1
|
Cenci Dietrich V, Costa JMC, Oliveira MMGL, Aguiar CEO, Silva LGDO, Luz MS, Lemos FFB, de Melo FF. Pathogenesis and clinical management of arboviral diseases. World J Virol 2025; 14:100489. [DOI: 10.5501/wjv.v14.i1.100489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/01/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Arboviral diseases are viral infections transmitted to humans through the bites of arthropods, such as mosquitoes, often causing a variety of pathologies associated with high levels of morbidity and mortality. Over the past decades, these infections have proven to be a significant challenge to health systems worldwide, particularly following the considerable geographic expansion of the dengue virus (DENV) and its most recent outbreak in Latin America as well as the difficult-to-control outbreaks of yellow fever virus (YFV), chikungunya virus (CHIKV), and Zika virus (ZIKV), leaving behind a substantial portion of the population with complications related to these infections. Currently, the world is experiencing a period of intense globalization, which, combined with global warming, directly contributes to wider dissemination of arbovirus vectors across the globe. Consequently, all continents remain on high alert for potential new outbreaks. Thus, this review aims to provide a comprehensive understanding of the pathogenesis of the four main arboviruses today (DENV, ZIKV, YFV, and CHIKV) discussing their viral characteristics, immune responses, and mechanisms of viral evasion, as well as important clinical aspects for patient management. This includes associated symptoms, laboratory tests, treatments, existing or developing vaccines and the main associated complications, thus integrating a broad historical, scientific and clinical approach.
Collapse
Affiliation(s)
- Victoria Cenci Dietrich
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Juan Marcos Caram Costa
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | | | | | - Marcel Silva Luz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabian Fellipe Bueno Lemos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
2
|
Kim YC, Watanabe Y, Arlen-Celina L, Song X, de Oliveira Souza R, Stass R, Azar SR, Rossi SL, Claser C, Kümmerer BM, Crispin M, Bowden TA, Huiskonen JT, Reyes-Sandoval A. Immunogenic recombinant Mayaro virus-like particles present natively assembled glycoprotein. NPJ Vaccines 2024; 9:243. [PMID: 39690153 DOI: 10.1038/s41541-024-01021-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/10/2024] [Indexed: 12/19/2024] Open
Abstract
Virus-like particles (VLPs) are an established vaccine platform and can be strong immunogens capable of eliciting both humoral and cellular immune responses against a range of pathogens. Here, we show by cryo-electron microscopy that VLPs of Mayaro virus, which contain envelope glycoproteins E1-E2 and capsid, exhibit an architecture that closely resembles native virus. In contrast to monomeric and soluble envelope 2 (E2) glycoprotein, both VLPs as well as the adenovirus and modified vaccinia virus Ankara (MVA) vaccine platforms expressing the equivalent envelope glycoproteins E1-E2, and capsid induced highly neutralising antibodies after immunisation. The levels of neutralising antibodies elicited by the viral-vectored vaccines of structural proteins and VLPs increased significantly upon boosting. Immunisation of Mayaro virus VLPs in mice with or without an adjuvant (poly:IC) yielded similar levels of neutralising antibodies suggesting that the VLPs may be used for immunisation without the need for an adjuvant. A single or two doses of non-adjuvanted 5 µg of MAYV VLP vaccination provided significant protection against viremia and MAYV-induced foot swelling in the C57BL/6 mouse challenge model. MAYV VLPs represent a non-infectious vaccine candidate, which may constitute a complementary option for future immunisation strategies against this important emerging alphavirus.
Collapse
Affiliation(s)
- Young Chan Kim
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford, Oxford, UK.
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| | - Yasunori Watanabe
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Lücke Arlen-Celina
- Institute of Virology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Xiyong Song
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Raquel de Oliveira Souza
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Robert Stass
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Sasha R Azar
- Department of Pathology and the Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Shannan L Rossi
- Department of Pathology and the Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Carla Claser
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Beate Mareike Kümmerer
- Institute of Virology, Medical Faculty, University of Bonn, Bonn, Germany
- German Centre for Infection Research (DZIF), Partner Site-Bonn-Cologne, Bonn, Germany
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Thomas A Bowden
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Juha T Huiskonen
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Arturo Reyes-Sandoval
- Instituto Politécnico Nacional, IPN. Av. Luis Enrique Erro s/n. Unidad Adolfo López Mateos, Mexico City, Mexico
| |
Collapse
|
3
|
Lin HC, Chang SF, Su CL, Hu HC, Chiao DJ, Hsu YL, Lu HY, Lin CC, Shu PY, Kuo SC. Facile quantitative diagnostic testing for neutralizing antibodies against Chikungunya virus. BMC Infect Dis 2024; 24:1076. [PMID: 39350079 PMCID: PMC11440707 DOI: 10.1186/s12879-024-09973-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Viral neutralization (NT) assays can be used to determine the immune status of patients or assess the potency of candidate vaccines or therapeutic monoclonal antibodies (mAbs). Focus reduction neutralization test (FRNT) is a conventional neutralization test (cVNT) with superior specificity for measurement of neutralizing antibodies against a specific virus. Unfortunately, the application of FRNT to the chikungunya virus (CHIKV) involves a highly pathogenic bio-agent requiring biosafety level 3 (BSL3) facilities, which inevitably imposes high costs and limits accessibility. In this study, we evaluated a safe surrogate virus neutralization test (sVNT) that uses novel CHIKV replicon particles (VRPs) expressing eGFP and luciferase (Luc) to enable the rapid detection and quantification of neutralizing activity in clinical human serum samples. METHODS This unmatched case-control validation study used serum samples from laboratory-confirmed cases of CHIKV (n = 19), dengue virus (DENV; n = 9), Japanese encephalitis virus (JEV; n = 5), and normal individuals (n = 20). We evaluated the effectiveness of sVNT, based on mosquito cell-derived CHIK VRPs (mos-CHIK VRPs), in detecting (eGFP) and quantifying (Luc) neutralizing activity, considering specificity, sensitivity, and reproducibility. We conducted correlation analysis between the proposed rapid method (20 h) versus FRNT assay (72 h). We also investigated the correlation between sVNT and FRNT in NT titrations in terms of Pearson's correlation coefficient (r) and sigmoidal curve fitting. RESULTS In NT screening assays, sVNT-eGFP screening achieved sensitivity and specificity of 100%. In quantitative neutralization assays, we observed a Pearson's correlation coefficient of 0.83 for NT50 values between sVNT-Luc and FRNT. CONCLUSIONS Facile VRP-based sVNT within 24 h proved highly reliable in the identification and quantification of neutralizing activity against CHIKV in clinical serum samples.
Collapse
Affiliation(s)
- Hui-Chung Lin
- Institute of Preventive Medicine, National Defense Medical Center, 237010 No. 172, Dapu Rd., Sanxia Dist, Taipei, 11490, Taiwan
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Shu-Fen Chang
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, 11561, Taiwan
| | - Chien-Ling Su
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, 11561, Taiwan
| | - Huai-Chin Hu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, 11561, Taiwan
| | - Der-Jiang Chiao
- Institute of Preventive Medicine, National Defense Medical Center, 237010 No. 172, Dapu Rd., Sanxia Dist, Taipei, 11490, Taiwan
| | - Yu-Lin Hsu
- Institute of Preventive Medicine, National Defense Medical Center, 237010 No. 172, Dapu Rd., Sanxia Dist, Taipei, 11490, Taiwan
| | - Hsuan-Ying Lu
- Institute of Preventive Medicine, National Defense Medical Center, 237010 No. 172, Dapu Rd., Sanxia Dist, Taipei, 11490, Taiwan
| | - Chang-Chi Lin
- Institute of Preventive Medicine, National Defense Medical Center, 237010 No. 172, Dapu Rd., Sanxia Dist, Taipei, 11490, Taiwan
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Pei-Yun Shu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, 11561, Taiwan.
| | - Szu-Cheng Kuo
- Institute of Preventive Medicine, National Defense Medical Center, 237010 No. 172, Dapu Rd., Sanxia Dist, Taipei, 11490, Taiwan.
