1
|
Woolsey C, Geisbert TW, Cross RW. Evaluation of Vaccines and Therapeutics Against Marburg Virus in Nonhuman Primate Models. Methods Mol Biol 2025; 2877:297-315. [PMID: 39585629 DOI: 10.1007/978-1-0716-4256-6_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Marburg virus (MARV) has caused sporadic outbreaks of severe hemorrhagic fever in Africa in humans and nonhuman primates (NHPs) and has the potential to be used as a biological weapon. Currently, there are no licensed vaccines or therapeutics to respond to outbreaks or deliberate misuse. Vaccine and therapeutic efficacy testing against MARV requires animal models that accurately mimic human disease. In vitro testing in cell culture cannot appropriately model the complex immunological host responses required to accurately predict efficacy in humans, which will ultimately be required for licensure of a medical countermeasure (MCM). While small animal models for MARV have been valuable for dissecting disease processes and the screening of vaccine and drug candidates, there are several caveats to their use including required adaptation of the virus, lack of host-specific reagents, or the need of an immunocompromised host. Conversely, the NHP MARV disease model addresses all shortcomings of small animal models and closely recapitulates all hallmark features of human disease. As such, NHPs have served as the "gold standard" for testing filovirus MCMs and will most likely be required for regulatory approval. Here, we describe the use of NHPs for vaccine and therapeutic evaluation against MARV.
Collapse
Affiliation(s)
- Courtney Woolsey
- Galveston National Laboratory and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Thomas W Geisbert
- Galveston National Laboratory and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
| | - Robert W Cross
- Galveston National Laboratory and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
2
|
Zumbrun EE, Garvey CB, Wells JB, Lynn GC, Van Tongeren S, Steffens JT, Wetzel KS, Gomba LM, O’Brien KA, Rossi FD, Zeng X, Lee ED, Raymond JLW, Hoffman DA, Jay AN, Brown ES, Kallgren PA, Norris SL, Cantey-Kiser J, Kudiya H, Arthur C, Blair C, Babusis D, Chu VC, Singh B, Bannister R, Porter DP, Cihlar T, Dye JM. Characterization of the Cynomolgus Macaque Model of Marburg Virus Disease and Assessment of Timing for Therapeutic Treatment Testing. Viruses 2023; 15:2335. [PMID: 38140576 PMCID: PMC10748006 DOI: 10.3390/v15122335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 12/24/2023] Open
Abstract
Marburg virus (MARV) causes severe disease and high mortality in humans. The objective of this study was to characterize disease manifestations and pathogenesis in cynomolgus macaques exposed to MARV. The results of this natural history study may be used to identify features of MARV disease useful in defining the ideal treatment initiation time for subsequent evaluations of investigational therapeutics using this model. Twelve cynomolgus macaques were exposed to a target dose of 1000 plaque-forming units MARV by the intramuscular route, and six control animals were mock-exposed. The primary endpoint of this study was survival to Day 28 post-inoculation (PI). Anesthesia events were minimized with the use of central venous catheters for periodic blood collection, and temperature and activity were continuously monitored by telemetry. All mock-exposed animals remained healthy for the duration of the study. All 12 MARV-exposed animals (100%) became infected, developed illness, and succumbed on Days 8-10 PI. On Day 4 PI, 11 of the 12 MARV-exposed animals had statistically significant temperature elevations over baseline. Clinically observable signs of MARV disease first appeared on Day 5 PI, when 6 of the 12 animals exhibited reduced responsiveness. Ultimately, systemic inflammation, coagulopathy, and direct cytopathic effects of MARV all contributed to multiorgan dysfunction, organ failure, and death or euthanasia of all MARV-exposed animals. Manifestations of MARV disease, including fever, systemic viremia, lymphocytolysis, coagulopathy, and hepatocellular damage, could be used as triggers for initiation of treatment in future therapeutic efficacy studies.
Collapse
Affiliation(s)
- Elizabeth E. Zumbrun
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.B.G.); (J.B.W.); (G.C.L.); (S.V.T.); (J.T.S.); (K.S.W.); (L.M.G.); (K.A.O.); (F.D.R.); (X.Z.); (E.D.L.); (J.L.W.R.); (D.A.H.); (A.N.J.); (E.S.B.); (P.A.K.); (S.L.N.); (J.M.D.)
| | - Carly B. Garvey
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.B.G.); (J.B.W.); (G.C.L.); (S.V.T.); (J.T.S.); (K.S.W.); (L.M.G.); (K.A.O.); (F.D.R.); (X.Z.); (E.D.L.); (J.L.W.R.); (D.A.H.); (A.N.J.); (E.S.B.); (P.A.K.); (S.L.N.); (J.M.D.)
- Geneva Foundation, Tacoma, WA 98402, USA
| | - Jay B. Wells
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.B.G.); (J.B.W.); (G.C.L.); (S.V.T.); (J.T.S.); (K.S.W.); (L.M.G.); (K.A.O.); (F.D.R.); (X.Z.); (E.D.L.); (J.L.W.R.); (D.A.H.); (A.N.J.); (E.S.B.); (P.A.K.); (S.L.N.); (J.M.D.)
- Geneva Foundation, Tacoma, WA 98402, USA
| | - Ginger C. Lynn
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.B.G.); (J.B.W.); (G.C.L.); (S.V.T.); (J.T.S.); (K.S.W.); (L.M.G.); (K.A.O.); (F.D.R.); (X.Z.); (E.D.L.); (J.L.W.R.); (D.A.H.); (A.N.J.); (E.S.B.); (P.A.K.); (S.L.N.); (J.M.D.)
