1
|
Chittum JE, Thompson A, Desai UR. Glycosaminoglycan microarrays for studying glycosaminoglycan-protein systems. Carbohydr Polym 2024; 335:122106. [PMID: 38616080 PMCID: PMC11032185 DOI: 10.1016/j.carbpol.2024.122106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/16/2024]
Abstract
More than 3000 proteins are now known to bind to glycosaminoglycans (GAGs). Yet, GAG-protein systems are rather poorly understood in terms of selectivity of recognition, molecular mechanism of action, and translational promise. High-throughput screening (HTS) technologies are critically needed for studying GAG biology and developing GAG-based therapeutics. Microarrays, developed within the past two decades, have now improved to the point of being the preferred tool in the HTS of biomolecules. GAG microarrays, in which GAG sequences are immobilized on slides, while similar to other microarrays, have their own sets of challenges and considerations. GAG microarrays are rapidly becoming the first choice in studying GAG-protein systems. Here, we review different modalities and applications of GAG microarrays presented to date. We discuss advantages and disadvantages of this technology, explain covalent and non-covalent immobilization strategies using different chemically reactive groups, and present various assay formats for qualitative and quantitative interpretations, including selectivity screening, binding affinity studies, competitive binding studies etc. We also highlight recent advances in implementing this technology, cataloging of data, and project its future promise. Overall, the technology of GAG microarray exhibits enormous potential of evolving into more than a mere screening tool for studying GAG - protein systems.
Collapse
Affiliation(s)
- John E Chittum
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, United States of America; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, United States of America
| | - Ally Thompson
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, United States of America; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, United States of America
| | - Umesh R Desai
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, United States of America; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, United States of America.
| |
Collapse
|
2
|
Timm S, Lettau M, Hegermann J, Rocha ML, Weidenfeld S, Fatykhova D, Gutbier B, Nouailles G, Lopez-Rodriguez E, Hocke A, Hippenstiel S, Witzenrath M, Kuebler WM, Ochs M. The unremarkable alveolar epithelial glycocalyx: a thorium dioxide-based electron microscopic comparison after heparinase or pneumolysin treatment. Histochem Cell Biol 2023:10.1007/s00418-023-02211-7. [PMID: 37386200 PMCID: PMC10387119 DOI: 10.1007/s00418-023-02211-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 07/01/2023]
Abstract
Recent investigations analyzed in depth the biochemical and biophysical properties of the endothelial glycocalyx. In comparison, this complex cell-covering structure is largely understudied in alveolar epithelial cells. To better characterize the alveolar glycocalyx ultrastructure, unaffected versus injured human lung tissue explants and mouse lungs were analyzed by transmission electron microscopy. Lung tissue was treated with either heparinase (HEP), known to shed glycocalyx components, or pneumolysin (PLY), the exotoxin of Streptococcus pneumoniae not investigated for structural glycocalyx effects so far. Cationic colloidal thorium dioxide (cThO2) particles were used for glycocalyx glycosaminoglycan visualization. The level of cThO2 particles orthogonal to apical cell membranes (≙ stained glycosaminoglycan height) of alveolar epithelial type I (AEI) and type II (AEII) cells was stereologically measured. In addition, cThO2 particle density was studied by dual-axis electron tomography (≙ stained glycosaminoglycan density in three dimensions). For untreated samples, the average cThO2 particle level was ≈ 18 nm for human AEI, ≈ 17 nm for mouse AEI, ≈ 44 nm for human AEII and ≈ 35 nm for mouse AEII. Both treatments, HEP and PLY, resulted in a significant reduction of cThO2 particle levels on human and mouse AEI and AEII. Moreover, a HEP- and PLY-associated reduction in cThO2 particle density was observed. The present study provides quantitative data on the differential glycocalyx distribution on AEI and AEII based on cThO2 and demonstrates alveolar glycocalyx shedding in response to HEP or PLY resulting in a structural reduction in both glycosaminoglycan height and density. Future studies should elucidate the underlying alveolar epithelial cell type-specific distribution of glycocalyx subcomponents for better functional understanding.
Collapse
Affiliation(s)
- Sara Timm
- Core Facility Electron Microscopy, Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Marie Lettau
- Institute of Functional Anatomy, Charité-Universitätsmedizin Berlin, 10115, Berlin, Germany.
| | - Jan Hegermann
- Research Core Unit Electron Microscopy and Institute of Functional and Applied Anatomy, Hannover Medical School, 30625, Hannover, Germany
| | - Maria Linda Rocha
- Institute of Functional Anatomy, Charité-Universitätsmedizin Berlin, 10115, Berlin, Germany
- Institute of Pathology, Vivantes Klinikum im Friedrichshain, 10249, Berlin, Germany
| | - Sarah Weidenfeld
- Institute of Physiology, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Diana Fatykhova
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Birgitt Gutbier
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Geraldine Nouailles
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Elena Lopez-Rodriguez
- Institute of Functional Anatomy, Charité-Universitätsmedizin Berlin, 10115, Berlin, Germany
| | - Andreas Hocke
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
- German Center for Lung Research (DZL), Berlin, Germany
| | - Stefan Hippenstiel
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
- German Center for Lung Research (DZL), Berlin, Germany
| | - Martin Witzenrath
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
- German Center for Lung Research (DZL), Berlin, Germany
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
- German Center for Lung Research (DZL), Berlin, Germany
| | - Matthias Ochs
- Core Facility Electron Microscopy, Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
- Institute of Functional Anatomy, Charité-Universitätsmedizin Berlin, 10115, Berlin, Germany
- German Center for Lung Research (DZL), Berlin, Germany
| |
Collapse
|
3
|
Abstract
Through their specific interactions with proteins, cellular glycans play key roles in a wide range of physiological and pathological processes. One of the main goals of research in the areas of glycobiology and glycomedicine is to understand glycan-protein interactions at the molecular level. Over the past two decades, glycan microarrays have become powerful tools for the rapid evaluation of interactions between glycans and proteins. In this review, we briefly describe methods used for the preparation of glycan probes and the construction of glycan microarrays. Next, we highlight applications of glycan microarrays to rapid profiling of glycan-binding patterns of plant, animal and pathogenic lectins, as well as other proteins. Finally, we discuss other important uses of glycan microarrays, including the rapid analysis of substrate specificities of carbohydrate-active enzymes, the quantitative determination of glycan-protein interactions, discovering high-affinity or selective ligands for lectins, and identifying functional glycans within cells. We anticipate that this review will encourage researchers to employ glycan microarrays in diverse glycan-related studies.
