treatment and prevention of the viral upper respiratory tract disease (URTD), regardless of the cause.
Collapse
Affiliation(s)
- Aleksandra Synowiec
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387, Krakow, Poland; Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Irma Gryniuk
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Magdalena Pachota
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387, Krakow, Poland; Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Łukasz Strzelec
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Olga Roman
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Katarzyna Kłysik-Trzciańska
- Department of Physical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Mateusz Zając
- Department of Physical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Inga Drebot
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387, Krakow, Poland
| | - Katarzyna Gula
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387, Krakow, Poland
| | | | - Zenon Rajfur
- Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Sciences, Jagiellonian University, Lojasiewicza 11, 30-348, Krakow, Poland
| | - Krzysztof Szczubiałka
- Department of Physical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Maria Nowakowska
- Department of Physical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland.
| | - Krzysztof Pyrc
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387, Krakow, Poland.
| |
Collapse
|
14
|
Aulner N, Danckaert A, Ihm J, Shum D, Shorte SL. Next-Generation Phenotypic Screening in Early Drug Discovery for Infectious Diseases. Trends Parasitol 2019; 35:559-570. [PMID: 31176583 DOI: 10.1016/j.pt.2019.05.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 12/30/2022]
Abstract
Cell-based phenotypic screening has proven to be valuable, notably in recapitulating relevant biological conditions, for example, the host cell/pathogen niche. However, the corresponding methodological complexity is not readily compatible with high-throughput pipelines, and fails to inform either molecular target or mechanism of action, which frustrates conventional drug-discovery roadmaps. We review the state-of-the-art and emerging technologies that suggest new strategies for harnessing value from the complexity of phenotypic screening and augmenting powerful utility for translational drug discovery. Advances in cellular, molecular, and bioinformatics technologies are converging at a cutting edge where the complexity of phenotypic screening may no longer be considered a hinderance but rather a catalyst to chemotherapeutic discovery for infectious diseases.
Collapse
Affiliation(s)
- Nathalie Aulner
- Institut Pasteur Paris, UTechS-PBI/Imagopole, 25-28 rue du Docteur Roux, 75015, France
| | - Anne Danckaert
- Institut Pasteur Paris, UTechS-PBI/Imagopole, 25-28 rue du Docteur Roux, 75015, France
| | - JongEun Ihm
- Institut Pasteur Paris, UTechS-PBI/Imagopole, 25-28 rue du Docteur Roux, 75015, France
| | - David Shum
- Institut Pasteur Korea, 16 Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Spencer L Shorte
- Institut Pasteur Paris, UTechS-PBI/Imagopole, 25-28 rue du Docteur Roux, 75015, France; Institut Pasteur Korea, 16 Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.
| |
Collapse
|
15
|
Enosi Tuipulotu D, Fumian TM, Netzler NE, Mackenzie JM, White PA. The Adenosine Analogue NITD008 has Potent Antiviral Activity against Human and Animal Caliciviruses. Viruses 2019; 11:v11060496. [PMID: 31151251 PMCID: PMC6631109 DOI: 10.3390/v11060496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/24/2019] [Accepted: 05/25/2019] [Indexed: 12/27/2022] Open
Abstract
The widespread nature of calicivirus infections globally has a substantial impact on the health and well-being of humans and animals alike. Currently, the only vaccines approved against caliciviruses are for feline and rabbit-specific members of this group, and thus there is a growing effort towards the development of broad-spectrum antivirals for calicivirus infections. In this study, we evaluated the antiviral activity of the adenosine analogue NITD008 in vitro using three calicivirus model systems namely; feline calicivirus (FCV), murine norovirus (MNV), and the human norovirus replicon. We show that the nucleoside analogue (NA), NITD008, has limited toxicity and inhibits calicivirus replication in all three model systems with EC50 values of 0.94 μM, 0.91 µM, and 0.21 µM for MNV, FCV, and the Norwalk replicon, respectively. NITD008 has a similar level of potency to the most well-studied NA 2′-C-methylcytidine in vitro. Significantly, we also show that continual NITD008 treatment effectively cleared the Norwalk replicon from cells and treatment with 5 µM NITD008 was sufficient to completely prevent rebound. Given the potency displayed by NITD008 against several caliciviruses, we propose that this compound should be interrogated further to assess its effectiveness in vivo. In summary, we have added a potent NA to the current suite of antiviral compounds and provide a NA scaffold that could be further modified for therapeutic use against calicivirus infections.
Collapse
Affiliation(s)
- Daniel Enosi Tuipulotu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Tulio M Fumian
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
- Laboratório de Virologia Comparada e Ambiental, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil.
| | - Natalie E Netzler
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Jason M Mackenzie
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VC 3010, Australia.
| | - Peter A White
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
16
|
Netzler NE, Enosi Tuipulotu D, White PA. Norovirus antivirals: Where are we now? Med Res Rev 2019; 39:860-886. [PMID: 30584800 PMCID: PMC7168425 DOI: 10.1002/med.21545] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 12/24/2022]
Abstract
Human noroviruses inflict a significant health burden on society and are responsible for approximately 699 million infections and over 200 000 estimated deaths worldwide each year. Yet despite significant research efforts, approved vaccines or antivirals to combat this pathogen are still lacking. Safe and effective antivirals are not available, particularly for chronically infected immunocompromised individuals, and for prophylactic applications to protect high-risk and vulnerable populations in outbreak settings. Since the discovery of human norovirus in 1972, the lack of a cell culture system has hindered biological research and antiviral studies for many years. Recent breakthroughs in culturing human norovirus have been encouraging, however, further development and optimization of these novel methodologies are required to facilitate more robust replication levels, that will enable reliable serological and replication studies, as well as advances in antiviral development. In the last few years, considerable progress has been made toward the development of norovirus antivirals, inviting an updated review. This review focuses on potential therapeutics that have been reported since 2010, which were examined across at least two model systems used for studying human norovirus or its enzymes. In addition, we have placed emphasis on antiviral compounds with a defined chemical structure. We include a comprehensive outline of direct-acting antivirals and offer a discussion of host-modulating compounds, a rapidly expanding and promising area of antiviral research.
Collapse
Affiliation(s)
- Natalie E. Netzler
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, SydneyNew South WalesAustralia
| | - Daniel Enosi Tuipulotu
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, SydneyNew South WalesAustralia
| | - Peter A. White
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, SydneyNew South WalesAustralia
| |
Collapse
|