1
|
Wyżewski Z, Stępkowska J, Kobylińska AM, Mielcarska A, Mielcarska MB. Mcl-1 Protein and Viral Infections: A Narrative Review. Int J Mol Sci 2024; 25:1138. [PMID: 38256213 PMCID: PMC10816053 DOI: 10.3390/ijms25021138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
MCL-1 is the prosurvival member of the Bcl-2 family. It prevents the induction of mitochondria-dependent apoptosis. The molecular mechanisms dictating the host cell viability gain importance in the context of viral infections. The premature apoptosis of infected cells could interrupt the pathogen replication cycle. On the other hand, cell death following the effective assembly of progeny particles may facilitate virus dissemination. Thus, various viruses can interfere with the apoptosis regulation network to their advantage. Research has shown that viral infections affect the intracellular amount of MCL-1 to modify the apoptotic potential of infected cells, fitting it to the "schedule" of the replication cycle. A growing body of evidence suggests that the virus-dependent deregulation of the MCL-1 level may contribute to several virus-driven diseases. In this work, we have described the role of MCL-1 in infections caused by various viruses. We have also presented a list of promising antiviral agents targeting the MCL-1 protein. The discussed results indicate targeted interventions addressing anti-apoptotic MCL1 as a new therapeutic strategy for cancers as well as other diseases. The investigation of the cellular and molecular mechanisms involved in viral infections engaging MCL1 may contribute to a better understanding of the regulation of cell death and survival balance.
Collapse
Affiliation(s)
- Zbigniew Wyżewski
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University in Warsaw, Dewajtis 5, 01-815 Warsaw, Poland
| | - Justyna Stępkowska
- Institute of Family Sciences, Cardinal Stefan Wyszyński University in Warsaw, Dewajtis 5, 01-815 Warsaw, Poland;
| | - Aleksandra Maria Kobylińska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (A.M.K.); (M.B.M.)
| | - Adriana Mielcarska
- Department of Gastroenterology, Hepatology, Nutritional Disorders and Pediatrics, The Children’s Memorial Health Institute, Av. Dzieci Polskich 20, 04-730 Warsaw, Poland;
| | - Matylda Barbara Mielcarska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (A.M.K.); (M.B.M.)
| |
Collapse
|
2
|
Mashkani B, Jalili Nik M, Rezaee SA, Boostani R. Advances in the treatment of human T-cell lymphotropic virus type-I associated myelopathy. Expert Rev Neurother 2023; 23:1233-1248. [PMID: 37933802 DOI: 10.1080/14737175.2023.2272639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/16/2023] [Indexed: 11/08/2023]
Abstract
INTRODUCTION Nearly 2-3% of those 10 to 20 million individuals infected with the Human T-cell lymphotropic virus type-1 (HTLV-1); are predisposed to developing HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). It is a neuro-inflammatory disease; differentiated from multiple sclerosis based on the presence of typical neurologic symptoms, confirmation of HTLV-1 infection, and other molecular biomarkers. AREAS COVERED A brief review of the epidemiology, host immune responses, and molecular pathogenesis of HAM/TSP is followed by detailed discussions about the host-related risk factors for developing HAM/TSP and success/failure stories of the attempted management strategies. EXPERT OPINION Currently, there is no effective treatment for HAM/TSP. Anti-retroviral therapy, peculiar cytokines (IFN-α), some anti-oxidants, and allograft bone marrow transplantation have been used for treating these patients with limited success. Under current conditions, asymptomatic carriers should be examined periodically by a neurologist for early signs of spinal cord injury. Then it is crucial to determine the progress rate to adapt the best management plan for each patient. Corticosteroid therapy is most beneficial in those with acute myelitis. However, slow-progressing patients are best managed using a combination of symptomatic and physical therapy. Additionally, preventive measures should be taken to decrease further spread of HTLV-1 infection.