Collapse
Affiliation(s)
- Yujun Kim
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Ji Young Hyun
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
| | - Injae Shin
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| |
Collapse
|
4
|
Hoffmann M, Snyder NL, Hartmann L. Polymers Inspired by Heparin and Heparan Sulfate for Viral Targeting. Macromolecules 2022; 55:7957-7973. [PMID: 36186574 PMCID: PMC9520969 DOI: 10.1021/acs.macromol.2c00675] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/12/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Miriam Hoffmann
- Department of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Nicole L. Snyder
- Department of Chemistry, Davidson College, Davidson, North Carolina 28035, United States
| | - Laura Hartmann
- Department of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
5
|
Ramos-Martínez IE, Ramos-Martínez E, Segura-Velázquez RÁ, Saavedra-Montañez M, Cervantes-Torres JB, Cerbón M, Papy-Garcia D, Zenteno E, Sánchez-Betancourt JI. Heparan Sulfate and Sialic Acid in Viral Attachment: Two Sides of the Same Coin? Int J Mol Sci 2022; 23:ijms23179842. [PMID: 36077240 PMCID: PMC9456526 DOI: 10.3390/ijms23179842] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 12/11/2022] Open
Abstract
Sialic acids and heparan sulfates make up the outermost part of the cell membrane and the extracellular matrix. Both structures are characterized by being negatively charged, serving as receptors for various pathogens, and are highly expressed in the respiratory and digestive tracts. Numerous viruses use heparan sulfates as receptors to infect cells; in this group are HSV, HPV, and SARS-CoV-2. Other viruses require the cell to express sialic acids, as is the case in influenza A viruses and adenoviruses. This review aims to present, in a general way, the participation of glycoconjugates in viral entry, and therapeutic strategies focused on inhibiting the interaction between the virus and the glycoconjugates. Interestingly, there are few studies that suggest the participation of both glycoconjugates in the viruses addressed here. Considering the biological redundancy that exists between heparan sulfates and sialic acids, we propose that it is important to jointly evaluate and design strategies that contemplate inhibiting the interactions of both glycoconjugates. This approach will allow identifying new receptors and lead to a deeper understanding of interspecies transmission.
Collapse
Affiliation(s)
- Ivan Emmanuel Ramos-Martínez
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Edgar Ramos-Martínez
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - René Álvaro Segura-Velázquez
- Unidad de Investigación, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Manuel Saavedra-Montañez
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Jacquelynne Brenda Cervantes-Torres
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Dulce Papy-Garcia
- Glycobiology, Cell Growth ant Tissue Repair Research Unit (Gly-CRRET), Université Paris Est Créteil (UPEC), F-94010 Créteil, France
| | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - José Ivan Sánchez-Betancourt
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
- Correspondence:
| |
Collapse
|
6
|
Argüeso P, Woodward AM, AbuSamra DB. The Epithelial Cell Glycocalyx in Ocular Surface Infection. Front Immunol 2021; 12:729260. [PMID: 34497615 PMCID: PMC8419333 DOI: 10.3389/fimmu.2021.729260] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/09/2021] [Indexed: 12/30/2022] Open
Abstract
The glycocalyx is the main component of the transcellular barrier located at the interface between the ocular surface epithelia and the external environment. This barrier extends up to 500 nm from the plasma membrane and projects into the tear fluid bathing the surface of the eye. Under homeostatic conditions, defense molecules in the glycocalyx, such as transmembrane mucins, resist infection. However, many pathogenic microorganisms have evolved to exploit components of the glycocalyx in order to gain access to epithelial cells and consequently exert deleterious effects. This manuscript reviews the implications of the ocular surface epithelial glycocalyx to bacterial, viral, fungal and parasitic infection. Moreover, it presents some ongoing controversies surrounding the functional relevance of the epithelial glycocalyx to ocular infectious disease.
Collapse
Affiliation(s)
- Pablo Argüeso
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Ashley M Woodward
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Dina B AbuSamra
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
7
|
Hao W, Ma B, Li Z, Wang X, Gao X, Li Y, Qin B, Shang S, Cui S, Tan Z. Binding of the SARS-CoV-2 spike protein to glycans. Sci Bull (Beijing) 2021; 66:1205-1214. [PMID: 33495714 PMCID: PMC7816574 DOI: 10.1016/j.scib.2021.01.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/29/2020] [Accepted: 01/11/2021] [Indexed: 12/19/2022]
Abstract
The pandemic of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a high number of deaths in the world. To combat it, it is necessary to develop a better understanding of how the virus infects host cells. Infection normally starts with the attachment of the virus to cell-surface glycans like heparan sulfate (HS) and sialic acid-containing glycolipids/glycoproteins. In this study, we examined and compared the binding of the subunits and spike (S) proteins of SARS-CoV-2, SARS-CoV, and Middle East respiratory disease (MERS)-CoV to these glycans. Our results revealed that the S proteins and subunits can bind to HS in a sulfation-dependent manner and no binding with sialic acid residues was detected. Overall, this work suggests that HS binding may be a general mechanism for the attachment of these coronaviruses to host cells, and supports the potential importance of HS in infection and in the development of antiviral agents against these viruses.
Collapse
Affiliation(s)
- Wei Hao
- NHC Key Laboratory of Systems Biology of Pathogens, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Bo Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ziheng Li
- NHC Key Laboratory of Systems Biology of Pathogens, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiaoyu Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaopan Gao
- NHC Key Laboratory of Systems Biology of Pathogens, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yaohao Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder CO 80303, USA
| | - Bo Qin
- NHC Key Laboratory of Systems Biology of Pathogens, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Shiying Shang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Sheng Cui
- NHC Key Laboratory of Systems Biology of Pathogens, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhongping Tan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
8
|
Hook AL, Hogwood J, Gray E, Mulloy B, Merry CLR. High sensitivity analysis of nanogram quantities of glycosaminoglycans using ToF-SIMS. Commun Chem 2021; 4:67. [PMID: 36697531 PMCID: PMC9814553 DOI: 10.1038/s42004-021-00506-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/07/2021] [Indexed: 01/28/2023] Open
Abstract
Glycosaminoglycans (GAGs) are important biopolymers that differ in the sequence of saccharide units and in post polymerisation alterations at various positions, making these complex molecules challenging to analyse. Here we describe an approach that enables small quantities (<200 ng) of over 400 different GAGs to be analysed within a short time frame (3-4 h). Time of flight secondary ion mass spectrometry (ToF-SIMS) together with multivariate analysis is used to analyse the entire set of GAG samples. Resultant spectra are derived from the whole molecules and do not require pre-digestion. All 6 possible GAG types are successfully discriminated, both alone and in the presence of fibronectin. We also distinguish between pharmaceutical grade heparin, derived from different animal species and from different suppliers, to a sensitivity as low as 0.001 wt%. This approach is likely to be highly beneficial in the quality control of GAGs produced for therapeutic applications and for characterising GAGs within biomaterials or from in vitro cell culture.
