1
|
Andersen LL, Huang Y, Urban C, Oubraham L, Winheim E, Stafford C, Nagl D, O'Duill F, Ebert T, Engleitner T, Paludan SR, Krug A, Rad R, Hornung V, Pichlmair A. Systematic P2Y receptor survey identifies P2Y11 as modulator of immune responses and virus replication in macrophages. EMBO J 2023; 42:e113279. [PMID: 37881155 PMCID: PMC10690470 DOI: 10.15252/embj.2022113279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 09/20/2023] [Accepted: 09/29/2023] [Indexed: 10/27/2023] Open
Abstract
The immune system is in place to assist in ensuring tissue homeostasis, which can be easily perturbed by invading pathogens or nonpathogenic stressors causing tissue damage. Extracellular nucleotides are well known to contribute to innate immune signaling specificity and strength, but how their signaling is relayed downstream of cell surface receptors and how this translates into antiviral immunity is only partially understood. Here, we systematically investigated the responses of human macrophages to extracellular nucleotides, focusing on the nucleotide-sensing GPRC receptors of the P2Y family. Time-resolved transcriptomic analysis showed that adenine- and uridine-based nucleotides induce a specific, immediate, and transient cytokine response through the MAPK signaling pathway that regulates transcriptional activation by AP-1. Using receptor trans-complementation, we identified a subset of P2Ys (P2Y1, P2Y2, P2Y6, and P2Y11) that govern inflammatory responses via cytokine induction, while others (P2Y4, P2Y11, P2Y12, P2Y13, and P2Y14) directly induce antiviral responses. Notably, P2Y11 combined both activities, and depletion or inhibition of this receptor in macrophages impaired both inflammatory and antiviral responses. Collectively, these results highlight the underappreciated functions of P2Y receptors in innate immune processes.
Collapse
Affiliation(s)
- Line Lykke Andersen
- Institute of Virology, School of MedicineTechnical University of MunichMunichGermany
| | - Yiqi Huang
- Institute of Virology, School of MedicineTechnical University of MunichMunichGermany
| | - Christian Urban
- Institute of Virology, School of MedicineTechnical University of MunichMunichGermany
| | - Lila Oubraham
- Institute of Virology, School of MedicineTechnical University of MunichMunichGermany
| | - Elena Winheim
- Institute of Immunology, Biomedical CenterLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Che Stafford
- Department of Biochemistry, Gene Center MunichLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Dennis Nagl
- Department of Biochemistry, Gene Center MunichLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Fionan O'Duill
- Department of Biochemistry, Gene Center MunichLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Thomas Ebert
- Department of Biochemistry, Gene Center MunichLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Thomas Engleitner
- Institute of Molecular Oncology and Functional Genomics, School of MedicineTechnical University of MunichMunichGermany
| | - Søren Riis Paludan
- Department of BiomedicineAarhus UniversityAarhusDenmark
- Center of immunology of viral infection (CiViA)Aarhus UniversityAarhusDenmark
| | - Anne Krug
- Institute of Immunology, Biomedical CenterLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, School of MedicineTechnical University of MunichMunichGermany
| | - Veit Hornung
- Department of Biochemistry, Gene Center MunichLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Andreas Pichlmair
- Institute of Virology, School of MedicineTechnical University of MunichMunichGermany
- Center of immunology of viral infection (CiViA)Aarhus UniversityAarhusDenmark
- German Center for Infection Research (DZIF), Munich Partner SiteMunichGermany
| |
Collapse
|
2
|
Zhang Q, Duan Q, Gao Y, He P, Huang R, Huang H, Li Y, Ma G, Zhang Y, Nie K, Wang L. Cerebral Microvascular Injury Induced by Lag3-Dependent α-Synuclein Fibril Endocytosis Exacerbates Cognitive Impairment in a Mouse Model of α-Synucleinopathies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301903. [PMID: 37381656 PMCID: PMC10477873 DOI: 10.1002/advs.202301903] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/26/2023] [Indexed: 06/30/2023]
Abstract
The pathological accumulation of α-synuclein (α-Syn) and the transmission of misfolded α-Syn underlie α-synucleinopathies. Increased plasma α-Syn levels are associated with cognitive impairment in Parkinson's disease, multiple system atrophy, and dementia with Lewy bodies, but it is still unknown whether the cognitive deficits in α-synucleinopathies have a common vascular pathological origin. Here, it is reported that combined injection of α-Syn preformed fibrils (PFFs) in the unilateral substantia nigra pars compacta, hippocampus, and cerebral cortex results in impaired spatial learning and memory abilities at 6 months post-injection and that this cognitive decline is related to cerebral microvascular injury. Moreover, insoluble α-Syn inclusions are found to form in primary mouse brain microvascular endothelial cells (BMVECs) through lymphocyte-activation gene 3 (Lag3)-dependent α-Syn PFFs endocytosis, causing poly(ADP-ribose)-driven cell death and reducing the expression of tight junction proteins in BMVECs. Knockout of Lag3 in vitro prevents α-Syn PFFs from entering BMVECs, thereby reducing the abovementioned response induced by α-Syn PFFs. Deletion of endothelial cell-specific Lag3 in vivo reverses the negative effects of α-Syn PFFs on cerebral microvessels and cognitive function. In short, this study reveals the effectiveness of targeting Lag3 to block the spread of α-Syn fibrils to endothelial cells in order to improve cognition.
