1
|
Tsengel U, Wu TY, Chen YN. Rapid detection of bat coronaviruses from fecal samples using loop-mediated isothermal amplification assay in the field. J Virol Methods 2024; 330:115035. [PMID: 39299522 DOI: 10.1016/j.jviromet.2024.115035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
The global impact of the COVID-19 pandemic has emphasized the critical need for effective viral diagnostics. Although polymerase chain reaction (PCR) is a well-established nucleotide amplification technique, its limitations, such as the need for expensive equipment and skilled technicians, have led to the exploration of alternative methods, including loop-mediated isothermal amplification (LAMP). Bats, as a crucial natural reservoir of coronaviruses (CoVs), particularly Scotophilus bat coronavirus 512 (Scotophilus bat-CoV 512) prevalent among Taiwan's bat population, are the focus of this study. We aimed to detect Scotophilus bat-CoV 512 from bats in field conditions using loop-mediated isothermal amplification (LAMP) assay for on-site detection. Therefore, our study delves into the specificity of the LAMP reaction, emphasizing the careful design of primers to prevent false positive results. A cross reactivity and primer specificity test involving seven different microorganisms, including closely related bat CoVs and two bacterial species typically found in feces, revealed that the LAMP assay uniquely detected Scotophilus bat-CoV 512. The developed colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was optimized for the primers targeting nucleocapsid (N) gene, and the sensitivity test revealed a detection limit of 2.4 × 103 copies/µL. Our findings indicate the potential of the RT-LAMP assay for on-site detection in the field and subsequent laboratory analysis for comprehensive sampling and further research on bat CoV isolation. The surveillance and monitoring of bat CoVs contribute substantially to mitigating human threats, particularly concerning the emergence of new pandemic variants.
Collapse
Affiliation(s)
- Undarmaa Tsengel
- Department of Chemistry, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Tzong-Yuan Wu
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Yi-Ning Chen
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan.
| |
Collapse
|
2
|
Mo Y, Lim LS, Ng SK. A systematic review on current approaches in bat virus discovered between 2018 and 2022. J Virol Methods 2024; 329:115005. [PMID: 39128772 DOI: 10.1016/j.jviromet.2024.115005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
Zoonotic viruses are widely seen as the primary threat for future pandemics. Bats are the most diverse group of mammals, with more than 1400 species distributed across most habitats on Earth. So far, 31 known virus families were associated with bats, although the understanding of most viruses were insufficient. Continuous efforts to discover, understand and monitor these bats viruses, is thereby an area of public health interest. This systematic review was designed to catalogue publications reporting novel bat virus discoveries within PubMed, SCOPUS, and Web of Science databases, within a 5-year period from 2018 to 2022. Various experimental parameters, including sampling locations, methodology, bat species diversity, similarity to known viruses, species demarcation of new viruses, and genomic sequencing strategies, were extracted from 41 publications and analyzed. In total, 72 novel viruses from 19 virus families were identified between 2018 and 2022, particularly from Genomoviridae (DNA viruses) and Coronaviridae (RNA viruses). That said, only a limited number of bat families featured extensively despite noticeable shift towards next generation sequencing methods and metagenomics pipeline for virus identification across different sampling methods. This review aims to provide a comprehensive analysis of the global efforts made over the past five years to identify and characterize emerging viruses in bat species, and to provide a detailed overview of the current technologies and methodologies used in these studies.
Collapse
Affiliation(s)
- Yaxin Mo
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Lee-Sim Lim
- School of Distance Education, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Siew Kit Ng
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Pulau Pinang, Malaysia.
| |
Collapse
|
3
|
Surendran VA, Ibrahim JM, Thodi RC, Nair AS, Sukumaran ST. Diterpenoid and C20 diterpenoid alkaloid as a potent inhibitor of SARS-CoV-2 main protease (M pro): from Piper barberi Gamble, an endemic and endangered species of Southern Western Ghats. J Biomol Struct Dyn 2024; 42:6997-7013. [PMID: 37482792 DOI: 10.1080/07391102.2023.2238075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
The present study investigated the phytochemicals and in silico anti-nCoV properties of Piper barberi, an endangered and endemic species of Southern Western Ghats. Using conventional soxhlet extraction method, the leaf and stem were extracted separately with methanol (PBLM and PBSM). The bioactive compounds from the extracts were identified using HR-LCMS/MS-qTOF analysis. These compounds were subjected to various in silico analyses to identify potential drug candidates against nCoV. The HR LCMS/MS analysis of PBLM and PBSM revealed the presence of phenols, flavonoids, alkaloids, and terpenoids in it and this is the first report of the phytoconstituents present in the species P. barberi. All the identified bioactive compounds were subjected to predict ADMET. Out of 49 identified compounds, only 31 passed drug-likeness properties and toxicity tests. Molecular interaction studies were conducted using the AutoDockTools 4.2.6., which showed that only 13 compounds exhibited acceptable binding affinity with the nCoV target Mpro. Structural stability and binding free energy analyses of the five compounds with the higher binding affinity indicated that the bioactive compounds Hetisine and Ajaconine are stable with both hydrogen bonds and hydrophobic interactions. Hetisine shows stable binding among these two compounds with two hydrogen bond interactions with the crucial catalytic dyad residue (His41). Thus, this study concludes that these compounds might potentially be used as an alternative drug candidate for managing nCoV. However, further experimental validation, including in vitro and in vivo assays, is required to substantiate the results.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Junaida M Ibrahim
- Department of Computational Biology & Bioinformatics, University of Kerala, Thiruvananthapuram, India
| | | | - Achuthsankar S Nair
- Department of Computational Biology & Bioinformatics, University of Kerala, Thiruvananthapuram, India
| | | |
Collapse
|
4
|
Peña-Hernández MA, Alfajaro MM, Filler RB, Moriyama M, Keeler EL, Ranglin ZE, Kong Y, Mao T, Menasche BL, Mankowski MC, Zhao Z, Vogels CBF, Hahn AM, Kalinich CC, Zhang S, Huston N, Wan H, Araujo-Tavares R, Lindenbach BD, Homer R, Pyle AM, Martinez DR, Grubaugh ND, Israelow B, Iwasaki A, Wilen CB. SARS-CoV-2-related bat viruses evade human intrinsic immunity but lack efficient transmission capacity. Nat Microbiol 2024; 9:2038-2050. [PMID: 39075235 DOI: 10.1038/s41564-024-01765-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/19/2024] [Indexed: 07/31/2024]
Abstract
Circulating bat coronaviruses represent a pandemic threat. However, our understanding of bat coronavirus pathogenesis and transmission potential is limited by the lack of phenotypically characterized strains. We created molecular clones for the two closest known relatives of SARS-CoV-2, BANAL-52 and BANAL-236. We demonstrated that BANAL-CoVs and SARS-CoV-2 have similar replication kinetics in human bronchial epithelial cells. However, BANAL-CoVs have impaired replication in human nasal epithelial cells and in the upper airway of mice. We also observed reduced pathogenesis in mice and diminished transmission in hamsters. Further, we observed that diverse bat coronaviruses evade interferon and downregulate major histocompatibility complex class I. Collectively, our study demonstrates that despite high genetic similarity across bat coronaviruses, prediction of pandemic potential of a virus necessitates functional characterization. Finally, the restriction of bat coronavirus replication in the upper airway highlights that transmission potential and innate immune restriction can be uncoupled in this high-risk family of emerging viruses.
Collapse
Affiliation(s)
- Mario A Peña-Hernández
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Mia Madel Alfajaro
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Renata B Filler
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Miyu Moriyama
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Emma L Keeler
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Zara E Ranglin
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Yong Kong
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Tianyang Mao
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Bridget L Menasche
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Madeleine C Mankowski
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Zhe Zhao
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Chantal B F Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Anne M Hahn
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Chaney C Kalinich
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Shuo Zhang
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Nicholas Huston
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Han Wan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Rafael Araujo-Tavares
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Brett D Lindenbach
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Robert Homer
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Anna Marie Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Department of Chemistry, Yale University, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - David R Martinez
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Benjamin Israelow
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Craig B Wilen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
5
|
Hanifehpour H, Ashrafi F, Siasi E, Fallahi S. Evaluation and comparison of one-step real-time PCR and one-step RT-LAMP methods for detection of SARS-CoV-2. BMC Infect Dis 2024; 24:679. [PMID: 38982392 PMCID: PMC11232332 DOI: 10.1186/s12879-024-09574-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 06/27/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND There is an increasing disease trend for SARS-COV-2, so need a quick and affordable diagnostic method. It should be highly accurate and save costs compared to other methods. The purpose of this research is to achieve these goals. METHODS This study analyzed 342 samples using TaqMan One-Step RT-qPCR and fast One-Step RT-LAMP (Reverse Transcriptase Loop-Mediated Isothermal Amplification). The One-Step LAMP assay was conducted to assess the sensitivity and specificity. RESULTS The research reported positive samples using two different methods. In the RT-LAMP method, saliva had 92 positive samples (26.9%) and 250 negative samples (73.09%) and nasopharynx had 94 positive samples (27.4%) and 248 negative samples (72.51%). In the RT-qPCR method, saliva had 86 positive samples (25.1%) and 256 negative samples (74.8%) and nasopharynx had 93 positive samples (27.1%) and 249 negative samples (72.8%). The agreement between the two tests in saliva and nasopharynx samples was 93% and 94% respectively, based on Cohen's kappa coefficient (κ) (P < 0.001). The rate of sensitivity in this technique was reported at a dilution of 1 × 101 and 100% specificity. CONCLUSIONS Based on the results of the study the One-Step LAMP assay has multiple advantages. These include simplicity, cost-effectiveness, high sensitivity, and specificity. The One-Step LAMP assay shows promise as a diagnostic tool. It can help manage disease outbreaks, ensure prompt treatment, and safeguard public health by providing rapid, easy-to-use testing.
Collapse
Affiliation(s)
- Hooman Hanifehpour
- Department of Microbiology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh Ashrafi
- Department of Microbiology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Elham Siasi
- Department of Microbiology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Shirzad Fallahi
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
- Department of Parasitology and Mycology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
6
|
Younes S. The role of nutrition on the treatment of Covid 19. HUMAN NUTRITION & METABOLISM 2024; 36:200255. [DOI: 10.1016/j.hnm.2024.200255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
|
7
|
Sita A, Birlem GE, de Souza da Silva D, Possamai GM, Petry K, de Almeida PR, Mallmann L, Stein JF, Demoliner M, Gularte JS, Hansen AW, Witt AA, Rigotto C, Fleck JD, Spilki FR, da Rocha DT, Weber MN. Evaluation of Mastadenovirus and Rotavirus Presence in Phyllostomid, Vespertilionid, and Molossid Bats Captured in Rio Grande do Sul, Southern Brazil. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:136-142. [PMID: 38532064 DOI: 10.1007/s12560-023-09575-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/28/2023] [Indexed: 03/28/2024]
Abstract
Bat-borne viruses may affect public health and the global economy. These mammals have a wide geographical distribution and unique biological, physiological, and immunogenic characteristics, allowing the dissemination of many known and unknown viruses. Enteric viruses, such as adeno (AdV) and rotaviruses, are recognized as the main causative agents of disease and outbreaks. In the present study, the presence of viruses from Adenoviridae and Reoviridae families was evaluated in molossid, phyllostomid, and vespertilionid bats captured in Rio Grande do Sul, Southern Brazil, between September 2021 and July 2022. Sixty bat rectal swabs were analyzed by PCR. Eight (13.3%) samples were positive for adenovirus and classified as human mastadenovirus C (HAdV-C) (three samples) and HAdV-E (five samples) by sequencing followed by phylogenetic analysis. All samples were negative in rotavirus specific RT-PCR. This is the first study to describe the presence of HAdV in samples of Glossophaga soricina, Eptesicus brasiliensis, and Histiotus velatus. Furthermore, the presence of HAdV-E in bats was reported, which is unusual and may suggest that other HAdV genotypes, in addition to HAdV-C, may also be harbored by wild animals. The data generated in the present study reinforces the importance of eco-surveillance of viral agents related to diseases in humans and wild animals. In addition, it is essential to identify possible new hosts or reservoirs that increase the risk of spillover and dissemination of infectious pathogens, helping to prevent and control zoonotic diseases.
Collapse
Affiliation(s)
- Alexandre Sita
- Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, Rio Grande Do Sul, Brazil
| | - Gabriela Espíndola Birlem
- Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, Rio Grande Do Sul, Brazil
| | - Deivid de Souza da Silva
- Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, Rio Grande Do Sul, Brazil
| | - Gabriela Mattos Possamai
- Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, Rio Grande Do Sul, Brazil
| | - Karla Petry
- Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, Rio Grande Do Sul, Brazil
| | - Paula Rodrigues de Almeida
- Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, Rio Grande Do Sul, Brazil
- Hospital Veterinário, Universidade Feevale, Campo Bom, Rio Grande Do Sul, Brazil
| | - Larissa Mallmann
- Hospital Veterinário, Universidade Feevale, Campo Bom, Rio Grande Do Sul, Brazil
| | - Janaína Franciele Stein
- Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, Rio Grande Do Sul, Brazil
| | - Meriane Demoliner
- Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, Rio Grande Do Sul, Brazil
| | - Juliana Schons Gularte
- Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, Rio Grande Do Sul, Brazil
| | - Alana Witt Hansen
- Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, Rio Grande Do Sul, Brazil
| | - André Alberto Witt
- Secretaria da Agricultura, Pecuária, Produção Sustentável e Irrigação Do Rio Grande Do Sul (SEAPI-RS), Porto Alegre, Rio Grande Do Sul, Brazil
| | - Caroline Rigotto
- Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, Rio Grande Do Sul, Brazil
| | - Juliane Deise Fleck
- Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, Rio Grande Do Sul, Brazil
| | - Fernando Rosado Spilki
- Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, Rio Grande Do Sul, Brazil
- Hospital Veterinário, Universidade Feevale, Campo Bom, Rio Grande Do Sul, Brazil
| | - Daniela Tonini da Rocha
- Centro de Diagnóstico E Pesquisa Em Patologia Aviária (CDPA), Faculdade de Veterinária, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, Rio Grande Do Sul, Brazil
| | - Matheus Nunes Weber
- Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, Rio Grande Do Sul, Brazil.