Collapse
Affiliation(s)
- Andrew L. Hook
- grid.4563.40000 0004 1936 8868Advanced Materials and Healthcare Technology, University of Nottingham, Nottingham, UK
| | - John Hogwood
- grid.70909.370000 0001 2199 6511National Institute for Biological Standards and Control, Potters Bar, UK
| | - Elaine Gray
- grid.70909.370000 0001 2199 6511National Institute for Biological Standards and Control, Potters Bar, UK ,grid.13097.3c0000 0001 2322 6764Institute for Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, Stamford Street, London, UK
| | - Barbara Mulloy
- grid.13097.3c0000 0001 2322 6764Institute for Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, Stamford Street, London, UK
| | - Catherine L. R. Merry
- grid.4563.40000 0004 1936 8868Stem Cell Glycobiology Group, Biodiscovery Institute, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
9
|
Connor AJ, Zha RH, Koffas M. Bioproduction of biomacromolecules for antiviral applications. Curr Opin Biotechnol 2021; 69:263-272. [PMID: 33667798 DOI: 10.1016/j.copbio.2021.01.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
Abstract
The societal damage brought on by viral epidemics indicates that next-generation antiviral treatments must be developed and deployed. Biomacromolecules are a diverse class of compounds that can potentially exhibit potent antiviral activity. Their efficacy and mechanisms of action are dependent upon multiple structural factors, including molecular weight, degree and position of sulfation, and backbone stereochemistry. Extracting biomacromolecules from animals and plants for healthcare applications is undesirable, as these methods are unable to yield products with well-defined chemical structures. Modern advances utilizing recombinant microbes and metabolic pathway engineering can be a key step towards large-scale bioproduction of tailored biomacromolecules for targeted antiviral applications.
Collapse
Affiliation(s)
- Alexander J Connor
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Runye H Zha
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Mattheos Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| |
Collapse
|
10
|
Lutz H, Popowski KD, Dinh PUC, Cheng K. Advanced Nanobiomedical Approaches to Combat Coronavirus Disease of 2019. ADVANCED NANOBIOMED RESEARCH 2021; 1:2000063. [PMID: 33681865 PMCID: PMC7917381 DOI: 10.1002/anbr.202000063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/17/2020] [Indexed: 12/14/2022] Open
Abstract
New infectious diseases are making themselves known as the human population grows, expands into new regions, and becomes more dense, increasing contact with each other and animal populations. Ease of travel has also increased infectious disease transmission and has now culminated into a global pandemic. The emergence of the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in December 2019 has already infected over 83.7 million people and caused over 1.8 million deaths. While there have been vaccine candidates produced and supportive care implemented, the world is impatiently waiting for a commercially approved vaccine and treatment for the coronavirus disease of 2019 (COVID-19). The different vaccine types investigated for the prevention of COVID-19 all have great promise but face safety obstacles that must be first addressed. Some vaccine candidates of key interest are whole inactivated viruses, adeno-associated viruses, virus-like particles, and lipid nanoparticles. This review examines nanobiomedical techniques for combatting COVID-19 in terms of vaccines and therapeutics.
Collapse
Affiliation(s)
- Halle Lutz
- Department of Molecular Biomedical SciencesNorth Carolina State UniversityRaleighNC27607USA
- Comparative Medicine InstituteNorth Carolina State UniversityRaleighNC27607USA
| | - Kristen D. Popowski
- Department of Molecular Biomedical SciencesNorth Carolina State UniversityRaleighNC27607USA
- Comparative Medicine InstituteNorth Carolina State UniversityRaleighNC27607USA
| | - Phuong-Uyen C. Dinh
- Department of Molecular Biomedical SciencesNorth Carolina State UniversityRaleighNC27607USA
- Comparative Medicine InstituteNorth Carolina State UniversityRaleighNC27607USA
| | - Ke Cheng
- Department of Molecular Biomedical SciencesNorth Carolina State UniversityRaleighNC27607USA
- Comparative Medicine InstituteNorth Carolina State UniversityRaleighNC27607USA
- Joint Department of Biomedical EngineeringUniversity of North Carolina at Chapel Hill/North Carolina State UniversityRaleigh/Chapel HillNC27607/27599USA
- Division of Pharmacoengineering and Molecular PharmaceuticsUniversity of North Carolina at Chapel HillChapel HillNC27599USA
| |
Collapse
|
11
|
Mahsoub HM, Yuan L, Pierson FW. Turkey adenovirus 3, a siadenovirus, uses sialic acid on N-linked glycoproteins as a cellular receptor. J Gen Virol 2021; 101:760-771. [PMID: 32459612 DOI: 10.1099/jgv.0.001429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Turkey adenovirus 3 (TAdV-3) is the causative agent of an immune-mediated disease in turkeys, haemorrhagic enteritis, through targeting B lymphocytes. In the present study, we investigated the role of sialic acid in TAdV-3 entry and characterized the structural components of TAdV-3 receptor(s) on RP19, B lymphoblastoid cells. Removal of the cell-surface sialic acids by neuraminidases or blocking of sialic acids by wheat germ agglutinin lectin reduced virus infection. Pre-incubation of cells with Maackia amurensis lectin or Sambucus nigra agglutinin resulted in virus reduction, suggesting that TAdV-3 uses both α2,3-linked and α2,6-linked sialic acids as attachment receptor. Virus infectivity data from RP19 cells treated with sodium periodate, proteases (trypsin or bromelain) or metabolic inhibitors (dl-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol, tunicamycin, or benzyl N-acetyl-α-d-galactosaminide) indicated that N-linked, but not O-linked, carbohydrates are part of the sialylated receptor and they are likely based on a membrane glycoprotein, rather than a glycolipid. Furthermore, our data, in conjunction with previous findings, implies that the secondary receptor for TAdV-3 is a protein molecule since the inhibition of glycolipid biosynthesis did not affect the virus infection, which was rather reduced by protease treatment. We can conclude that terminal sialic acids attached to N-linked membrane glycoproteins on B cells are used for virus attachment and are essential for successful virus infection.