Collapse
Affiliation(s)
- Qingxi Zhang
- Department of NeurologyGuangdong Neuroscience InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangdong Cardiovascular InstituteGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhou510100China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative DiseasesGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Qingrui Duan
- Department of NeurologyGuangdong Neuroscience InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative DiseasesGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Yuyuan Gao
- Department of NeurologyGuangdong Neuroscience InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative DiseasesGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Peikun He
- Department of NeurologyGuangdong Neuroscience InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative DiseasesGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Rui Huang
- Department of NeurologyGuangdong Neuroscience InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative DiseasesGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Haifeng Huang
- Department of NeurologyGuangdong Neuroscience InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative DiseasesGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Yanyi Li
- Department of NeurologyGuangdong Neuroscience InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative DiseasesGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Guixian Ma
- Department of NeurologyGuangdong Neuroscience InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative DiseasesGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Yuhu Zhang
- Department of NeurologyGuangdong Neuroscience InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative DiseasesGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Kun Nie
- Department of NeurologyGuangdong Neuroscience InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative DiseasesGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Lijuan Wang
- Department of NeurologyGuangdong Neuroscience InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative DiseasesGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| |
Collapse
|
3
|
Boulton S, Crupi MJF, Singh S, Carter-Timofte ME, Azad T, Organ BC, He X, Gill R, Neault S, Jamieson T, Dave J, Kurmasheva N, Austin B, Petryk J, Singaravelu R, Huang BZ, Franco N, Babu K, Parks RJ, Ilkow CS, Olagnier D, Bell JC. Inhibition of Exchange Proteins Directly Activated by cAMP (EPAC) as a Strategy for Broad-Spectrum Antiviral Development. J Biol Chem 2023; 299:104749. [PMID: 37100284 PMCID: PMC10124099 DOI: 10.1016/j.jbc.2023.104749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023] Open
Abstract
The recent SARS-CoV-2 and mpox outbreaks have highlighted the need to expand our arsenal of broad-spectrum antiviral agents for future pandemic preparedness. Host-directed antivirals are an important tool to accomplish this as they typically offer protection against a broader range of viruses than direct-acting antivirals and have a lower susceptibility to viral mutations that cause drug resistance. In this study, we investigate the Exchange Protein Activated by cAMP (EPAC) as a target for broad-spectrum antiviral therapy. We find that the EPAC-selective inhibitor, ESI-09 provides robust protection against a variety of viruses, including SARS-CoV-2 and Vaccinia (VACV) - an orthopoxvirus from the same family as mpox. We show, using a series of immunofluorescence experiments, that ESI-09 remodels the actin cytoskeleton through Rac1/Cdc42 GTPases and the Arp2/3 complex, impairing internalization of viruses that use clathrin-mediated endocytosis (e.g. VSV) or micropinocytosis (e.g. VACV). Additionally, we find that ESI-09 disrupts syncytia formation and inhibits cell-to-cell transmission of viruses such as measles and VACV. When administered to immune-deficient mice in an intranasal challenge model, ESI-09 protects mice from lethal doses of VACV and prevents formation of pox lesions. Altogether, our finding show that EPAC antagonists such as ESI-09 are promising candidates for broad-spectrum antiviral therapy that can aid in the fight against ongoing and future viral outbreaks.