- Hospital Veterinário, Universidade Feevale, Campo Bom, Rio Grande Do Sul, Brazil.
| |
Collapse
|
8
|
Abuyousef S, Alnaimi S, Omar NE, Elajez R, Elmekaty E, Abdelfattah-Arafa E, Barazi R, Ghasoub R, Rahhal A, Hamou F, Al-Amri M, Karawia A, Ajaj F, Alkhawaja R, Kardousha A, Awaisu A, Abou-Ali A, Khatib M, Aboukamar M, Al-Hail M. Early predictors of intensive care unit admission among COVID-19 patients in Qatar. Front Public Health 2024; 12:1278046. [PMID: 38572008 PMCID: PMC10987715 DOI: 10.3389/fpubh.2024.1278046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/19/2024] [Indexed: 04/05/2024] Open
Abstract
Background COVID-19 is associated with significant morbidity and mortality. This study aimed to explore the early predictors of intensive care unit (ICU) admission among patients with COVID-19. Methods This was a case-control study of adult patients with confirmed COVID-19. Cases were defined as patients admitted to ICU during the period February 29-May 29, 2020. For each case enrolled, one control was matched by age and gender. Results A total of 1,560 patients with confirmed COVID-19 were included. Each group included 780 patients with a predominant male gender (89.7%) and a median age of 49 years (interquartile range = 18). Predictors independently associated with ICU admission were cardiovascular disease (adjusted odds ratio (aOR) = 1.64, 95% confidence interval (CI): 1.16-2.32, p = 0.005), diabetes (aOR = 1.52, 95% CI: 1.08-2.13, p = 0.016), obesity (aOR = 1.46, 95% CI: 1.03-2.08, p = 0.034), lymphopenia (aOR = 2.69, 95% CI: 1.80-4.02, p < 0.001), high AST (aOR = 2.59, 95% CI: 1.53-4.36, p < 0.001), high ferritin (aOR = 1.96, 95% CI: 1.40-2.74, p < 0.001), high CRP (aOR = 4.09, 95% CI: 2.81-5.96, p < 0.001), and dyspnea (aOR = 2.50, 95% CI: 1.77-3.54, p < 0.001). Conclusion Having cardiovascular disease, diabetes, obesity, lymphopenia, dyspnea, and increased AST, ferritin, and CRP were independent predictors for ICU admission in patients with COVID-19.
Collapse
Affiliation(s)
- Safae Abuyousef
- Department of Pharmacy, Heart Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Shaikha Alnaimi
- Department of Pharmacy, Hamad Bin Khalifa Medical City, Hamad Medical Corporation, Doha, Qatar
| | - Nabil E. Omar
- Department of Pharmacy, National Centre for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
- Health Sciences Program, Clinical and Population Health Research, College of Pharmacy, Qatar University, Doha, Qatar
| | - Reem Elajez
- Department of Pharmacy, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Eman Elmekaty
- Department of Pharmacy, Communicable Diseases Center, Hamad Medical Corporation, Doha, Qatar
| | | | - Raja Barazi
- Department of Pharmacy, Al Wakra Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Rola Ghasoub
- Department of Pharmacy, National Centre for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Ala Rahhal
- Department of Pharmacy, Heart Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Fatima Hamou
- Department of Pharmacy, Heart Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Maha Al-Amri
- Department of Pharmacy, Heart Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Ahmed Karawia
- Department of Pharmacy, Rumailah Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Fatima Ajaj
- Department of Pharmacy, Home Health Care, Hamad Medical Corporation, Doha, Qatar
| | - Raja Alkhawaja
- Department of Pharmacy, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Ahmed Kardousha
- Department of Pharmacy, National Centre for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Ahmed Awaisu
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Adel Abou-Ali
- Astellas Pharma Global Development, Inc., Northbrook, IL, United States
| | - Mohamad Khatib
- Department of Critical Care, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Mohammed Aboukamar
- Department of Infectious Disease, Communicable Diseases Center, Hamad Medical Corporation, Doha, Qatar
| | - Moza Al-Hail
- Department of Pharmacy, Women’s Wellness and Research Center, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
9
|
Hemnani M, da Silva PG, Thompson G, Poeta P, Rebelo H, Mesquita JR. Presence of Alphacoronavirus in Tree- and Crevice-Dwelling Bats from Portugal. Viruses 2024; 16:434. [PMID: 38543799 PMCID: PMC10976264 DOI: 10.3390/v16030434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 05/23/2024] Open
Abstract
Coronaviruses (CoVs) are RNA viruses capable of infecting a wide range of hosts, including mammals and birds, and have caused significant epidemics such as the ongoing COVID-19 pandemic. Bats, the second most diverse mammalian order, are hosts for various CoVs due to their unique immune responses and ecological traits. This study investigates CoV prevalence in crevice- and tree-dwelling bats in Portugal, a country with limited prior research on bat CoVs. Using nested RT-PCR and sequencing, we screened 87 stool samples from bats, identifying one sample (1.15%) that was positive for Alphacoronavirus, belonging to Pipistrellus pipistrellus. Phylogenetic analysis revealed close genetic relationships with Alphacoronavirus strains from the same bat species in Europe. The low prevalence suggests habitat-specific differences in viral transmission, with cave-dwelling bats exhibiting higher CoV prevalence due to population density and behaviour. These findings underscore the necessity for sustained surveillance efforts aimed at comprehending CoV dynamics within bat populations, especially concerning the risk of spillover events and viral evolution. Vital to this understanding is the monitoring of bat migration patterns, which serves as a crucial tool for elucidating CoV ecology and epidemiology. Such efforts are essential for ongoing research endeavours aimed at mitigating the potential for future zoonotic disease outbreaks.
Collapse
Affiliation(s)
- Mahima Hemnani
- School of Medicine and Biomedical Sciences, Porto University, 4050-313 Porto, Portugal; (M.H.); (P.G.d.S.); (G.T.)
| | - Priscilla Gomes da Silva
- School of Medicine and Biomedical Sciences, Porto University, 4050-313 Porto, Portugal; (M.H.); (P.G.d.S.); (G.T.)
- Epidemiology Research Unit (EPIunit), Institute of Public Health, University of Porto, 4099-002 Porto, Portugal
- Laboratório Para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), 4050-313 Porto, Portugal
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4099-002 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4099-002 Porto, Portugal
| | - Gertrude Thompson
- School of Medicine and Biomedical Sciences, Porto University, 4050-313 Porto, Portugal; (M.H.); (P.G.d.S.); (G.T.)
- Biopolis-CIBIO/InBIO Laboratório Associado, Campus de Vairão, 4485-661 Vairão, Portugal;
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os Montes e Alto Douro, 5000-801 Vila Real, Portugal;
- Associated Laboratory for Green Chemistry (LAQV), Chemistry Department, Faculty of Science and Technology, University NOVA of Lisbon, 2829-516 Caparica, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Hugo Rebelo
- Biopolis-CIBIO/InBIO Laboratório Associado, Campus de Vairão, 4485-661 Vairão, Portugal;
- cE3c—Centre for Ecology, Evolution and Environmental Changes & CHANGE—Global Change and Sustainability Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - João R. Mesquita
- School of Medicine and Biomedical Sciences, Porto University, 4050-313 Porto, Portugal; (M.H.); (P.G.d.S.); (G.T.)
- Epidemiology Research Unit (EPIunit), Institute of Public Health, University of Porto, 4099-002 Porto, Portugal
- Laboratório Para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), 4050-313 Porto, Portugal
| |
Collapse
|
10
|
Shbeer AM. Mystery of COVID 19: Focusing on important ncRNAs and effective signaling pathways. Pathol Res Pract 2024; 255:155155. [PMID: 38354486 DOI: 10.1016/j.prp.2024.155155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 02/16/2024]
Abstract
This article provides a thorough investigation of the essential role of non-coding RNAs (ncRNAs) in the context of COVID-19, emphasizing their impact on the complex molecular dynamics of the viral infection. By conducting a systematic review of existing literature, we identify key ncRNAs involved in different stages of the viral life cycle, modulation of host immune response, and disease progression. The importance of microRNAs, long non-coding RNAs, and other ncRNA types emerges as influential factors in shaping the interaction between the host and the virus. Additionally, the study delves into the effective signaling pathways linked to COVID-19 pathogenesis, uncovering intricate molecular cascades that govern viral entry, replication, and host cell response. This exploration encompasses established pathways such as IL-6/JAK/STAT signaling, highlighting their interplay within the context of COVID-19. By synthesizing this knowledge, our aim is not only to enhance our understanding of the molecular complexities of COVID-19 but also to reveal potential therapeutic targets. Through elucidating the interaction between ncRNAs and signaling pathways, our article seeks to contribute to ongoing efforts in developing targeted interventions against COVID-19, ultimately advancing our ability to address this global health crisis.
Collapse
Affiliation(s)
- Abdullah M Shbeer
- Department of Surgery, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia.
| |
Collapse
|
11
|
Gupta A, Yadav K, Yadav A, Ahmad R, Srivastava A, Kumar D, Khan MA, Dwivedi UN. Mannose-specific plant and microbial lectins as antiviral agents: A review. Glycoconj J 2024; 41:1-33. [PMID: 38244136 DOI: 10.1007/s10719-023-10142-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/19/2023] [Accepted: 12/06/2023] [Indexed: 01/22/2024]
Abstract
Lectins are non-immunological carbohydrate-binding proteins classified on the basis of their structure, origin, and sugar specificity. The binding specificity of such proteins with the surface glycan moiety determines their activity and clinical applications. Thus, lectins hold great potential as diagnostic and drug discovery agents and as novel biopharmaceutical products. In recent years, significant advancements have been made in understanding plant and microbial lectins as therapeutic agents against various viral diseases. Among them, mannose-specific lectins have being proven as promising antiviral agents against a variety of viruses, such as HIV, Influenza, Herpes, Ebola, Hepatitis, Severe Acute Respiratory Syndrome Coronavirus-1 (SARS-CoV-1), Middle Eastern Respiratory Syndrome Coronavirus (MERS-CoV) and most recent Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). The binding of mannose-binding lectins (MBLs) from plants and microbes to high-mannose containing N-glycans (which may be simple or complex) of glycoproteins found on the surface of viruses has been found to be highly specific and mainly responsible for their antiviral activity. MBLs target various steps in the viral life cycle, including viral attachment, entry and replication. The present review discusses the brief classification and structure of lectins along with antiviral activity of various mannose-specific lectins from plants and microbial sources and their diagnostic and therapeutic applications against viral diseases.
Collapse
Affiliation(s)
- Ankita Gupta
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Kusum Yadav
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, India.
| | - Anurag Yadav
- Department of Microbiology, C.P. College of Agriculture, Sardarkrushinagar Dantiwada Agriculture University, District-Banaskantha, Gujarat, India
| | - Rumana Ahmad
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India.
| | - Aditi Srivastava
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India
| | - Dileep Kumar
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, India
- Department of Biotechnology, Khwaja Moinuddin Chishti Language University, Lucknow, Uttar Pradesh, India
| | - Mohammad Amir Khan
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India
| | - U N Dwivedi
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, India
| |
Collapse
|
12
|
Al-Eitan L, Mihyar A. The controversy of SARS-CoV-2 integration into the human genome. Rev Med Virol 2024; 34:e2511. [PMID: 38282406 DOI: 10.1002/rmv.2511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/28/2023] [Accepted: 01/03/2024] [Indexed: 01/30/2024]
Abstract
Bat borne disease have attracted many researchers for years. The ability of the bat to host several exogenous viruses has been a focal point in research lately. The latest pandemic shifted the focus of scholars towards understanding the difference in response to viral infection between humans and bats. In a way to understand the basis of the interaction and behaviour between SARS-CoV-2 and the environment, a conflict between different researchers across the globe arose. This conflict asked many questions about the truth of virus-host integration, whether an interaction between RNA viruses and human genomes has ever been reported, the possible route and mechanism that could lead to genomic integration of viral sequences and the methods used to detect integration. This article highlights those questions and will discuss the diverse opinions of the controversy and provide examples on reported integration mechanisms and possible detection techniques.
Collapse
Affiliation(s)
- Laith Al-Eitan
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ahmad Mihyar
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
13
|
Al-Eitan L, Mihyar A, Zhang L, Bisht P, Jaenisch R. Genomic and biological variation in bat IFNs: An antiviral treatment approach. Rev Med Virol 2024; 34:e2488. [PMID: 37921610 DOI: 10.1002/rmv.2488] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023]
Abstract
Bat-borne viruses have attracted considerable research, especially in relation to the Covid-19 pandemic. Although bats can carry multiple zoonotic viruses that are lethal to many mammalian species, they appear to be asymptomatic to viral infection despite the high viral loads contained in their bodies. There are several differences between bats and other mammals. One of the major differences between bats and other mammals is the bats' ability to fly, which is believed to have induced evolutionary changes. It may have also favoured them as suitable hosts for viruses. This is related to their tolerance to viral infection. Innate immunity is the first line of defence against viral infection, but bats have metamorphosed the type of responses induced by innate immunity factors such as interferons. The expression patterns of interferons differ, as do those of interferon-related genes such as interferon regulatory factors and interferon-stimulated genes that contribute to the antiviral response of infected cells. In addition, the signalling pathways related to viral infection and immune responses have been subject to evolutionary changes, including mutations compared to their homologues in other mammals and gene selection. This article discusses the differences in the interferon-mediated antiviral response in bats compared to that of other mammals and how these differences are correlated to viral tolerance in bats. The effect of bat interferons related genes on human antiviral response against bat-borne viruses is also discussed.
Collapse
Affiliation(s)
- Laith Al-Eitan
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Ahmad Mihyar
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Liguo Zhang
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Punam Bisht
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
14
|
Wang Q, Noettger S, Xie Q, Pastorio C, Seidel A, Müller JA, Jung C, Jacob T, Sparrer KMJ, Zech F, Kirchhoff F. Determinants of species-specific utilization of ACE2 by human and animal coronaviruses. Commun Biol 2023; 6:1051. [PMID: 37848611 PMCID: PMC10582019 DOI: 10.1038/s42003-023-05436-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023] Open
Abstract
Utilization of human ACE2 allowed several bat coronaviruses (CoVs), including the causative agent of COVID-19, to infect humans directly or via intermediate hosts. However, the determinants of species-specific differences in ACE2 usage and the frequency of the ability of animal CoVs to use human ACE2 are poorly understood. Here we applied VSV pseudoviruses to analyze the ability of Spike proteins from 26 human or animal CoVs to use ACE2 receptors across nine reservoir, potential intermediate and human hosts. We show that SARS-CoV-2 Omicron variants evolved towards more efficient ACE2 usage but mutation of R493Q in BA.4/5 and XBB Spike proteins disrupts utilization of ACE2 from Greater horseshoe bats. Variations in ACE2 residues 31, 41 and 354 govern species-specific differences in usage by coronaviral Spike proteins. Mutation of T403R allows the RaTG13 bat CoV Spike to efficiently use all ACE2 orthologs for viral entry. Sera from COVID-19 vaccinated individuals neutralize the Spike proteins of various bat Sarbecoviruses. Our results define determinants of ACE2 receptor usage of diverse CoVs and suggest that COVID-19 vaccination may protect against future zoonoses of bat coronaviruses.