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, 11490, Taiwan.
| |
Collapse
|
4
|
Dawson LM, Alshawabkeh M, Schröer K, Arakrak F, Ehrhardt A, Zhang W. Role of homologous recombination/recombineering on human adenovirus genome engineering: Not the only but the most competent solution. ENGINEERING MICROBIOLOGY 2024; 4:100140. [PMID: 39628785 PMCID: PMC11611009 DOI: 10.1016/j.engmic.2024.100140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 12/06/2024]
Abstract
Adenoviruses typically cause mild illnesses, but severe diseases may occur primarily in immunodeficient individuals, particularly children. Recently, adenoviruses have garnered significant interest as a versatile tool in gene therapy, tumor treatment, and vaccine vector development. Over the past two decades, the advent of recombineering, a method based on homologous recombination, has notably enhanced the utility of adenoviral vectors in therapeutic applications. This review summarizes recent advancements in the use of human adenoviral vectors in medicine and discusses the pivotal role of recombineering in the development of these vectors. Additionally, it highlights the current achievements and potential future impact of therapeutic adenoviral vectors.
Collapse
Affiliation(s)
| | | | | | - Fatima Arakrak
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), School of Medicine, Faculty of Health, Witten/Herdecke University, Stockumer Str. 10 58453 Witten, Germany
| | - Anja Ehrhardt
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), School of Medicine, Faculty of Health, Witten/Herdecke University, Stockumer Str. 10 58453 Witten, Germany
| | - Wenli Zhang
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), School of Medicine, Faculty of Health, Witten/Herdecke University, Stockumer Str. 10 58453 Witten, Germany
| |
Collapse
|
5
|
Rao S, Erku D, Mahalingam S, Taylor A. Immunogenicity, safety and duration of protection afforded by chikungunya virus vaccines undergoing human clinical trials. J Gen Virol 2024; 105. [PMID: 38421278 DOI: 10.1099/jgv.0.001965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
Background. Chikungunya virus (CHIKV) causes chikungunya fever and has been responsible for major global epidemics of arthritic disease over the past two decades. Multiple CHIKV vaccine candidates are currently undergoing or have undergone human clinical trials, with one vaccine candidate receiving FDA approval. This scoping review was performed to evaluate the 'efficacy', 'safety' and 'duration of protection' provided by CHIKV vaccine candidates in human clinical trials.Methods. This scoping literature review addresses studies involving CHIKV vaccine clinical trials using available literature on the PubMed, Medline Embase, Cochrane Library and Clinicaltrial.gov databases published up to 25 August 2023. Covidence software was used to structure information and review the studies included in this article.Results. A total of 1138 studies were screened and, after removal of duplicate studies, 12 relevant studies were thoroughly reviewed to gather information. This review summarizs that all seven CHIKV vaccine candidates achieved over 90 % seroprotection against CHIKV after one or two doses. All vaccines were able to provide neutralizing antibody protection for at least 28 days.Conclusions. A variety of vaccine technologies have been used to develop CHIKV vaccine candidates. With one vaccine candidate having recently received FDA approval, it is likely that further CHIKV vaccines will be available commercially in the near future.
Collapse
Affiliation(s)
- Shambhavi Rao
- The Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, QLD, 4215, Australia
- Global Virus Network (GVN) Centre of Excellence in Arboviruses, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Daniel Erku
- Centre for Applied Health Economics, Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, QLD, 4215, Australia
| | - Suresh Mahalingam
- The Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, QLD, 4215, Australia
- Global Virus Network (GVN) Centre of Excellence in Arboviruses, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Adam Taylor
- The Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, QLD, 4215, Australia
- Global Virus Network (GVN) Centre of Excellence in Arboviruses, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
6
|
Coirada FC, Fernandes ER, Mello LRD, Schuch V, Soares Campos G, Braconi CT, Boscardin SB, Santoro Rosa D. Heterologous DNA Prime- Subunit Protein Boost with Chikungunya Virus E2 Induces Neutralizing Antibodies and Cellular-Mediated Immunity. Int J Mol Sci 2023; 24:10517. [PMID: 37445695 DOI: 10.3390/ijms241310517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 07/15/2023] Open
Abstract
Chikungunya virus (CHIKV) has become a significant public health concern due to the increasing number of outbreaks worldwide and the associated comorbidities. Despite substantial efforts, there is no specific treatment or licensed vaccine against CHIKV to date. The E2 glycoprotein of CHIKV is a promising vaccine candidate as it is a major target of neutralizing antibodies during infection. In this study, we evaluated the immunogenicity of two DNA vaccines (a non-targeted and a dendritic cell-targeted vaccine) encoding a consensus sequence of E2CHIKV and a recombinant protein (E2*CHIKV). Mice were immunized with different homologous and heterologous DNAprime-E2* protein boost strategies, and the specific humoral and cellular immune responses were accessed. We found that mice immunized with heterologous non-targeted DNA prime- E2*CHIKV protein boost developed high levels of neutralizing antibodies, as well as specific IFN-γ producing cells and polyfunctional CD4+ and CD8+ T cells. We also identified 14 potential epitopes along the E2CHIKV protein. Furthermore, immunization with recombinant E2*CHIKV combined with the adjuvant AS03 presented the highest humoral response with neutralizing capacity. Finally, we show that the heterologous prime-boost strategy with the non-targeted pVAX-E2 DNA vaccine as the prime followed by E2* protein + AS03 boost is a promising combination to elicit a broad humoral and cellular immune response. Together, our data highlights the importance of E2CHIKV for the development of a CHIKV vaccine.
Collapse
Affiliation(s)
- Fernanda Caroline Coirada
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo 04023-062, Brazil
| | - Edgar Ruz Fernandes
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo 04023-062, Brazil
| | - Lucas Rodrigues de Mello
- Departamento de Biofísica, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo 04044-020, Brazil
| | - Viviane Schuch
- Departamento de Análises Clínicas e Toxicológicas, Universidade de São Paulo (USP), São Paulo 05508-000, Brazil
| | - Gúbio Soares Campos
- Laboratório de Virologia, Universidade Federal da Bahia (UFBA), Salvador 40110-909, Brazil
| | - Carla Torres Braconi
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo 04023-062, Brazil
| | - Silvia Beatriz Boscardin
- Departamento de Parasitologia, Universidade de São Paulo (USP), São Paulo 05508-000, Brazil
- Instituto Nacional de Ciência e Tecnologia de Investigação em Imunologia-INCT (III), São Paulo 05403-900, Brazil
| | - Daniela Santoro Rosa
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo 04023-062, Brazil
- Instituto Nacional de Ciência e Tecnologia de Investigação em Imunologia-INCT (III), São Paulo 05403-900, Brazil
| |
Collapse
|
7
|
Liu J, Lu X, Li X, Huang W, Fang E, Li W, Liu X, Liu M, Li J, Li M, Zhang Z, Song H, Ying B, Li Y. Construction and immunogenicity of an mRNA vaccine against chikungunya virus. Front Immunol 2023; 14:1129118. [PMID: 37006310 PMCID: PMC10050897 DOI: 10.3389/fimmu.2023.1129118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
Chikungunya fever (CHIKF) has spread to more than 100 countries worldwide, with frequent outbreaks in Europe and the Americas in recent years. Despite the relatively low lethality of infection, patients can suffer from long-term sequelae. Until now, no available vaccines have been approved for use; however, increasing attention is being paid to the development of vaccines against chikungunya virus (CHIKV), and the World Health Organization has included vaccine development in the initial blueprint deliverables. Here, we developed an mRNA vaccine using the nucleotide sequence encoding structural proteins of CHIKV. And immunogenicity was evaluated by neutralization assay, Enzyme-linked immunospot assay and Intracellular cytokine staining. The results showed that the encoded proteins elicited high levels of neutralizing antibody titers and T cell-mediated cellular immune responses in mice. Moreover, compared with the wild-type vaccine, the codon-optimized vaccine elicited robust CD8+ T-cell responses and mild neutralizing antibody titers. In addition, higher levels of neutralizing antibody titers and T-cell immune responses were obtained using a homologous booster mRNA vaccine regimen of three different homologous or heterologous booster immunization strategies. Thus, this study provides assessment data to develop vaccine candidates and explore the effectiveness of the prime-boost approach.