Collapse
Affiliation(s)
- Stephen Boulton
- Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| | - Mathieu J F Crupi
- Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Siddharth Singh
- Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | | | - Taha Azad
- Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada; Faculty of Medicine and Health Sciences, Department of microbiology and infectious diseases, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada; Centre de Recherche du CHUS, Sherbrooke, QC J1H 5N4, Canada
| | - Bailey C Organ
- Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Xiaohong He
- Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Rida Gill
- Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Serge Neault
- Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Taylor Jamieson
- Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Jaahnavi Dave
- Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Naziia Kurmasheva
- Aarhus University, Department of Biomedicine, Aarhus C, 8000, Denmark
| | - Bradley Austin
- Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Julia Petryk
- Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Ragunath Singaravelu
- Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada; Public Health Agency of Canada, Ottawa, Ontario, Canada, K1A 0K9
| | - Ben Zhen Huang
- Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Noah Franco
- Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Kaaviya Babu
- Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Robin J Parks
- Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada; Department of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Carolina S Ilkow
- Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - David Olagnier
- Aarhus University, Department of Biomedicine, Aarhus C, 8000, Denmark
| | - John C Bell
- Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada; Department of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
4
|
Foret-Lucas C, Figueroa T, Bertin A, Bessière P, Lucas A, Bergonnier D, Wasniewski M, Servat A, Tessier A, Lezoualc’h F, Volmer R. EPAC1 Pharmacological Inhibition with AM-001 Prevents SARS-CoV-2 and Influenza A Virus Replication in Cells. Viruses 2023; 15:319. [PMID: 36851533 PMCID: PMC9965159 DOI: 10.3390/v15020319] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
The exceptional impact of the COVID-19 pandemic has stimulated an intense search for antiviral molecules. Host-targeted antiviral molecules have the potential of presenting broad-spectrum antiviral activity and are also considered as less likely to select for resistant viruses. In this study, we investigated the antiviral activity exerted by AM-001, a specific pharmacological inhibitor of EPAC1, a host exchange protein directly activated by cyclic AMP (cAMP). The cAMP-sensitive protein, EPAC1 regulates various physiological and pathological processes but its role in SARS-CoV-2 and influenza A virus infection has not yet been studied. Here, we provide evidence that the EPAC1 specific inhibitor AM-001 exerts potent antiviral activity against SARS-CoV-2 in the human lung Calu-3 cell line and the African green monkey Vero cell line. We observed a concentration-dependent inhibition of SARS-CoV-2 infectious viral particles and viral RNA release in the supernatants of AM-001 treated cells that was not associated with a significant impact on cellular viability. Furthermore, we identified AM-001 as an inhibitor of influenza A virus in Calu-3 cells. Altogether these results identify EPAC1 inhibition as a promising therapeutic target against viral infections.
Collapse
Affiliation(s)
- Charlotte Foret-Lucas
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, 31300 Toulouse, France
| | - Thomas Figueroa
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, 31300 Toulouse, France
| | - Alexandre Bertin
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, 31300 Toulouse, France
| | - Pierre Bessière
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, 31300 Toulouse, France
| | - Alexandre Lucas
- Institute of Metabolic and Cardiovascular Diseases, INSERM, Université de Toulouse, UMR 1297-I2MC, 31432 Toulouse, France
| | - Dorian Bergonnier
- Institute of Metabolic and Cardiovascular Diseases, INSERM, Université de Toulouse, UMR 1297-I2MC, 31432 Toulouse, France
| | - Marine Wasniewski
- Nancy Laboratory for Rabies and Wildlife, ANSES, Lyssavirus Unit, 54220 Malzéville, France
| | - Alexandre Servat
- Nancy Laboratory for Rabies and Wildlife, ANSES, Lyssavirus Unit, 54220 Malzéville, France
| | - Arnaud Tessier
- Nantes Université, CNRS, CEISAM, UMR 6230, 44000 Nantes, France
| | - Frank Lezoualc’h
- Institute of Metabolic and Cardiovascular Diseases, INSERM, Université de Toulouse, UMR 1297-I2MC, 31432 Toulouse, France
| | - Romain Volmer
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, 31300 Toulouse, France
| |
Collapse
|
5
|
Ren J, Wu W, Zhang K, Choi EJ, Wang P, Ivanciuc T, Peniche A, Qian Y, Garofalo RP, Zhou J, Bao X. Exchange Protein Directly Activated by cAMP 2 Enhances Respiratory Syncytial Virus-Induced Pulmonary Disease in Mice. Front Immunol 2021; 12:757758. [PMID: 34733289 PMCID: PMC8558466 DOI: 10.3389/fimmu.2021.757758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the most common cause of lower respiratory tract infection in young children. It is also a significant contributor to upper respiratory tract infections, therefore, a major cause for visits to the pediatrician. High morbidity and mortality are associated with high-risk populations including premature infants, the elderly, and the immunocompromised. However, no effective and specific treatment is available. Recently, we discovered that an exchange protein directly activated by cyclic AMP 2 (EPAC2) can serve as a potential therapeutic target for RSV. In both lower and upper epithelial cells, EPAC2 promotes RSV replication and pro-inflammatory cytokine/chemokine induction. However, the overall role of EPAC2 in the pulmonary responses to RSV has not been investigated. Herein, we found that EPAC2-deficient mice (KO) or mice treated with an EPAC2-specific inhibitor showed a significant decrease in body weight loss, airway hyperresponsiveness, and pulmonary inflammation, compared with wild-type (WT) or vehicle-treated mice. Overall, this study demonstrates the critical contribution of the EPAC2-mediated pathway to airway diseases in experimental RSV infection, suggesting the possibility to target EPAC2 as a promising treatment modality for RSV.