Collapse
Affiliation(s)
- Qingxing Wang
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Sabrina Noettger
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Qinya Xie
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Chiara Pastorio
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Alina Seidel
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Janis A Müller
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
- Institute of Virology, Philipps University Marburg, 35043, Marburg, Germany
| | - Christoph Jung
- Institute of Electrochemistry, Ulm University, 89081, Ulm, Germany
- Helmholtz-Institute Ulm (HIU) Electrochemical Energy Storage, 89081, Ulm, Germany
- Karlsruhe Institute of Technology (KIT), 76021, Karlsruhe, Germany
| | - Timo Jacob
- Institute of Electrochemistry, Ulm University, 89081, Ulm, Germany
- Helmholtz-Institute Ulm (HIU) Electrochemical Energy Storage, 89081, Ulm, Germany
- Karlsruhe Institute of Technology (KIT), 76021, Karlsruhe, Germany
| | | | - Fabian Zech
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany.
| |
Collapse
|
15
|
Mokhria RK, Bhardwaj JK, Sanghi AK. History, origin, transmission, genome structure, replication, epidemiology, pathogenesis, clinical features, diagnosis, and treatment of COVID-19: A review. World J Meta-Anal 2023; 11:266-276. [DOI: 10.13105/wjma.v11.i6.266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/15/2023] [Accepted: 07/25/2023] [Indexed: 09/13/2023] Open
Abstract
In December, 2019, pneumonia triggered by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) surfaced in Wuhan, China. An acute respiratory illness named coronavirus disease 2019 (COVID-19) is caused by a new coronavirus designated as SARS-CoV-2. COVID-19 has surfaced as a major pandemic in the 21st century as yet. The entire world has been affected by this virus. World Health Organization proclaimed COVID-19 pandemic as a public health emergency of international concern on January 30, 2020. SARS-CoV-2 shares the same genome as coronavirus seen in bats. Therefore, bats might be its natural host of this virus. It primarily disseminates by means of the respiratory passage. Evidence revealed human-to-human transmission. Fever, cough, tiredness, and gastrointestinal illness are the manifestations in COVID-19-infected persons. Senior citizens are more vulnerable to infections which can lead to dangerous consequences. Various treatment strategies including antiviral therapies are accessible for the handling of this disease. In this review, we organized the most recent findings on COVID-19 history, origin, transmission, genome structure, replication, epidemiology, pathogenesis, clinical features, diagnosis, and treatment strategies.
Collapse
Affiliation(s)
- Rajesh Kumar Mokhria
- Department of School Education, Government Model Sanskriti Senior Secondary School, Chulkana, Panipat, 132101, Haryana, India
| | - Jitender Kumar Bhardwaj
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Ashwani Kumar Sanghi
- School of Allied and Health Sciences, MVN University, Palwal 121102, Haryana, India
| |
Collapse
|
16
|
Hamdy ME, El Deeb AH, Hagag NM, Shahein MA, Alaidi O, Hussein HA. Interspecies transmission of SARS CoV-2 with special emphasis on viral mutations and ACE-2 receptor homology roles. Int J Vet Sci Med 2023; 11:55-86. [PMID: 37441062 PMCID: PMC10334861 DOI: 10.1080/23144599.2023.2222981] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 07/15/2023] Open
Abstract
COVID-19 outbreak was first reported in 2019, Wuhan, China. The spillover of the disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), to a wide range of pet, zoo, wild, and farm animals has emphasized potential zoonotic and reverse zoonotic viral transmission. Furthermore, it has evoked inquiries about susceptibility of different animal species to SARS-CoV-2 infection and role of these animals as viral reservoirs. Therefore, studying susceptible and non-susceptible hosts for SARS-CoV-2 infection could give a better understanding for the virus and will help in preventing further outbreaks. Here, we review structural aspects of SARS-CoV-2 spike protein, the effect of the different mutations observed in the spike protein, and the impact of ACE2 receptor variations in different animal hosts on inter-species transmission. Moreover, the SARS-CoV-2 spillover chain was reviewed. Combination of SARS-CoV-2 high mutation rate and homology of cellular ACE2 receptors enable the virus to transcend species barriers and facilitate its transmission between humans and animals.
Collapse
Affiliation(s)
- Mervat E. Hamdy
- Genome Research Unit, Animal Health Research Institute, Agriculture Research Centre, Giza, Egypt
| | - Ayman H. El Deeb
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Virology, Faculty of Veterinary Medicine, King Salman International University, South Sinai, Egypt
| | - Naglaa M. Hagag
- Genome Research Unit, Animal Health Research Institute, Agriculture Research Centre, Giza, Egypt
| | - Momtaz A. Shahein
- Department of Virology, Animal Health Research Institute, Agriculture Research Centre, Giza, Egypt
| | - Osama Alaidi
- Biocomplexity for Research and Consulting Co., Cairo, Egypt
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Hussein A. Hussein
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
17
|
Gwenzi W, Marumure J, Makuvara Z, Simbanegavi TT, Njomou-Ngounou EL, Nya EL, Kaetzl K, Noubactep C, Rzymski P. The pit latrine paradox in low-income settings: A sanitation technology of choice or a pollution hotspot? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163179. [PMID: 37003330 DOI: 10.1016/j.scitotenv.2023.163179] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/04/2023] [Accepted: 03/26/2023] [Indexed: 05/17/2023]
Abstract
Pit latrines are widely promoted to improve sanitation in low-income settings, but their pollution and health risks receive cursory attention. The present narrative review presents the pit latrine paradox; (1) the pit latrine is considered a sanitation technology of choice to safeguard human health, and (2) conversely, pit latrines are pollution and health risk hotspots. Evidence shows that the pit latrine is a 'catch-all' receptacle for household disposal of hazardous waste, including; (1) medical wastes (COVID-19 PPE, pharmaceuticals, placenta, used condoms), (2) pesticides and pesticide containers, (3) menstrual hygiene wastes (e.g., sanitary pads), and (4) electronic wastes (batteries). Pit latrines serve as hotspot reservoirs that receive, harbour, and then transmit the following into the environment; (1) conventional contaminants (nitrates, phosphates, pesticides), (2) emerging contaminants (pharmaceuticals and personal care products, antibiotic resistance), and (3) indicator organisms, and human bacterial and viral pathogens, and disease vectors (rodents, houseflies, bats). As greenhouse gas emission hotspots, pit latrines contribute 3.3 to 9.4 Tg/year of methane, but this could be an under-estimation. Contaminants in pit latrines may migrate into surface water, and groundwater systems serving as drinking water sources and pose human health risks. In turn, this culminates into the pit latrine-groundwater-human continuum or connectivity, mediated via water and contaminant migration. Human health risks of pit latrines, a critique of current evidence, and current and emerging mitigation measures are presented, including isolation distance, hydraulic liners/ barriers, ecological sanitation, and the concept of a circular bioeconomy. Finally, future research directions on the epidemiology and fate of contaminants in pit latrines are presented. The pit latrine paradox is not meant to downplay pit latrines' role or promote open defaecation. Rather, it seeks to stimulate discussion and research to refine the technology to enhance its functionality while mitigating pollution and health risks.
Collapse
Affiliation(s)
- Willis Gwenzi
- Grassland Science and Renewable Plant Resources, Faculty of Organic Agricultural Sciences, Universität Kassel, Steinstraße 19, D-37213 Witzenhausen, Germany; Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany.
| | - Jerikias Marumure
- Department of Physics, Geography and Environmental Sciences, School of Natural Sciences, Great Zimbabwe University, Off Old Great Zimbabwe Road, P.O. Box 1235, Masvingo, Zimbabwe; Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, South Africa
| | - Zakio Makuvara
- Department of Physics, Geography and Environmental Sciences, School of Natural Sciences, Great Zimbabwe University, Off Old Great Zimbabwe Road, P.O. Box 1235, Masvingo, Zimbabwe; Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, South Africa
| | - Tinoziva T Simbanegavi
- Department of Soil Science and Environment, Faculty of Agriculture, Environment, and Food Systems, University of Zimbabwe, Mount Pleasant, Harare P.O. Box MP 167, Zimbabwe
| | | | - Esther Laurentine Nya
- Faculty of Arts, Letters and Social Sciences, University of Maroua, P.O. Box 644, Maroua, Cameroon
| | - Korbinian Kaetzl
- Grassland Science and Renewable Plant Resources, Faculty of Organic Agricultural Sciences, Universität Kassel, Steinstraße 19, D-37213 Witzenhausen, Germany.
| | - Chicgoua Noubactep
- Centre for Modern Indian Studies (CeMIS), University of Göttingen, Waldweg 26, 37073 Göttingen, Germany; Department of Applied Geology, University of Göttingen, Goldschmidtstraße 3, D-37077 Göttingen, Germany; School of Earth Science and Engineering, Hohai University, Fo Cheng Xi Road 8, 211100 Nanjing, PR China.
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 60-806 Poznań, Poland.
| |
Collapse
|
18
|
Sekar RV, Oliva PJ, Woodside MT. Modelling the structures of frameshift-stimulatory pseudoknots from representative bat coronaviruses. PLoS Comput Biol 2023; 19:e1011124. [PMID: 37205708 DOI: 10.1371/journal.pcbi.1011124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 04/24/2023] [Indexed: 05/21/2023] Open
Abstract
Coronaviruses (CoVs) use -1 programmed ribosomal frameshifting stimulated by RNA pseudoknots in the viral genome to control expression of enzymes essential for replication, making CoV pseudoknots a promising target for anti-coronaviral drugs. Bats represent one of the largest reservoirs of CoVs and are the ultimate source of most CoVs infecting humans, including those causing SARS, MERS, and COVID-19. However, the structures of bat-CoV frameshift-stimulatory pseudoknots remain largely unexplored. Here we use a combination of blind structure prediction followed by all-atom molecular dynamics simulations to model the structures of eight pseudoknots that, together with the SARS-CoV-2 pseudoknot, are representative of the range of pseudoknot sequences in bat CoVs. We find that they all share some key qualitative features with the pseudoknot from SARS-CoV-2, notably the presence of conformers with two distinct fold topologies differing in whether or not the 5' end of the RNA is threaded through a junction, and similar conformations for stem 1. However, they differed in the number of helices present, with half sharing the 3-helix architecture of the SARS-CoV-2 pseudoknot but two containing 4 helices and two others only 2. These structure models should be helpful for future work studying bat-CoV pseudoknots as potential therapeutic targets.
Collapse
Affiliation(s)
| | | | - Michael T Woodside
- Department of Physics, University of Alberta, Edmonton, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada
| |
Collapse
|
19
|
Mukherjee S, Manna S, Som N, Dhara S. Organic-Inorganic Hybrid Nanocomposites for Nanotheranostics: Special Focus on Preventing Emerging Variants of SARS-COV-2. BIOMEDICAL MATERIALS & DEVICES (NEW YORK, N.Y.) 2023:1-15. [PMID: 37363138 PMCID: PMC10187951 DOI: 10.1007/s44174-023-00077-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/27/2023] [Indexed: 06/28/2023]
Abstract
The worldwide emerging cases of various respiratory viral diseases and the current escalation of novel coronavirus disease (COVID-19) make people considerably attentive to controlling these viruses through innovative methods. Most re-emerging respiratory diseases envelop RNA viruses that employ attachment between the virus and host cell to get an entry form using the host cell machinery. Emerging variants of COVD-19 also bring about a constant threat to public health as it has wide infectivity and can quickly spread to infect humans. This review focuses on insights into the current investigations to prevent the progression of incipient variants of Severe Acute Respiratory Syndrome Coronavirus (SARS-COV-2) along with similar enveloped RNA viruses that cause respiratory illness in humans and animals. Nanotheranostics is a trailblazing arena of nanomedicine that simultaneously helps prevent or treat diseases and diagnoses. Nanoparticle coating and nanofibers were extensively explored, preventing viral contaminations. Several studies have proven the virucidal activities of metal nanoparticles like copper, silver, and titanium against respiratory viral pathogens. Worldwide many researchers have shown surfaces coated with ionic nanoparticles like zinc or titanium act as potent antiviral agents against RNA viruses. Carbon nanotubes, quantum dots, silica nanoparticles (NPs), polymeric and metallic nanoparticles have also been explored in the field of nanotheranostics in viral detection. In this review, we have comprehensively discussed different types of metallic, ionic, organic nanoparticles and their hybrids showing substantial antiviral properties to stop the progression of the novel coronavirus disease focused on three key classes: prevention, diagnostics, and treatment.
Collapse
Affiliation(s)
- Sayan Mukherjee
- Biomaterials and Tissue Engineering Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Souvik Manna
- Clinical Microbiology & Antibiotic Research Laboratory, CSIR - Institute of Microbial Technology, Chandigarh, India
| | - Nivedita Som
- Department of Bioinformatics, Pondicherry University, Puducherry, India
| | - Santanu Dhara
- Biomaterials and Tissue Engineering Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
20
|
Ray AS, Bhattacharya K. An Overview on the Zoonotic Aspects of COVID-19. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, INDIA. SECTION B 2023; 94:1-5. [PMID: 37360152 PMCID: PMC10132798 DOI: 10.1007/s40011-023-01445-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/18/2021] [Accepted: 01/24/2023] [Indexed: 06/28/2023]
Abstract
Disruption of pristine natural habitat has a strong positive correlation with this increase in pandemics and thus, the zoonotic aspects are the most important part to uncover scientifically. On the other hand, containment and mitigation are the two basic strategies to stop a pandemic. The route of infection is of utmost importance for any pandemic and often left behind in combating the fatalities in real time. The increase in recent pandemics, from ebola outbreak to ongoing COVID-19 havoc, exerts implicit significance in the search of zoonotic transmissions of the diseases. Thus, a conceptual summary has been made through this article in understanding the basic zoonotic mechanism of the disease COVID-19 based on available published data and schematic presentation has been drawn on the route of transmission, so far discovered.