Collapse
Affiliation(s)
- Jingjing Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Division of Arboviral Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Xishan Lu
- Department of Preclinical Vaccine Research, Suzhou Abogen Biosciences Co., Ltd., Suzhou, China
| | - Xingxing Li
- Division of Arboviral Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Enyue Fang
- Division of Arboviral Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Wenjuan Li
- Division of Arboviral Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Xiaohui Liu
- Division of Arboviral Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Minglei Liu
- Division of Arboviral Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Jia Li
- Division of Arboviral Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Ming Li
- Division of Arboviral Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Zelun Zhang
- Division of Arboviral Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Haifeng Song
- Department of Preclinical Vaccine Research, Suzhou Abogen Biosciences Co., Ltd., Suzhou, China
| | - Bo Ying
- Department of Preclinical Vaccine Research, Suzhou Abogen Biosciences Co., Ltd., Suzhou, China
- *Correspondence: Yuhua Li, ; Bo Ying,
| | - Yuhua Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Division of Arboviral Vaccines, National Institutes for Food and Drug Control, Beijing, China
- *Correspondence: Yuhua Li, ; Bo Ying,
| |
Collapse
|
8
|
Montalvo Zurbia-Flores G, Reyes-Sandoval A, Kim YC. Chikungunya Virus: Priority Pathogen or Passing Trend? Vaccines (Basel) 2023; 11:568. [PMID: 36992153 PMCID: PMC10058558 DOI: 10.3390/vaccines11030568] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Chikungunya virus (CHIKV) is considered a priority pathogen and a major threat to global health. While CHIKV infections may be asymptomatic, symptomatic patients can develop chikungunya fever (CHIKF) characterized by severe arthralgia which often transitions into incapacitating arthritis that could last for years and lead to significant loss in health-related quality of life. Yet, Chikungunya fever (CHIKF) remains a neglected tropical disease due to its complex epidemiology and the misrepresentation of its incidence and disease burden worldwide. Transmitted to humans by infected Aedes mosquitoes, CHIKV has dramatically expanded its geographic distribution to over 100 countries, causing large-scale outbreaks around the world and putting more than half of the population of the world at risk of infection. More than 50 years have passed since the first CHIKV vaccine was reported to be in development. Despite this, there is no licensed vaccine or antiviral treatments against CHIKV to date. In this review, we highlight the clinical relevance of developing chikungunya vaccines by discussing the poor understanding of long-term disease burden in CHIKV endemic countries, the complexity of CHIKV epidemiological surveillance, and emphasising the impact of the global emergence of CHIKV infections. Additionally, our review focuses on the recent progress of chikungunya vaccines in development, providing insight into the most advanced vaccine candidates in the pipeline and the potential implications of their roll-out.
Collapse
Affiliation(s)
| | - Arturo Reyes-Sandoval
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7DG, UK
- Instituto Politécnico Nacional (IPN), Av. Luis Enrique Erro s/n, Unidad Adolfo López Mateos, Mexico City 07738, Mexico
| | - Young Chan Kim
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7DG, UK
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| |
Collapse
|
9
|
Lin HC, Chiao DJ, Shu PY, Lin HT, Hsiung CC, Lin CC, Kuo SC. Development of a Novel Chikungunya Virus-Like Replicon Particle for Rapid Quantification and Screening of Neutralizing Antibodies and Antivirals. Microbiol Spectr 2023; 11:e0485422. [PMID: 36856407 PMCID: PMC10101068 DOI: 10.1128/spectrum.04854-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/09/2023] [Indexed: 03/02/2023] Open
Abstract
Chikungunya fever is a mosquito-transmitted infectious disease that induces rash, myalgia, and persistent incapacitating arthralgia. At present, no vaccines or antiviral therapies specific to Chikungunya virus (CHIKV) infection have been approved, and research is currently restricted to biosafety level 3 containment. CHIKV-like replicon particles (VRPs) are single-cycle infectious particles containing viral structure proteins, as well as a defective genome to provide a safe surrogate for living CHIKV to facilitate the testing of vaccines and antivirals. However, inefficient RNA transfection and the potential emergence of the competent virus through recombination in mammalian cells limit VRP usability. This study describes a transfection-free system for the safe packaging of CHIK VRP with all necessary components via transduction of mosquito cell lines using a single baculovirus vector. We observed the release of substantial quantities of mosquito cell-derived CHIK VRP (mos-CHIK VRP) from baculovirus-transduced mosquito cell lines. The VRPs were shown to recapitulate viral replication and subgenomic dual reporter expression (enhanced green fluorescent protein [eGFP] and luciferase) in infected host cells. Interestingly, the rapid expression kinetics of the VRP-expressing luciferase reporter (6 h) makes it possible to use mos-CHIK VRPs for the rapid quantification of VRP infection. Treatment with antivirals (suramin or 6-azauridine) or neutralizing antibodies (monoclonal antibodies [MAbs] or patient sera) was shown to inhibit mos-CHIK VRP infection in a dose-dependent manner. Ease of manufacture, safety, scalability, and high throughput make mos-CHIK VRPs a highly valuable vehicle for the study of CHIKV biology, the detection of neutralizing (NT) antibody activity, and the screening of antivirals against CHIKV. IMPORTANCE This study proposes a transfection-free system that enables the safe packaging of CHIK VRPs with all necessary components via baculovirus transduction. Those mosquito cell-derived CHIK VRP (mos-CHIK VRPs) were shown to recapitulate viral replication and subgenomic dual reporter (enhanced green fluorescent protein [eGFP] and luciferase) expression in infected host cells. Rapid expression kinetics of the VRP-expressing luciferase reporter (within hours) opens the door to using mos-CHIK VRPs for the rapid quantification of neutralizing antibody and antiviral activity against CHIKV. To the best of our knowledge, this is the first study to report a mosquito cell-derived alphavirus VRP system. Note that this system could also be applied to other arboviruses to model the earliest event in arboviral infection in vertebrates.
Collapse
Affiliation(s)
- Hui-Chung Lin
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Der-Jiang Chiao
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Pei-Yun Shu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Hui-Tsu Lin
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Chu Hsiung
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Chang-Chi Lin
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Szu-Cheng Kuo
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
10
|
Cai L, Hu X, Liu S, Wang L, Lu H, Tu H, Huang X, Tong Y. The research progress of Chikungunya fever. Front Public Health 2023; 10:1095549. [PMID: 36699921 PMCID: PMC9870324 DOI: 10.3389/fpubh.2022.1095549] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Chikungunya fever, an acute infectious disease caused by Chikungunya virus (CHIKV), is transmitted by Aedes aegypti mosquitoes, with fever, rash, and joint pain as the main features. 1952, the first outbreak of Chikungunya fever was in Tanzania, Africa, and the virus was isolated in 1953. The epidemic has expanded from Africa to South Asia, the Indian Ocean islands and the Americas, and is now present in more than 100 countries and territories worldwide, causing approximately 1 million infections worldwide each year. In addition, fatal cases have been reported, making CHIKV a relevant public health disease. The evolution of the virus, globalization, and climate change may have contributed to the spread of CHIKV. 2005-2006 saw the most severe outbreak on Reunion Island, affecting nearly 35% of the population. Since 2005, cases of Chikungunya fever have spread mainly in tropical and subtropical regions, eventually reaching the Americas through the Caribbean island. Today, CHIKV is widely spread worldwide and is a global public health problem. In addition, the lack of a preventive vaccine and approved antiviral treatment makes CHIKV a major global health threat. In this review, we discuss the current knowledge on the pathogenesis of CHIKV, focusing on the atypical disease manifestations. We also provide an updated review of the current development of CHIKV vaccines. Overall, these aspects represent some of the most recent advances in our understanding of CHIKV pathogenesis and also provide important insights into the current development of CHIKV and potential CHIKV vaccines for current development and clinical trials.