- Geneva Foundation, Tacoma, WA 98402, USA
| | - Sean Van Tongeren
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.B.G.); (J.B.W.); (G.C.L.); (S.V.T.); (J.T.S.); (K.S.W.); (L.M.G.); (K.A.O.); (F.D.R.); (X.Z.); (E.D.L.); (J.L.W.R.); (D.A.H.); (A.N.J.); (E.S.B.); (P.A.K.); (S.L.N.); (J.M.D.)
- Geneva Foundation, Tacoma, WA 98402, USA
| | - Jesse T. Steffens
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.B.G.); (J.B.W.); (G.C.L.); (S.V.T.); (J.T.S.); (K.S.W.); (L.M.G.); (K.A.O.); (F.D.R.); (X.Z.); (E.D.L.); (J.L.W.R.); (D.A.H.); (A.N.J.); (E.S.B.); (P.A.K.); (S.L.N.); (J.M.D.)
- Geneva Foundation, Tacoma, WA 98402, USA
| | - Kelly S. Wetzel
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.B.G.); (J.B.W.); (G.C.L.); (S.V.T.); (J.T.S.); (K.S.W.); (L.M.G.); (K.A.O.); (F.D.R.); (X.Z.); (E.D.L.); (J.L.W.R.); (D.A.H.); (A.N.J.); (E.S.B.); (P.A.K.); (S.L.N.); (J.M.D.)
- Geneva Foundation, Tacoma, WA 98402, USA
| | - Laura M. Gomba
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.B.G.); (J.B.W.); (G.C.L.); (S.V.T.); (J.T.S.); (K.S.W.); (L.M.G.); (K.A.O.); (F.D.R.); (X.Z.); (E.D.L.); (J.L.W.R.); (D.A.H.); (A.N.J.); (E.S.B.); (P.A.K.); (S.L.N.); (J.M.D.)
- Geneva Foundation, Tacoma, WA 98402, USA
| | - Kristan A. O’Brien
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.B.G.); (J.B.W.); (G.C.L.); (S.V.T.); (J.T.S.); (K.S.W.); (L.M.G.); (K.A.O.); (F.D.R.); (X.Z.); (E.D.L.); (J.L.W.R.); (D.A.H.); (A.N.J.); (E.S.B.); (P.A.K.); (S.L.N.); (J.M.D.)
- Geneva Foundation, Tacoma, WA 98402, USA
| | - Franco D. Rossi
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.B.G.); (J.B.W.); (G.C.L.); (S.V.T.); (J.T.S.); (K.S.W.); (L.M.G.); (K.A.O.); (F.D.R.); (X.Z.); (E.D.L.); (J.L.W.R.); (D.A.H.); (A.N.J.); (E.S.B.); (P.A.K.); (S.L.N.); (J.M.D.)
| | - Xiankun Zeng
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.B.G.); (J.B.W.); (G.C.L.); (S.V.T.); (J.T.S.); (K.S.W.); (L.M.G.); (K.A.O.); (F.D.R.); (X.Z.); (E.D.L.); (J.L.W.R.); (D.A.H.); (A.N.J.); (E.S.B.); (P.A.K.); (S.L.N.); (J.M.D.)
| | - Eric D. Lee
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.B.G.); (J.B.W.); (G.C.L.); (S.V.T.); (J.T.S.); (K.S.W.); (L.M.G.); (K.A.O.); (F.D.R.); (X.Z.); (E.D.L.); (J.L.W.R.); (D.A.H.); (A.N.J.); (E.S.B.); (P.A.K.); (S.L.N.); (J.M.D.)
| | - Jo Lynne W. Raymond
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.B.G.); (J.B.W.); (G.C.L.); (S.V.T.); (J.T.S.); (K.S.W.); (L.M.G.); (K.A.O.); (F.D.R.); (X.Z.); (E.D.L.); (J.L.W.R.); (D.A.H.); (A.N.J.); (E.S.B.); (P.A.K.); (S.L.N.); (J.M.D.)
| | - Diana A. Hoffman
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.B.G.); (J.B.W.); (G.C.L.); (S.V.T.); (J.T.S.); (K.S.W.); (L.M.G.); (K.A.O.); (F.D.R.); (X.Z.); (E.D.L.); (J.L.W.R.); (D.A.H.); (A.N.J.); (E.S.B.); (P.A.K.); (S.L.N.); (J.M.D.)
| | - Alexandra N. Jay
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.B.G.); (J.B.W.); (G.C.L.); (S.V.T.); (J.T.S.); (K.S.W.); (L.M.G.); (K.A.O.); (F.D.R.); (X.Z.); (E.D.L.); (J.L.W.R.); (D.A.H.); (A.N.J.); (E.S.B.); (P.A.K.); (S.L.N.); (J.M.D.)
| | - Elizabeth S. Brown
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.B.G.); (J.B.W.); (G.C.L.); (S.V.T.); (J.T.S.); (K.S.W.); (L.M.G.); (K.A.O.); (F.D.R.); (X.Z.); (E.D.L.); (J.L.W.R.); (D.A.H.); (A.N.J.); (E.S.B.); (P.A.K.); (S.L.N.); (J.M.D.)