Collapse
Affiliation(s)
- Anushree Singha Ray
- Former Research Fellow, Department of Zoology, The University of Burdwan, Golapbag Purba Burdwan, Burdwan, West Bengal 713104 India
| | - Kuntal Bhattacharya
- Department of Zoology, Durgapur Government College, Paschim Bardhaman, Durgapur, West Bengal 713214 India
| |
Collapse
|
21
|
Role of Brazilian bats in the epidemiological cycle of potentially zoonotic pathogens. Microb Pathog 2023; 177:106032. [PMID: 36804526 DOI: 10.1016/j.micpath.2023.106032] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/07/2023] [Accepted: 02/12/2023] [Indexed: 02/19/2023]
Abstract
Bats (Chiroptera) are flying mammals of great biodiversity and habits. These characteristics contribute for them being natural reservoirs and part of the epidemiological cycle of several potentially zoonotic pathogens, such as viruses, protozoa, fungi and bacteria. Brazil hosts approximately 15% of the world's bat diversity, with 181 distinct species, 68 genera and 9 families. About 60% of infectious diseases in humans are of zoonotic origin and, in the last decades, the detection of zoonotic pathogens in bats and their environment has been reported, such as Rabies virus (RABV) and Histoplasma capsulatum. Thus, the aim of this work was to review the reports of zoonotic pathogens associated with bats in Brazil in the past ten years. We reviewed the main pathogenic microorganisms described and the species of bats most frequently involved in the epidemiological cycles of these zoonotic agents. The obtained data show an upward trend in the detection of zoonotic pathogens in Brazilian bats, such as RABV, Bartonella sp., Histoplasma capsulatum and Leishmania spp., with emphasis on the bat species Artibeus lituratus, Carollia perspicillata, Desmodus rotundus and Molossus molossus. These findings highlight the importance of monitoring bat-associated microrganisms to early identify pathogens that may threaten bat populations, including potentially zoonotic microrganisms, emphasizing the importance of the One Health approach to prevent and mitigate the risks of the emergence of zoonotic diseases.
Collapse
|
22
|
Heckley AM, Becker DJ. Tropical bat ectoparasitism in continuous versus fragmented forests: A gap analysis and preliminary meta-analysis. Ecol Evol 2023; 13:e9784. [PMID: 36744075 PMCID: PMC9891993 DOI: 10.1002/ece3.9784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
Tropical regions are experiencing rapid rates of forest fragmentation, which can have several effects on wildlife, including altered parasite dynamics. Bats are a useful host group to consider the effects of fragmentation, because they are abundant in the tropics, serve important ecological roles, and harbor many parasites. Nevertheless, research on the effects of fragmentation on bat ectoparasites is still limited. To help guide ongoing and future research efforts, this study had two objectives: (1) conduct a gap analysis to characterize the state of currently available research on fragmentation effects on bat ectoparasites and (2) conduct a preliminary meta-analysis to identify current trends. We systematically highlighted several research gaps: Studies comparing the effects of fragmented versus continuous forests on ectoparasites are limited and have primarily been conducted in the Neotropics, with a focus on bats in the superfamily Noctilionidea (especially frugivorous phyllostomids). Our preliminary meta-analysis suggested that ectoparasite prevalence (but not the mean or variance in intensity) was higher in fragments than in continuous forests. Moreover, prevalence increased with increasing roost duration, and mean intensity was higher for bats with higher wing aspect ratios. Intensity variance was affected by an interaction between forest type and wing aspect ratio, such that variance increased for bats with high-wing aspect ratios in continuous forests but decreased in fragments. These results suggest that fragmentation can shape aspects of bat ectoparasitism and could have implications for the ecology, health, and conservation of bats in fragmented landscapes. However, existing research gaps could bias our current understanding of habitat change and bat health, and future research should thus investigate these effects in the Paleotropics and with other bat families.
Collapse
Affiliation(s)
- Alexis M. Heckley
- Department of Biology and the Redpath MuseumMcGill UniversityMontrealQuebecCanada
| | | |
Collapse
|
23
|
Abstract
The existence of coronaviruses has been known for many years. These viruses cause significant disease that primarily seems to affect agricultural species. Human coronavirus disease due to the 2002 outbreak of Severe Acute Respiratory Syndrome and the 2012 outbreak of Middle East Respiratory Syndrome made headlines; however, these outbreaks were controlled, and public concern quickly faded. This complacency ended in late 2019 when alarms were raised about a mysterious virus responsible for numerous illnesses and deaths in China. As we now know, this novel disease called Coronavirus Disease 2019 (COVID-19) was caused by Severe acute respiratory syndrome-related-coronavirus-2 (SARS-CoV-2) and rapidly became a worldwide pandemic. Luckily, decades of research into animal coronaviruses hastened our understanding of the genetics, structure, transmission, and pathogenesis of these viruses. Coronaviruses infect a wide range of wild and domestic animals, with significant economic impact in several agricultural species. Their large genome, low dependency on host cellular proteins, and frequent recombination allow coronaviruses to successfully cross species barriers and adapt to different hosts including humans. The study of the animal diseases provides an understanding of the virus biology and pathogenesis and has assisted in the rapid development of the SARS-CoV-2 vaccines. Here, we briefly review the classification, origin, etiology, transmission mechanisms, pathogenesis, clinical signs, diagnosis, treatment, and prevention strategies, including available vaccines, for coronaviruses that affect domestic, farm, laboratory, and wild animal species. We also briefly describe the coronaviruses that affect humans. Expanding our knowledge of this complex group of viruses will better prepare us to design strategies to prevent and/or minimize the impact of future coronavirus outbreaks.
Collapse
Key Words
- bcov, bovine coronavirus
- ccov, canine coronavirus
- cov(s), coronavirus(es)
- covid-19, coronavirus disease 2019
- crcov, canine respiratory coronavirus
- e, coronaviral envelope protein
- ecov, equine coronavirus
- fcov, feline coronavirus
- fipv, feline infectious peritonitis virus
- gfcov, guinea fowl coronavirus
- hcov, human coronavirus
- ibv, infectious bronchitis virus
- m, coronaviral membrane protein
- mers, middle east respiratory syndrome-coronavirus
- mhv, mouse hepatitis virus
- pedv, porcine epidemic diarrhea virus
- pdcov, porcine deltacoronavirus
- phcov, pheasant coronavirus
- phev, porcine hemagglutinating encephalomyelitis virus
- prcov, porcine respiratory coronavirus
- rt-pcr, reverse transcriptase polymerase chain reaction
- s, coronaviral spike protein
- sads-cov, swine acute diarrhea syndrome-coronavirus
- sars-cov, severe acute respiratory syndrome-coronavirus
- sars-cov-2, severe acute respiratory syndrome–coronavirus–2
- tcov, turkey coronavirus
- tgev, transmissible gastroenteritis virus
Collapse
Affiliation(s)
- Alfonso S Gozalo
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland;,
| | - Tannia S Clark
- Office of Laboratory Animal Medicine, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - David M Kurtz
- Comparative Medicine Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, North Carolina
| |
Collapse
|
24
|
Morales-Salazar I, Montes-Enríquez FP, Garduño-Albino CE, García-Sánchez MA, Ibarra IA, Rojas-Aguirre Y, García-Hernández ME, Sarmiento-Silva RE, Alcaraz-Estrada SL, Díaz-Cervantes E, González-Zamora E, Islas-Jácome A. Synthesis of bis-furyl-pyrrolo[3,4- b]pyridin-5-ones via Ugi-Zhu reaction and in vitro activity assays against human SARS-CoV-2 and in silico studies on its main proteins. RSC Med Chem 2023; 14:154-165. [PMID: 36760742 PMCID: PMC9890515 DOI: 10.1039/d2md00350c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
An Ugi-Zhu three-component reaction (UZ-3CR) coupled in one pot manner to a cascade process (N-acylation/aza Diels-Alder cycloaddition/decarboxylation/dehydration) was performed to synthesize a series of bis-furyl-pyrrolo[3,4-b]pyridin-5-ones in 45 to 82% overall yields using ytterbium triflate as a catalyst, toluene as a solvent, and microwaves as a heat source. The synthesized molecules were evaluated in vitro against human SARS-CoV-2 through a time-of-addition approach, finding that compound 1e, at a concentration of 10.0 μM, exhibited a significant reduction at the initial infection stages, thus showing prophylactic potential. On the other hand, it was found that compound 1d, at the same concentration, was significantly active when applied post-infection, thus exhibiting a therapeutic profile. Moreover, compound 1f showed both, prophylactic and therapeutic activity. Then, to understand interactions between synthesized compounds and the main proteins related to the virus, docking studies were performed on spike-glycoprotein, main-protease, and Nsp3 protein, finding moderate to strong binding energies, matching accurately with the in vitro results. Additionally, a pharmacophore model was computed behind further rational drug design.
Collapse
Affiliation(s)
- Ivette Morales-Salazar
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección Iztapalapa Ciudad de México C.P. 09310 Mexico
| | - Flora P Montes-Enríquez
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección Iztapalapa Ciudad de México C.P. 09310 Mexico
| | - Carlos E Garduño-Albino
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección Iztapalapa Ciudad de México C.P. 09310 Mexico
| | - M A García-Sánchez
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección Iztapalapa Ciudad de México C.P. 09310 Mexico
| | - Ilich A Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México Circuito Exterior S/N, Ciudad Universitaria Coyoacán Ciudad de México C.P. 04510 Mexico
| | - Yareli Rojas-Aguirre
- Departamento de Polímeros, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México Circuito Exterior S/N, Ciudad Universitaria Coyoacán Ciudad de México C.P. 04510 Mexico
| | - Montserrat Elemi García-Hernández
- Departamento de Microbiología e Inmunología, Facultad de Medicina, Veterinaria y Zootecnia, Universidad Nacional Autónoma de México Av. Universidad 3000, Ciudad Universitaria Coyoacán Ciudad de México C.P. 04510 Mexico
| | - Rosa Elena Sarmiento-Silva
- Laboratorio de Virología y Laboratorio Mixto Internacional ELDORADO, Facultad de Medicina, Veterinaria y Zootecnia, Universidad Nacional Autónoma de México Av. Universidad 3000, Ciudad Universitaria Coyoacán Ciudad de México C.P. 04510 Mexico
| | - Sofía Lizeth Alcaraz-Estrada
- División de Medicina Genómica, Centro Médico Nacional 20 de Noviembre, ISSSTE Félix Cuevas 540, Col. Del Valle Sur Benito Juárez Ciudad de México C.P. 03100 Mexico
| | - Erik Díaz-Cervantes
- Departamento de Alimentos, Centro Interdisciplinario del Noreste, Universidad de Guanajuato Tierra Blanca Guanajuato C.P. 37975 Mexico
| | - Eduardo González-Zamora
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección Iztapalapa Ciudad de México C.P. 09310 Mexico
| | - Alejandro Islas-Jácome
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección Iztapalapa Ciudad de México C.P. 09310 Mexico
| |
Collapse
|
25
|
Liu J, Chen P, Hu X, Huang L, Geng Z, Xu H, Hu W, Wang L, Wu P, Liu GL. An ultra-sensitive and specific nanoplasmonic-enhanced isothermal amplification platform for the ultrafast point-of-care testing of SARS-CoV-2. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2023; 451:138822. [PMID: 36060034 PMCID: PMC9420202 DOI: 10.1016/j.cej.2022.138822] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 05/28/2023]
Abstract
The novel mutations attributed by the high mutagenicity of the SARS-CoV-2 makes its prevention and treatment challenging. Developing an ultra-fast, point-of-care-test (POCT) protocol is critical for responding to large-scale spread of SARS-CoV-2 in public places and in resource-poor remote areas. Here, we developed a nanoplasmonic enhanced isothermal amplification (NanoPEIA) strategy that combines a nanoplasmonic sensor with isothermal amplification. The novel strategy provides an ideal easy-to operate detection platform for obtaining accurate, ultra-fast and high-throughput (96 samples can be tested together) data. For clinical samples with viral detection at Ct value <25, the entire process (including sample preparation, virus lysis, detection, and data analysis) can be completed within six minutes. The method is also appropriate for detection of SARS-CoV-2 γ-coronavirus mutants. The NanoPEIA method was validated using clinical samples from 21 patients with SARS-CoV-2 infection and 31 healthy individuals. The detection result on the 52 clinical samples for SARS-CoV-2 showed that the NanoPEIA platform had a 100% sensitivity for N and orf1ab genes, which was higher than those obtained using RT-qPCR (88.9% and 90.0%, respectively). The specificities of 31 clinical negative samples were 92.3% and 91.7% for the N gene and the orf1ab gene, respectively. The limits of detection (LoD) of the clinical samples were 28.3 copies/mL and 23.3 copies/mL for the N gene and the orf1ab gene, respectively. The efficient NanoPEIA detection strategy facilitates real-time detection and visualization within ultrashort durations and can be applied for POCT diagnosis in resource-poor and highly populated areas.
Collapse
Affiliation(s)
- Juxiang Liu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luo Yu Road, Wuhan 430074, China
| | - Ping Chen
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luo Yu Road, Wuhan 430074, China
| | - Xulong Hu
- Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, China
| | - Liping Huang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luo Yu Road, Wuhan 430074, China
- Liangzhun (Shanghai) Industrial Co. Ltd, Shanghai 200336, China
| | - Zhi Geng
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hao Xu
- Liangzhun (Shanghai) Industrial Co. Ltd, Shanghai 200336, China
| | - Wenjun Hu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luo Yu Road, Wuhan 430074, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ping Wu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luo Yu Road, Wuhan 430074, China
| | - Gang L Liu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luo Yu Road, Wuhan 430074, China
| |
Collapse
|
26
|
Mubareka S, Amuasi J, Banerjee A, Carabin H, Copper Jack J, Jardine C, Jaroszewicz B, Keefe G, Kotwa J, Kutz S, McGregor D, Mease A, Nicholson L, Nowak K, Pickering B, Reed MG, Saint-Charles J, Simonienko K, Smith T, Scott Weese J, Jane Parmley E. Strengthening a One Health approach to emerging zoonoses. Facets (Ott) 2023. [DOI: 10.1139/facets-2021-0190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Given the enormous global impact of the COVID-19 pandemic, outbreaks of highly pathogenic avian influenza in Canada, and manifold other zoonotic pathogen activity, there is a pressing need for a deeper understanding of the human-animal-environment interface and the intersecting biological, ecological, and societal factors contributing to the emergence, spread, and impact of zoonotic diseases. We aim to apply a One Health approach to pressing issues related to emerging zoonoses, and propose a functional framework of interconnected but distinct groups of recommendations around strategy and governance, technical leadership (operations), equity, education and research for a One Health approach and Action Plan for Canada. Change is desperately needed, beginning by reorienting our approach to health and recalibrating our perspectives to restore balance with the natural world in a rapid and sustainable fashion. In Canada, a major paradigm shift in how we think about health is required. All of society must recognize the intrinsic value of all living species and the importance of the health of humans, other animals, and ecosystems to health for all.