Collapse
Affiliation(s)
- Junping Ren
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Wenzhe Wu
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Ke Zhang
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States.,Department of Chemistry, University of Houston Clear Lake, Clear Lake, TX, United States
| | - Eun-Jin Choi
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Pingyuan Wang
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Teodora Ivanciuc
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Alex Peniche
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Youwen Qian
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY, United States
| | - Roberto P Garofalo
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States.,Institute of Translational Sciences, University of Texas Medical Branch, Galveston, TX, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Xiaoyong Bao
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States.,Institute of Translational Sciences, University of Texas Medical Branch, Galveston, TX, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
6
|
Xiao J, Zhang B, Su Z, Liu Y, Shelite TR, Chang Q, Qiu Y, Bei J, Wang P, Bukreyev A, Soong L, Jin Y, Ksiazek T, Gaitas A, Rossi SL, Zhou J, Laposata M, Saito TB, Gong B. Intracellular receptor EPAC regulates von Willebrand factor secretion from endothelial cells in a PI3K-/eNOS-dependent manner during inflammation. J Biol Chem 2021; 297:101315. [PMID: 34678311 PMCID: PMC8526113 DOI: 10.1016/j.jbc.2021.101315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023] Open
Abstract
Coagulopathy is associated with both inflammation and infection, including infections with novel severe acute respiratory syndrome coronavirus-2, the causative agent Coagulopathy is associated with both inflammation and infection, including infection with novel severe acute respiratory syndrome coronavirus-2, the causative agent of COVID-19. Clot formation is promoted via cAMP-mediated secretion of von Willebrand factor (vWF), which fine-tunes the process of hemostasis. The exchange protein directly activated by cAMP (EPAC) is a ubiquitously expressed intracellular cAMP receptor that plays a regulatory role in suppressing inflammation. To assess whether EPAC could regulate vWF release during inflammation, we utilized our EPAC1-null mouse model and revealed increased secretion of vWF in endotoxemic mice in the absence of the EPAC1 gene. Pharmacological inhibition of EPAC1 in vitro mimicked the EPAC1-/- phenotype. In addition, EPAC1 regulated tumor necrosis factor-α-triggered vWF secretion from human umbilical vein endothelial cells in a manner dependent upon inflammatory effector molecules PI3K and endothelial nitric oxide synthase. Furthermore, EPAC1 activation reduced inflammation-triggered vWF release, both in vivo and in vitro. Our data delineate a novel regulatory role for EPAC1 in vWF secretion and shed light on the potential development of new strategies to control thrombosis during inflammation.
Collapse
Affiliation(s)
- Jie Xiao
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Ben Zhang
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Zhengchen Su
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Yakun Liu
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Thomas R Shelite
- Department of Internal Medicine, Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
| | - Qing Chang
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Yuan Qiu
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jiani Bei
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Pingyuan Wang
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, Massachusetts, USA
| | - Thomas Ksiazek
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Angelo Gaitas
- The Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Shannan L Rossi
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Michael Laposata
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Tais B Saito
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Bin Gong
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA.
| |
Collapse
|
7
|
Host EPAC1 Modulates Rickettsial Adhesion to Vascular Endothelial Cells via Regulation of ANXA2 Y23 Phosphorylation. Pathogens 2021; 10:pathogens10101307. [PMID: 34684255 PMCID: PMC8537355 DOI: 10.3390/pathogens10101307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/06/2021] [Accepted: 10/10/2021] [Indexed: 01/27/2023] Open
Abstract
Introduction: Intracellular cAMP receptor exchange proteins directly activated by cAMP 1 (EPAC1) regulate obligate intracellular parasitic bacterium rickettsial adherence to and invasion into vascular endothelial cells (ECs). However, underlying precise mechanism(s) remain unclear. The aim of the study is to dissect the functional role of the EPAC1-ANXA2 signaling pathway during initial adhesion of rickettsiae to EC surfaces. Methods: In the present study, an established system that is anatomically based and quantifies bacterial adhesion to ECs in vivo was combined with novel fluidic force microscopy (FluidFM) to dissect the functional role of the EPAC1-ANXA2 signaling pathway in rickettsiae–EC adhesion. Results: The deletion of the EPAC1 gene impedes rickettsial binding to endothelium in vivo. Rickettsial OmpB shows a host EPAC1-dependent binding strength on the surface of a living brain microvascular EC (BMEC). Furthermore, ectopic expression of phosphodefective and phosphomimic mutants replacing tyrosine (Y) 23 of ANXA2 in ANXA2-knock out BMECs results in different binding force to reOmpB in response to the activation of EPAC1. Conclusions: EPAC1 modulates rickettsial adhesion, in association with Y23 phosphorylation of the binding receptor ANXA2. Underlying mechanism(s) should be further explored to delineate the accurate role of cAMP-EPAC system during rickettsial infection.