- Geneva Foundation, Tacoma, WA 98402, USA
| | - Paul A. Kallgren
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.B.G.); (J.B.W.); (G.C.L.); (S.V.T.); (J.T.S.); (K.S.W.); (L.M.G.); (K.A.O.); (F.D.R.); (X.Z.); (E.D.L.); (J.L.W.R.); (D.A.H.); (A.N.J.); (E.S.B.); (P.A.K.); (S.L.N.); (J.M.D.)
| | - Sarah L. Norris
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.B.G.); (J.B.W.); (G.C.L.); (S.V.T.); (J.T.S.); (K.S.W.); (L.M.G.); (K.A.O.); (F.D.R.); (X.Z.); (E.D.L.); (J.L.W.R.); (D.A.H.); (A.N.J.); (E.S.B.); (P.A.K.); (S.L.N.); (J.M.D.)
| | | | - Humza Kudiya
- Gilead Sciences, Foster City, CA 94404, USA; (H.K.); (C.A.); (C.B.); (D.B.); (V.C.C.); (B.S.); (R.B.); (D.P.P.); (T.C.)
| | - Chris Arthur
- Gilead Sciences, Foster City, CA 94404, USA; (H.K.); (C.A.); (C.B.); (D.B.); (V.C.C.); (B.S.); (R.B.); (D.P.P.); (T.C.)
| | - Christiana Blair
- Gilead Sciences, Foster City, CA 94404, USA; (H.K.); (C.A.); (C.B.); (D.B.); (V.C.C.); (B.S.); (R.B.); (D.P.P.); (T.C.)
| | - Darius Babusis
- Gilead Sciences, Foster City, CA 94404, USA; (H.K.); (C.A.); (C.B.); (D.B.); (V.C.C.); (B.S.); (R.B.); (D.P.P.); (T.C.)
| | - Victor C. Chu
- Gilead Sciences, Foster City, CA 94404, USA; (H.K.); (C.A.); (C.B.); (D.B.); (V.C.C.); (B.S.); (R.B.); (D.P.P.); (T.C.)
| | - Bali Singh
- Gilead Sciences, Foster City, CA 94404, USA; (H.K.); (C.A.); (C.B.); (D.B.); (V.C.C.); (B.S.); (R.B.); (D.P.P.); (T.C.)
| | - Roy Bannister
- Gilead Sciences, Foster City, CA 94404, USA; (H.K.); (C.A.); (C.B.); (D.B.); (V.C.C.); (B.S.); (R.B.); (D.P.P.); (T.C.)
| | - Danielle P. Porter
- Gilead Sciences, Foster City, CA 94404, USA; (H.K.); (C.A.); (C.B.); (D.B.); (V.C.C.); (B.S.); (R.B.); (D.P.P.); (T.C.)
| | - Tomas Cihlar
- Gilead Sciences, Foster City, CA 94404, USA; (H.K.); (C.A.); (C.B.); (D.B.); (V.C.C.); (B.S.); (R.B.); (D.P.P.); (T.C.)
| | - John M. Dye
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.B.G.); (J.B.W.); (G.C.L.); (S.V.T.); (J.T.S.); (K.S.W.); (L.M.G.); (K.A.O.); (F.D.R.); (X.Z.); (E.D.L.); (J.L.W.R.); (D.A.H.); (A.N.J.); (E.S.B.); (P.A.K.); (S.L.N.); (J.M.D.)
| |
Collapse
|
3
|
Finch CL, King TH, Alfson KJ, Albanese KA, Smith JNP, Smock P, Jakubik J, Goez-Gazi Y, Gazi M, Dutton JW, Clemmons EA, Mattix ME, Carrion R, Rudge T, Ridenour A, Woodin SF, Hunegnaw R, Sullivan NJ, Xu R. Single-Shot ChAd3-MARV Vaccine in Modified Formulation Buffer Shows 100% Protection of NHPs. Vaccines (Basel) 2022; 10:1935. [PMID: 36423030 PMCID: PMC9694189 DOI: 10.3390/vaccines10111935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/17/2022] Open
Abstract
Marburg virus (MARV) is a virus of high human consequence with a case fatality rate of 24-88%. The global health and national security risks posed by Marburg virus disease (MVD) underscore the compelling need for a prophylactic vaccine, but no candidate has yet reached regulatory approval. Here, we evaluate a replication-defective chimpanzee adenovirus type 3 (ChAd3)-vectored MARV Angola glycoprotein (GP)-expressing vaccine against lethal MARV challenge in macaques. The ChAd3 platform has previously been reported to protect against the MARV-related viruses, Ebola virus (EBOV) and Sudan virus (SUDV), and MARV itself in macaques, with immunogenicity demonstrated in macaques and humans. In this study, we present data showing 100% protection against MARV Angola challenge (versus 0% control survival) and associated production of GP-specific IgGs generated by the ChAd3-MARV vaccine following a single dose of 1 × 1011 virus particles prepared in a new clinical formulation buffer designed to enhance product stability. These results are consistent with previously described data using the same vaccine in a different formulation and laboratory, demonstrating the reproducible and robust protective efficacy elicited by this promising vaccine for the prevention of MVD. Additionally, a qualified anti-GP MARV IgG ELISA was developed as a critical pre-requisite for clinical advancement and regulatory approval.