Collapse
Affiliation(s)
- Baratali Mashkani
- Department of clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Jalili Nik
- Department of clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Abdolrahim Rezaee
- Inflammation and Inflammatory Diseases division, Immunology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Boostani
- Department of Neurology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Association of the p75NTR Ser205Leu Polymorphism with Asymptomatic HTLV-1 Infection. Viruses 2022; 14:v14061175. [PMID: 35746645 PMCID: PMC9230641 DOI: 10.3390/v14061175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/22/2022] [Accepted: 05/26/2022] [Indexed: 12/04/2022] Open
Abstract
Genetic variations in components of the immune response seem to be an important factor that contributes to the manifestation of symptoms of some diseases related to HTLV-1 infection. Nerve growth factor (NGF) and the p75 neurotrophin receptor (p75NTR) are related to the maintenance of neurons and the activation of the immune response. In this study, we evaluated the association of the NGF -198C/T, NGF Ala35Val, and p75NTR Ser205Leu polymorphisms with HTLV-1 infection and plasma cytokine levels in 166 samples from individuals infected with HTLV-1 (59 symptomatic and 107 asymptomatic). The genotyping and quantification of the proviral load were performed by real-time PCR, and cytokine levels were measured by ELISA. The NGF -198C/T and NGF Ala35Val polymorphisms were not associated with HTLV-1 infection. The frequency of the Ser/Leu genotype of p75NTR Ser205Leu was more frequent in the control group (p = 0.0385), and the Ser/Leu genotype and allele Leu were more frequent among the asymptomatic (p < 0.05), especially with respect to the HTLV-1-associated myelopathy (HAM) group (p < 0.05). The symptomatic showed a higher proviral load and higher TNF-α and IL-10 levels (p < 0.05). Asymptomatic carriers of the Ser/Leu genotype (p = 0.0797) had lower levels of proviral load and higher levels of TNF-α (p = 0.0507). Based on the results obtained, we conclude that the p75NTR Ser205Leu polymorphism may be associated with reduced susceptibility to HTLV-1 infection, a lower risk of developing symptoms, including HAM, and better infection control.
Collapse
|
4
|
Moles R, Sarkis S, Galli V, Omsland M, Artesi M, Bissa M, McKinnon K, Brown S, Hahaut V, Washington-Parks R, Welsh J, Venzon DJ, Gutowska A, Doster MN, Breed MW, Killoran KE, Kramer J, Jones J, Moniuszko M, Van den Broeke A, Pise-Masison CA, Franchini G. NK cells and monocytes modulate primary HTLV-1 infection. PLoS Pathog 2022; 18:e1010416. [PMID: 35377924 PMCID: PMC9022856 DOI: 10.1371/journal.ppat.1010416] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 04/21/2022] [Accepted: 03/04/2022] [Indexed: 12/21/2022] Open
Abstract
We investigated the impact of monocytes, NK cells, and CD8+ T-cells in primary HTLV-1 infection by depleting cell subsets and exposing macaques to either HTLV-1 wild type (HTLV-1WT) or to the HTLV-1p12KO mutant unable to infect replete animals due to a single point mutation in orf-I that inhibits its expression. The orf-I encoded p8/p12 proteins counteract cytotoxic NK and CD8+ T-cells and favor viral DNA persistence in monocytes. Double NK and CD8+ T-cells or CD8 depletion alone accelerated seroconversion in all animals exposed to HTLV-1WT. In contrast, HTLV-1p12KO infectivity was fully restored only when NK cells were also depleted, demonstrating a critical role of NK cells in primary infection. Monocyte/macrophage depletion resulted in accelerated seroconversion in all animals exposed to HTLV-1WT, but antibody titers to the virus were low and not sustained. Seroconversion did not occur in most animals exposed to HTLV-1p12KO.In vitro experiments in human primary monocytes or THP-1 cells comparing HTLV-1WT and HTLV-1p12KO demonstrated that orf-I expression is associated with inhibition of inflammasome activation in primary cells, with increased CD47 “don’t-eat-me” signal surface expression in virus infected cells and decreased monocyte engulfment of infected cells. Collectively, our data demonstrate a critical role for innate NK cells in primary infection and suggest a dual role of monocytes in primary infection. On one hand, orf-I expression increases the chances of viral transmission by sparing infected cells from efferocytosis, and on the other may protect the engulfed infected cells by modulating inflammasome activation. These data also suggest that, once infection is established, the stoichiometry of orf-I expression may contribute to the chronic inflammation observed in HTLV-1 infection by modulating monocyte efferocytosis. The immune cells that inhibit or favor HTLV-1 infection are still unknown and their identification is critical for understanding viral pathogenesis and for the development of an effective HTLV-1 vaccine. Neutralizing antibodies are produced in natural HTLV-1 infection, but their impact is likely hampered by the virus’s ability to be transmitted from cell to cell via the virological synapse, cellular conduits, and biofilms. By depleting specific immune cell subsets in blood, we found that NK cells play a critical role in the containment of early HTLV-1 infection. Moreover, transient depletion of monocytes/macrophages results in early, but not sustained seroconversion, suggesting that early engagement of monocytes may be necessary for long-term productive infection. The engulfment of apoptotic T-cells infected by HTLV-1 may represent a viral strategy to persist in the host since the viral proteins encoded by orf-I and orf-II affect the function of receptors and proteins involved in efferocytosis. These results suggest that effective HTLV-1 vaccines must also elicit durable innate responses able to promptly clear virus invasion of monocytes through engulfment of infected T-cells to avoid the establishment of a vicious cycle that leads to chronic inflammation.