Collapse
|
8
|
Broad Impact of Exchange Protein Directly Activated by cAMP 2 (EPAC2) on Respiratory Viral Infections. Viruses 2021; 13:v13061179. [PMID: 34205489 PMCID: PMC8233786 DOI: 10.3390/v13061179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
The recently discovered exchange protein directly activated by cAMP (EPAC), compared with protein kinase A (PKA), is a fairly new family of cAMP effectors. Soon after the discovery, EPAC has shown its significance in many diseases including its emerging role in infectious diseases. In a recent study, we demonstrated that EPAC, but not PKA, is a promising therapeutic target to regulate respiratory syncytial virus (RSV) replication and its associated inflammation. In mammals, there are two isoforms of EPAC-EPAC1 and EPAC2. Unlike other viruses, including Middle East respiratory syndrome coronavirus (MERS-CoV) and Ebola virus, which use EPAC1 to regulate viral replication, RSV uses EPAC2 to control its replication and associated cytokine/chemokine responses. To determine whether EPAC2 protein has a broad impact on other respiratory viral infections, we used an EPAC2-specific inhibitor, MAY0132, to examine the functions of EPAC2 in human metapneumovirus (HMPV) and adenovirus (AdV) infections. HMPV is a negative-sense single-stranded RNA virus belonging to the family Pneumoviridae, which also includes RSV, while AdV is a double-stranded DNA virus. Treatment with an EPAC1-specific inhibitor was also included to investigate the impact of EPAC1 on these two viruses. We found that the replication of HMPV, AdV, and RSV and the viral-induced immune mediators are significantly impaired by MAY0132, while an EPAC1-specific inhibitor, CE3F4, does not impact or slightly impacts, demonstrating that EPAC2 could serve as a novel common therapeutic target to control these viruses, all of which do not have effective treatment and prevention strategies.
Collapse
|
9
|
Abstract
Spotted fever group rickettsioses (SFRs) are devastating human infections. Vascular endothelial cells (ECs) are the primary targets of rickettsial infection. Edema resulting from EC barrier dysfunction occurs in the brain and lungs in most cases of lethal SFR, but the underlying mechanisms remain unclear. The aim of the study was to explore the potential role of Rickettsia-infected, EC-derived exosomes (Exos) during infection. Using size exclusion chromatography (SEC), we purified Exos from conditioned, filtered, bacterium-free media collected from Rickettsia parkeri-infected human umbilical vein ECs (HUVECs) (R-ECExos) and plasma of Rickettsia australis- or R. parkeri-infected mice (R-plsExos). We observed that rickettsial infection increased the release of heterogeneous plsExos, but endothelial exosomal size, morphology, and production were not significantly altered following infection. Compared to normal plsExos and ECExos, both R-plsExos and R-ECExos induced dysfunction of recipient normal brain microvascular ECs (BMECs). The effect of R-plsExos on mouse recipient BMEC barrier function is dose dependent. The effect of R-ECExos on human recipient BMEC barrier function is dependent on the exosomal RNA cargo. Next-generation sequencing analysis and stem-loop quantitative reverse transcription-PCR (RT-qPCR) validation revealed that rickettsial infection triggered the selective enrichment of endothelial exosomal mir-23a and mir-30b, which potentially target the endothelial barrier. To our knowledge, this is the first report on the functional role of extracellular vesicles following infection by obligately intracellular bacteria.
Collapse
|
10
|
Liu Y, Garron TM, Chang Q, Su Z, Zhou C, Qiu Y, Gong EC, Zheng J, Yin YW, Ksiazek T, Brasel T, Jin Y, Boor P, Comer JE, Gong B. Cell-Type Apoptosis in Lung during SARS-CoV-2 Infection. Pathogens 2021; 10:pathogens10050509. [PMID: 33922476 PMCID: PMC8145065 DOI: 10.3390/pathogens10050509] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/12/2021] [Accepted: 04/21/2021] [Indexed: 12/23/2022] Open
Abstract
The SARS-CoV-2 pandemic has inspired renewed interest in understanding the fundamental pathology of acute respiratory distress syndrome (ARDS) following infection. However, the pathogenesis of ARDS following SRAS-CoV-2 infection remains largely unknown. In the present study, we examined apoptosis in postmortem lung sections from COVID-19 patients and in lung tissues from a non-human primate model of SARS-CoV-2 infection, in a cell-type manner, including type 1 and 2 alveolar cells and vascular endothelial cells (ECs), macrophages, and T cells. Multiple-target immunofluorescence assays and Western blotting suggest both intrinsic and extrinsic apoptotic pathways are activated during SARS-CoV-2 infection. Furthermore, we observed that SARS-CoV-2 fails to induce apoptosis in human bronchial epithelial cells (i.e., BEAS2B cells) and primary human umbilical vein endothelial cells (HUVECs), which are refractory to SARS-CoV-2 infection. However, infection of co-cultured Vero cells and HUVECs or Vero cells and BEAS2B cells with SARS-CoV-2 induced apoptosis in both Vero cells and HUVECs/BEAS2B cells but did not alter the permissiveness of HUVECs or BEAS2B cells to the virus. Post-exposure treatment of the co-culture of Vero cells and HUVECs with a novel non-cyclic nucleotide small molecule EPAC1-specific activator reduced apoptosis in HUVECs. These findings may help to delineate a novel insight into the pathogenesis of ARDS following SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yakun Liu
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (Y.L.); (Q.C.); (Z.S.); (C.Z.); (Y.Q.); (E.C.G.); (T.K.)
