1
|
Cao Z, Ma N, Shan M, Wang S, Du J, Cheng J, Sun P, Sun N, Jin L, Fan K, Yin W, Li H, Yin C, Sun Y. Baicalin Inhibits FIPV Infection In Vitro by Modulating the PI3K-AKT Pathway and Apoptosis Pathway. Int J Mol Sci 2024; 25:9930. [PMID: 39337417 PMCID: PMC11431997 DOI: 10.3390/ijms25189930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Feline infectious peritonitis (FIP), a serious infectious disease in cats, has become a challenging problem for pet owners and the industry due to the lack of effective vaccinations and medications for prevention and treatment. Currently, most natural compounds have been proven to have good antiviral activity. Hence, it is essential to develop efficacious novel natural compounds that inhibit FIPV infection. Our study aimed to screen compounds with in vitro anti-FIPV effects from nine natural compounds that have been proven to have antiviral activity and preliminarily investigate their mechanisms of action. In this study, the CCK-8 method was used to determine the maximum noncytotoxic concentration (MNTC), 50% cytotoxic concentration (CC50), and 50% effective concentration (EC50) of natural compounds on CRFK cells and the maximum inhibition ratio (MIR) of the compounds inhibit FIPV. The effect of natural compounds on FIPV-induced apoptosis was detected via Annexin V-FITC/PI assay. Network pharmacology (NP), molecular docking (MD), and 4D label-free quantitative (4D-LFQ) proteomic techniques were used in the joint analysis the mechanism of action of the screened natural compounds against FIPV infection. Finally, Western blotting was used to validate the analysis results. Among the nine natural compounds, baicalin had good antiviral effects, with an MIR > 50% and an SI > 3. Baicalin inhibited FIPV-induced apoptosis. NP and MD analyses showed that AKT1 was the best target of baicalin for inhibiting FIPV infection. 4D-LFQ proteomics analysis showed that baicalin might inhibit FIPV infection by modulating the PI3K-AKT pathway and the apoptosis pathway. The WB results showed that baicalin promoted the expression of EGFR, PI3K, and Bcl-2 and inhibited the expression of cleaved caspase 9 and Bax. This study found that baicalin regulated the PI3K-AKT pathway and the apoptosis pathway in vitro and inhibited FIPV-induced apoptosis, thus exerting anti-FIPV effects.
Collapse
Affiliation(s)
- Zhongda Cao
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Nannan Ma
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Maoyang Shan
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Shiyan Wang
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Jige Du
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Jia Cheng
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Panpan Sun
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Na Sun
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Lin Jin
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Kuohai Fan
- Laboratory Animal Center, Shanxi Agricultural University, Jinzhong 030801, China
| | - Wei Yin
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Hongquan Li
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Chunsheng Yin
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Yaogui Sun
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
2
|
Lu N, Li Z, Su D, Chen J, Zhao J, Gao Y, Liu Q, Liu G, Luo X, Luo R, Deng X, Zhu H, Luo Z. Design of novel chiral self-assembling peptides to explore the efficiency and mechanism of mRNA-FIPV vaccine delivery vehicles. Int J Pharm 2024; 660:124344. [PMID: 38885779 DOI: 10.1016/j.ijpharm.2024.124344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
The enhancement of conventional liposome and lipid nanoparticle (LNP) methodologies in the formulation and deployment of messenger RNA (mRNA) vaccines necessitates further refinement to augment both their effectiveness and biosafety profiles. Additionally, researching these innovative delivery carrier materials represents both a prominent focus and a significant challenge in the current scientific landscape. Here we designed new chiral self-assembling peptides as the delivery carrier for RNA vaccines to study the underlying mechanisms in the feline infectious peritonitis virus (FIPV) model system. Firstly, we successfully transcribed mature enhanced green fluorescent protein (EGFP) mRNA and feline infectious peritonitis virus nucleocapsid (FIPV N) mRNA in vitro from optimized vectors. Subsequently, we developed chiral self-assembling peptide-1 (CSP-1) and chiral self-assembling peptide-2 (CSP-2) peptides, taking into account the physical and chemical characteristics of nucleic acid molecules as well as the principles of self-assembling peptides, with the aim of improving the delivery efficiency of mRNA molecule complexes. We determined the optimal coating ratio between CSP and mRNA by electrophoretic mobility shift assay. We found that the peptides and mRNA complexes can protect the mRNA from RNase A enzyme and efficiently deliver mRNA into cells for target antigen proteins expression. Animal experiments confirmed that CSP-1/mRNA complex can effectively trigger immune response mechanisms involving IFN-γ and T cell activation. It can also stimulate CD4+ and CD8+ T cell proliferation and induce serum antibody titers up to 10,000 times higher. And no pathological changes were observed by immunohistochemistry in liver, spleen, and kidney, indicating that CSP-1 may be a safe and promising delivery system for mRNA vaccines. Methodologically, this research represents a novel endeavor in the utilization of chiral self-assembling peptides within the realm of mRNA vaccines. This approach not only introduces fresh prospects for employing such nanomaterials in various mRNA vaccines but also expands the potential for developing small molecules, proteins, and antibodies. Furthermore, it paves the way for new clinical applications of existing pharmaceuticals.