Collapse
Affiliation(s)
| | | | | | | | | | - Paul Smock
- Sabin Vaccine Institute, Washington, DC 20037, USA
| | | | - Yenny Goez-Gazi
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Michal Gazi
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - John W. Dutton
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | | | - Marc E. Mattix
- Nonclinical Pathology Services, LLC, Medina, OH 44256, USA
| | - Ricardo Carrion
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Thomas Rudge
- Battelle Biomedical Research Center, Madison County, OH 43162, USA
| | - Alex Ridenour
- Battelle Biomedical Research Center, Madison County, OH 43162, USA
| | | | - Ruth Hunegnaw
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nancy J. Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rong Xu
- Clover Biopharmaceuticals, Boston, MA 02109, USA
| |
Collapse
|
4
|
Cross RW, Longini IM, Becker S, Bok K, Boucher D, Carroll MW, Díaz JV, Dowling WE, Draghia-Akli R, Duworko JT, Dye JM, Egan MA, Fast P, Finan A, Finch C, Fleming TR, Fusco J, Geisbert TW, Griffiths A, Günther S, Hensley LE, Honko A, Hunegnaw R, Jakubik J, Ledgerwood J, Luhn K, Matassov D, Meshulam J, Nelson EV, Parks CL, Rustomjee R, Safronetz D, Schwartz LM, Smith D, Smock P, Sow Y, Spiropoulou CF, Sullivan NJ, Warfield KL, Wolfe D, Woolsey C, Zahn R, Henao-Restrepo AM, Muñoz-Fontela C, Marzi A. An introduction to the Marburg virus vaccine consortium, MARVAC. PLoS Pathog 2022; 18:e1010805. [PMID: 36227853 PMCID: PMC9560149 DOI: 10.1371/journal.ppat.1010805] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The emergence of Marburg virus (MARV) in Guinea and Ghana triggered the assembly of the MARV vaccine "MARVAC" consortium representing leaders in the field of vaccine research and development aiming to facilitate a rapid response to this infectious disease threat. Here, we discuss current progress, challenges, and future directions for MARV vaccines.
Collapse
Affiliation(s)
- Robert W. Cross
- Galveston National Laboratory, and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Ira M. Longini
- Department of Biostatistics, University of Florida, Gainesville, Florida, United States of America
| | - Stephan Becker
- Institute for Virology, Philipps-Universität Marburg, Marburg, Germany
| | - Karin Bok
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David Boucher
- U.S. COVID-19 Response at U.S. Department of Health and Human Services, Washington, DC, United States of America
| | - Miles W. Carroll
- Pandemic Sciences Institute, Nuffield Department of Medicine, Oxford University, United Kingdom
| | | | - William E. Dowling
- Coalition for Epidemic Preparedness Innovations (CEPI), Washington, Washington, DC, United States of America
| | - Ruxandra Draghia-Akli
- Johnson & Johnson—Global Public Health Research and Development, Spring House, Pennsylvania, United States of America
| | - James T. Duworko
- Partnership for Research on Infectious Diseases in Liberia, Monrovia, Liberia
| | - John M. Dye
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Michael A. Egan
- Auro Vaccines, Pearl River, New York, United States of America
| | | | - Amy Finan
- Sabin vaccine Institute, Washington, DC, United States of America
| | - Courtney Finch
- Sabin vaccine Institute, Washington, DC, United States of America
| | - Thomas R. Fleming
- University of Washington, Seattle, Washington, United States of America
| | - Joan Fusco
- Public Health Vaccines, Cambridge, Massachusetts, United States of America
| | - Thomas W. Geisbert
- Galveston National Laboratory, and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Anthony Griffiths
- National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, Maryland, United States of America
| | - Stephan Günther
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Lisa E. Hensley
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, United States of America
| | - Anna Honko
- National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, Maryland, United States of America
| | - Ruth Hunegnaw
- Immune Biology of Retroviral Infection Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jocelyn Jakubik
- Sabin vaccine Institute, Washington, DC, United States of America
| | - Julie Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kerstin Luhn
- Janssen Vaccines & Prevention, Leiden, the Netherlands
| | | | | | - Emily V. Nelson
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - Roxana Rustomjee
- Sabin vaccine Institute, Washington, DC, United States of America
| | - David Safronetz
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | | | - Dean Smith
- Bacterial and Combination Vaccines, Public Health Agency of Canada, Ottawa, Ontario, Canada
| | - Paul Smock
- Sabin vaccine Institute, Washington, DC, United States of America
| | - Ydrissa Sow
- Collaborative Clinical Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Christina F. Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Nancy J. Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kelly L. Warfield
- Emergent BioSolutions, Gaithersburg, Maryland, United States of America
| | - Daniel Wolfe
- Bacterial and Combination Vaccines, Public Health Agency of Canada, Ottawa, Ontario, Canada
| | - Courtney Woolsey
- Galveston National Laboratory, and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Roland Zahn
- Janssen Vaccines & Prevention, Leiden, the Netherlands
| | | | | | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| |
Collapse
|
5
|