| | - Tania M. Garron
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (T.M.G.); (T.B.)
| | - Qing Chang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (Y.L.); (Q.C.); (Z.S.); (C.Z.); (Y.Q.); (E.C.G.); (T.K.)
| | - Zhengchen Su
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (Y.L.); (Q.C.); (Z.S.); (C.Z.); (Y.Q.); (E.C.G.); (T.K.)
| | - Changcheng Zhou
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (Y.L.); (Q.C.); (Z.S.); (C.Z.); (Y.Q.); (E.C.G.); (T.K.)
| | - Yuan Qiu
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (Y.L.); (Q.C.); (Z.S.); (C.Z.); (Y.Q.); (E.C.G.); (T.K.)
| | - Eric C. Gong
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (Y.L.); (Q.C.); (Z.S.); (C.Z.); (Y.Q.); (E.C.G.); (T.K.)
| | - Junying Zheng
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Y. Whitney Yin
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Thomas Ksiazek
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (Y.L.); (Q.C.); (Z.S.); (C.Z.); (Y.Q.); (E.C.G.); (T.K.)
| | - Trevor Brasel
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (T.M.G.); (T.B.)
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, MA 02118, USA;
| | - Paul Boor
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (Y.L.); (Q.C.); (Z.S.); (C.Z.); (Y.Q.); (E.C.G.); (T.K.)
- Correspondence: (P.B.); (J.E.C.); (B.G.); Tel.: +1-409-772-2813 (P.B.); +1-409-266-6915 (J.E.C.); +1-409-266-6682 (B.G.)
| | - Jason E. Comer
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (T.M.G.); (T.B.)
- Correspondence: (P.B.); (J.E.C.); (B.G.); Tel.: +1-409-772-2813 (P.B.); +1-409-266-6915 (J.E.C.); +1-409-266-6682 (B.G.)
| | - Bin Gong
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (Y.L.); (Q.C.); (Z.S.); (C.Z.); (Y.Q.); (E.C.G.); (T.K.)
- Correspondence: (P.B.); (J.E.C.); (B.G.); Tel.: +1-409-772-2813 (P.B.); +1-409-266-6915 (J.E.C.); +1-409-266-6682 (B.G.)
| |
Collapse
|
11
|
Liu Y, Garron TM, Chang Q, Su Z, Zhou C, Gong EC, Zheng J, Yin Y, Ksiazek T, Brasel T, Jin Y, Boor P, Comer JE, Gong B. Cell-type apoptosis in lung during SARS-CoV-2 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 33398280 DOI: 10.1101/2020.12.23.424254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The SARS-CoV-2 pandemic has inspired renewed interest in understanding the fundamental pathology of acute respiratory distress syndrome (ARDS) following infection because fatal COVID-19 cases are commonly linked to respiratory failure due to ARDS. The pathologic alteration known as diffuse alveolar damage in endothelial and epithelial cells is a critical feature of acute lung injury in ARDS. However, the pathogenesis of ARDS following SRAS-CoV-2 infection remains largely unknown. In the present study, we examined apoptosis in post-mortem lung sections from COVID-19 patients and lung tissues from a non-human primate model of SARS-CoV-2 infection, in a cell-type manner, including type 1 and 2 alveolar cells and vascular endothelial cells (ECs), macrophages, and T cells. Multiple-target immunofluorescence (IF) assays and western blotting suggest both intrinsic and extrinsic apoptotic pathways are activated during SARS-CoV-2 infection. Furthermore, we observed that SARS-CoV-2 fails to induce apoptosis in human bronchial epithelial cells (i.e., BEAS2B cells) and primary human umbilical vein endothelial cells (HUVECs), which are refractory to SARS-CoV-2 infection. However, infection of co-cultured Vero cells and HUVECs or Vero cells and BEAS2B cells with SARS-CoV-2 induced apoptosis in both Vero cells and HUVECs/BEAS2B cells, but did not alter the permissiveness of HUVECs or BEAS2B cells to the virus. Post-exposure treatment of the co-culture of Vero cells and HUVECs with an EPAC1-specific activator ameliorated apoptosis in HUVECs. These findings may help to delineate a novel insight into the pathogenesis of ARDS following SARS-CoV-2 infection.