Collapse
Affiliation(s)
- Li Cai
- Department of Infectious Disease Control and Prevention, Wuhan Center for Disease Control and Prevention, Wuhan, China,School of Public Health, Wuhan University, Wuhan, China
| | - Xinyi Hu
- Global Study Institute, University of Geneva, Geneva, Switzerland
| | - Shuang Liu
- Department of Infectious Disease Control and Prevention, Hubei Center for Disease Control and Prevention, Wuhan, China
| | - Lei Wang
- Department of Economic Management, China University of Geosciences, Wuhan, China
| | - Hao Lu
- Department of Infectious Disease Control and Prevention, Hubei Center for Disease Control and Prevention, Wuhan, China
| | - Hua Tu
- Department of Infectious Disease Control and Prevention, Hubei Center for Disease Control and Prevention, Wuhan, China
| | - Xibao Huang
- Department of Infectious Disease Control and Prevention, Hubei Center for Disease Control and Prevention, Wuhan, China,Xibao Huang ✉
| | - Yeqing Tong
- Department of Infectious Disease Control and Prevention, Hubei Center for Disease Control and Prevention, Wuhan, China,*Correspondence: Yeqing Tong ✉
| |
Collapse
|
11
|
Hakim MS, Aman AT. Understanding the Biology and Immune Pathogenesis of Chikungunya Virus Infection for Diagnostic and Vaccine Development. Viruses 2022; 15:48. [PMID: 36680088 PMCID: PMC9863735 DOI: 10.3390/v15010048] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Chikungunya virus, the causative agent of chikungunya fever, is generally characterized by the sudden onset of symptoms, including fever, rash, myalgia, and headache. In some patients, acute chikungunya virus infection progresses to severe and chronic arthralgia that persists for years. Chikungunya infection is more commonly identified in tropical and subtropical regions. However, recent expansions and epidemics in the temperate regions have raised concerns about the future public health impact of chikungunya diseases. Several underlying factors have likely contributed to the recent re-emergence of chikungunya infection, including urbanization, human travel, viral adaptation to mosquito vectors, lack of effective control measures, and the spread of mosquito vectors to new regions. However, the true burden of chikungunya disease is most likely to be underestimated, particularly in developing countries, due to the lack of standard diagnostic assays and clinical manifestations overlapping with those of other endemic viral infections in the regions. Additionally, there have been no chikungunya vaccines available to prevent the infection. Thus, it is important to update our understanding of the immunopathogenesis of chikungunya infection, its clinical manifestations, the diagnosis, and the development of chikungunya vaccines.
Collapse
Affiliation(s)
- Mohamad S. Hakim
- Department of Microbiology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | | |
Collapse
|
12
|
Folegatti PM, Jenkin D, Morris S, Gilbert S, Kim D, Robertson JS, Smith ER, Martin E, Gurwith M, Chen RT. Vaccines based on the replication-deficient simian adenoviral vector ChAdOx1: Standardized template with key considerations for a risk/benefit assessment. Vaccine 2022; 40:5248-5262. [PMID: 35715352 PMCID: PMC9194875 DOI: 10.1016/j.vaccine.2022.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/10/2022] [Accepted: 06/02/2022] [Indexed: 02/07/2023]
Abstract
Replication-deficient adenoviral vectors have been under investigation as a platform technology for vaccine development for several years and have recently been successfully deployed as an effective COVID-19 counter measure. A replication-deficient adenoviral vector based on the simian adenovirus type Y25 and named ChAdOx1 has been evaluated in several clinical trials since 2012. The Brighton Collaboration Benefit-Risk Assessment of VAccines by TechnolOgy (BRAVATO) was formed to evaluate the safety and other key features of new platform technology vaccines. This manuscript reviews key features of the ChAdOx1-vectored vaccines. The simian adenovirus Y25 was chosen as a strategy to circumvent pre-existing immunity to common human adenovirus serotypes which could impair immune responses induced by adenoviral vectored vaccines. Deletion of the E1 gene renders the ChAdOx1 vector replication incompetent and further genetic engineering of the E3 and E4 genes allows for increased insertional capability and optimizes vaccine manufacturing processes. ChAdOx1 vectored vaccines can be manufactured in E1 complementing cell lines at scale and are thermostable. The first ChAdOx1 vectored vaccines approved for human use, against SARS-CoV-2, received emergency use authorization in the UK on 30th December 2020, and is now approved in more than 180 countries. Safety data were compiled from phase I-III clinical trials of ChAdOx1 vectored vaccines expressing different antigens (influenza, tuberculosis, malaria, meningococcal B, prostate cancer, MERS-CoV, Chikungunya, Zika and SARS-CoV-2), conducted by the University of Oxford, as well as post marketing surveillance data for the COVID-19 Oxford-AstraZeneca vaccine. Overall, ChAdOx1 vectored vaccines have been well tolerated. Very rarely, thrombosis with thrombocytopenia syndrome (TTS), capillary leak syndrome (CLS), immune thrombocytopenia (ITP), and Guillain-Barre syndrome (GBS) have been reported following mass administration of the COVID-19 Oxford-AstraZeneca vaccine. The benefits of this COVID-19 vaccination have outweighed the risks of serious adverse events in most settings, especially with mitigation of risks when possible. Extensive immunogenicity clinical evaluation of ChAdOx1 vectored vaccines reveal strong, durable humoral and cellular immune responses to date; studies to refine the COVID-19 protection (e.g., via homologous/heterologous booster, fractional dose) are also underway. New prophylactic and therapeutic vaccines based on the ChAdOx1 vector are currently undergoing pre-clinical and clinical assessment, including vaccines against viral hemorrhagic fevers, Nipah virus, HIV, Hepatitis B, amongst others.
Collapse
Affiliation(s)
| | | | | | | | - Denny Kim
- Brighton Collaboration, a program of the Task Force for Global Health, Decatur, GA, USA
| | - James S. Robertson
- Brighton Collaboration, a program of the Task Force for Global Health, Decatur, GA, USA
| | - Emily R. Smith
- Brighton Collaboration, a program of the Task Force for Global Health, Decatur, GA, USA,Corresponding author
| | - Emalee Martin
- Brighton Collaboration, a program of the Task Force for Global Health, Decatur, GA, USA
| | - Marc Gurwith
- Brighton Collaboration, a program of the Task Force for Global Health, Decatur, GA, USA
| | - Robert T. Chen
- Brighton Collaboration, a program of the Task Force for Global Health, Decatur, GA, USA
| | | |
Collapse
|
13
|
A Review on Chikungunya Virus Epidemiology, Pathogenesis and Current Vaccine Development. Viruses 2022; 14:v14050969. [PMID: 35632709 PMCID: PMC9147731 DOI: 10.3390/v14050969] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 12/20/2022] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that recently re-emerged in many parts of the world causing large-scale outbreaks. CHIKV infection presents as a febrile illness known as chikungunya fever (CHIKF). Infection is self-limited and characterized mainly by severe joint pain and myalgia that can last for weeks or months; however, severe disease presentation can also occur in a minor proportion of infections. Among the atypical CHIKV manifestations that have been described, severe arthralgia and neurological complications, such as encephalitis, meningitis, and Guillain–Barré Syndrome, are now reported in many outbreaks. Moreover, death cases were also reported, placing CHIKV as a relevant public health disease. Virus evolution, globalization, and climate change may have contributed to CHIKV spread. In addition to this, the lack of preventive vaccines and approved antiviral treatments is turning CHIKV into a major global health threat. In this review, we discuss the current knowledge about CHIKV pathogenesis, with a focus on atypical disease manifestations, such as persistent arthralgia and neurologic disease presentation. We also bring an up-to-date review of the current CHIKV vaccine development. Altogether, these topics highlight some of the most recent advances in our understanding of CHIKV pathogenesis and also provide important insights into the current development and clinical trials of CHIKV potential vaccine candidates.
Collapse
|
14
|
Development of Viral-Vectored Vaccines and Virus Replicon Particle-Based Neutralisation Assay against Mayaro Virus. Int J Mol Sci 2022; 23:ijms23084105. [PMID: 35456923 PMCID: PMC9026931 DOI: 10.3390/ijms23084105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 02/07/2023] Open
Abstract
Mayaro virus (MAYV) is an emerging alphavirus causing acute febrile illness associated with chronic polyarthralgia. Although MAYV is currently restricted to tropical regions in South America around the Amazon basin, it has the potential to spread globally by Aedes species mosquitoes. In addition, there are currently no specific therapeutics or licenced vaccines against MAYV infection. We have previously shown that an adenovirus based Mayaro vaccine (ChAdOx1 May) was able to provide full protection against MAYV challenge in vaccinated A129 mice and induced high neutralising antibody titres. In this study, we have constructed a replication deficient simian adenovirus (ChAdOx2) and a Modified Ankara Virus (MVA) based vaccine expressing the MAYV structural cassette (sMAYV) similar to ChAdOx1 May, and characterised recombinant MAYV E2 glycoprotein expressed in a mammalian system for immune monitoring. We demonstrate that ChAdOx2 May was able to induce high antibody titres similar to ChAdOx1 May, and MVA May was shown to be an effective boosting strategy following prime vaccination with ChAdOx1 or ChAdOx2 May. In order to measure MAYV neutralising ability, we have developed a virus replicon particle-based neutralisation assay which effectively detected neutralising antibodies against MAYV. In summary, our study indicates the potential for further clinical development of the viral vectored MAYV vaccines against MAYV infections.