Collapse
Affiliation(s)
- Hassan M Mahsoub
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, 205 Duck Pond Drive, Blacksburg, VA 24061-0442, USA.,Poultry Production Department, Faculty of Agriculture, Alexandria University, El-Shatby, Alexandria 21545, Egypt
| | - Lijuan Yuan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, 205 Duck Pond Drive, Blacksburg, VA 24061-0442, USA
| | - F William Pierson
- Department of Population Health Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, 205 Duck Pond Drive, Blacksburg, VA 24061-0442, USA
| |
Collapse
|
12
|
Heparan Sulfate Is a Cellular Receptor for Enteric Human Adenoviruses. Viruses 2021; 13:v13020298. [PMID: 33672966 PMCID: PMC7918131 DOI: 10.3390/v13020298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 11/16/2022] Open
Abstract
Human adenovirus (HAdV)-F40 and -F41 are leading causes of diarrhea and diarrhea-associated mortality in children under the age of five, but the mechanisms by which they infect host cells are poorly understood. HAdVs initiate infection through interactions between the knob domain of the fiber capsid protein and host cell receptors. Unlike most other HAdVs, HAdV-F40 and -F41 possess two different fiber proteins-a long fiber and a short fiber. Whereas the long fiber binds to the Coxsackievirus and adenovirus receptor (CAR), no binding partners have been identified for the short fiber. In this study, we identified heparan sulfate (HS) as an interaction partner for the short fiber of enteric HAdVs. We demonstrate that exposure to acidic pH, which mimics the environment of the stomach, inactivates the interaction of enteric adenovirus with CAR. However, the short fiber:HS interaction is resistant to and even enhanced by acidic pH, which allows attachment to host cells. Our results suggest a switch in receptor usage of enteric HAdVs after exposure to acidic pH and add to the understanding of the function of the short fibers. These results may also be useful for antiviral drug development and the utilization of enteric HAdVs for clinical applications such as vaccine development.
Collapse
|
13
|
Adenovirus and the Cornea: More Than Meets the Eye. Viruses 2021; 13:v13020293. [PMID: 33668417 PMCID: PMC7917768 DOI: 10.3390/v13020293] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/07/2021] [Accepted: 02/10/2021] [Indexed: 12/16/2022] Open
Abstract
Human adenoviruses cause disease at multiple mucosal sites, including the respiratory, gastrointestinal, and genitourinary tracts, and are common agents of conjunctivitis. One site of infection that has received sparse attention is the cornea, a transparent tissue and the window of the eye. While most adenovirus infections are self-limited, corneal inflammation (keratitis) due to adenovirus can persist or recur for months to years after infection, leading to reduced vision, discomfort, and light sensitivity. Topical corticosteroids effectively suppress late adenovirus keratitis but are associated with vision-threatening side effects. In this short review, we summarize current knowledge on infection of the cornea by adenoviruses, including corneal epithelial cell receptors and determinants of corneal tropism. We briefly discuss mechanisms of stromal keratitis due to adenovirus infection, and review an emerging therapy to mitigate adenovirus corneal infections based on evolving knowledge of corneal epithelial receptor usage.
Collapse
|
14
|
Wallis M. Do some viruses use growth hormone, prolactin and their receptors to facilitate entry into cells?: Episodic evolution of hormones and receptors suggests host-virus arms races; related placental lactogens may provide protective viral decoys. Bioessays 2021; 43:e2000268. [PMID: 33521987 DOI: 10.1002/bies.202000268] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022]
Abstract
The molecular evolution of pituitary growth hormone and prolactin in mammals shows two unusual features: episodes of markedly accelerated evolution and, in some species, complex families of related proteins expressed in placenta and resulting from multiple gene duplications. Explanations of these phenomena in terms of physiological adaptations seem unconvincing. Here, I propose an alternative explanation, namely that these evolutionary features reflect the use of the hormones (and their receptors) as viral receptors. Episodes of rapid evolution can then be explained as due to "arms races" in which changes in the hormone lead to reduced interaction with the virus, and subsequent changes in the virus counteract this. Placental paralogues of the hormones could provide decoys that bind viruses, and protect the foetus against infection. The hypothesis implies that the extensive changes introduced into growth hormone, prolactin and their receptors during the course of mammalian evolution reflect viral interactions, not endocrine adaptations.
Collapse
Affiliation(s)
- Michael Wallis
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
15
|
Mycroft-West CJ, Su D, Pagani I, Rudd TR, Elli S, Gandhi NS, Guimond SE, Miller GJ, Meneghetti MCZ, Nader HB, Li Y, Nunes QM, Procter P, Mancini N, Clementi M, Bisio A, Forsyth NR, Ferro V, Turnbull JE, Guerrini M, Fernig DG, Vicenzi E, Yates EA, Lima MA, Skidmore MA. Heparin Inhibits Cellular Invasion by SARS-CoV-2: Structural Dependence of the Interaction of the Spike S1 Receptor-Binding Domain with Heparin. Thromb Haemost 2020; 120:1700-1715. [PMID: 33368089 PMCID: PMC7869224 DOI: 10.1055/s-0040-1721319] [Citation(s) in RCA: 195] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022]
Abstract
The dependence of development and homeostasis in animals on the interaction of hundreds of extracellular regulatory proteins with the peri- and extracellular glycosaminoglycan heparan sulfate (HS) is exploited by many microbial pathogens as a means of adherence and invasion. Heparin, a widely used anticoagulant drug, is structurally similar to HS and is a common experimental proxy. Exogenous heparin prevents infection by a range of viruses, including S-associated coronavirus isolate HSR1. Here, we show that heparin inhibits severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) invasion of Vero cells by up to 80% at doses achievable through prophylaxis and, particularly relevant, within the range deliverable by nebulisation. Surface plasmon resonance and circular dichroism spectroscopy demonstrate that heparin and enoxaparin, a low-molecular-weight heparin which is a clinical anticoagulant, bind and induce a conformational change in the spike (S1) protein receptor-binding domain (S1 RBD) of SARS-CoV-2. A library of heparin derivatives and size-defined fragments were used to probe the structural basis of this interaction. Binding to the RBD is more strongly dependent on the presence of 2-O or 6-O sulfate groups than on N-sulfation and a hexasaccharide is the minimum size required for secondary structural changes to be induced in the RBD. It is likely that inhibition of viral infection arises from an overlap between the binding sites of heparin/HS on S1 RBD and that of the angiotensin-converting enzyme 2. The results suggest a route for the rapid development of a first-line therapeutic by repurposing heparin and its derivatives as antiviral agents against SARS-CoV-2 and other members of the Coronaviridae.