Collapse
|
12
|
Xiao J, Zhang B, Su Z, Liu Y, Shelite TR, Chang Q, Wang P, Bukreyev A, Soong L, Jin Y, Ksiazek T, Gaitas A, Rossi SL, Zhou J, Laposata M, Saito TB, Gong B. EPAC regulates von Willebrand factor secretion from endothelial cells in a PI3K/eNOS-dependent manner during inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32908983 DOI: 10.1101/2020.09.04.282806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Coagulopathy is associated with both inflammation and infection, including infection with the novel SARS-CoV-2 (COVID-19). Endothelial cells (ECs) fine tune hemostasis via cAMP-mediated secretion of von Willebrand factor (vWF), which promote the process of clot formation. The e xchange p rotein directly a ctivated by c AMP (EPAC) is a ubiquitously expressed intracellular cAMP receptor that plays a key role in stabilizing ECs and suppressing inflammation. To assess whether EPAC could regulate vWF release during inflammation, we utilized our EPAC1 -null mouse model and revealed an increased secretion of vWF in endotoxemic mice in the absence of the EPAC1 gene. Pharmacological inhibition of EPAC1 in vitro mimicked the EPAC1 -/- phenotype. EPAC1 regulated TNFα-triggered vWF secretion from human umbilical vein endothelial cells (HUVECs) in a phosphoinositide 3-kinases (PI3K)/endothelial nitric oxide synthase (eNOS)-dependent manner. Furthermore, EPAC1 activation reduced inflammation-triggered vWF release, both in vivo and in vitro . Our data delineate a novel regulatory role of EPAC1 in vWF secretion and shed light on potential development of new strategies to controlling thrombosis during inflammation. Key Point PI3K/eNOS pathway-mediated, inflammation-triggered vWF secretion is the target of the pharmacological manipulation of the cAMP-EPAC system.
Collapse
|
13
|
Liu Y, Xiao J, Zhang B, Shelite TR, Su Z, Chang Q, Judy B, Li X, Drelich A, Bei J, Zhou Y, Zheng J, Jin Y, Rossi SL, Tang SJ, Wakamiya M, Saito T, Ksiazek T, Kaphalia B, Gong B. Increased talin-vinculin spatial proximities in livers in response to spotted fever group rickettsial and Ebola virus infections. J Transl Med 2020; 100:1030-1041. [PMID: 32238906 PMCID: PMC7111589 DOI: 10.1038/s41374-020-0420-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/12/2020] [Accepted: 03/12/2020] [Indexed: 12/17/2022] Open
Abstract
Talin and vinculin, both actin-cytoskeleton-related proteins, have been documented to participate in establishing bacterial infections, respectively, as the adapter protein to mediate cytoskeleton-driven dynamics of the plasma membrane. However, little is known regarding the potential role of the talin-vinculin complex during spotted fever group rickettsial and Ebola virus infections, two dreadful infectious diseases in humans. Many functional properties of proteins are determined by their participation in protein-protein complexes, in a temporal and/or spatial manner. To resolve the limitation of application in using mouse primary antibodies on archival, multiple formalin-fixed mouse tissue samples, which were collected from experiments requiring high biocontainment, we developed a practical strategic proximity ligation assay (PLA) capable of employing one primary antibody raised in mouse to probe talin-vinculin spatial proximal complex in mouse tissue. We observed an increase of talin-vinculin spatial proximities in the livers of spotted fever Rickettsia australis or Ebola virus-infected mice when compared with mock mice. Furthermore, using EPAC1-knockout mice, we found that deletion of EPAC1 could suppress the formation of spatial proximal complex of talin-vinculin in rickettsial infections. In addition, we observed increased colocalization between spatial proximity of talin-vinculin and filamentous actin-specific phalloidin staining in single survival mouse from an ordinarily lethal dose of rickettsial or Ebola virus infection. These findings may help to delineate a fresh insight into the mechanisms underlying liver specific pathogenesis during infection with spotted fever rickettsia or Ebola virus in the mouse model.
Collapse
Affiliation(s)
- Yakun Liu
- 0000 0001 1547 9964grid.176731.5Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Jie Xiao
- 0000 0001 1547 9964grid.176731.5Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Ben Zhang
- 0000 0001 1547 9964grid.176731.5Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Thomas R. Shelite
- 0000 0001 1547 9964grid.176731.5Department of Internal Medicine, Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Zhengchen Su
- 0000 0001 1547 9964grid.176731.5Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Qing Chang
- 0000 0001 1547 9964grid.176731.5Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Barbara Judy
- 0000 0001 1547 9964grid.176731.5Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Xiang Li
- 0000 0001 1547 9964grid.176731.5Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Aleksandra Drelich
- 0000 0001 1547 9964grid.176731.5Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Jiani Bei
- 0000 0001 1547 9964grid.176731.5Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 USA ,0000 0004 0532 1428grid.265231.1Present Address: Life Science Department, Tunghai University, Taichung City, Taiwan
| | - Yixuan Zhou
- 0000 0001 1547 9964grid.176731.5Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 USA ,0000 0004 0369 1599grid.411525.6Present Address: Department of Cardiovascular Surgery, Changhai Hospital, Shanghai, China
| | - Junying Zheng
- 0000 0001 1547 9964grid.176731.5Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Yang Jin
- 0000 0004 1936 7558grid.189504.1Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, MA USA
| | - Shannan L. Rossi
- 0000 0001 1547 9964grid.176731.5Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Shao-Jun Tang
- 0000 0001 1547 9964grid.176731.5Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Maki Wakamiya
- 0000 0001 1547 9964grid.176731.5Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Tais Saito
- 0000 0001 1547 9964grid.176731.5Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Thomas Ksiazek
- 0000 0001 1547 9964grid.176731.5Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Bhupendra Kaphalia
- 0000 0001 1547 9964grid.176731.5Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Bin Gong
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
14
|
Luchowska-Stańska U, Morgan D, Yarwood SJ, Barker G. Selective small-molecule EPAC activators. Biochem Soc Trans 2019; 47:1415-1427. [PMID: 31671184 PMCID: PMC6824682 DOI: 10.1042/bst20190254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/22/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023]
Abstract
The cellular signalling enzymes, EPAC1 and EPAC2, have emerged as key intracellular sensors of the secondary messenger cyclic 3',5'-adenosine monophosphate (cyclic adenosine monophosphate) alongside protein kinase A. Interest has been galvanised in recent years thanks to the emergence of these species as potential targets for new cardiovascular disease therapies, including vascular inflammation and insulin resistance in vascular endothelial cells. We herein summarise the current state-of-the-art in small-molecule EPAC activity modulators, including cyclic nucleotides, sulphonylureas, and N-acylsulphonamides.