Cooper CL, Morrow G, Yuan M, Coleman JW, Hou F, Reiserova L, Li SL, Wagner D, Carpov A, Wallace-Selman O, Valentin K, Choi Y, Wilson A, Kilianski A, Sayeed E, Agans KN, Borisevich V, Cross RW, Geisbert TW, Feinberg MB, Gupta SB, Parks CL. Nonhuman Primates Are Protected against Marburg Virus Disease by Vaccination with a Vesicular Stomatitis Virus Vector-Based Vaccine Prepared under Conditions to Allow Advancement to Human Clinical Trials. Vaccines (Basel) 2022; 10:1582. [PMID: 36298451 PMCID: PMC9610558 DOI: 10.3390/vaccines10101582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Vaccines are needed to disrupt or prevent continued outbreaks of filoviruses in humans across Western and Central Africa, including outbreaks of Marburg virus (MARV). As part of a filovirus vaccine product development plan, it is important to investigate dose response early in preclinical development to identify the dose range that may be optimal for safety, immunogenicity, and efficacy, and perhaps demonstrate that using lower doses is feasible, which will improve product access. To determine the efficacious dose range for a manufacturing-ready live recombinant vesicular stomatitis virus vaccine vector (rVSV∆G-MARV-GP) encoding the MARV glycoprotein (GP), a dose-range study was conducted in cynomolgus macaques. Results showed that a single intramuscular injection with as little as 200 plaque-forming units (PFUs) was 100% efficacious against lethality and prevented development of viremia and clinical pathologies associated with MARV Angola infection. Across the vaccine doses tested, there was nearly a 2000-fold range of anti-MARV glycoprotein (GP) serum IgG titers with seroconversion detectable even at the lowest doses. Virus-neutralizing serum antibodies also were detected in animals vaccinated with the higher vaccine doses indicating that vaccination induced functional antibodies, but that the assay was a less sensitive indicator of seroconversion. Collectively, the data indicates that a relatively wide range of anti-GP serum IgG titers are observed in animals that are protected from disease implying that seroconversion is positively associated with efficacy, but that more extensive immunologic analyses on samples collected from our study as well as future preclinical studies will be valuable in identifying additional immune responses correlated with protection that can serve as markers to monitor in human trials needed to generate data that can support vaccine licensure in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Krystle N. Agans
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Viktoriya Borisevich
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Robert W. Cross
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Thomas W. Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | |
Collapse
|
6
|
Finch CL, Dowling WE, King TH, Martinez C, Nguyen BV, Roozendaal R, Rustomjee R, Skiadopoulos MH, Vert-Wong E, Yellowlees A, Sullivan NJ. Bridging Animal and Human Data in Pursuit of Vaccine Licensure. Vaccines (Basel) 2022; 10:1384. [PMID: 36146462 PMCID: PMC9503666 DOI: 10.3390/vaccines10091384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/03/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
The FDA Animal Rule was devised to facilitate approval of candidate vaccines and therapeutics using animal survival data when human efficacy studies are not practical or ethical. This regulatory pathway is critical for candidates against pathogens with high case fatality rates that prohibit human challenge trials, as well as candidates with low and sporadic incidences of outbreaks that make human field trials difficult. Important components of a vaccine development plan for Animal Rule licensure are the identification of an immune correlate of protection and immunobridging to humans. The relationship of vaccine-induced immune responses to survival after vaccination and challenge must be established in validated animal models and then used to infer predictive vaccine efficacy in humans via immunobridging. The Sabin Vaccine Institute is pursuing licensure for candidate filovirus vaccines via the Animal Rule and has convened meetings of key opinion leaders and subject matter experts to define fundamental components for vaccine licensure in the absence of human efficacy data. Here, filoviruses are used as examples to review immune correlates of protection and immunobridging. The points presented herein reflect the presentations and discussions during the second meeting held in October 2021 and are intended to address important considerations for developing immunobridging strategies.
Collapse
Affiliation(s)
| | - William E. Dowling
- Coalition for Epidemic Preparedness Innovations, Washington, DC 20006, USA
| | | | | | - Bai V. Nguyen
- Biomedical Advanced Research and Development Authority, Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC 20201, USA
| | - Ramon Roozendaal
- Janssen Vaccines and Prevention B.V., Leiden Archimedesweg 4, 2333 CN Leiden, The Netherlands
| | | | | | | | | | - Nancy J. Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Marzi A, Jankeel A, Menicucci AR, Callison J, O’Donnell KL, Feldmann F, Pinski AN, Hanley PW, Messaoudi I. Single Dose of a VSV-Based Vaccine Rapidly Protects Macaques From Marburg Virus Disease. Front Immunol 2021; 12:774026. [PMID: 34777392 PMCID: PMC8578864 DOI: 10.3389/fimmu.2021.774026] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022] Open
Abstract
Marburg virus (MARV) is a member of the filovirus family that causes hemorrhagic disease with high case fatality rates. MARV is on the priority list of the World Health Organization for countermeasure development highlighting its potential impact on global public health. We developed a vesicular stomatitis virus (VSV)-based vaccine expressing the MARV glycoprotein (VSV-MARV) and previously demonstrated uniform protection of nonhuman primates (NHPs) with a single dose. Here, we investigated the fast-acting potential of this vaccine by challenging NHPs with MARV 14, 7 or 3 days after a single dose vaccination with VSV-MARV. We found that 100% of the animals survived when vaccinated 7 or 14 days and 75% of the animal survived when vaccinated 3 days prior to lethal MARV challenge. Transcriptional analysis of whole blood samples indicated activation of B cells and antiviral defense after VSV-MARV vaccination. In the day -14 and -7 groups, limited transcriptional changes after challenge were observed with the exception of day 9 post-challenge in the day -7 group where we detected gene expression profiles indicative of a recall response. In the day -3 group, transcriptional analysis of samples from surviving NHPs revealed strong innate immune activation. In contrast, the animal that succumbed to disease in this group lacked signatures of antiviral immunity. In summary, our data demonstrate that the VSV-MARV is a fast-acting vaccine suitable for the use in emergency situations like disease outbreaks in Africa.