Collapse
Affiliation(s)
- Courtney J. Mycroft-West
- Molecular and Structural Biosciences, School of Life Sciences, Keele University, Newcastle-Under-Lyme, Staffordshire, United Kingdom
| | - Dunhao Su
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Isabel Pagani
- Viral Pathogenesis and Biosafety Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Timothy R. Rudd
- Analytical and Biological Sciences Division, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom
| | - Stefano Elli
- Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, Milan, Italy
| | - Neha S. Gandhi
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Scott E. Guimond
- School of Medicine, Keele University, Newcastle-Under-Lyme, Staffordshire, United Kingdom
| | - Gavin J. Miller
- School of Chemical and Physical Sciences, Keele University, Newcastle-Under-Lyme, Staffordshire, United Kingdom
| | - Maria C. Z. Meneghetti
- Biochemistry Department, Federal University of São Paulo (UNIFESP), São Paulo, SP Brazil
| | - Helena B. Nader
- Biochemistry Department, Federal University of São Paulo (UNIFESP), São Paulo, SP Brazil
| | - Yong Li
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Quentin M. Nunes
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Patricia Procter
- Molecular and Structural Biosciences, School of Life Sciences, Keele University, Newcastle-Under-Lyme, Staffordshire, United Kingdom
| | | | | | - Antonella Bisio
- Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, Milan, Italy
| | - Nicholas R. Forsyth
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Hartshill, Stoke-on-Trent, Staffordshire, United Kingdom
| | - Vito Ferro
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| | - Jeremy E. Turnbull
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Marco Guerrini
- Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, Milan, Italy
| | - David G. Fernig
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Elisa Vicenzi
- Viral Pathogenesis and Biosafety Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Edwin A. Yates
- Molecular and Structural Biosciences, School of Life Sciences, Keele University, Newcastle-Under-Lyme, Staffordshire, United Kingdom
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Marcelo A. Lima
- Molecular and Structural Biosciences, School of Life Sciences, Keele University, Newcastle-Under-Lyme, Staffordshire, United Kingdom
| | - Mark A. Skidmore
- Molecular and Structural Biosciences, School of Life Sciences, Keele University, Newcastle-Under-Lyme, Staffordshire, United Kingdom
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
16
|
Mycroft-West CJ, Su D, Pagani I, Rudd TR, Elli S, Gandhi NS, Guimond SE, Miller GJ, Meneghetti MCZ, Nader HB, Li Y, Nunes QM, Procter P, Mancini N, Clementi M, Bisio A, Forsyth NR, Ferro V, Turnbull JE, Guerrini M, Fernig DG, Vicenzi E, Yates EA, Lima MA, Skidmore MA. Heparin Inhibits Cellular Invasion by SARS-CoV-2: Structural Dependence of the Interaction of the Spike S1 Receptor-Binding Domain with Heparin. Thromb Haemost 2020; 120:1700-1715. [PMID: 33368089 DOI: 10.1101/2020.04.28.066761] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The dependence of development and homeostasis in animals on the interaction of hundreds of extracellular regulatory proteins with the peri- and extracellular glycosaminoglycan heparan sulfate (HS) is exploited by many microbial pathogens as a means of adherence and invasion. Heparin, a widely used anticoagulant drug, is structurally similar to HS and is a common experimental proxy. Exogenous heparin prevents infection by a range of viruses, including S-associated coronavirus isolate HSR1. Here, we show that heparin inhibits severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) invasion of Vero cells by up to 80% at doses achievable through prophylaxis and, particularly relevant, within the range deliverable by nebulisation. Surface plasmon resonance and circular dichroism spectroscopy demonstrate that heparin and enoxaparin, a low-molecular-weight heparin which is a clinical anticoagulant, bind and induce a conformational change in the spike (S1) protein receptor-binding domain (S1 RBD) of SARS-CoV-2. A library of heparin derivatives and size-defined fragments were used to probe the structural basis of this interaction. Binding to the RBD is more strongly dependent on the presence of 2-O or 6-O sulfate groups than on N-sulfation and a hexasaccharide is the minimum size required for secondary structural changes to be induced in the RBD. It is likely that inhibition of viral infection arises from an overlap between the binding sites of heparin/HS on S1 RBD and that of the angiotensin-converting enzyme 2. The results suggest a route for the rapid development of a first-line therapeutic by repurposing heparin and its derivatives as antiviral agents against SARS-CoV-2 and other members of the Coronaviridae.