Collapse
Affiliation(s)
- Ramona Moles
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Sarkis Sarkis
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Veronica Galli
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Maria Omsland
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Maria Artesi
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
- Unit of Animal Genomics, GIGA, Université de Liège, Liège, Belgium
| | - Massimiliano Bissa
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Katherine McKinnon
- Vaccine Branch Flow Cytometry Core, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sophia Brown
- Vaccine Branch Flow Cytometry Core, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Vincent Hahaut
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
- Unit of Animal Genomics, GIGA, Université de Liège, Liège, Belgium
| | - Robyn Washington-Parks
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Joshua Welsh
- Translational Nanobiology Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - David J. Venzon
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Anna Gutowska
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Melvin N. Doster
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Matthew W. Breed
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, Maryland, United States of America
| | - Kristin E. Killoran
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, Maryland, United States of America
| | - Joshua Kramer
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, Maryland, United States of America
| | - Jennifer Jones
- Translational Nanobiology Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Marcin Moniuszko
- Department of Allergology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Anne Van den Broeke
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
- Unit of Animal Genomics, GIGA, Université de Liège, Liège, Belgium
| | - Cynthia A. Pise-Masison
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
5
|
Brites C, Grassi MF, Quaresma JAS, Ishak R, Vallinoto ACR. Pathogenesis of HTLV-1 infection and progression biomarkers: An overview. Braz J Infect Dis 2021; 25:101594. [PMID: 34256025 PMCID: PMC9392164 DOI: 10.1016/j.bjid.2021.101594] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/12/2021] [Accepted: 06/03/2021] [Indexed: 12/12/2022] Open
Abstract
Infection by human T-cell lymphotropic virus type 1 (HTLV-1) occurs in lymphocytes, which travel throughout the body, thus affecting several target organs and causing varied clinical outcomes, particularly in populations that are underserved and do not have access to healthcare. However, the mechanism of pathogenesis is not yet fully understood. The TAX and HTLV-1 basic leucine zipper factor (HBZ) proteins maintain viral persistence and affect pathogenesis through cell proliferation and immune and inflammatory responses that accompany each clinical manifestation. TAX expression leads to inhibition of transcription error control, OX40 overexpression, and cell proliferation in adult T-cell leukemia (ATL). OX40 levels are elevated in the central nervous system (CNS), and the expression of TAX in the CNS causes neuronal damage and loss of immune reactivity among patients with HTLV-1-associated myelopathy (HAM). HBZ reduces viral replication and suppresses the immune response. Its cell compartmentalization has been associated with the pathogenesis of HAM (cytoplasmic localization) and ATL (nuclear localization). TAX and HBZ seem to act antagonistically in immune responses, affecting the pathogenesis of HTLV-1 infection. The progression from HTLV-1 infection to disease is a consequence of HTLV-1 replication in CD4+ T and CD8+ T lymphocytes and the imbalance between proinflammatory and anti-inflammatory cytokines. The compartmentalization of HBZ suggests that this protein may be an additional tool for assessing immune and inflammatory responses, in addition to those already recognized as potential biomarkers associated with progression from infection to disease (including human leukocyte antigen (HLA), killer immunoglobulin-like receptors (KIR), interleukin (IL)-6, IL-10, IL-28, Fas, Fas ligand, interferon (IFN)-γ, tumor necrosis factor (TNF)-α, and mannose-binding lectin).