Collapse
Affiliation(s)
- Na Lu
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Zhaoxu Li
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China; Department of Materials Science and Engineering, University of California, Irvine, CA, United States
| | - Di Su
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Jialei Chen
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Jiawei Zhao
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Yu Gao
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Qichen Liu
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Guicen Liu
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Xinyi Luo
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China; Department of Physiology and Biophysics, University of California, Irvine, CA, United States
| | - Ruyue Luo
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China; Department of Medicine, Northwestern University Feinberg School of Medicine,Chicago, IL,United States
| | - Xiaoyan Deng
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Huifang Zhu
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Zhongli Luo
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
Negash R, Li E, Jacque N, Novicoff W, Evans SJM. Owner experience and veterinary involvement with unlicensed GS-441524 treatment of feline infectious peritonitis: a prospective cohort study. Front Vet Sci 2024; 11:1377207. [PMID: 38988986 PMCID: PMC11233523 DOI: 10.3389/fvets.2024.1377207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/14/2024] [Indexed: 07/12/2024] Open
Abstract
Introduction Feline Infectious Peritonitis (FIP) has historically been a fatal coronavirus disease in cats. In recent years, the therapeutic agent GS-441524, developed by Gilead Sciences, was found to be a successful treatment for FIP in most patients in clinical trials. However, this particular drug has remained stalled in the therapeutic pipeline, leaving patients and cat owners without a licensed medication. In the meantime, online social media platforms began to emerge, connecting cat owners with a community of citizen non-veterinary professionals sourcing unlicensed GS-441524. Methods This study prospectively followed participants (N = 141) that successfully completed 12 weeks of treatment, capturing their treatment experiences with self-administered GS-441524-like medication. A one-time survey was administered to enrolled participants with mixed format of questions (open-ended and multiple-choice) asking about treatment administration techniques, observed side effects of GS-441524, accrued cost, veterinarian involvement, impact on the cat-human bond, and social media usage. Results Our results show cat owners experienced a shift in treatment modality from injectable GS-441524 to pill formulation across the treatment period. The average total cost of medication has decreased since 2021 to approximately USD 3100, and participants reported the human-animal bond being affected negatively. Additionally, there was an increased trend in veterinarian awareness of GS-441524-like therapeutics and monitoring of clients undergoing treatment. Social media usage was reported as being important at the beginning of treatment to establish treatment administration but lessened by the end of treatment. Discussion This study is the first detailed, prospective account of owner experiences with unlicensed GS-441524, raising an important discussion surrounding citizen veterinary medicine.
Collapse
Affiliation(s)
- Rosa Negash
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Emma Li
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | | | - Wendy Novicoff
- Department of Orthopedic Surgery and Public Health Sciences, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Samantha J. M. Evans
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
4
|
Guarnieri C, Bertola L, Ferrari L, Quintavalla C, Corradi A, Di Lecce R. Myocarditis in an FIP-Diseased Cat with FCoV M1058L Mutation: Clinical and Pathological Changes. Animals (Basel) 2024; 14:1673. [PMID: 38891720 PMCID: PMC11171033 DOI: 10.3390/ani14111673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
An 8-month-old intact male domestic shorthair cat was referred to the Emergency Service of the Veterinary Teaching Hospital (VTH) of the Department of Veterinary Science of the University of Parma (Italy) from the Parma municipal multi-cat shelter, during the winter season (January 2023), for lethargy, anorexia, hypothermia, and hypoglycemia. At the VTH, upon cardiologic examination, an increase in heart rate, under normal blood pressure conditions, was detected. Signalment, clinical history, basal metabolic panel (BMP), ultrasound investigations, and cytological findings were all consistent with a diagnosis of feline infectious peritonitis (FIP). FIP was confirmed in the effusive abdominal fluid by a molecular genetic test (real-time PCR for feline coronavirus RNA). The molecular genetic investigation also detected an FCoV S gene single-nucleotide mutation: biotype M1058L. At necropsy, an effusive collection was recorded in the abdomen, thoracic cavity, and pericardium sac. White parenchymal nodules, of about 1 mm diameter, were found on the surface and deep in the lungs, liver, kidneys, and heart. Histopathology revealed the typical FIP pyogranulomatous vasculitis and IHC confirmed the presence of the FIP virus (FIPV) antigen. The most relevant histopathological finding was the myocarditis/myocardial necrosis associated with the presence of the S gene-mutated FCoV (M1058L biotype). This is the first case of myocarditis in a cat positive for the FCoV/FIP M1058L biotype. Further studies are necessary to support the mutated FCoV M1058L biotype, as an uncommon, but possible, causative pathogen of myocarditis in FCoV/FIP-positive cats. Studies including several FCoV/FIP M1058L-positive cases could allow us to make a correlation with heart gross pathology, histopathology, and immunolocalization of the FCoV/FIP M1058L biotype in the myocardium. The investigation will potentially allow us to determine the effective tropism of the FCoV/FIP M1058L biotype for myocardiocytes or whether myocardiocyte lesions are evident in the presence of concomitant causes related to the patient, its poor condition, or external environmental distress such as cold season, and whether the aforementioned concomitant events are correlated.