Collapse
Affiliation(s)
- Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Allen Jankeel
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Andrea R. Menicucci
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Julie Callison
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Kyle L. O’Donnell
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Amanda N. Pinski
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Patrick W. Hanley
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
8
|
Wolfe DN, Sabourin CL, Merchlinsky MJ, Florence WC, Wolfraim LA, Taylor KL, Ward LA. Selection of Filovirus Isolates for Vaccine Development Programs. Vaccines (Basel) 2021; 9:vaccines9091045. [PMID: 34579282 PMCID: PMC8471873 DOI: 10.3390/vaccines9091045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 01/25/2023] Open
Abstract
The continuing outbreaks of ebola virus disease highlight the ongoing threat posed by filoviruses. Fortunately, licensed vaccines and therapeutics are now available for Zaire ebolavirus. However, effective medical countermeasures, such as vaccines for other filoviruses such as Sudan ebolavirus and the Marburg virus, are presently in early stages of development and, in the absence of a large outbreak, would require regulatory approval via the U.S. Food and Drug Administration (FDA) Animal Rule. The selection of an appropriate animal model and virus challenge isolates for nonclinical studies are critical aspects of the development program. Here, we have focused on the recommendation of challenge isolates for Sudan ebolavirus and Marburg virus. Based on analyses led by the Filovirus Animal and Nonclinical Group (FANG) and considerations for strain selection under the FDA Guidance for the Animal Rule, we propose prototype virus isolates for use in nonclinical challenge studies.
Collapse
Affiliation(s)
- Daniel N. Wolfe
- U.S. Department of Health and Human Services (DHHS), Assistant Secretary for Preparedness and Response (ASPR), Biomedical Advanced Research and Development Authority (BARDA), Washington, DC 20201, USA;
- Correspondence: ; Tel.: +1-(202)-205-8968
| | - Carol L. Sabourin
- Tunnell Government Services, Inc., Supporting Biomedical Advanced Research & Development Authority (BARDA), Assistant Secretary for Preparedness and Response (ASPR), U.S. Department of Health and Human Services (DHHS), Washington, DC 20201, USA;
| | - Michael J. Merchlinsky
- U.S. Department of Health and Human Services (DHHS), Assistant Secretary for Preparedness and Response (ASPR), Biomedical Advanced Research and Development Authority (BARDA), Washington, DC 20201, USA;
| | - William C. Florence
- U.S. Department of Health and Human Services (DHHS), National Institutes of Health (NIH), National Institute of Allergy and Infectious Diseases (NIAID), Rockville, MD 20852, USA; (W.C.F.); (L.A.W.); (K.L.T.)
| | - Larry A. Wolfraim
- U.S. Department of Health and Human Services (DHHS), National Institutes of Health (NIH), National Institute of Allergy and Infectious Diseases (NIAID), Rockville, MD 20852, USA; (W.C.F.); (L.A.W.); (K.L.T.)
| | - Kimberly L. Taylor
- U.S. Department of Health and Human Services (DHHS), National Institutes of Health (NIH), National Institute of Allergy and Infectious Diseases (NIAID), Rockville, MD 20852, USA; (W.C.F.); (L.A.W.); (K.L.T.)
| | - Lucy A. Ward
- U.S. Department of Defense (DOD), Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense (JPEO-CBRND), Joint Project Manager for Chemical, Biological, Radiological, and Nuclear Medical (JPM CBRN Medical), Fort Detrick, MD 21702, USA;
| |
Collapse
|
9
|
Opportunities for Refinement of Non-Human Primate Vaccine Studies. Vaccines (Basel) 2021; 9:vaccines9030284. [PMID: 33808708 PMCID: PMC8003535 DOI: 10.3390/vaccines9030284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
Non-human primates (NHPs) are used extensively in the development of vaccines and therapeutics for human disease. High standards in the design, conduct, and reporting of NHP vaccine studies are crucial for maximizing their scientific value and translation, and for making efficient use of precious resources. A key aspect is consideration of the 3Rs principles of replacement, reduction, and refinement. Funders of NHP research are placing increasing emphasis on the 3Rs, helping to ensure such studies are legitimate, ethical, and high-quality. The UK's National Centre for the 3Rs (NC3Rs) and the Coalition for Epidemic Preparedness Innovations (CEPI) have collaborated on a range of initiatives to support vaccine developers to implement the 3Rs, including hosting an international workshop in 2019. The workshop identified opportunities to refine NHP vaccine studies to minimize harm and improve welfare, which can yield better quality, more reproducible data. Careful animal selection, social housing, extensive environmental enrichment, training for cooperation with husbandry and procedures, provision of supportive care, and implementation of early humane endpoints are features of contemporary good practice that should and can be adopted more widely. The requirement for high-level biocontainment for some pathogens imposes challenges to implementing refinement but these are not insurmountable.
Collapse
|
10
|
Porter DP, Weidner JM, Gomba L, Bannister R, Blair C, Jordan R, Wells J, Wetzel K, Garza N, Van Tongeren S, Donnelly G, Steffens J, Moreau A, Bearss J, Lee E, Bavari S, Cihlar T, Warren TK. Remdesivir (GS-5734) Is Efficacious in Cynomolgus Macaques Infected With Marburg Virus. J Infect Dis 2020; 222:1894-1901. [PMID: 32479636 DOI: 10.1093/infdis/jiaa290] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/26/2020] [Indexed: 12/25/2022] Open
Abstract
Marburg virus (MARV) is a filovirus with documented human case-fatality rates of up to 90%. Here, we evaluated the therapeutic efficacy of remdesivir (GS-5734) in nonhuman primates experimentally infected with MARV. Beginning 4 or 5 days post inoculation, cynomolgus macaques were treated once daily for 12 days with vehicle, 5 mg/kg remdesivir, or a 10-mg/kg loading dose followed by 5 mg/kg remdesivir. All vehicle-control animals died, whereas 83% of animals receiving a 10-mg/kg loading dose of remdesivir survived, as did 50% of animals receiving a 5-mg/kg remdesivir regimen. Remdesivir-treated animals exhibited improved clinical scores, lower plasma viral RNA, and improved markers of kidney function, liver function, and coagulopathy versus vehicle-control animals. The small molecule remdesivir showed therapeutic efficacy in this Marburg virus disease model with treatment initiation 5 days post inoculation, supporting further assessment of remdesivir for the treatment of Marburg virus disease in humans.