Collapse
Affiliation(s)
- Carlos Brites
- Federal University of Bahia (UFBA), Professor Edgard Santos University Hospital Complex, Laboratory of Infectious Diseases Research, Salvador, BA, Brazil
| | | | | | - Ricardo Ishak
- Federal University of Pará (UFPA), Institute of Biological Sciences, Laboratory of Virology, Belém, PA, Brazil
| | | |
Collapse
|
6
|
Aghajanian S, Teymoori-Rad M, Molaverdi G, Mozhgani SH. Immunopathogenesis and Cellular Interactions in Human T-Cell Leukemia Virus Type 1 Associated Myelopathy/Tropical Spastic Paraparesis. Front Microbiol 2020; 11:614940. [PMID: 33414779 PMCID: PMC7783048 DOI: 10.3389/fmicb.2020.614940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/17/2020] [Indexed: 01/15/2023] Open
Abstract
HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP) is a neuropathological disorder in 1–3% of individuals infected with Human T-lymphotropic virus 1 (HTLV-1). This condition is characterized by progressive spastic lower limb weakness and paralysis, lower back pain, bladder incontinence, and mild sensory disturbances resembling spinal forms of multiple sclerosis. This disease also causes chronic disability and is therefore associated with high health burden in areas where HTLV-1 infection is endemic. Despite various efforts in understanding the virus and discovery of novel diagnostic markers, and cellular and viral interactions, HAM/TSP management is still unsatisfactory and mainly focused on symptomatic alleviation, and it hasn’t been explained why only a minority of the virus carriers develop HAM/TSP. This comprehensive review focuses on host and viral factors in association with immunopathology of the disease in hope of providing new insights for drug therapies or other forms of intervention.
Collapse
Affiliation(s)
- Sepehr Aghajanian
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Majid Teymoori-Rad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghazale Molaverdi
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Sayed-Hamidreza Mozhgani
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
7
|
Queiroz MAF, Amoras EDSG, Moura TCF, da Costa CA, de Sousa MS, Lima SS, Ishak R, Vallinoto ACR. The SAMHD1 rs6029941 (A/G) Polymorphism Seems to Influence the HTLV-1 Proviral Load and IFN-Alpha Levels. Front Cell Infect Microbiol 2020; 10:246. [PMID: 32656092 PMCID: PMC7326033 DOI: 10.3389/fcimb.2020.00246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/29/2020] [Indexed: 01/19/2023] Open
Abstract
SAMHD1, a host dNTPase, acts as a retroviral restriction factor by degrading the pool of nucleotides available for the initial reverse transcription of retroviruses, including HTLV-1. Polymorphisms in the SAMDH1 gene may alter the enzymatic expression and influence the course of infection by the virus. The present study investigated the effect of polymorphisms on HTLV-1 infection susceptibility and on progression to disease in 108 individuals infected by HTLV-1 (47 symptomatic and 61 asymptomatic) and 100 individuals in a control group. SAMHD1 rs6029941 (G/A) genotyping and HTLV-1 proviral load measurements were performed using real-time PCR and plasma IFN-α was measured by ELISA. Polymorphism frequency was not associated with HTLV-1 infection susceptibility or with the presence of symptoms. The proviral load was significantly higher in symptomatic individuals with the G allele (p = 0.0143), which presented lower levels of IFN-α (p = 0.0383). SAMHD1 polymorphism is associated with increased proviral load and reduced levels of IFN-α in symptomatic patients, and may be a factor that contributes to the appearance of disease symptoms.
Collapse
Affiliation(s)
| | | | | | - Carlos Araújo da Costa
- Laboratory of Cellular and Molecular Biology, Tropical Medicine Center, Federal University of Pará, Belém, Brazil
| | - Maisa Silva de Sousa
- Laboratory of Cellular and Molecular Biology, Tropical Medicine Center, Federal University of Pará, Belém, Brazil
| | - Sandra Souza Lima
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Ricardo Ishak
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | | |
Collapse
|