Collapse
|
15
|
Secreted Trimeric Chikungunya Virus Spikes from Insect Cells: Production, Purification, and Glycosylation Status. Processes (Basel) 2022. [DOI: 10.3390/pr10010162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Chikungunya virus (CHIKV) is a rapidly emerging mosquito-borne virus that causes a severe febrile illness with long-lasting arthralgia in humans. As there is no vaccine to protect humans and limit CHIKV epidemics, the virus continues to be a global public health concern. The CHIKV envelope glycoproteins E1 and E2 are important immunogens; therefore, the aim of this study is to produce trimeric CHIKV spikes in insect cells using the baculovirus expression system. The CHIKV E1 and E2 ectodomains were covalently coupled by a flexible linker that replaces the 6K transmembrane protein. The C-terminal E1 transmembrane was replaced by a Strep-tag II for the purification of secreted spikes from the culture fluid. After production in Sf9 suspension cells (product yields of 5.8–7.6 mg/L), the CHIKV spikes were purified by Strep-Tactin affinity chromatography, which successfully cleared the co-produced baculoviruses. Bis(sulfosuccinimidyl)suberate cross-linking demonstrated that the spikes are secreted as trimers. PNGase F treatment showed that the spikes are glycosylated. LC–MS/MS-based glycoproteomic analysis confirmed the glycosylation and revealed that the majority are of the mannose- or hybrid-type N-glycans and <2% have complex-type N-glycans. The LC –MS/MS analysis also revealed three O-glycosylation sites in E1. In conclusion, the trimeric, glycosylated CHIKV spikes have been successfully produced in insect cells and are now available for vaccination studies.
Collapse
|
16
|
Constant LEC, Rajsfus BF, Carneiro PH, Sisnande T, Mohana-Borges R, Allonso D. Overview on Chikungunya Virus Infection: From Epidemiology to State-of-the-Art Experimental Models. Front Microbiol 2021; 12:744164. [PMID: 34675908 PMCID: PMC8524093 DOI: 10.3389/fmicb.2021.744164] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/07/2021] [Indexed: 12/27/2022] Open
Abstract
Chikungunya virus (CHIKV) is currently one of the most relevant arboviruses to public health. It is a member of the Togaviridae family and alphavirus genus and causes an arthritogenic disease known as chikungunya fever (CHIKF). It is characterized by a multifaceted disease, which is distinguished from other arbovirus infections by the intense and debilitating arthralgia that can last for months or years in some individuals. Despite the great social and economic burden caused by CHIKV infection, there is no vaccine or specific antiviral drugs currently available. Recent outbreaks have shown a change in the severity profile of the disease in which atypical and severe manifestation lead to hundreds of deaths, reinforcing the necessity to understand the replication and pathogenesis processes. CHIKF is a complex disease resultant from the infection of a plethora of cell types. Although there are several in vivo models for studying CHIKV infection, none of them reproduces integrally the disease signature observed in humans, which is a challenge for vaccine and drug development. Therefore, understanding the potentials and limitations of the state-of-the-art experimental models is imperative to advance in the field. In this context, the present review outlines the present knowledge on CHIKV epidemiology, replication, pathogenesis, and immunity and also brings a critical perspective on the current in vitro and in vivo state-of-the-art experimental models of CHIKF.
Collapse
Affiliation(s)
- Larissa E. C. Constant
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bia F. Rajsfus
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro H. Carneiro
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tháyna Sisnande
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ronaldo Mohana-Borges
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diego Allonso
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
17
|
A single dose of ChAdOx1 Chik vaccine induces neutralizing antibodies against four chikungunya virus lineages in a phase 1 clinical trial. Nat Commun 2021; 12:4636. [PMID: 34330906 PMCID: PMC8324904 DOI: 10.1038/s41467-021-24906-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022] Open
Abstract
Chikungunya virus (CHIKV) is a reemerging mosquito-borne virus that causes swift outbreaks. Major concerns are the persistent and disabling polyarthralgia in infected individuals. Here we present the results from a first-in-human trial of the candidate simian adenovirus vectored vaccine ChAdOx1 Chik, expressing the CHIKV full-length structural polyprotein (Capsid, E3, E2, 6k and E1). 24 adult healthy volunteers aged 18-50 years, were recruited in a dose escalation, open-label, nonrandomized and uncontrolled phase 1 trial (registry NCT03590392). Participants received a single intramuscular injection of ChAdOx1 Chik at one of the three preestablished dosages and were followed-up for 6 months. The primary objective was to assess safety and tolerability of ChAdOx1 Chik. The secondary objective was to assess the humoral and cellular immunogenicity. ChAdOx1 Chik was safe at all doses tested with no serious adverse reactions reported. The vast majority of solicited adverse events were mild or moderate, and self-limiting in nature. A single dose induced IgG and T-cell responses against the CHIKV structural antigens. Broadly neutralizing antibodies against the four CHIKV lineages were found in all participants and as early as 2 weeks after vaccination. In summary, ChAdOx1 Chik showed excellent safety, tolerability and 100% PRNT50 seroconversion after a single dose.
Collapse
|
18
|
DIC-Like Syndrome Following Administration of ChAdOx1 nCov-19 Vaccination. Viruses 2021; 13:v13061046. [PMID: 34205940 PMCID: PMC8226681 DOI: 10.3390/v13061046] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/23/2021] [Accepted: 05/29/2021] [Indexed: 12/22/2022] Open
Abstract
In recent weeks, adverse reactions have been reported after administration of Oxford–AstraZeneca chimpanzee adenovirus vectored vaccine ChAdOx1 nCoV-19 (AZD1222), in particular thrombus formation, which has led several European Countries to discontinue administration of this vaccine. On March 8, 2021, the European Medicines Agency Safety Committee did not confirm this probable association. We report the case of a patient who developed disseminated intravascular coagulation after the first dose of Oxford-Astra Zeneca vaccine, which resolved in a few days with the administration of dexamethasone and enoxaparin. This work demonstrates the safety of the Oxford-Astra Zeneca vaccine and that any development of side effects can be easily managed with a prompt diagnosis and in a short time with a few commonly used drugs.
Collapse
|
19
|
Ferri M, Lloyd-Evans M. The contribution of veterinary public health to the management of the COVID-19 pandemic from a One Health perspective. One Health 2021; 12:100230. [PMID: 33681446 PMCID: PMC7912361 DOI: 10.1016/j.onehlt.2021.100230] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 01/11/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022] Open
Abstract
The human coronavirus disease 2019 (COVID-19) pandemic represents one of the greatest public health crises in recent history, which has caused unprecedented and massive disruptions of social and economic life globally, and the biggest communication challenges for public information-sharing. While there is strong evidence that bats are the animal source of SARS-CoV-2, the causative agent of COVID-19, there are many uncertainties around the epidemiology, the intermediate animal species, and potential animal routes of SARS-Cov-2 transmission to humans. While it has also long been known that coronaviruses circulate among different animal species, including SARS-CoV and MERS-CoV, responsible for the pandemics of severe acute respiratory syndrome and Middle East respiratory syndrome endemic in Middle Eastern countries in 2002-2003 and 2012 respectively, the way this pandemic is being managed tends to downplay or neglect the veterinary contribution, which is not in line with the One Health approach, if we consider that the genesis of the COVID-19 pandemic, likewise SARS and MERS lies on a close and interdependent links of humans, animals and the environment. To overcome this flaw, and to better operationalize the One Health approach, there are several lines of contributions the veterinary profession might provide to manage the COVID-19 pandemic in the framework of interventions jointly concerted in the veterinary and medical domains, notably: the experience in dealing with past animal epidemics, the skills in conducting wildlife surveillance targeting emerging pathogens at risky hot spots, and with the aim to predict and prevent future pandemics, the laboratory support for the diagnosis and molecular characterization of SARS-CoV-2 and human samples testing, and animal import risk assessment to define COVID-19 risk strategy for international air travel. The veterinary profession presents itself ontologically with a strong One Health accent and all the related valuable knowledge can be properly integrated within centralised multidisciplinary task-forces set up at the national and international level, with a renewed role in the management and monitoring structures required for managing the COVID-19 pandemic.