Collapse
Affiliation(s)
- Courtney J Mycroft-West
- Molecular and Structural Biosciences, School of Life Sciences, Keele University, Newcastle-Under-Lyme, Staffordshire, United Kingdom
| | - Dunhao Su
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Isabel Pagani
- Viral Pathogenesis and Biosafety Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Timothy R Rudd
- Analytical and Biological Sciences Division, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom
| | - Stefano Elli
- Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, Milan, Italy
| | - Neha S Gandhi
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Scott E Guimond
- School of Medicine, Keele University, Newcastle-Under-Lyme, Staffordshire, United Kingdom
| | - Gavin J Miller
- School of Chemical and Physical Sciences, Keele University, Newcastle-Under-Lyme, Staffordshire, United Kingdom
| | - Maria C Z Meneghetti
- Biochemistry Department, Federal University of São Paulo (UNIFESP), São Paulo, SP Brazil
| | - Helena B Nader
- Biochemistry Department, Federal University of São Paulo (UNIFESP), São Paulo, SP Brazil
| | - Yong Li
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Quentin M Nunes
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Patricia Procter
- Molecular and Structural Biosciences, School of Life Sciences, Keele University, Newcastle-Under-Lyme, Staffordshire, United Kingdom
| | | | | | - Antonella Bisio
- Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, Milan, Italy
| | - Nicholas R Forsyth
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Hartshill, Stoke-on-Trent, Staffordshire, United Kingdom
| | - Vito Ferro
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| | - Jeremy E Turnbull
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Marco Guerrini
- Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, Milan, Italy
| | - David G Fernig
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Elisa Vicenzi
- Viral Pathogenesis and Biosafety Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Edwin A Yates
- Molecular and Structural Biosciences, School of Life Sciences, Keele University, Newcastle-Under-Lyme, Staffordshire, United Kingdom
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Marcelo A Lima
- Molecular and Structural Biosciences, School of Life Sciences, Keele University, Newcastle-Under-Lyme, Staffordshire, United Kingdom
| | - Mark A Skidmore
- Molecular and Structural Biosciences, School of Life Sciences, Keele University, Newcastle-Under-Lyme, Staffordshire, United Kingdom
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
17
|
Chikungunya Virus Strains from Each Genetic Clade Bind Sulfated Glycosaminoglycans as Attachment Factors. J Virol 2020; 94:JVI.01500-20. [PMID: 32999033 PMCID: PMC7925169 DOI: 10.1128/jvi.01500-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023] Open
Abstract
Alphavirus infections are a global health threat, contributing to outbreaks of disease in many parts of the world. Recent epidemics caused by CHIKV, an arthritogenic alphavirus, resulted in more than 8.5 million cases as the virus has spread into new geographic regions, including the Western Hemisphere. CHIKV causes disease in the majority of people infected, leading to severe and debilitating arthritis. Despite the severity of CHIKV disease, there are no licensed therapeutics. Since attachment factors and receptors are determinants of viral tropism and pathogenesis, understanding these virus-host interactions can enhance our knowledge of CHIKV infection. We analyzed over 670 glycans and identified GAGs as the main glycan bound by CHIKV. We defined specific GAG components required for CHIKV binding and assessed strain-specific differences in GAG binding capacity. These studies provide insight about cell surface molecules that CHIKV binds, which could facilitate the development of antiviral therapeutics targeting the CHIKV attachment step. Chikungunya virus (CHIKV) is an arthritogenic alphavirus that causes debilitating musculoskeletal disease. CHIKV displays broad cell, tissue, and species tropism, which may correlate with the attachment factors and entry receptors used by the virus. Cell surface glycosaminoglycans (GAGs) have been identified as CHIKV attachment factors. However, the specific types of GAGs and potentially other glycans to which CHIKV binds and whether there are strain-specific differences in GAG binding are not fully understood. To identify the types of glycans bound by CHIKV, we conducted glycan microarray analyses and discovered that CHIKV preferentially binds GAGs. Microarray results also indicate that sulfate groups on GAGs are essential for CHIKV binding and that CHIKV binds most strongly to longer GAG chains of heparin and heparan sulfate. To determine whether GAG binding capacity varies among CHIKV strains, a representative strain from each genetic clade was tested. While all strains directly bound to heparin and chondroitin sulfate in enzyme-linked immunosorbent assays (ELISAs) and depended on heparan sulfate for efficient cell binding and infection, we observed some variation by strain. Enzymatic removal of cell surface GAGs and genetic ablation that diminishes GAG expression reduced CHIKV binding and infectivity of all strains. Collectively, these data demonstrate that GAGs are the preferred glycan bound by CHIKV, enhance our understanding of the specific GAG moieties required for CHIKV binding, define strain differences in GAG engagement, and provide further evidence for a critical function of GAGs in CHIKV cell attachment and infection. IMPORTANCE Alphavirus infections are a global health threat, contributing to outbreaks of disease in many parts of the world. Recent epidemics caused by CHIKV, an arthritogenic alphavirus, resulted in more than 8.5 million cases as the virus has spread into new geographic regions, including the Western Hemisphere. CHIKV causes disease in the majority of people infected, leading to severe and debilitating arthritis. Despite the severity of CHIKV disease, there are no licensed therapeutics. Since attachment factors and receptors are determinants of viral tropism and pathogenesis, understanding these virus-host interactions can enhance our knowledge of CHIKV infection. We analyzed over 670 glycans and identified GAGs as the main glycan bound by CHIKV. We defined specific GAG components required for CHIKV binding and assessed strain-specific differences in GAG binding capacity. These studies provide insight about cell surface molecules that CHIKV binds, which could facilitate the development of antiviral therapeutics targeting the CHIKV attachment step.
Collapse
|
18
|
Wielgat P, Rogowski K, Godlewska K, Car H. Coronaviruses: Is Sialic Acid a Gate to the Eye of Cytokine Storm? From the Entry to the Effects. Cells 2020; 9:E1963. [PMID: 32854433 PMCID: PMC7564400 DOI: 10.3390/cells9091963] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022] Open
Abstract
Coronaviruses (CoVs) are a diverse family of the enveloped human and animal viruses reported as causative agents for respiratory and intestinal infections. The high pathogenic potential of human CoVs, including SARS-CoV, MERS-CoV and SARS-CoV-2, is closely related to the invasion mechanisms underlying the attachment and entry of viral particles to the host cells. There is increasing evidence that sialylated compounds of cellular glycocalyx can serve as an important factor in the mechanism of CoVs infection. Additionally, the sialic acid-mediated cross-reactivity with the host immune lectins is known to exert the immune response of different intensity in selected pathological stages. Here, we focus on the last findings in the field of glycobiology in the context of the role of sialic acid in tissue tropism, viral entry kinetics and immune regulation in the CoVs infections.