Collapse
Affiliation(s)
| | - Jessica M Weidner
- Geneva Foundation, Tacoma, Washington, USA.,United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Laura Gomba
- Geneva Foundation, Tacoma, Washington, USA.,United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | | | | | | | - Jay Wells
- Geneva Foundation, Tacoma, Washington, USA.,United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Kelly Wetzel
- Geneva Foundation, Tacoma, Washington, USA.,United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Nicole Garza
- Geneva Foundation, Tacoma, Washington, USA.,United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Sean Van Tongeren
- Geneva Foundation, Tacoma, Washington, USA.,United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Ginger Donnelly
- Geneva Foundation, Tacoma, Washington, USA.,United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Jesse Steffens
- Geneva Foundation, Tacoma, Washington, USA.,United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Alicia Moreau
- United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Jeremy Bearss
- United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Eric Lee
- United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Sina Bavari
- United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Tomas Cihlar
- Gilead Sciences Inc., Foster City, California, USA
| | - Travis K Warren
- Geneva Foundation, Tacoma, Washington, USA.,United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| |
Collapse
|
11
|
Malherbe DC, Domi A, Hauser MJ, Meyer M, Gunn BM, Alter G, Bukreyev A, Guirakhoo F. Modified vaccinia Ankara vaccine expressing Marburg virus-like particles protects guinea pigs from lethal Marburg virus infection. NPJ Vaccines 2020; 5:78. [PMID: 32922962 PMCID: PMC7468113 DOI: 10.1038/s41541-020-00226-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/07/2020] [Indexed: 11/17/2022] Open
Abstract
We introduce a new vaccine platform against Marburg virus (MARV) combining the advantages of the immunogenicity of a highly attenuated vaccine vector (Modified Vaccinia Ankara, MVA) with the authentic conformation of virus-like particles (VLPs). Our vaccine, MVA–MARV–VLP, expresses the minimal components of MARV VLPs: the envelope glycoprotein GP and the matrix protein VP40. Electron microscopy confirmed self-assembly and budding of VLPs from infected cells. Prime/boost vaccination of guinea pigs with MVA–MARV–VLP-elicited MARV-specific binding and neutralizing antibody responses. Vaccination also induced Fc-mediated innate immune effector functions including activation of NK cells and antibody-dependent phagocytosis by neutrophils and monocytes. Inoculation of vaccinated animals with guinea pig-adapted MARV demonstrated 100% protection against death and disease with no viremia. Therefore, our vaccine platform, expressing two antigens resulting in assembly of VLPs in the native conformation in vaccinated hosts, can be used as a potent vaccine against MARV.
Collapse
Affiliation(s)
- Delphine C Malherbe
- Department of Pathology, University of Texas Medical Branch, Galveston, TX USA.,Galveston National Laboratory, Galveston, TX USA
| | | | | | - Michelle Meyer
- Department of Pathology, University of Texas Medical Branch, Galveston, TX USA.,Galveston National Laboratory, Galveston, TX USA
| | - Bronwyn M Gunn
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA USA
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, TX USA.,Galveston National Laboratory, Galveston, TX USA.,Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX USA
| | | |
Collapse
|
12
|
Amman BR, Bird BH, Bakarr IA, Bangura J, Schuh AJ, Johnny J, Sealy TK, Conteh I, Koroma AH, Foday I, Amara E, Bangura AA, Gbakima AA, Tremeau-Bravard A, Belaganahalli M, Dhanota J, Chow A, Ontiveros V, Gibson A, Turay J, Patel K, Graziano J, Bangura C, Kamanda ES, Osborne A, Saidu E, Musa J, Bangura D, Williams SMT, Wadsworth R, Turay M, Edwin L, Mereweather-Thompson V, Kargbo D, Bairoh FV, Kanu M, Robert W, Lungai V, Guetiya Wadoum RE, Coomber M, Kanu O, Jambai A, Kamara SM, Taboy CH, Singh T, Mazet JAK, Nichol ST, Goldstein T, Towner JS, Lebbie A. Isolation of Angola-like Marburg virus from Egyptian rousette bats from West Africa. Nat Commun 2020; 11:510. [PMID: 31980636 PMCID: PMC6981187 DOI: 10.1038/s41467-020-14327-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/19/2019] [Indexed: 11/22/2022] Open
Abstract
Marburg virus (MARV) causes sporadic outbreaks of severe Marburg virus disease (MVD). Most MVD outbreaks originated in East Africa and field studies in East Africa, South Africa, Zambia, and Gabon identified the Egyptian rousette bat (ERB; Rousettus aegyptiacus) as a natural reservoir. However, the largest recorded MVD outbreak with the highest case-fatality ratio happened in 2005 in Angola, where direct spillover from bats was not shown. Here, collaborative studies by the Centers for Disease Control and Prevention, Njala University, University of California, Davis USAID-PREDICT, and the University of Makeni identify MARV circulating in ERBs in Sierra Leone. PCR, antibody and virus isolation data from 1755 bats of 42 species shows active MARV infection in approximately 2.5% of ERBs. Phylogenetic analysis identifies MARVs that are similar to the Angola strain. These results provide evidence of MARV circulation in West Africa and demonstrate the value of pathogen surveillance to identify previously undetected threats.