Collapse
Affiliation(s)
- Maurizio Ferri
- Scientific Coordinator of the Italian Society of Preventive Veterinary Medicine (SIMeVeP), Italy
| | - Meredith Lloyd-Evans
- Representative for Association of Veterinary Consultants on the European Food Safety Agency's Stakeholder Advisory Group on Emerging Risks, Founder of BioBridge Ltd, Cambridge, UK
| |
Collapse
|
20
|
Torres-Ruesta A, Chee RSL, Ng LF. Insights into Antibody-Mediated Alphavirus Immunity and Vaccine Development Landscape. Microorganisms 2021; 9:microorganisms9050899. [PMID: 33922370 PMCID: PMC8145166 DOI: 10.3390/microorganisms9050899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/11/2022] Open
Abstract
Alphaviruses are mosquito-borne pathogens distributed worldwide in tropical and temperate areas causing a wide range of symptoms ranging from inflammatory arthritis-like manifestations to the induction of encephalitis in humans. Historically, large outbreaks in susceptible populations have been recorded followed by the development of protective long-lasting antibody responses suggesting a potential advantageous role for a vaccine. Although the current understanding of alphavirus antibody-mediated immunity has been mainly gathered in natural and experimental settings of chikungunya virus (CHIKV) infection, little is known about the humoral responses triggered by other emerging alphaviruses. This knowledge is needed to improve serology-based diagnostic tests and the development of highly effective cross-protective vaccines. Here, we review the role of antibody-mediated immunity upon arthritogenic and neurotropic alphavirus infections, and the current research efforts for the development of vaccines as a tool to control future alphavirus outbreaks.
Collapse
Affiliation(s)
- Anthony Torres-Ruesta
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (A.T.-R.); (R.S.-L.C.)
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Rhonda Sin-Ling Chee
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (A.T.-R.); (R.S.-L.C.)
| | - Lisa F.P. Ng
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (A.T.-R.); (R.S.-L.C.)
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, UK
- Correspondence: ; Tel.: +65-6407-0028
| |
Collapse
|
21
|
Campos RK, Preciado-Llanes L, Azar SR, Kim YC, Brandon O, López-Camacho C, Reyes-Sandoval A, Rossi SL. Adenoviral-Vectored Mayaro and Chikungunya Virus Vaccine Candidates Afford Partial Cross-Protection From Lethal Challenge in A129 Mouse Model. Front Immunol 2020; 11:591885. [PMID: 33224148 PMCID: PMC7672187 DOI: 10.3389/fimmu.2020.591885] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/07/2020] [Indexed: 01/08/2023] Open
Abstract
Mayaro (MAYV) and chikungunya viruses (CHIKV) are vector-borne arthritogenic alphaviruses that cause acute febrile illnesses. CHIKV is widespread and has recently caused large urban outbreaks, whereas the distribution of MAYV is restricted to tropical areas in South America with small and sporadic outbreaks. Because MAYV and CHIKV are closely related and have high amino acid similarity, we investigated whether vaccination against one could provide cross-protection against the other. We vaccinated A129 mice (IFNAR -/-) with vaccines based on chimpanzee adenoviral vectors encoding the structural proteins of either MAYV or CHIKV. ChAdOx1 May is a novel vaccine against MAYV, whereas ChAdOx1 Chik is a vaccine against CHIKV already undergoing early phase I clinical trials. We demonstrate that ChAdOx1 May was able to afford full protection against MAYV challenge in mice, with most samples yielding neutralizing PRNT80 antibody titers of 1:258. ChAdOx1 May also provided partial cross-protection against CHIKV, with protection being assessed using the following parameters: survival, weight loss, foot swelling and viremia. Reciprocally, ChAdOx1 Chik vaccination reduced MAYV viral load, as well as morbidity and lethality caused by this virus, but did not protect against foot swelling. The cross-protection observed is likely to be, at least in part, secondary to cross-neutralizing antibodies induced by both vaccines. In summary, our findings suggest that ChAdOx1 Chik and ChAdOx1 May vaccines are not only efficacious against CHIKV and MAYV, respectively, but also afford partial heterologous cross-protection.
Collapse
Affiliation(s)
- Rafael Kroon Campos
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Lorena Preciado-Llanes
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Sasha R. Azar
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Young Chan Kim
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Olivia Brandon
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - César López-Camacho
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Arturo Reyes-Sandoval
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Shannan L. Rossi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
22
|
Bagno FF, Godói LC, Figueiredo MM, Sérgio SAR, Moraes TDFS, Salazar NDC, Kim YC, Reyes-Sandoval A, da Fonseca FG. Chikungunya E2 Protein Produced in E. coli and HEK293-T Cells-Comparison of Their Performances in ELISA. Viruses 2020; 12:E939. [PMID: 32858804 PMCID: PMC7552038 DOI: 10.3390/v12090939] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/29/2022] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne pathogen that causes a disease characterized by the acute onset of fever accompanied by arthralgia and intense joint pain. Clinical similarities and cocirculation of this and other arboviruses in many tropical countries highlight the necessity for efficient and accessible diagnostic tools. CHIKV envelope proteins are highly conserved among alphaviruses and, particularly, the envelope 2 glycoprotein (CHIKV-E2) appears to be immunodominant and has a considerable serodiagnosis potential. Here, we investigate how glycosylation of CHIKV-E2 affects antigen/antibody interaction and how this affects the performance of CHIKV-E2-based Indirect ELISA tests. We compare two CHIKV-E2 recombinant antigens produced in different expression systems: prokaryotic-versus eukaryotic-made recombinant proteins. CHIKV-E2 antigens are expressed either in E. coli BL21(DE3)-a prokaryotic system unable to produce post-translational modifications-or in HEK-293T mammalian cells-a eukaryotic system able to add post-translational modifications, including glycosylation sites. Both prokaryotic and eukaryotic recombinant CHIKV-E2 react strongly to anti-CHIKV IgG antibodies, showing accuracy levels that are higher than 90%. However, the glycan-added viral antigen presents better sensitivity and specificity (85 and 98%) than the non-glycosylated antigen (81 and 71%, respectively) in anti-CHIKV IgM ELISA assays.
Collapse
Affiliation(s)
- Flávia Fonseca Bagno
- Centro de Tecnologia em Vacinas (CT-Vacinas), Parque Tecnológico da UFMG (BH-Tec), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte-MG 31320-000, Brazil; (F.F.B.); (L.C.G.); (M.M.F.); (S.A.R.S.); (T.d.F.S.M.); (N.d.C.S.)
- Laboratório de Virologia Molecular e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas (ICB/UFMG), Belo Horizonte-MG 31270-901, Brazil
| | - Lara Carvalho Godói
- Centro de Tecnologia em Vacinas (CT-Vacinas), Parque Tecnológico da UFMG (BH-Tec), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte-MG 31320-000, Brazil; (F.F.B.); (L.C.G.); (M.M.F.); (S.A.R.S.); (T.d.F.S.M.); (N.d.C.S.)
- Colégio Técnico da Universidade Federal de Minas Gerais (COLTEC), Belo Horizonte-MG 31270-901, Brazil
| | - Maria Marta Figueiredo
- Centro de Tecnologia em Vacinas (CT-Vacinas), Parque Tecnológico da UFMG (BH-Tec), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte-MG 31320-000, Brazil; (F.F.B.); (L.C.G.); (M.M.F.); (S.A.R.S.); (T.d.F.S.M.); (N.d.C.S.)
| | - Sarah Aparecida Rodrigues Sérgio
- Centro de Tecnologia em Vacinas (CT-Vacinas), Parque Tecnológico da UFMG (BH-Tec), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte-MG 31320-000, Brazil; (F.F.B.); (L.C.G.); (M.M.F.); (S.A.R.S.); (T.d.F.S.M.); (N.d.C.S.)
| | - Thaís de Fátima Silva Moraes
- Centro de Tecnologia em Vacinas (CT-Vacinas), Parque Tecnológico da UFMG (BH-Tec), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte-MG 31320-000, Brazil; (F.F.B.); (L.C.G.); (M.M.F.); (S.A.R.S.); (T.d.F.S.M.); (N.d.C.S.)