Collapse
Affiliation(s)
| | - John Amuasi
- Kwame Nkrumah University of Science and Technology, Kumasi, Ashanti Region, Ghana
| | | | | | - Joe Copper Jack
- Indigenous Knowledge Holder, Whitehorse, Yukon Territory, Canada
| | | | | | - Greg Keefe
- University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | | | - Susan Kutz
- University of Calgary, Calgary, Alberta, Canada
| | | | - Anne Mease
- Selkirk First Nation Citizen, Selkirk First Nation, Yukon Territory, Canada
| | | | | | - Brad Pickering
- Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
| | | | | | | | | | | | | |
Collapse
|
27
|
Sarkar B, Ullah MA, Araf Y, Islam NN, Zohora US. Immunoinformatics-guided designing and in silico analysis of epitope-based polyvalent vaccines against multiple strains of human coronavirus (HCoV). Expert Rev Vaccines 2022; 21:1851-1871. [PMID: 33435759 PMCID: PMC7989953 DOI: 10.1080/14760584.2021.1874925] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 01/08/2021] [Indexed: 01/12/2023]
Abstract
OBJECTIVES The group of human coronaviruses (HCoVs) consists of some highly pathogenic viruses that have caused several outbreaks in the past. The newly emerged strain of HCoV, the SARS-CoV-2 is responsible for the recent global pandemic that has already caused the death of hundreds of thousands of people due to the lack of effective therapeutic options. METHODS In this study, immunoinformatics methods were used to design epitope-based polyvalent vaccines which are expected to be effective against four different pathogenic strains of HCoV i.e., HCoV-OC43, HCoV-SARS, HCoV-MERS, and SARS-CoV-2. RESULTS The constructed vaccines consist of highly antigenic, non-allergenic, nontoxic, conserved, and non-homologous T-cell and B-cell epitopes from all the four viral strains. Therefore, they should be able to provide strong protection against all these strains. Protein-protein docking was performed to predict the best vaccine construct. Later, the MD simulation and immune simulation of the best vaccine construct also predicted satisfactory results. Finally, in silico cloning was performed to develop a mass production strategy of the vaccine. CONCLUSION If satisfactory results are achieved in further in vivo and in vitro studies, then the vaccines designed in this study might be effective as preventative measures against the selected HCoV strains.
Collapse
Affiliation(s)
- Bishajit Sarkar
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Md. Asad Ullah
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Yusha Araf
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Nafisa Nawal Islam
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Umme Salma Zohora
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, Bangladesh
| |
Collapse
|
28
|
No molecular evidence for influenza A virus and coronavirus in bats belonging to the families Phyllostomidae, Vespertilionidae, and Molossidae in the state of São Paulo, Brazil. Braz J Microbiol 2022; 54:523-529. [PMID: 36422849 PMCID: PMC9685036 DOI: 10.1007/s42770-022-00878-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
This study aimed to evaluate, by molecular methods, the presence of influenza A virus (IAV) and coronavirus in non-hematophagous bats collected in the state of São Paulo, Brazil. Samples of lung tissue and small intestine from 105 bats belonging to three families (Phyllostomidae, Vespertilionidae, and Molossidae) were collected in 22 municipalities in the state of São Paulo. Genetic identification of bats species was performed by amplification and sequencing of a fragment of 710 bp of the mitochondrial COI gene. In the detection of IAV, genomes were performed by RT-PCR, aiming at the amplification of a 245-bp fragment of the IAV matrix (M) protein gene. For coronaviruses, two fragments of 602 and 440 bp corresponding to segments along the gene encoding the RNA-dependent RNA polymerase (RdRp) were targeted. The detection limit for each of the PCRs was also determined. All samples analyzed here were negative for both viruses, and the lower limit of detection of the PCRs for the amplification of influenza virus A and coronavirus was estimated at 3.5 × 103 and 4.59 genomic copies per microliter, respectively. Although bats have been shown to harbor a large number of pathogens, the results of the present study support the theory that virus circulation in bats in the wild often occurs at low viral loads and that our understanding of the complex infectious dynamics of these viruses in wild conditions is still limited.
Collapse
|
29
|
Risner KH, Tieu KV, Wang Y, Getz M, Bakovic A, Bhalla N, Nathan SD, Conway DE, Macklin P, Narayanan A, Alem F. Maraviroc inhibits SARS-CoV-2 multiplication and s-protein mediated cell fusion in cell culture. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2020.08.12.246389. [PMID: 32817953 PMCID: PMC7430595 DOI: 10.1101/2020.08.12.246389] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In an effort to identify therapeutic intervention strategies for the treatment of COVID-19, we have investigated a selection of FDA-approved small molecules and biologics that are commonly used to treat other human diseases. A investigation into 18 small molecules and 3 biologics was conducted in cell culture and the impact of treatment on viral titer was quantified by plaque assay. The investigation identified 4 FDA-approved small molecules, Maraviroc, FTY720 (Fingolimod), Atorvastatin and Nitazoxanide that were able to inhibit SARS-CoV-2 infection. Confocal microscopy with over expressed S-protein demonstrated that Maraviroc reduced the extent of S-protein mediated cell fusion as observed by fewer multinucleate cells in the context of drug-treatment. Mathematical modeling of drug-dependent viral multiplication dynamics revealed that prolonged drug treatment will exert an exponential decrease in viral load in a multicellular/tissue environment. Taken together, the data demonstrate that Maraviroc, Fingolimod, Atorvastatin and Nitazoxanide inhibit SARS-CoV-2 in cell culture.
Collapse
Affiliation(s)
- Kenneth H. Risner
- Center for Infectious Disease Research, George Mason University, Manassas, Virginia, United States of America
| | - Katie V. Tieu
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Yafei Wang
- Intellegent Systems Engineering, Indiana University, Bloomington, Indiana, United States of America
| | - Michael Getz
- Intellegent Systems Engineering, Indiana University, Bloomington, Indiana, United States of America
| | - Allison Bakovic
- Center for Infectious Disease Research, George Mason University, Manassas, Virginia, United States of America
| | - Nishank Bhalla
- Center for Infectious Disease Research, George Mason University, Manassas, Virginia, United States of America
| | - Steven D. Nathan
- Advanced Lung Disease and Lung Transplant Program, Inova Fairfax Hospital, Fairfax, Virginia, United States of America
| | - Daniel E. Conway
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Paul Macklin
- Intellegent Systems Engineering, Indiana University, Bloomington, Indiana, United States of America
| | - Aarthi Narayanan
- Center for Infectious Disease Research, George Mason University, Manassas, Virginia, United States of America
- American Type Culture Collection, Manassas, Virginia, United States of America
| | - Farhang Alem
- Center for Infectious Disease Research, George Mason University, Manassas, Virginia, United States of America
| |
Collapse
|
30
|
Effect of food and key micronutrients on Covid-19: A review. Heliyon 2022; 8:e11216. [PMID: 36284530 PMCID: PMC9584836 DOI: 10.1016/j.heliyon.2022.e11216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 02/03/2022] [Accepted: 10/18/2022] [Indexed: 11/21/2022] Open
Abstract
Humanity has faced different pandemics in history. The Covid-19 pandemic has made a new course in the world caused by SARS-CoV-2 that can be transmitted to humans. Finding alternative methods to prevent and control the disease through food and some micronutrients is important. This review summarizes effect of food and key micronutrients on Covid-19. There are currently no reports of the feasibility of transmission through the food sector. However, malnutrition and deficiency of some nutrients can lead to disorders of immune system. Coronavirus may be transferred through raw and uncooked foods; more safety and preventive measures are needed. Furthermore, sufficient intake of omega-3 fatty acids, minerals and vitamins are required for proper immune system function. Therefore, a healthy diet is required for prevent Covid-19. Personal hygiene and employee awareness is the two most important features in the prevention of Covid-19. Further studies are needed to confirm these results.
Collapse
|
31
|
Cultivable Bacteria Associated with the Microbiota of Troglophile Bats. Animals (Basel) 2022; 12:ani12192684. [PMID: 36230424 PMCID: PMC9559301 DOI: 10.3390/ani12192684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022] Open
Abstract
Simple Summary Troglophile bats live in colonies, often in sites exploited for agro-pastoral purposes. Determining the composition of the microbiome of bats is an important step in understanding their ecology and biology and can also provide information on the spread of pathogenic bacteria in their populations. This study aimed to determine how epidemiological factors shape the microbiome of troglophile bats and evaluate the occurrence of potentially pathogenic bacterial species. A total of 413 Gram-negative and 183 Gram-positive strains were isolated from 189 individuals of four species of troglophile bats living in Sicilian and Calabrian territory (Italy). Besides few potentially pathogenic bacteria, several strains with a hypothesized symbiotic role were found. Abstract Background: The study of bats is of significant interest from a systematic, zoogeographic, ecological, and physiological point of view. The aim of this study is to investigate the culturable aerobic enteric, conjunctival, and oral bacterial flora of bats to determine their physiological microbiome and to investigate the possible occurrence of pathogenic bacteria. Methods: Five hundred and sixty-seven samples were collected from 189 individuals of four species of troglophile bats (Myotis myotis, Myotis capaccinii, Miniopterus schreibersii, and Rhinolophus hipposideros) living in Sicilian and Calabrian territory (Italy). All samples were tested for Gram-negative bacteria; conjunctival and oral swabs were also submitted to bacteriological examination for Gram-positive bacteria. Results: Four hundred thirteen Gram-negative strains were isolated. Of these, 377 belonged to 17 different genera of the family Enterobacteriaceae and 30 to five other families. One hundred eighty-three Gram-positive strains were isolated. Of these, 73 belonged to the Staphylococcaceae family, 72 to the Bacillaceae family and 36 to four other families. Besides some potentially pathogenic strains, several bacterial species have been found that are common to all the bat species studied. These could perhaps play a physiological or nutritional role. Conclusion: A great variety of bacterial species were identified in the cultivable microbiota of southern-Italian troglophile bats, including several potentially pathogenic strains and numerous putatively symbiotic species.
Collapse
|
32
|
Kulesza J, Kulesza E, Koziński P, Karpik W, Broncel M, Fol M. BCG and SARS-CoV-2-What Have We Learned? Vaccines (Basel) 2022; 10:1641. [PMID: 36298506 PMCID: PMC9610589 DOI: 10.3390/vaccines10101641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 11/19/2022] Open
Abstract
Despite controversy over the protective effect of the BCG (Bacille Calmette-Guérin) vaccine in preventing pulmonary tuberculosis (TB) in adults, it has been used worldwide since 1921. Although the first reports in the 1930s had noted a remarkable decrease in child mortality after BCG immunization, this could not be explained solely by a decrease in mortality from TB. These observations gave rise to the suggestion of nonspecific beneficial effects of BCG vaccination, beyond the desired protection against M. tuberculosis. The existence of an innate immunity-training mechanism based on epigenetic changes was demonstrated several years ago. The emergence of the pandemic caused by the severe acute respiratory syndrome coronavirus (SARS-CoV-2) in 2019 revived the debate about whether the BCG vaccine can affect the immune response against the virus or other unrelated pathogens. Due to the mortality of the coronavirus disease (COVID-19), it is important to verify each factor that may have a potential protective value against the severe course of COVID-19, complications, and death. This paper reviews the results of numerous retrospective studies and prospective trials which shed light on the potential of a century-old vaccine to mitigate the pandemic impact of the new virus. It should be noted, however, that although there are numerous studies intending to verify the hypothesis that the BCG vaccine may have a beneficial effect on COVID-19, there is no definitive evidence on the efficacy of the BCG vaccine against SARS-CoV-2.
Collapse
Affiliation(s)
- Jakub Kulesza
- Department of Internal Diseases and Clinical Pharmacology, Medical University of Lodz, Kniaziewicza 1/5, 91-347 Lodz, Poland
| | - Ewelina Kulesza
- Department of Rheumatology and Internal Diseases, Medical University of Lodz, Żeromskiego 113, 90-549 Lodz, Poland
| | - Piotr Koziński
- Tuberculosis and Lung Diseases Outpatient Clinic, Health Facility Unit in Łęczyca, Zachodnia 6, 99-100 Łęczyca, Poland
| | - Wojciech Karpik
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Marlena Broncel
- Department of Internal Diseases and Clinical Pharmacology, Medical University of Lodz, Kniaziewicza 1/5, 91-347 Lodz, Poland
| | - Marek Fol
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| |
Collapse
|
33
|
Opportunities and Limitations of Molecular Methods for Studying Bat-Associated Pathogens. Microorganisms 2022; 10:microorganisms10091875. [PMID: 36144476 PMCID: PMC9502413 DOI: 10.3390/microorganisms10091875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 01/03/2023] Open
Abstract
Bats have been identified as reservoirs of zoonotic and potentially zoonotic pathogens. Significant progress was made in the field of molecular biology with regard to infectious diseases, especially those that infect more than one species. Molecular methods, sequencing and bioinformatics have recently become irreplaceable tools in emerging infectious diseases research and even outbreak prediction. Modern methods in the molecular biology field have shed more light on the unique relationship between bats and viruses. Here we provide readers with a concise summary of the potential and limitations of molecular methods for studying the ecology of bats and bat-related pathogens and microorganisms.
Collapse
|
34
|
Adedeji AA, Vijayakumar PP. The propensity of fomite spread of SARS-CoV-2 virus through produce supply chain. BULLETIN OF THE NATIONAL RESEARCH CENTRE 2022; 46:245. [PMID: 36156873 PMCID: PMC9483276 DOI: 10.1186/s42269-022-00935-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Background The global community has battled the spread of SAR-CoV-2 for almost 2 years, and the projection is that the virus may be recurrent like the seasonal flu. The SARS-CoV-2 pandemic disrupted activities within the food supply chain that cost billions of dollars globally. This has heightened concerns about fomite spread of the virus through surfaces. There is an urgent need to understand the risk portends by this virus along the produce supply chain with conditions (low temperature and high relative humidity) conducive to extended survival of the virus. Main body Pre-dating SARS-CoV-2 are other types of coronaviruses that had lower infection and mortality rates. There are some similarities between the former and the new coronavirus, especially with regards to transmission modes and their survivability on surfaces. There is evidence of other coronaviruses' survival on surfaces for weeks. Currently, there are limited evidence-based studies to enlighten us on how the virus is transmitted within the produce supply chain. A few studies claim that the virus could spread through the cold supply chains. However, these are not sufficient to make a conclusive inference about the deadly SARS-CoV-2. Conclusions This paper provides a succinct review of the literature on current understanding of the transmission, survivability, and risk SARS-CoV-2 portend to humans within the produce supply chain and calls for more evidence-based research to allay or alert us of the potential risk of fomite transmission of SARS-CoV-2. The paper also highlights examples of conventional and novel non-thermal inactivation and sanitation methods applicable to this type of virus.