Collapse
Affiliation(s)
- Urszula Luchowska-Stańska
- Institute of Biological Chemistry, Biophysics, and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | - David Morgan
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | - Stephen J. Yarwood
- Institute of Biological Chemistry, Biophysics, and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | - Graeme Barker
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| |
Collapse
|
15
|
A Diacylglycerol Kinase Inhibitor, R-59-022, Blocks Filovirus Internalization in Host Cells. Viruses 2019; 11:v11030206. [PMID: 30832223 PMCID: PMC6466206 DOI: 10.3390/v11030206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 01/21/2023] Open
Abstract
Filoviruses, such as Ebola virus (EBOV) and Marburg virus, are causative agents of unpredictable outbreaks of severe hemorrhagic fevers in humans and non-human primates. For infection, filoviral particles need to be internalized and delivered to intracellular vesicles containing cathepsin proteases and the viral receptor Niemann-Pick C1. Previous studies have shown that EBOV triggers macropinocytosis of the viral particles in a glycoprotein (GP)-dependent manner, but the molecular events required for filovirus internalization remain mostly unknown. Here we report that the diacylglycerol kinase inhibitor, R-59-022, blocks EBOV GP-mediated entry into Vero cells and bone marrow-derived macrophages. Investigation of the mode of action of the inhibitor revealed that it blocked an early step in entry, more specifically, the internalization of the viral particles via macropinocytosis. Finally, R-59-022 blocked viral entry mediated by a panel of pathogenic filovirus GPs and inhibited growth of replicative Ebola virus. Taken together, our studies suggest that R-59-022 could be used as a tool to investigate macropinocytic uptake of filoviruses and could be a starting point for the development of pan-filoviral therapeutics.
Collapse
|
16
|
Yu S, He X, Drelich A, Judy B, Chang Q, Cao S, Ksiazek T, Xu Z, Gong B. A practical strategy for immunofluorescent detecting multiple targets in mouse tissues without restrictions on the host specious resources of the primary antibodies. Pathol Res Pract 2019; 215:1049-1053. [PMID: 30846415 DOI: 10.1016/j.prp.2019.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/26/2019] [Accepted: 02/26/2019] [Indexed: 02/06/2023]
Abstract
Commercial deficiency of practical system to label multiple targets in experimental mouse tissues significantly hinders the feasibility to study the potential association between/among multiple targets using tissue-based immunofluorescence (IF) staining. We have developed a new protocol to do dual - labeling immunofluorescences on mouse tissues by combining direct and indirect immunofluorescence, making it possible to use commercial antibodies from the same specious (rabbit) to detect multiple targets in formalin-fixed paraffin-embedded (FFPE) archival mouse tissues simultaneously. This method applies indirect immunofluorescence to assess the first antigen in mouse tissues by using a rabbit anti-mouse polyclonal antibody and goat anti-rabbit antibody. After that, normal rabbit serum was employed to blocking the free binding sites of the previous antibodies. Direct immunofluorescence was used to assess the second antigen by a commercial kit-labeled rabbit anti-human (mouse) antibody at different emission wavelength. At last, cell nuclei were co-stained by DAPI. The outcomes demonstrated that this protocol obtain promising signals of both antigens and the nuclei. Moreover, this method also works on infection disease models in which samples are often over fixed due to biosafety rules.
Collapse
Affiliation(s)
- Shangyi Yu
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Cardiovascular Surgery, Shanghai Changhai Hospital, Shanghai 200433, China.
| | - Xi He
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Cardiovascular Surgery, Shanghai Changhai Hospital, Shanghai 200433, China.
| | - Aleksandra Drelich
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Barbara Judy
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Qing Chang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Shuhui Cao
- Department of Radiology, Shanghai Changhai Hospital, Shanghai 200433, China.
| | - Thomas Ksiazek
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Zhiyun Xu
- Department of Cardiovascular Surgery, Shanghai Changhai Hospital, Shanghai 200433, China.
| | - Bin Gong
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|