Collapse
Affiliation(s)
- Przemyslaw Wielgat
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15274 Bialystok, Poland;
| | - Karol Rogowski
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15295 Bialystok, Poland;
| | - Katarzyna Godlewska
- Department of Haematology, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15276 Bialystok, Poland;
| | - Halina Car
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15274 Bialystok, Poland;
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15295 Bialystok, Poland;
| |
Collapse
|
19
|
Lee JS, Mukherjee S, Lee JY, Saha A, Chodosh J, Painter DF, Rajaiya J. Entry of Epidemic Keratoconjunctivitis-Associated Human Adenovirus Type 37 in Human Corneal Epithelial Cells. Invest Ophthalmol Vis Sci 2020; 61:50. [PMID: 32852546 PMCID: PMC7453050 DOI: 10.1167/iovs.61.10.50] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/27/2020] [Indexed: 12/22/2022] Open
Abstract
Purpose Ocular infection by human adenovirus species D type 37 (HAdV-D37) causes epidemic keratoconjunctivitis, a severe, hyperacute condition. The corneal component of epidemic keratoconjunctivitis begins upon infection of corneal epithelium, and the mechanism of viral entry dictates subsequent proinflammatory gene expression. Therefore, it is important to understand the specific pathways of adenoviral entry in these cells. Methods Transmission electron microscopy of primary and tert-immortalized human corneal epithelial cells infected with HAdV-D37 was performed to identify the means of viral entry. Confocal microscopy was used to determine intracellular trafficking. The results of targeted small interfering RNA and specific chemical inhibitors were analyzed by quantitative PCR, and Western blot. Results By transmission electron microscopy, HAdV-D37 was seen to enter by both clathrin-coated pits and macropinocytosis; however, entry was both pH and dynamin 2 independent. Small interfering RNA against clathrin, AP2A1, and lysosome-associated membrane protein 1, but not early endosome antigen 1, decreased early viral gene expression. Ethyl-isopropyl amiloride, which blocks micropinocytosis, did not affect HAdV-D37 entry, but IPA, an inhibitor of p21-activated kinase, and important to actin polymerization, decreased viral entry in a dose-dependent manner. Conclusions HAdV-D37 enters human corneal epithelial cells by a noncanonical clathrin-mediated pathway involving lysosome-associated membrane protein 1 and PAK1, independent of pH, dynamin, and early endosome antigen 1. We showed earlier that HAdV-D37 enters human keratocytes through caveolae. Therefore, epidemic keratoconjunctivitis-associated viruses enter different corneal cell types via disparate pathways, which could account for a relative paucity of proinflammatory gene expression upon infection of corneal epithelial cells compared with keratocytes, as seen in prior studies.
Collapse
Affiliation(s)
- Ji Sun Lee
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Santanu Mukherjee
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Jeong Yoon Lee
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Amrita Saha
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - James Chodosh
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - David F. Painter
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Jaya Rajaiya
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
20
|
Adenovirus infection and disease in recipients of hematopoietic cell transplantation. Curr Opin Infect Dis 2020; 32:591-600. [PMID: 31567568 DOI: 10.1097/qco.0000000000000605] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW To provide an update on risk factors associated with adenovirus (ADV) infection in patients after hematopoietic cell transplant (HCT) and on options for ADV monitoring and treatment in the setting of HCT. RECENT FINDINGS Among patients undergoing HCT, ADV infection continues to be more common amongst those receiving a T-cell-depleted or graft other than from a matched-related donor. Among children undergoing HCT, reactivation in the gastrointestinal tract appears to be the most common source, and the virus is detectable by quantitative PCR in the stool before it is detectable in the blood. Thus, screening for the virus in the stool of these children may allow for preemptive therapy to reduce mortality. Brincidofovir, although still not approved by any regulatory agency, remains a potential agent for preemptive therapy and for salvage in cases not responding to cidofovir. Rapidly generated off-the-shelf virus-specific T cells may facilitate adoptive cell therapy in populations with a special need and previously not eligible for adoptive cell therapy, such as cord blood recipients. SUMMARY ADV infection continues to adversely affect survival in HCT recipients. Screening stool in children and preemptive therapy may reduce mortality. Brincidofovir and adoptive T-cell therapy remain potential options for treatment.
Collapse
|
21
|
KARAKURT HU, PİR P. Integration of transcriptomic profile of SARS-CoV-2 infected normal human bronchial epithelial cells with metabolic and protein-protein interaction networks. Turk J Biol 2020; 44:168-177. [PMID: 32595353 PMCID: PMC7314513 DOI: 10.3906/biy-2005-115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A novel coronavirus (SARS-CoV-2, formerly known as nCoV-2019) that causes an acute respiratory disease has emerged in Wuhan, China and spread globally in early 2020. On January the 30th, the World Health Organization (WHO) declared spread of this virus as an epidemic and a public health emergency. With its highly contagious characteristic and long incubation time, confinement of SARS-CoV-2 requires drastic lock-down measures to be taken and therefore early diagnosis is crucial. We analysed transcriptome of SARS-CoV-2 infected human lung epithelial cells, compared it with mock-infected cells, used network-based reporter metabolite approach and integrated the transcriptome data with protein-protein interaction network to elucidate the early cellular response. Significantly affected metabolites have the potential to be used in diagnostics while pathways of protein clusters have the potential to be used as targets for supportive or novel therapeutic approaches. Our results are in accordance with the literature on response of IL6 family of cytokines and their importance, in addition, we find that matrix metalloproteinase 2 (MMP2) and matrix metalloproteinase 9 (MMP9) with keratan sulfate synthesis pathway may play a key role in the infection. We hypothesize that MMP9 inhibitors have potential to prevent "cytokine storm" in severely affected patients.
Collapse
Affiliation(s)
- Hamza Umut KARAKURT
- Department of Bioengineering, Faculty of Engineering, Gebze Technical University, KocaeliTurkey
- Idea Technology Solutions, İstanbulTurkey
| | - Pınar PİR
- Department of Bioengineering, Faculty of Engineering, Gebze Technical University, KocaeliTurkey
| |
Collapse
|
22
|
Influence of cell-penetrating peptides on the activity and stability of virus-based nanoparticles. Int J Pharm 2020; 576:119008. [DOI: 10.1016/j.ijpharm.2019.119008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/23/2019] [Accepted: 12/29/2019] [Indexed: 02/06/2023]
|
23
|
Ismail AM, Zhou X, Dyer DW, Seto D, Rajaiya J, Chodosh J. Genomic foundations of evolution and ocular pathogenesis in human adenovirus species D. FEBS Lett 2019; 593:3583-3608. [PMID: 31769017 PMCID: PMC7185199 DOI: 10.1002/1873-3468.13693] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/16/2019] [Accepted: 11/20/2019] [Indexed: 12/27/2022]
Abstract
Human adenovirus commonly causes infections of respiratory, gastrointestinal, genitourinary, and ocular surface mucosae. Although most adenovirus eye infections are mild and self-limited, specific viruses within human adenovirus species D are associated with epidemic keratoconjunctivitis (EKC), a severe and highly contagious ocular surface infection, which can lead to chronic and/or recurrent, visually disabling keratitis. In this review, we discuss the links between adenovirus ontogeny, genomics, immune responses, and corneal pathogenesis, for those viruses that cause EKC.