Collapse
Affiliation(s)
- Brian R Amman
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA, 30329, USA
| | - Brian H Bird
- One Health Institute, School of Veterinary Medicine, University of California, 1089 Veterinary Medicine Drive VetMed 3B, Ground Floor West, Davis, CA, 95616, USA
| | - Ibrahim A Bakarr
- Department of Biological Sciences, Njala University, Njala, Sierra Leone
| | - James Bangura
- One Health Institute, School of Veterinary Medicine, University of California, 1089 Veterinary Medicine Drive VetMed 3B, Ground Floor West, Davis, CA, 95616, USA
- University of Makeni, Makeni, Sierra Leone
| | - Amy J Schuh
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA, 30329, USA
| | - Jonathan Johnny
- Department of Biological Sciences, Njala University, Njala, Sierra Leone
| | - Tara K Sealy
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA, 30329, USA
| | - Immah Conteh
- Department of Biological Sciences, Njala University, Njala, Sierra Leone
| | - Alusine H Koroma
- Department of Biological Sciences, Njala University, Njala, Sierra Leone
| | - Ibrahim Foday
- Department of Biological Sciences, Njala University, Njala, Sierra Leone
| | | | | | - Aiah A Gbakima
- Ministry of Technical and Higher Education, New England Ville, Freetown, Sierra Leone
| | | | | | - Jasjeet Dhanota
- One Health Institute, School of Veterinary Medicine, University of California, 1089 Veterinary Medicine Drive VetMed 3B, Ground Floor West, Davis, CA, 95616, USA
| | - Andrew Chow
- One Health Institute, School of Veterinary Medicine, University of California, 1089 Veterinary Medicine Drive VetMed 3B, Ground Floor West, Davis, CA, 95616, USA
| | - Victoria Ontiveros
- One Health Institute, School of Veterinary Medicine, University of California, 1089 Veterinary Medicine Drive VetMed 3B, Ground Floor West, Davis, CA, 95616, USA
| | - Alexandra Gibson
- One Health Institute, School of Veterinary Medicine, University of California, 1089 Veterinary Medicine Drive VetMed 3B, Ground Floor West, Davis, CA, 95616, USA
| | | | - Ketan Patel
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA, 30329, USA
| | - James Graziano
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA, 30329, USA
| | - Camilla Bangura
- Department of Biological Sciences, Njala University, Njala, Sierra Leone
| | - Emmanuel S Kamanda
- Department of Biological Sciences, Njala University, Njala, Sierra Leone
| | - Augustus Osborne
- Department of Biological Sciences, Njala University, Njala, Sierra Leone
| | - Emmanuel Saidu
- Department of Biological Sciences, Njala University, Njala, Sierra Leone
| | - Jonathan Musa
- Department of Biological Sciences, Njala University, Njala, Sierra Leone
| | - Doris Bangura
- Department of Biological Sciences, Njala University, Njala, Sierra Leone
| | | | - Richard Wadsworth
- Department of Biological Sciences, Njala University, Njala, Sierra Leone
| | | | | | | | | | | | | | | | | | | | | | - Osman Kanu
- University of Makeni, Makeni, Sierra Leone
| | - Amara Jambai
- Ministry of Health and Sanitation, Brookfields, Freetown, Sierra Leone
| | - Sorie M Kamara
- Ministry of Agriculture and Forestry, Brookfields, Freetown, Sierra Leone
| | - Celine H Taboy
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA, 30329, USA
| | - Tushar Singh
- Center for Global Health, Centers for Disease Control and Prevention, Freetown, Sierra Leone
| | - Jonna A K Mazet
- One Health Institute, School of Veterinary Medicine, University of California, 1089 Veterinary Medicine Drive VetMed 3B, Ground Floor West, Davis, CA, 95616, USA
| | - Stuart T Nichol
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA, 30329, USA
| | - Tracey Goldstein
- One Health Institute, School of Veterinary Medicine, University of California, 1089 Veterinary Medicine Drive VetMed 3B, Ground Floor West, Davis, CA, 95616, USA.
| | - Jonathan S Towner
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA, 30329, USA.
| | - Aiah Lebbie
- Department of Biological Sciences, Njala University, Njala, Sierra Leone.
| |
Collapse
|
13
|
Abstract
Marburgviruses are closely related to ebolaviruses and cause a devastating disease in humans. In 2012, we published a comprehensive review of the first 45 years of research on marburgviruses and the disease they cause, ranging from molecular biology to ecology. Spurred in part by the deadly Ebola virus outbreak in West Africa in 2013-2016, research on all filoviruses has intensified. Not meant as an introduction to marburgviruses, this article instead provides a synopsis of recent progress in marburgvirus research with a particular focus on molecular biology, advances in animal modeling, and the use of Egyptian fruit bats in infection experiments.
Collapse
Affiliation(s)
- Judith Olejnik
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, 02118, USA.,National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, 02118, USA
| | - Elke Mühlberger
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, 02118, USA.,National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, 02118, USA
| | - Adam J Hume
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, 02118, USA.,National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, 02118, USA
| |
Collapse
|