Collapse
Affiliation(s)
- Akinbode A. Adedeji
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY USA
| | | |
Collapse
|
35
|
Barrón-Rodríguez RJ, Parra-Laca R, Rojas-Anaya E, Romero-Espinoza JÁI, Ayala-Sumuano JT, Vázquez-Pérez JA, García-Espinosa G, Loza-Rubio E. Evidence of Viral Communities in Three Species of Bats from Rural Environment in Mexico. ACTA CHIROPTEROLOGICA 2022. [DOI: 10.3161/15081109acc2022.24.1.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Rodrigo J. Barrón-Rodríguez
- Centro Nacional de Investigación Disciplinaria en Microbiología Animal (CENID-Microbiología), Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias (INIFAP), Carretera Federal México-Toluca km 15.5, Colonia Palo Alto, Cuajimalpa, Ciu
| | - Rocío Parra-Laca
- Centro Nacional de Investigación Disciplinaria en Microbiología Animal (CENID-Microbiología), Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias (INIFAP), Carretera Federal México-Toluca km 15.5, Colonia Palo Alto, Cuajimalpa, Ciu
| | - Edith Rojas-Anaya
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Avenida Universidad 3000, Colonia Ciudad Universitaria, Coyoacán, Ciudad de México, CP 04510, México
| | - José Á. I. Romero-Espinoza
- Laboratorio de Virología, Instituto Nacional de Enfermedades Respiratorias (INER), Calzada de Tlalpan 4502, Del. Tlalpan, Colonia Sección XVI, Tlalpan, Ciudad de México, C.P. 14080, México
| | - Jorge T. Ayala-Sumuano
- Idix S.A. de C.V., Sonterra 3035 Interior 26, Fraccionamiento Sonterra, Santiago de Querétaro, Querétaro México, C.P. 76230, México
| | - Joel A. Vázquez-Pérez
- Laboratorio de Virología, Instituto Nacional de Enfermedades Respiratorias (INER), Calzada de Tlalpan 4502, Del. Tlalpan, Colonia Sección XVI, Tlalpan, Ciudad de México, C.P. 14080, México
| | - Gary García-Espinosa
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Avenida Universidad 3000, Colonia Ciudad Universitaria, Coyoacán, Ciudad de México, CP 04510, México
| | - Elizabeth Loza-Rubio
- Centro Nacional de Investigación Disciplinaria en Microbiología Animal (CENID-Microbiología), Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias (INIFAP), Carretera Federal México-Toluca km 15.5, Colonia Palo Alto, Cuajimalpa, Ciu
| |
Collapse
|
36
|
Enjuanes L, Sola I, Zúñiga S, Honrubia JM, Bello-Pérez M, Sanz-Bravo A, González-Miranda E, Hurtado-Tamayo J, Requena-Platek R, Wang L, Muñoz-Santos D, Sánchez CM, Esteban A, Ripoll-Gómez J. Nature of viruses and pandemics: Coronaviruses. CURRENT RESEARCH IN IMMUNOLOGY 2022; 3:151-158. [PMID: 35966177 PMCID: PMC9359481 DOI: 10.1016/j.crimmu.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
Coronaviruses (CoVs) have the largest genome among RNA viruses and store large amounts of information without genome integration as they replicate in the cell cytoplasm. The replication of the virus is a continuous process, whereas the transcription of the subgenomic mRNAs is a discontinuous one, involving a template switch, which resembles a high frequency recombination mechanism that may favor virus genome variability. The origin of the three deadly human CoVs SARS-CoV, MERS-CoV and SARS-CoV-2 are zoonotic events. SARS-CoV-2 has incorporated in its spike protein a furine proteolytic site that facilitates the activation of the virus in any tissue, making this CoV strain highly polytropic and pathogenic. Using MERS-CoV as a model, a propagation-deficient RNA replicon was generated by removing E protein gene (essential for viral morphogenesis and involved in virulence), and accessory genes 3, 4a, 4b and 5 (responsible for antagonism of the innate immune response) to attenuate the virus: MERS-CoV-Δ[3,4a,4b,5,E]. This RNA replicon is strongly attenuated and elicits sterilizing protection after a single immunization in transgenic mice with the receptor for MERS-CoV, making it a promising vaccine candidate for this virus and an interesting platform for vector-based vaccine development. A strategy could be developed for the design of RNA replicon vaccines for other human pathogenic coronaviruses.
Collapse
Affiliation(s)
- Luis Enjuanes
- Department of Molecular and Cell Biology. National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid. Darwin 3, Madrid, Spain
| | - Isabel Sola
- Department of Molecular and Cell Biology. National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid. Darwin 3, Madrid, Spain
| | - Sonia Zúñiga
- Department of Molecular and Cell Biology. National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid. Darwin 3, Madrid, Spain
| | - José M. Honrubia
- Department of Molecular and Cell Biology. National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid. Darwin 3, Madrid, Spain
| | - Melissa Bello-Pérez
- Department of Molecular and Cell Biology. National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid. Darwin 3, Madrid, Spain
| | - Alejandro Sanz-Bravo
- Department of Molecular and Cell Biology. National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid. Darwin 3, Madrid, Spain
| | - Ezequiel González-Miranda
- Department of Molecular and Cell Biology. National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid. Darwin 3, Madrid, Spain
| | - Jesús Hurtado-Tamayo
- Department of Molecular and Cell Biology. National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid. Darwin 3, Madrid, Spain
| | - Ricardo Requena-Platek
- Department of Molecular and Cell Biology. National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid. Darwin 3, Madrid, Spain
| | - Li Wang
- Department of Molecular and Cell Biology. National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid. Darwin 3, Madrid, Spain
| | - Diego Muñoz-Santos
- Department of Molecular and Cell Biology. National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid. Darwin 3, Madrid, Spain
| | - Carlos M. Sánchez
- Department of Molecular and Cell Biology. National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid. Darwin 3, Madrid, Spain
| | - Ana Esteban
- Department of Molecular and Cell Biology. National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid. Darwin 3, Madrid, Spain
| | - Jorge Ripoll-Gómez
- Department of Molecular and Cell Biology. National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid. Darwin 3, Madrid, Spain
| |
Collapse
|
37
|
Pelucio L, Simões P, Dourado MCN, Quagliato LA, Nardi AE. Depression and anxiety among online learning students during the COVID-19 pandemic: a cross-sectional survey in Rio de Janeiro, Brazil. BMC Psychol 2022; 10:192. [PMID: 35922866 PMCID: PMC9346054 DOI: 10.1186/s40359-022-00897-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 07/27/2022] [Indexed: 12/20/2022] Open
Abstract
Background The COVID-19 pandemic introduced a global need to explore the potential and challenges of online education.
Objective To evaluate the presence of depression and anxiety in university students and their level of satisfaction with online learning during the period of social isolation caused by the COVID-19 pandemic. Method A cross-sectional design was used to evaluate 152 online learning students from six different university courses: Medicine, Psychology, Law, Engineering, Physiotherapy, and Business. The evaluation of the participants was carried out through an online survey in Rio de Janeiro, Brazil. Also, the Hospital Anxiety and Depression Scale was used to assess participants mental health. Results Most of the participants reported emotional impact, followed by learning impact, financial impact, social impact, and technological impact, with a significant difference in the presence of depressive symptoms, but no significant difference in anxiety. The participants presented moderate anxiety levels, with no significant differences between genders, and mild levels of depressive symptoms with significant differences between genders. Also, younger students were more anxious than older students. In addition, female students with less social contact presented more depressive symtoms. Conclusion From a clinical perspective, the findings provide insights into mental health among university students during the COVID-19 pandemic. These findings may help in the development of effective screening strategies and in the formulation of interventions that improve the mental health of students.
Collapse
Affiliation(s)
- Luísa Pelucio
- Institute of Psychiatry, Universidade Federal Do Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil.
| | - Pedro Simões
- Departament of Sociology and Political Science, Universidade Federal de Santa Catarina (UFSC), Rio de Janeiro (RJ), Brazil
| | | | - Laiana A Quagliato
- Institute of Psychiatry, Universidade Federal Do Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil
| | - Antonio Egidio Nardi
- Institute of Psychiatry, Universidade Federal Do Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil
| |
Collapse
|
38
|
Aicher SM, Streicher F, Chazal M, Planas D, Luo D, Buchrieser J, Nemcova M, Seidlova V, Zukal J, Serra-Cobo J, Pontier D, Pain B, Zimmer G, Schwartz O, Roingeard P, Pikula J, Dacheux L, Jouvenet N. Species-Specific Molecular Barriers to SARS-CoV-2 Replication in Bat Cells. J Virol 2022; 96:e0060822. [PMID: 35862713 PMCID: PMC9327701 DOI: 10.1128/jvi.00608-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/07/2022] [Indexed: 11/20/2022] Open
Abstract
Bats are natural reservoirs of numerous coronaviruses, including the potential ancestor of SARS-CoV-2. Knowledge concerning the interaction between coronaviruses and bat cells is sparse. We investigated the ability of primary cells from Rhinolophus and Myotis species, as well as of established and novel cell lines from Myotis myotis, Eptesicus serotinus, Tadarida brasiliensis, and Nyctalus noctula, to support SARS-CoV-2 replication. None of these cells were permissive to infection, not even the ones expressing detectable levels of angiotensin-converting enzyme 2 (ACE2), which serves as the viral receptor in many mammalian species. The resistance to infection was overcome by expression of human ACE2 (hACE2) in three cell lines, suggesting that the restriction to viral replication was due to a low expression of bat ACE2 (bACE2) or the absence of bACE2 binding in these cells. Infectious virions were produced but not released from hACE2-transduced M. myotis brain cells. E. serotinus brain cells and M. myotis nasal epithelial cells expressing hACE2 efficiently controlled viral replication, which correlated with a potent interferon response. Our data highlight the existence of species-specific and cell-specific molecular barriers to viral replication in bat cells. These novel chiropteran cellular models are valuable tools to investigate the evolutionary relationships between bats and coronaviruses. IMPORTANCE Bats are host ancestors of several viruses that cause serious disease in humans, as illustrated by the ongoing SARS-CoV-2 pandemic. Progress in investigating bat-virus interactions has been hampered by a limited number of available bat cellular models. We have generated primary cells and cell lines from several bat species that are relevant for coronavirus research. The various permissivities of the cells to SARS-CoV-2 infection offered the opportunity to uncover some species-specific molecular restrictions to viral replication. All bat cells exhibited a potent entry-dependent restriction. Once this block was overcome by overexpression of human ACE2, which serves at the viral receptor, two bat cell lines controlled well viral replication, which correlated with the inability of the virus to counteract antiviral responses. Other cells potently inhibited viral release. Our novel bat cellular models contribute to a better understanding of the molecular interplays between bat cells and viruses.
Collapse
Affiliation(s)
- Sophie-Marie Aicher
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus Sensing and Signaling Unit, Paris, France
| | - Felix Streicher
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus Sensing and Signaling Unit, Paris, France
| | - Maxime Chazal
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus Sensing and Signaling Unit, Paris, France
| | - Delphine Planas
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus and Immunity Unit, Paris, France
- Vaccine Research Institute, Créteil, France
| | - Dongsheng Luo
- Institut Pasteur, Université de Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, Paris, France
| | - Julian Buchrieser
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus and Immunity Unit, Paris, France
| | - Monika Nemcova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Veronika Seidlova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Jan Zukal
- Institute of Vertebrate Biology of the Czech Academy of Sciences Brno, Brno, Czech Republic
| | - Jordi Serra-Cobo
- Institut de Recerca de la Biodiversitat (IRBio), Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Dominique Pontier
- Université de Lyon, LabEx Ecofect, Lyon, France
- Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, Villeurbanne, France
| | - Bertrand Pain
- University of Lyon, Université Lyon 1, INSERM, INRAE, Stem Cell and Brain Research Institute, Bron, France
| | - Gert Zimmer
- Institute of Virology and Immunology, Bern & Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Olivier Schwartz
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus and Immunity Unit, Paris, France
- Vaccine Research Institute, Créteil, France
| | - Philippe Roingeard
- INSERM U1259 MAVIVH and Plateforme IBiSA de Microscopie Electronique, Faculté de Médecine, Université de Tours, Tours, France
| | - Jiri Pikula
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Laurent Dacheux
- Institut Pasteur, Université de Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, Paris, France
| | - Nolwenn Jouvenet
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus Sensing and Signaling Unit, Paris, France
| |
Collapse
|
39
|
Frank HK, Enard D, Boyd SD. Exceptional diversity and selection pressure on coronavirus host receptors in bats compared to other mammals. Proc Biol Sci 2022; 289:20220193. [PMID: 35892217 PMCID: PMC9326293 DOI: 10.1098/rspb.2022.0193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/30/2022] [Indexed: 12/25/2022] Open
Abstract
Pandemics originating from non-human animals highlight the need to understand how natural hosts have evolved in response to emerging human pathogens and which groups may be susceptible to infection and/or potential reservoirs to mitigate public health and conservation concerns. Multiple zoonotic coronaviruses, such as severe acute respiratory syndrome-associated coronavirus (SARS-CoV), SARS-CoV-2 and Middle Eastern respiratory syndrome-associated coronavirus (MERS-CoV), are hypothesized to have evolved in bats. We investigate angiotensin-converting enzyme 2 (ACE2), the host protein bound by SARS-CoV and SARS-CoV-2, and dipeptidyl-peptidase 4 (DPP4 or CD26), the host protein bound by MERS-CoV, in the largest bat datasets to date. Both the ACE2 and DPP4 genes are under strong selection pressure in bats, more so than in other mammals, and in residues that contact viruses. Additionally, mammalian groups vary in their similarity to humans in residues that contact SARS-CoV, SARS-CoV-2 and MERS-CoV, and increased similarity to humans in binding residues is broadly predictive of susceptibility to SARS-CoV-2. This work augments our understanding of the relationship between coronaviruses and mammals, particularly bats, provides taxonomically diverse data for studies of how host proteins are bound by coronaviruses and can inform surveillance, conservation and public health efforts.
Collapse
Affiliation(s)
- Hannah K. Frank
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA
| | - David Enard
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Scott D. Boyd
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
40
|
Costa BTD, Araújo GRL, da Silva Júnior RT, Santos LKDS, Lima de Souza Gonçalves V, Lima DBA, Cuzzuol BR, Santos Apolonio J, de Carvalho LS, Marques HS, Silva CS, Barcelos IDS, Oliveira MV, Freire de Melo F. Effects of nutrients on immunomodulation in patients with severe COVID-19: Current knowledge. World J Crit Care Med 2022; 11:201-218. [PMID: 36051942 PMCID: PMC9305681 DOI: 10.5492/wjccm.v11.i4.201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/24/2022] [Accepted: 05/17/2022] [Indexed: 02/06/2023] Open
Abstract
Recent research has demonstrated that critically ill patients with coronavirus disease 2019 (COVID-19) show significant immune system dysregulation. Due to that, some nutrients that influence immunomodulation have been suggested as a form of treatment against the infection. This review collected the information on the impact of vitamins on the prognosis of COVID-19, with the intention of facilitating treatment and prevention of the disease risk status in patients. The collected information was obtained using the PubMed electronic database by searching for articles that relate COVID-19 and the mechanisms/effects of the nutrients: Proteins, glucose, lipids, vitamin B12, vitamin D, calcium, iron, copper, zinc, and magnesium, including prospective, retrospective, and support articles. The findings reveal an optimal response related mainly to omega-3, eicosapentaenoic acid, docosahexaenoic acid, calcium, and iron that might represent benefits in the treatment of critically ill patients. However, nutrient supplementation should be done with caution due to the limited availability of randomized controlled studies.