- Laboratório de Virologia Molecular e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas (ICB/UFMG), Belo Horizonte-MG 31270-901, Brazil
| | - Natália de Castro Salazar
- Centro de Tecnologia em Vacinas (CT-Vacinas), Parque Tecnológico da UFMG (BH-Tec), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte-MG 31320-000, Brazil; (F.F.B.); (L.C.G.); (M.M.F.); (S.A.R.S.); (T.d.F.S.M.); (N.d.C.S.)
| | - Young Chan Kim
- The Jenner Institute, Nuffield Department of Medicine, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, University of Oxford, Oxford OX3 7DQ, UK; (Y.C.K.); (A.R.-S.)
| | - Arturo Reyes-Sandoval
- The Jenner Institute, Nuffield Department of Medicine, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, University of Oxford, Oxford OX3 7DQ, UK; (Y.C.K.); (A.R.-S.)
| | - Flávio Guimarães da Fonseca
- Centro de Tecnologia em Vacinas (CT-Vacinas), Parque Tecnológico da UFMG (BH-Tec), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte-MG 31320-000, Brazil; (F.F.B.); (L.C.G.); (M.M.F.); (S.A.R.S.); (T.d.F.S.M.); (N.d.C.S.)
- Laboratório de Virologia Molecular e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas (ICB/UFMG), Belo Horizonte-MG 31270-901, Brazil
| |
Collapse
|
23
|
Kim YC, Dema B, Rodriguez-Garcia R, López-Camacho C, Leoratti FMS, Lall A, Remarque EJ, Kocken CHM, Reyes-Sandoval A. Evaluation of Chimpanzee Adenovirus and MVA Expressing TRAP and CSP from Plasmodium cynomolgi to Prevent Malaria Relapse in Nonhuman Primates. Vaccines (Basel) 2020; 8:vaccines8030363. [PMID: 32640702 PMCID: PMC7564164 DOI: 10.3390/vaccines8030363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/14/2022] Open
Abstract
Plasmodium vivax is the world’s most widely distributed human malaria parasite, with over 2.8 billion people at risk in Asia, the Americas, and Africa. The 80–90% new P. vivax malaria infections are due to relapses which suggest that a vaccine with high efficacy against relapses by prevention of hypnozoite formation could lead to a significant reduction in the prevalence of P. vivax infections. Here, we describe the development of new recombinant ChAdOx1 and MVA vectors expressing P. cynomolgi Thrombospondin Related Adhesive Protein (PcTRAP) and the circumsporozoite protein (PcCSP). Both were shown to be immunogenic in mice prior to their assessment in rhesus macaques. We confirmed good vaccine-induced humoral and cellular responses after prime-boost vaccination in rhesus macaques prior to sporozoite challenge. Results indicate that there were no significant differences between mock-control and vaccinated animals after challenge, in terms of protective efficacy measured as the time taken to 1st patency, or as number of relapses. This suggests that under the conditions tested, the vaccination with PcTRAP and PcCSP using ChAdOx1 or MVA vaccine platforms do not protect against pre-erythrocytic malaria or relapses despite good immunogenicity induced by the viral-vectored vaccines.
Collapse
Affiliation(s)
- Young Chan Kim
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK; (Y.C.K.); (B.D.); (C.L.-C.); (F.M.S.L.); (A.L.)
| | - Barbara Dema
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK; (Y.C.K.); (B.D.); (C.L.-C.); (F.M.S.L.); (A.L.)
| | - Roberto Rodriguez-Garcia
- Department of Parasitology, Biomedical Primate Research Centre (BPRC), 2288 GJ Rijswijk, The Netherlands; (R.R.-G.); (E.J.R.); (C.H.M.K.)
| | - César López-Camacho
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK; (Y.C.K.); (B.D.); (C.L.-C.); (F.M.S.L.); (A.L.)
| | - Fabiana M. S. Leoratti
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK; (Y.C.K.); (B.D.); (C.L.-C.); (F.M.S.L.); (A.L.)
| | - Amar Lall
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK; (Y.C.K.); (B.D.); (C.L.-C.); (F.M.S.L.); (A.L.)
| | - Edmond J. Remarque
- Department of Parasitology, Biomedical Primate Research Centre (BPRC), 2288 GJ Rijswijk, The Netherlands; (R.R.-G.); (E.J.R.); (C.H.M.K.)
| | - Clemens H. M. Kocken
- Department of Parasitology, Biomedical Primate Research Centre (BPRC), 2288 GJ Rijswijk, The Netherlands; (R.R.-G.); (E.J.R.); (C.H.M.K.)
| | - Arturo Reyes-Sandoval
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK; (Y.C.K.); (B.D.); (C.L.-C.); (F.M.S.L.); (A.L.)
- Correspondence: ; Tel.: +44-(0)-1865-287811
| |
Collapse
|
24
|
Schrauf S, Tschismarov R, Tauber E, Ramsauer K. Current Efforts in the Development of Vaccines for the Prevention of Zika and Chikungunya Virus Infections. Front Immunol 2020; 11:592. [PMID: 32373111 PMCID: PMC7179680 DOI: 10.3389/fimmu.2020.00592] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/13/2020] [Indexed: 01/07/2023] Open
Abstract
Arboviruses represent major challenges to public health, particularly in tropical, and subtropical regions, and a substantial risk to other parts of the world as respective vectors extend their habitats. In recent years, two viruses transmitted by Aedes mosquitoes, Chikungunya and Zika virus, have gathered increased interest. After decades of regionally constrained outbreaks, both viruses have recently caused explosive outbreaks on an unprecedented scale, causing immense suffering and massive economic burdens in affected regions. Chikungunya virus causes an acute febrile illness that often transitions into a chronic manifestation characterized by debilitating arthralgia and/or arthritis in a substantial subset of infected individuals. Zika infection frequently presents as a mild influenza-like illness, often subclinical, but can cause severe complications such as congenital malformations in pregnancy and neurological disorders, including Guillain-Barré syndrome. With no specific treatments or vaccines available, vector control remains the most effective measure to manage spread of these diseases. Given that both viruses cause antibody responses that confer long-term, possibly lifelong protection and that such responses are cross-protective against the various circulating genetic lineages, the development of Zika and Chikungunya vaccines represents a promising route for disease control. In this review we provide a brief overview on Zika and Chikungunya viruses, the etiology and epidemiology of the illnesses they cause and the host immune response against them, before summarizing past and current efforts to develop vaccines to alleviate the burden caused by these emerging diseases. The development of the urgently needed vaccines is hampered by several factors including the unpredictable epidemiology, feasibility of rapid clinical trial implementation during outbreaks and regulatory pathways. We will give an overview of the current developments.
Collapse
|
25
|
Gao S, Song S, Zhang L. Recent Progress in Vaccine Development Against Chikungunya Virus. Front Microbiol 2019; 10:2881. [PMID: 31921059 PMCID: PMC6930866 DOI: 10.3389/fmicb.2019.02881] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/29/2019] [Indexed: 01/25/2023] Open
Abstract
Chikungunya fever (CHIKF) is an acute infectious disease that is mediated by the mosquito-transmitted chikungunya virus (CHIKV). People infected with CHIKV may experience high fever, severe joint pain, skin rash, and headache. In recent years, this disease has become a global public health problem. However, there is no licensed vaccine available for CHIKV. Accumulating research data have provided novel approaches and new directions for the development of CHIKV vaccines. Our review focuses on recent progress in CHIKV vaccine studies. The potential vaccine candidates are classified into seven types: inactivated vaccine, subunit vaccine, live-attenuated vaccine, recombinant virus-vectored vaccine, virus-like particle vaccine, chimeric vaccine, and nucleic acid vaccine. These studies will provide important insights into the future development of CHIKV vaccines.
Collapse
Affiliation(s)
- Shan Gao
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Siqi Song
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.,School of Basic Medicine, Qingdao University, Qingdao, China
| | - Leiliang Zhang
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
26
|
Campos RK, Preciado-Llanes L, Azar SR, Lopez-Camacho C, Reyes-Sandoval A, Rossi SL. A Single and Un-Adjuvanted Dose of a Chimpanzee Adenovirus-Vectored Vaccine against Chikungunya Virus Fully Protects Mice from Lethal Disease. Pathogens 2019; 8:pathogens8040231. [PMID: 31718104 PMCID: PMC6963200 DOI: 10.3390/pathogens8040231] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 12/28/2022] Open
Abstract
The mosquito-borne chikungunya virus (CHIKV) has become a major global health problem. Upon infection, chikungunya fever (CHIKF) can result in long-term joint pain and arthritis, and despite intense research, no licensed vaccine for CHIKV is available. We have developed two recombinant chimpanzee adenovirus-vectored vaccines (ChAdOx1) that induce swift and robust anti-CHIKV immune responses with a single dose, without the need for adjuvants or booster vaccines. Here, we report the vaccines’ protective efficacies against CHIKV infection in a lethal A129 mouse model. Our results indicate that a single, un-adjuvanted ChAdOx1 Chik or ChAdOx1 Chik ΔCap dose provided complete protection against a lethal virus challenge and prevented CHIKV-associated severe inflammation. These candidate vaccines supported survival equal to the attenuated 181/25 CHIKV reference vaccine but without the vaccine-related side effects, such as weight loss. Vaccination with either ChAdOx1 Chik or ChAdOx1 Chik ΔCap resulted in high titers of neutralizing antibodies that are associated with protection, indicating that the presence of the capsid within the vaccine construct may not be essential to afford protection under the conditions tested. We conclude that both replication-deficient ChAdOx1 Chik vaccines are safe even when used in A129 mice and afford complete protection from a lethal challenge.