Collapse
Affiliation(s)
- Ashrafali M. Ismail
- Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Xiaohong Zhou
- Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - David W. Dyer
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Donald Seto
- Bioinformatics and Computational Biology Program, School of Systems Biology, George Mason University, Manassas, Virginia, USA
| | - Jaya Rajaiya
- Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - James Chodosh
- Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
24
|
Pennington MR, Saha A, Painter DF, Gavazzi C, Ismail AM, Zhou X, Chodosh J, Rajaiya J. Disparate Entry of Adenoviruses Dictates Differential Innate Immune Responses on the Ocular Surface. Microorganisms 2019; 7:E351. [PMID: 31540200 PMCID: PMC6780103 DOI: 10.3390/microorganisms7090351] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/08/2019] [Accepted: 09/11/2019] [Indexed: 12/31/2022] Open
Abstract
Human adenovirus infection of the ocular surface is associated with severe keratoconjunctivitis and the formation of subepithelial corneal infiltrates, which may persist and impair vision for months to years following infection. Long term pathology persists well beyond the resolution of viral replication, indicating that the prolonged immune response is not virus-mediated. However, it is not clear how these responses are sustained or even initiated following infection. This review discusses recent work from our laboratory and others which demonstrates different entry pathways specific to both adenovirus and cell type. These findings suggest that adenoviruses may stimulate specific pattern recognition receptors in an entry/trafficking-dependent manner, leading to distinct immune responses dependent on the virus/cell type combination. Additional work is needed to understand the specific connections between adenoviral entry and the stimulation of innate immune responses by the various cell types present on the ocular surface.
Collapse
Affiliation(s)
- Matthew R Pennington
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | - Amrita Saha
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | - David F Painter
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | - Christina Gavazzi
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | - Ashrafali M Ismail
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | - Xiaohong Zhou
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | - James Chodosh
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | - Jaya Rajaiya
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
25
|
Chandra N, Frängsmyr L, Imhof S, Caraballo R, Elofsson M, Arnberg N. Sialic Acid-Containing Glycans as Cellular Receptors for Ocular Human Adenoviruses: Implications for Tropism and Treatment. Viruses 2019; 11:v11050395. [PMID: 31035532 PMCID: PMC6563162 DOI: 10.3390/v11050395] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/15/2019] [Accepted: 04/26/2019] [Indexed: 02/04/2023] Open
Abstract
Human adenoviruses (HAdV) are the most common cause of ocular infections. Species B human adenovirus type 3 (HAdV-B3) causes pharyngoconjunctival fever (PCF), whereas HAdV-D8, -D37, and -D64 cause epidemic keratoconjunctivitis (EKC). Recently, HAdV-D53, -D54, and -D56 emerged as new EKC-causing agents. HAdV-E4 is associated with both PCF and EKC. We have previously demonstrated that HAdV-D37 uses sialic acid (SA)-containing glycans as cellular receptors on human corneal epithelial (HCE) cells, and the virus interaction with SA is mediated by the knob domain of the viral fiber protein. Here, by means of cell-based assays and using neuraminidase (a SA-cleaving enzyme), we investigated whether ocular HAdVs other than HAdV-D37 also use SA-containing glycans as receptors on HCE cells. We found that HAdV-E4 and -D56 infect HCE cells independent of SAs, whereas HAdV-D53 and -D64 use SAs as cellular receptors. HAdV-D8 and -D54 fiber knobs also bound to cell-surface SAs. Surprisingly, HCE cells were found resistant to HAdV-B3 infection. We also demonstrated that the SA-based molecule i.e., ME0462, designed to bind to SA-binding sites on the HAdV-D37 fiber knob, efficiently prevents binding and infection of several EKC-causing HAdVs. Surface plasmon resonance analysis confirmed a direct interaction between ME0462 and fiber knobs. Altogether, we demonstrate that SA-containing glycans serve as receptors for multiple EKC-causing HAdVs, and, that SA-based compound function as a broad-spectrum antiviral against known and emerging EKC-causing HAdVs.
Collapse
Affiliation(s)
- Naresh Chandra
- Section of Virology, Department of Clinical Microbiology, Umeå University, SE-90185 Umeå, Sweden.
| | - Lars Frängsmyr
- Section of Virology, Department of Clinical Microbiology, Umeå University, SE-90185 Umeå, Sweden.
| | - Sophie Imhof
- Section of Virology, Department of Clinical Microbiology, Umeå University, SE-90185 Umeå, Sweden.
| | - Rémi Caraballo
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden.
| | - Mikael Elofsson
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden.
| | - Niklas Arnberg
- Section of Virology, Department of Clinical Microbiology, Umeå University, SE-90185 Umeå, Sweden.
| |
Collapse
|
26
|
Decoy Receptor Interactions as Novel Drug Targets against EKC-Causing Human Adenovirus. Viruses 2019; 11:v11030242. [PMID: 30870979 PMCID: PMC6466251 DOI: 10.3390/v11030242] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 01/30/2023] Open
Abstract
Epidemic keratoconjunctivitis (EKC) is a severe ocular disease and can lead to visual impairment. Human adenovirus type-37 (HAdV-D37) is one of the major causative agents of EKC and uses sialic acid (SA)-containing glycans as cellular receptors. Currently, there are no approved antivirals available for the treatment of EKC. Recently, we have reported that sulfated glycosaminoglycans (GAGs) bind to HAdV-D37 via the fiber knob (FK) domain of the viral fiber protein and function as decoy receptors. Based on this finding, we speculated that GAG-mimetics may act as artificial decoy receptors and inhibit HAdV-D37 infection. Repurposing of approved drugs to identify new antivirals has drawn great attention in recent years. Here, we report the antiviral effect of suramin, a WHO-approved drug and a widely known GAG-mimetic, against HAdV-D37. Commercially available suramin analogs also show antiviral effects against HAdV-D37. We demonstrate that suramin exerts its antiviral activity by inhibiting the attachment of HAdV-D37 to cells. We also reveal that the antiviral effect of suramin is HAdV species-specific. Collectively, in this proof of concept study, we demonstrate for the first time that virus binding to a decoy receptor constitutes a novel and an unexplored target for antiviral drug development.
Collapse
|