Collapse
Affiliation(s)
- Bruna Teixeira da Costa
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Glauber Rocha Lima Araújo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Luana Kauany de Sá Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Daniel Bastos Alves Lima
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Beatriz Rocha Cuzzuol
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Jonathan Santos Apolonio
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Lorena Sousa de Carvalho
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Hanna Santos Marques
- Campus Vitória da Conquista, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista 45083-900, Bahia, Brazil
| | - Camilo Santana Silva
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Isadora de Souza Barcelos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Márcio Vasconcelos Oliveira
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
41
|
Alves RS, do Canto Olegário J, Weber MN, da Silva MS, Canova R, Sauthier JT, Baumbach LF, Witt AA, Varela APM, Mayer FQ, da Fontoura Budaszewski R, Canal CW. Detection of coronavirus in vampire bats (Desmodus rotundus) in southern Brazil. Transbound Emerg Dis 2022; 69. [PMID: 33977671 PMCID: PMC8242716 DOI: 10.1111/tbed.14150+10.1111/tbed.14150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
The vampire bat (Desmodus rotundus) is a haematophagous animal that feeds exclusively on the blood of domestic mammals. Vampire bat feeding habits enable their contact with mammalian hosts and may enhance zoonotic spillover. Moreover, they may carry several pathogenic organisms, including coronaviruses (CoVs), for which they are important hosts. The human pathogens that cause severe acute respiratory syndrome (SARS-CoV), Middle East respiratory syndrome (MERS-CoV) and possibly coronavirus disease 2019 (SARS-CoV-2) all originated in bats but required bridge hosts to spread into human populations. To monitor the presence of potential zoonotic viruses in bats, the present work evaluated the presence of CoVs in vampire bats from southern Brazil. A total of 101 vampire bats were captured and euthanized between 2017 and 2019 in Rio Grande do Sul state, southern Brazil. The brain, heart, liver, lungs, kidneys and intestines were collected and macerated individually. The samples were pooled and submitted to high-throughput sequencing (HTS) using the Illumina MiSeq platform and subsequently individually screened using a pancoronavirus RT-PCR protocol. We detected CoV-related sequences in HTS, but only two (2/101; 1.98%) animals had CoV detected in the intestines by RT-PCR. Partial sequences of RdRp and spike genes were obtained in the same sample and the RdRp region in the other sample. The sequences were classified as belonging to Alphacoronavirus. The sequences were closely related to alphacoronaviruses detected in vampire bats from Peru. The continuous monitoring of bat CoVs may help to map and predict putative future zoonotic agents with great impacts on human health.
Collapse
Affiliation(s)
- Raquel Silva Alves
- Laboratório de VirologiaFaculdade de VeterináriaUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
| | - Juliana do Canto Olegário
- Laboratório de VirologiaFaculdade de VeterináriaUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
| | - Matheus Nunes Weber
- Laboratório de Microbiologia MolecularInstituto de Ciências da SaúdeUniversidade FeevaleNovo HamburgoBrazil
| | - Mariana Soares da Silva
- Laboratório de VirologiaFaculdade de VeterináriaUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
| | - Raissa Canova
- Laboratório de VirologiaFaculdade de VeterináriaUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
| | - Jéssica Tatiane Sauthier
- Laboratório de VirologiaFaculdade de VeterináriaUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
| | - Letícia Ferreira Baumbach
- Laboratório de VirologiaFaculdade de VeterináriaUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
| | - André Alberto Witt
- Laboratório de VirologiaFaculdade de VeterináriaUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
- Secretaria Estadual de AgriculturaPecuária e Desenvolvimento Rural (SEAPDR)Rio Grande do Sul Rio Grande do SulBrazil
| | - Ana Paula Muterle Varela
- Centro de Pesquisa em Saúde AnimalInstituto de Pesquisas Veterinárias Desidério Finamor (IPVDF)Departamento de Diagnóstico e Pesquisa Agropecuária (DDPA)Secretaria da AgriculturaPecuária e Desenvolvimento Rural (SEAPDR)Rio Grande do SulBrazil
| | - Fabiana Quoos Mayer
- Centro de Pesquisa em Saúde AnimalInstituto de Pesquisas Veterinárias Desidério Finamor (IPVDF)Departamento de Diagnóstico e Pesquisa Agropecuária (DDPA)Secretaria da AgriculturaPecuária e Desenvolvimento Rural (SEAPDR)Rio Grande do SulBrazil
| | | | - Cláudio Wageck Canal
- Laboratório de VirologiaFaculdade de VeterináriaUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
| |
Collapse
|
42
|
Kar B, Dehury B, Singh MK, Pati S, Bhattacharya D. Identification of phytocompounds as newer antiviral drugs against COVID-19 through molecular docking and simulation based study. J Mol Graph Model 2022; 114:108192. [PMID: 35468453 PMCID: PMC9007924 DOI: 10.1016/j.jmgm.2022.108192] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022]
Abstract
COVID-19 pandemic has emerged as a global threat with its highly contagious and mutating nature. Several existing antiviral drugs has been worked on, without proper results and meanwhile the virus is mutating rapidly to create more infectious variant. In order to find some alternatives, phytocompounds can be opted as good one. In this study, three hundred phytocompounds were screened virtually against two viral proteins namely main protease and spike protein. Molecular docking and dynamic simulation study was used to find binding affinity, structural stability and flexibility of the complex. Pharmacokinetic properties were studied through ADMET analysis. To understand energy variation of the complex structure free energy landscape analysis was performed. Among three hundred phytocompounds virtual screening, three phytocompounds were selected for detailed molecular interaction analysis. Oleanderolide, Proceragenin A and Balsaminone A, showed strong binding affinity against both the target proteins and reflected conformational stability throughout the MD run. Oleanderolide, proceragenin A and balsaminone A has docking score -9.4 kcal/mol, -8.6 kcal/mol, and -8.1 kcal/mol respectively against main protease and same -8.3 kcal/mol docking score against spike protein. These three phytocompounds has high gastrointestinal absorption capacity. They were unexplored till now for their antiviral activity. Their promising in silico results suggests that they can be promoted in the long run for development of new antiviral drugs.
Collapse
Affiliation(s)
- Bipasa Kar
- ICMR-Regional Medical Research Centre (Dept. of Health Research, Ministry of Health & Family Welfare, Govt. of India), Chandrasekharpur, Bhubaneswar, 751023, Odisha, India
| | - Budheswar Dehury
- ICMR-Regional Medical Research Centre (Dept. of Health Research, Ministry of Health & Family Welfare, Govt. of India), Chandrasekharpur, Bhubaneswar, 751023, Odisha, India
| | - Mahender Kumar Singh
- Data Science Laboratory, National Brain Research Centre, Gurgaon, Haryana, 122052, India
| | - Sanghamitra Pati
- ICMR-Regional Medical Research Centre (Dept. of Health Research, Ministry of Health & Family Welfare, Govt. of India), Chandrasekharpur, Bhubaneswar, 751023, Odisha, India
| | - Debdutta Bhattacharya
- ICMR-Regional Medical Research Centre (Dept. of Health Research, Ministry of Health & Family Welfare, Govt. of India), Chandrasekharpur, Bhubaneswar, 751023, Odisha, India.
| |
Collapse
|
43
|
Weinberg M, Yovel Y. Revising the paradigm: Are bats really pathogen reservoirs or do they possess an efficient immune system? iScience 2022; 25:104782. [PMID: 35982789 PMCID: PMC9379578 DOI: 10.1016/j.isci.2022.104782] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
While bats are often referred to as reservoirs of viral pathogens, a meta-analysis of the literature reveals many cases in which there is not enough evidence to claim so. In many cases, bats are able to confront viruses, recover, and remain immune by developing a potent titer of antibodies, often without becoming a reservoir. In other cases, bats might have carried an ancestral virus that at some time point might have mutated into a human pathogen. Moreover, bats exhibit a balanced immune response against viruses that have evolved over millions of years. Using genomic tools, it is now possible to obtain a deeper understanding of that unique immune system and its variability across the order Chiroptera. We conclude, that with the exception of a few viruses, bats pose little zoonotic danger to humans and that they operate a highly efficient anti-inflammatory response that we should strive to understand.
Collapse
Affiliation(s)
- Maya Weinberg
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Corresponding author
| | - Yossi Yovel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
44
|
Alves RS, do Canto Olegário J, Weber MN, da Silva MS, Canova R, Sauthier JT, Baumbach LF, Witt AA, Varela APM, Mayer FQ, da Fontoura Budaszewski R, Canal CW. Detection of coronavirus in vampire bats (Desmodus rotundus) in southern Brazil. Transbound Emerg Dis 2022; 69. [PMID: 33977671 PMCID: PMC8242716 DOI: 10.1111/tbed.14150 10.1111/tbed.14150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The vampire bat (Desmodus rotundus) is a haematophagous animal that feeds exclusively on the blood of domestic mammals. Vampire bat feeding habits enable their contact with mammalian hosts and may enhance zoonotic spillover. Moreover, they may carry several pathogenic organisms, including coronaviruses (CoVs), for which they are important hosts. The human pathogens that cause severe acute respiratory syndrome (SARS-CoV), Middle East respiratory syndrome (MERS-CoV) and possibly coronavirus disease 2019 (SARS-CoV-2) all originated in bats but required bridge hosts to spread into human populations. To monitor the presence of potential zoonotic viruses in bats, the present work evaluated the presence of CoVs in vampire bats from southern Brazil. A total of 101 vampire bats were captured and euthanized between 2017 and 2019 in Rio Grande do Sul state, southern Brazil. The brain, heart, liver, lungs, kidneys and intestines were collected and macerated individually. The samples were pooled and submitted to high-throughput sequencing (HTS) using the Illumina MiSeq platform and subsequently individually screened using a pancoronavirus RT-PCR protocol. We detected CoV-related sequences in HTS, but only two (2/101; 1.98%) animals had CoV detected in the intestines by RT-PCR. Partial sequences of RdRp and spike genes were obtained in the same sample and the RdRp region in the other sample. The sequences were classified as belonging to Alphacoronavirus. The sequences were closely related to alphacoronaviruses detected in vampire bats from Peru. The continuous monitoring of bat CoVs may help to map and predict putative future zoonotic agents with great impacts on human health.
Collapse
Affiliation(s)
- Raquel Silva Alves
- Laboratório de VirologiaFaculdade de VeterináriaUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
| | - Juliana do Canto Olegário
- Laboratório de VirologiaFaculdade de VeterináriaUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
| | - Matheus Nunes Weber
- Laboratório de Microbiologia MolecularInstituto de Ciências da SaúdeUniversidade FeevaleNovo HamburgoBrazil
| | - Mariana Soares da Silva
- Laboratório de VirologiaFaculdade de VeterináriaUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
| | - Raissa Canova
- Laboratório de VirologiaFaculdade de VeterináriaUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
| | - Jéssica Tatiane Sauthier
- Laboratório de VirologiaFaculdade de VeterináriaUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
| | - Letícia Ferreira Baumbach
- Laboratório de VirologiaFaculdade de VeterináriaUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
| | - André Alberto Witt
- Laboratório de VirologiaFaculdade de VeterináriaUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil,Secretaria Estadual de AgriculturaPecuária e Desenvolvimento Rural (SEAPDR)Rio Grande do Sul Rio Grande do SulBrazil
| | - Ana Paula Muterle Varela
- Centro de Pesquisa em Saúde AnimalInstituto de Pesquisas Veterinárias Desidério Finamor (IPVDF)Departamento de Diagnóstico e Pesquisa Agropecuária (DDPA)Secretaria da AgriculturaPecuária e Desenvolvimento Rural (SEAPDR)Rio Grande do SulBrazil
| | - Fabiana Quoos Mayer
- Centro de Pesquisa em Saúde AnimalInstituto de Pesquisas Veterinárias Desidério Finamor (IPVDF)Departamento de Diagnóstico e Pesquisa Agropecuária (DDPA)Secretaria da AgriculturaPecuária e Desenvolvimento Rural (SEAPDR)Rio Grande do SulBrazil
| | | | - Cláudio Wageck Canal
- Laboratório de VirologiaFaculdade de VeterináriaUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
| |
Collapse
|
45
|
Genomic Comparisons of Alphacoronaviruses and Betacoronaviruses from Korean Bats. Viruses 2022; 14:v14071389. [PMID: 35891370 PMCID: PMC9320528 DOI: 10.3390/v14071389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Coronaviruses are well known as a diverse family of viruses that affect a wide range of hosts. Since the outbreak of severe acute respiratory syndrome, a variety of bat-associated coronaviruses have been identified in many countries. However, they do not represent all the specific geographic locations of their hosts. In this study, full-length genomes representing newly identified bat coronaviruses in South Korea were obtained using an RNA sequencing approach. The analysis, based on genome structure, conserved replicase domains, spike gene, and nucleocapsid genes revealed that bat Alphacoronaviruses are from three different viral species. Among them, the newly identified B20-97 strain may represent a new putative species, closely related to PEDV. In addition, the newly-identified MERS-related coronavirus exhibited shared genomic nucleotide identities of less than 76.4% with other Merbecoviruses. Recombination analysis and multiple alignments of spike and RBD amino acid sequences suggested that this strain underwent recombination events and could possibly use hDPP4 molecules as its receptor. The bat SARS-related CoV B20-50 is unlikely to be able to use hACE2 as its receptor and lack of an open reading frame in ORF8 gene region. Our results illustrate the diversity of coronaviruses in Korean bats and their evolutionary relationships. The evolution of the bat coronaviruses related ORF8 accessory gene is also discussed.