Collapse
Affiliation(s)
- Rafael Kroon Campos
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (R.K.C.); (S.R.A.)
| | - Lorena Preciado-Llanes
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford OX3 7DQ, UK; (L.P.-L.); (C.L.-C.)
| | - Sasha R. Azar
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (R.K.C.); (S.R.A.)
| | - Cesar Lopez-Camacho
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford OX3 7DQ, UK; (L.P.-L.); (C.L.-C.)
| | - Arturo Reyes-Sandoval
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford OX3 7DQ, UK; (L.P.-L.); (C.L.-C.)
- Correspondence: (A.R.-S.); (S.L.R.); Tel.: +44(186)-528-7811 (A.R.-S.); +1(409)-772-9033 (S.L.R.)
| | - Shannan L. Rossi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Correspondence: (A.R.-S.); (S.L.R.); Tel.: +44(186)-528-7811 (A.R.-S.); +1(409)-772-9033 (S.L.R.)
| |
Collapse
|
27
|
Broeckel RM, Haese N, Ando T, Dmitriev I, Kreklywich CN, Powers J, Denton M, Smith P, Morrison TE, Heise M, DeFilippis V, Messaoudi I, Curiel DT, Streblow DN. Vaccine-Induced Skewing of T Cell Responses Protects Against Chikungunya Virus Disease. Front Immunol 2019; 10:2563. [PMID: 31736977 PMCID: PMC6834551 DOI: 10.3389/fimmu.2019.02563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/16/2019] [Indexed: 11/13/2022] Open
Abstract
Chikungunya virus (CHIKV) infections can cause severe and debilitating joint and muscular pain that can be long lasting. Current CHIKV vaccines under development rely on the generation of neutralizing antibodies for protection; however, the role of T cells in controlling CHIKV infection and disease is still unclear. Using an overlapping peptide library, we identified the CHIKV-specific T cell receptor epitopes recognized in C57BL/6 infected mice at 7 and 14 days post-infection. A fusion protein containing peptides 451, 416, a small region of nsP4, peptide 47, and an HA tag (CHKVf5) was expressed using adenovirus and cytomegalovirus-vectored vaccines. Mice vaccinated with CHKVf5 elicited robust T cell responses to higher levels than normally observed following CHIKV infection, but the vaccine vectors did not elicit neutralizing antibodies. CHKVf5-vaccinated mice had significantly reduced infectious viral load when challenged by intramuscular CHIKV injection. Depletion of both CD4+ and CD8+ T cells in vaccinated mice rendered them fully susceptible to intramuscular CHIKV challenge. Depletion of CD8+ T cells alone reduced vaccine efficacy, albeit to a lesser extent, but depletion of only CD4+ T cells did not reverse the protective phenotype. These data demonstrated a protective role for CD8+ T cells in CHIKV infection. However, CHKVf5-vaccinated mice that were challenged by footpad inoculation demonstrated equal viral loads and increased footpad swelling at 3 dpi, which we attributed to the presence of CD4 T cell receptor epitopes present in the vaccine. Indeed, vaccination of mice with vectors expressing only CHIKV-specific CD8+ T cell epitopes followed by CHIKV challenge in the footpad prevented footpad swelling and reduced proinflammatory cytokine and chemokines associated with disease, indicating that CHIKV-specific CD8+ T cells prevent CHIKV disease. These results also indicate that a T cell-biased prophylactic vaccination approach is effective against CHIKV challenge and reduces CHIKV-induced disease in mice.
Collapse
Affiliation(s)
- Rebecca M. Broeckel
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, United States
| | - Nicole Haese
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, United States
| | - Takeshi Ando
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, United States
| | - Igor Dmitriev
- Department of Radiation Oncology, Washington University, St. Louis, MO, United States
| | - Craig N. Kreklywich
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, United States
| | - John Powers
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, United States
| | - Michael Denton
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, United States
| | - Patricia Smith
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, United States
| | - Thomas E. Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Mark Heise
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Victor DeFilippis
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, United States
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - David T. Curiel
- Department of Radiation Oncology, Washington University, St. Louis, MO, United States
| | - Daniel N. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, United States
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, OR, United States
| |
Collapse
|
28
|
A protective Zika virus E-dimer-based subunit vaccine engineered to abrogate antibody-dependent enhancement of dengue infection. Nat Immunol 2019; 20:1291-1298. [PMID: 31477918 DOI: 10.1038/s41590-019-0477-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/22/2019] [Indexed: 11/08/2022]
Abstract
Infections with dengue virus (DENV) and Zika virus (ZIKV) can induce cross-reactive antibody responses. Two immunodominant epitopes-one to precursor membrane protein and one to the fusion loop epitope on envelope (E) protein-are recognized by cross-reactive antibodies1-3 that are not only poorly neutralizing, but can also promote increased viral replication and disease severity via Fcγ receptor-mediated infection of myeloid cells-a process termed antibody-dependent enhancement (ADE)1,4,5. ADE is a significant concern for both ZIKV and DENV vaccines as the induction of poorly neutralizing cross-reactive antibodies may prime an individual for ADE on natural infection. In this report, we describe the design and production of covalently stabilized ZIKV E dimers, which lack precursor membrane protein and do not expose the immunodominant fusion loop epitope. Immunization of mice with ZIKV E dimers induces dimer-specific antibodies, which protect against ZIKV challenge during pregnancy. Importantly, the ZIKV E-dimer-induced response does not cross-react with DENV or induce ADE of DENV infection.
Collapse
|
29
|
Wang P, Zhang R. Chikungunya Virus and (Re-) Emerging Alphaviruses. Viruses 2019; 11:v11090779. [PMID: 31450552 PMCID: PMC6784149 DOI: 10.3390/v11090779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 12/27/2022] Open
Affiliation(s)
- Penghua Wang
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT 06030, USA.
| | - Rong Zhang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
30
|
Development of an E2 ELISA Methodology to Assess Chikungunya Seroprevalence in Patients from an Endemic Region of Mexico. Viruses 2019; 11:v11050407. [PMID: 31052472 PMCID: PMC6563309 DOI: 10.3390/v11050407] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/07/2019] [Accepted: 04/28/2019] [Indexed: 12/19/2022] Open
Abstract
Chikungunya fever is a debilitating disease caused by Chikungunya virus (CHIKV) that can result in long-lasting arthralgias. The early diagnosis of CHIKV relies on PCR during the acute infection phase to allow differential diagnosis with other co-circulating arboviruses such as dengue and Zika. Alternatively, serology can support diagnosis and provide epidemiological information on current and past outbreaks. Many commercial serological ELISA assays are based on the inactivated whole CHIKV, but their sensitivity and specificity show great variability. We produced recombinant CHIKV E2 that is suitable for ELISA assays, which was used for the serodiagnosis of CHIKV infections occurring in an arbovirus endemic Mexican region within Michoacán state. A cross-sectional study was conducted in 2016-2017; sera was obtained from 15 healthy donors and 68 patients presenting undifferentiated febrile illness. Serum samples were screened by RT-PCR and by our in-house ELISA assay. Our results indicate that IgM and IgG anti-CHIKV E2 antibodies were detected with our ELISA assay with higher sensitivity than a commercially available CHIKV ELISA kit. Our simple and sensitive ELISA assay for the serodiagnosis of CHIKV infections can be applied to population-based seroprevalence surveys and has potential for monitoring vaccine immunogenicity in CHIKV vaccine clinical trials.
Collapse
|