Collapse
|
46
|
Bueno LM, Rizotto LS, Viana ADO, Silva LMN, de Moraes MVDS, Benassi JC, Scagion GP, Dorlass EG, Lopes BLT, Cunha IN, Melinski R, de Alvarenga IF, Leitão GL, Rodrigues RC, Pereira IMDS, Santos LDND, Fisch F, Rocha AD, Port D, Pereira GS, Greatti A, Barnabé ACDS, Tsukamoto J, Hingst-Zaher E, Junior SMDA, Junior WRT, Branco JO, Ometto T, de Araujo J, Arns CW, Ferreira HL, Durigon EEL. High genetic diversity of alphacoronaviruses in bat species (Mammalia: Chiroptera) from the Atlantic Forest in Brazil. Transbound Emerg Dis 2022; 69:e2863-e2875. [PMID: 35729863 DOI: 10.1111/tbed.14636] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/02/2022] [Accepted: 06/16/2022] [Indexed: 11/28/2022]
Abstract
Bat coronaviruses (Bat-CoV) represent around 35% of all virus genomes described in bats. Brazil has one of the highest mammal species diversities, with 181 species of bats described so far. However, few Bat-CoV surveillance programs were carried out in the country. Thus, our aim was to evaluate the Bat-CoV diversity in the Atlantic Forest, the second biome with the highest number of bat species in Brazil. We analyzed 456 oral and rectal swabs and 22 tissue samples from Atlantic Forest bats, detecting Alphacoronavirus in 44 swab samples (9.64%) targeting the RdRp gene from seven different bat species, three of them that have never been described as Bat-CoV hosts. Phylogenetic analysis of the amino acid (aa) sequences coding the RdRp gene grouped the sequences obtained in our study with Bat-CoV previously detected in identical or congeneric bat species, with high aa identity (over 90%). The RdRp gene was also detected in three tissue samples from Diphylla ecaudata and Sturnira lilium, and the partial S gene was successfully sequenced in five tissues and swab samples of D. ecaudata. The phylogenetic analysis based on the partial S gene obtained here grouped with the sequence of D. ecaudata with CoV from Desmodus rotundus previously detected in Peru and Brazil, with aa identity ranging from 73.6% to 88.8%. Our data reinforce the wide distribution of Coronaviruses in bats from Brazil and the novelty of three bats species as Bat-CoV hosts and the co-circulation of four Alphacoronavirus subgenera in Brazil. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Larissa Mayumi Bueno
- Department of Veterinary Medicine, FZEA- USP, University of Sao Paulo, 225 Av Duque de Caxias Norte, Pirassununga, SP, Brazil
| | - Laís Santos Rizotto
- Graduate Program in Experimental Epidemiology Applied to Zoonoses, FMVZ-USP, University of São Paulo, 87 Prof. Orlando Marques de Paiva Avenue, São Paulo, SP, Brazil
| | - Amanda de Oliveira Viana
- Institute of Biomedical Science, University of São Paulo, 1374 Prof. Lineu Prestes Avenue, São Paulo, SP, Brazil
| | - Laura Morais Nascimento Silva
- Graduate Program in Experimental Epidemiology Applied to Zoonoses, FMVZ-USP, University of São Paulo, 87 Prof. Orlando Marques de Paiva Avenue, São Paulo, SP, Brazil
| | - Maria Vitória Dos Santos de Moraes
- Graduate Program in Experimental Epidemiology Applied to Zoonoses, FMVZ-USP, University of São Paulo, 87 Prof. Orlando Marques de Paiva Avenue, São Paulo, SP, Brazil
| | - Julia Cristina Benassi
- Department of Veterinary Medicine, FZEA- USP, University of Sao Paulo, 225 Av Duque de Caxias Norte, Pirassununga, SP, Brazil
| | - Guilherme Pereira Scagion
- Institute of Biomedical Science, University of São Paulo, 1374 Prof. Lineu Prestes Avenue, São Paulo, SP, Brazil
| | - Erick Gustavo Dorlass
- Institute of Biomedical Science, University of São Paulo, 1374 Prof. Lineu Prestes Avenue, São Paulo, SP, Brazil
| | | | - Irineu Noberto Cunha
- Biological Museum, Instituto Butantan, 1500 Vital Brasil Avenue, São Paulo, SP, Brazil
| | - Ramiro Melinski
- Biological Museum, Instituto Butantan, 1500 Vital Brasil Avenue, São Paulo, SP, Brazil
| | | | - Gabriel Lins Leitão
- Biological Museum, Instituto Butantan, 1500 Vital Brasil Avenue, São Paulo, SP, Brazil
| | - Roberta Costa Rodrigues
- Biology Departament, Federal Rural University of Pernambuco, Dom Manuel de Medeiros Street, Recife, PE, Brazil
| | | | | | - Fabiane Fisch
- School of Sea, Science and Technology, University of Vale do Itajaí, 458 Uruguai Street, Itajaí, SC, Brazil
| | - Alana Drielle Rocha
- School of Sea, Science and Technology, University of Vale do Itajaí, 458 Uruguai Street, Itajaí, SC, Brazil
| | - Dagoberto Port
- Brusque Educational Foundation, 123 Dorval Luz Street, Brusque, SC, Brazil
| | - Gabriela Stahelin Pereira
- School of Sea, Science and Technology, University of Vale do Itajaí, 458 Uruguai Street, Itajaí, SC, Brazil
| | - Alessandra Greatti
- Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil
| | - Ana Caroline de Souza Barnabé
- Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil
| | - Junko Tsukamoto
- Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil
| | - Erika Hingst-Zaher
- Biological Museum, Instituto Butantan, 1500 Vital Brasil Avenue, São Paulo, SP, Brazil
| | | | | | - Joaquim Olinto Branco
- School of Sea, Science and Technology, University of Vale do Itajaí, 458 Uruguai Street, Itajaí, SC, Brazil
| | - Tatiana Ometto
- Institute of Biomedical Science, University of São Paulo, 1374 Prof. Lineu Prestes Avenue, São Paulo, SP, Brazil
| | - Jansen de Araujo
- Institute of Biomedical Science, University of São Paulo, 1374 Prof. Lineu Prestes Avenue, São Paulo, SP, Brazil
| | - Clarice Weis Arns
- Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil
| | - Helena Lage Ferreira
- Department of Veterinary Medicine, FZEA- USP, University of Sao Paulo, 225 Av Duque de Caxias Norte, Pirassununga, SP, Brazil.,Graduate Program in Experimental Epidemiology Applied to Zoonoses, FMVZ-USP, University of São Paulo, 87 Prof. Orlando Marques de Paiva Avenue, São Paulo, SP, Brazil
| | - E Edison Luiz Durigon
- Institute of Biomedical Science, University of São Paulo, 1374 Prof. Lineu Prestes Avenue, São Paulo, SP, Brazil
| |
Collapse
|
47
|
Havasi A, Visan S, Cainap C, Cainap SS, Mihaila AA, Pop LA. Influenza A, Influenza B, and SARS-CoV-2 Similarities and Differences – A Focus on Diagnosis. Front Microbiol 2022; 13:908525. [PMID: 35794916 PMCID: PMC9251468 DOI: 10.3389/fmicb.2022.908525] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/23/2022] [Indexed: 12/23/2022] Open
Abstract
In late December 2019, the first cases of viral pneumonia caused by an unidentified pathogen were reported in China. Two years later, SARS-CoV-2 was responsible for almost 450 million cases, claiming more than 6 million lives. The COVID-19 pandemic strained the limits of healthcare systems all across the world. Identifying viral RNA through real-time reverse transcription-polymerase chain reaction remains the gold standard in diagnosing SARS-CoV-2 infection. However, equipment cost, availability, and the need for trained personnel limited testing capacity. Through an unprecedented research effort, new diagnostic techniques such as rapid diagnostic testing, isothermal amplification techniques, and next-generation sequencing were developed, enabling accurate and accessible diagnosis. Influenza viruses are responsible for seasonal outbreaks infecting up to a quarter of the human population worldwide. Influenza and SARS-CoV-2 present with flu-like symptoms, making the differential diagnosis challenging solely on clinical presentation. Healthcare systems are likely to be faced with overlapping SARS-CoV-2 and Influenza outbreaks. This review aims to present the similarities and differences of both infections while focusing on the diagnosis. We discuss the clinical presentation of Influenza and SARS-CoV-2 and techniques available for diagnosis. Furthermore, we summarize available data regarding the multiplex diagnostic assay of both viral infections.
Collapse
Affiliation(s)
- Andrei Havasi
- Department of Oncology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, Cluj-Napoca, Romania
| | - Simona Visan
- Department of Genetics, Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, Cluj-Napoca, Romania
| | - Calin Cainap
- Department of Oncology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, Cluj-Napoca, Romania
| | - Simona Sorana Cainap
- Pediatric Clinic No. 2, Department of Pediatric Cardiology, Emergency County Hospital for Children, Cluj-Napoca, Romania
- Department of Mother and Child, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- *Correspondence: Simona Sorana Cainap, ;
| | - Alin Adrian Mihaila
- Faculty of Economics and Business Administration, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Laura-Ancuta Pop
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
48
|
Moreno-Santillán DD, Machain-Williams C, Hernández-Montes G, Ortega J. Transcriptomic analysis elucidates evolution of the major histocompatibility complex class I in neotropical bats. J Mammal 2022. [DOI: 10.1093/jmammal/gyac052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
The Order Chiroptera comprises more than 1,400 species, each with its evolutionary history and under unique selective pressures, among which are the host–pathogen interactions. Bats have coped with complex interactions with a broad spectrum of microbes throughout their evolutionary history, prompting the development of unique adaptations that allow them to co-exist with microbes with pathogenic potential more efficiently than other nonadapted species. In this sense, an extraordinary immune system with unique adaptations has been hypothesized in bats. To explore this, we focused on the major histocompatibility complex (MHC), which plays a crucial role in pathogen recognition and presentation to T cells to trigger the adaptive immune response. We analyzed MHC class I transcripts in five species, each from different families of New World bats. From RNA-seq data, we assembled a partial region of the MHC-I comprising the α1 and α2 domains, which are responsible for peptide binding and recognition. We described five putative functional variants, two of which have two independent insertions at the α2 domain. Our results suggest that this insertion appeared after the divergence of the order Chiroptera and may have an adaptive function in the defense against intracellular pathogens, providing evidence of positive selection and trans-specific polymorphism on the peptide-binding sites.
Collapse
Affiliation(s)
- Diana D Moreno-Santillán
- Department of Integrative Biology, University of California , Berkeley, California 94720-3200 , USA
| | - Carlos Machain-Williams
- Universidad Autónoma de Yucatán, Laboratorio de Arbovirología , Mérida, Yucatán 97000 , México
| | - Georgina Hernández-Montes
- Universidad Nacional Autónoma de México, Red de apoyo a la Investigación, Coordinación de la Investigación Científica entre Universidad y Red de Apoyo , Ciudad de México 14080 , México
| | - Jorge Ortega
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Departamento de Zoología, Posgrado en Ciencias Quimicobiológicas , Ciudad de México 11350 , México
| |
Collapse
|
49
|
Histopathologic and Immunohistochemical Evaluation of Induced Lesions, Tissue Tropism and Host Responses following Experimental Infection of Egyptian Rousette Bats ( Rousettus aegyptiacus) with the Zoonotic Paramyxovirus, Sosuga Virus. Viruses 2022; 14:v14061278. [PMID: 35746749 PMCID: PMC9227259 DOI: 10.3390/v14061278] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/01/2022] [Accepted: 06/09/2022] [Indexed: 02/05/2023] Open
Abstract
Ecological and experimental infection studies have identified Egyptian rousette bats (ERBs; Rousettus aegyptiacus: family Pteropodidae) as a reservoir host for the zoonotic rubula-like paramyxovirus Sosuga virus (SOSV). A serial sacrifice study of colony-bred ERBs inoculated with wild-type, recombinant SOSV identified small intestines and salivary gland as major sites of viral replication. In the current study, archived formalin-fixed paraffin-embedded (FFPE) tissues from the serial sacrifice study were analyzed in depth—histologically and immunohistochemically, for SOSV, mononuclear phagocytes and T cells. Histopathologic lesion scores increased over time and viral antigen persisted in a subset of tissues, indicating ongoing host responses and underscoring the possibility of chronic infection. Despite the presence of SOSV NP antigen and villus ulcerations in the small intestines, there were only mild increases in mononuclear phagocytes and T cells, a host response aligned with disease tolerance. In contrast, there was a statistically significant, robust and targeted mononuclear phagocyte cell responses in the salivary glands at 21 DPI, where viral antigen was sparse. These findings may have broader implications for chiropteran–paramyxovirus interactions, as bats are hypothesized to be the ancestral hosts of this diverse virus family and for ERB immunology in general, as this species is also the reservoir host for the marburgviruses Marburg virus (MARV) and Ravn virus (RAVV) (family Filoviridae).
Collapse
|
50
|
Luz MS, da Silva Júnior RT, Santos de Santana GA, Rodrigues GS, Crivellaro HDL, Calmon MS, dos Santos CFSM, Silva LGDO, Ferreira QR, Mota GR, Heim H, Silva FAFD, de Brito BB, de Melo FF. Molecular and serology methods in the diagnosis of COVID-19: An overview. World J Methodol 2022; 12:83-91. [PMID: 35721247 PMCID: PMC9157626 DOI: 10.5662/wjm.v12.i3.83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/31/2021] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease-19 (COVID-19) has become a pandemic, being a global health concern since December 2019 when the first cases were reported. Severe acute respiratory syndrome coronavirus 2, the COVID-19 causal agent, is a β-coronavirus that has on its surface the spike protein, which helps in its virulence and pathogenicity towards the host. Thus, effective and applicable diagnostic methods to this disease come as an important tool for the management of the patients. The use of the molecular technique PCR, which allows the detection of the viral RNA through nasopharyngeal swabs, is considered the gold standard test for the diagnosis of COVID-19. Moreover, serological methods, such as enzyme-linked immunosorbent assays and rapid tests, are able to detect severe acute respiratory syndrome coronavirus 2-specific immunoglobulin A, immunoglobulin M, and immunoglobulin G in positive patients, being important alternative techniques for the diagnostic establishment and epidemiological surveillance. On the other hand, reverse transcription loop-mediated isothermal amplification also proved to be a useful diagnostic method for the infection, mainly because it does not require a sophisticated laboratory apparatus and has similar specificity and sensitivity to PCR. Complementarily, imaging exams provide findings of typical pneumonia, such as the ground-glass opacity radiological pattern on chest computed tomography scanning, which along with laboratory tests assist in the diagnosis of COVID-19.
Collapse
Affiliation(s)
- Marcel Silva Luz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45002175, Bahia, Brazil
| | | | | | - Gabriela Santos Rodrigues
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45002175, Bahia, Brazil
| | - Henrique de Lima Crivellaro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45002175, Bahia, Brazil
| | - Mariana Santos Calmon
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45002175, Bahia, Brazil
| | | | | | - Qesya Rodrigues Ferreira
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45002175, Bahia, Brazil
| | - Guilherme Rabelo Mota
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45002175, Bahia, Brazil
| | - Heloísa Heim
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45002175, Bahia, Brazil
| | | | - Breno Bittencourt de Brito
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45002175, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde , Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|