Collapse
Affiliation(s)
- Chiara Guarnieri
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (C.G.); (C.Q.); (R.D.L.)
| | - Luca Bertola
- Department of Veterinary Medicine, University of Milan, 26900 Lodi, Italy;
- Mouse and Animal Pathology Laboratory (MAPLab), Fondazione Unimi, 20139 Milano, Italy
| | - Luca Ferrari
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (C.G.); (C.Q.); (R.D.L.)
| | - Cecilia Quintavalla
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (C.G.); (C.Q.); (R.D.L.)
| | - Attilio Corradi
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (C.G.); (C.Q.); (R.D.L.)
| | - Rosanna Di Lecce
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (C.G.); (C.Q.); (R.D.L.)
| |
Collapse
|
5
|
Mangiaterra S, Gavazza A, Biagini L, Rossi G. Study of Macrophage Activity in Cats with FIP and Naturally FCoV-Shedding Healthy Cats. Pathogens 2024; 13:437. [PMID: 38921735 PMCID: PMC11206276 DOI: 10.3390/pathogens13060437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 06/27/2024] Open
Abstract
Coronavirus frequently infects humans and animals, showing the ability to recombine and cross over to different species. Cats can be considered a model for studying coronavirus infection, in which feline coronavirus (FCoV) represents a major enteric pathogen related to gastroenteric disease. In this animal, the virus can acquire tropism for macrophage cells, leading to a deadly disease called feline infectious peritonitis (FIP). In this study, monocyte-derived macrophages were isolated by CD14-positive selection in venous whole blood from 26 cats with FIP and 32 FCoV-positive healthy cats. Phagocytosis and respiratory burst activities were investigated and compared between the groups. This is the first study comparing macrophage activity in cats affected by FIP and healthy cats positive for FCoV infection. Our results showed that in cats with FIP, the phagocytic and respiratory burst activities were significantly lower. Our results support the possible role of host immunity in Coronaviridae pathogenesis in cats, supporting future research on the immune defense against this systemic disease.
Collapse
Affiliation(s)
- Sara Mangiaterra
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (A.G.); (L.B.); (G.R.)
| | | | | | | |
Collapse
|
6
|
Stranieri A, Lauzi S, Paltrinieri S. Clinicopathological and Molecular Analysis of Aqueous Humor for the Diagnosis of Feline Infectious Peritonitis. Vet Sci 2024; 11:207. [PMID: 38787179 PMCID: PMC11125769 DOI: 10.3390/vetsci11050207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND This study was designed to assess the diagnostic utility for FIP of cytology, protein measurement and RT-PCR for feline coronaviruses (FCoV) on aqueous humor (AH), since little information is currently available. METHODS AH samples (n = 85) were collected post-mortem from 13 cats with effusive FIP (E-FIP), 15 with non-effusive FIP (NE-FIP) and 16 without FIP, to perform cytology (n = 83) and RT-PCR (n = 66) and to calculate their sensitivity, specificity and positive and negative likelihood ratios (LR+ and LR-). The protein concentration was measured on 80 fluids. RESULTS The proportion of RT-PCR positive samples did not differ among groups, while positive cytology was more frequent in samples with FIP (p = 0.042) or positive RT-PCR (p = 0.007). Compared with other groups, the protein concentration was higher in samples with NE-FIP (p = 0.017), positive RT-PCR (p = 0.005) or positive cytology (p < 0.001). The specificity of cytology together with RT-PCR, cytology alone, RT-PCR alone and cytological proteinaceous background were 90.0%, 84.6%, 70.0%, 61.5%, and the LRs 3.48, 2.65, 1.83, 1.64, respectively. However, their sensitivities were low (34.8-63.0%) and their LR- high (0.60-0.72). CONCLUSIONS Based on the LR+, cytology and/or RT-PCR may support the diagnosis when the pre-test probability of FIP is high. The concentration of intraocular protein is a promising marker, especially in NE-FIP.
Collapse
Affiliation(s)
| | | | - Saverio Paltrinieri
- Department of Veterinary Medicine and Animal Sciences (Divas), University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (A.S.); (S.L.)
| |
Collapse
|
7
|
He M, Feng S, Shi K, Shi Y, Long F, Yin Y, Li Z. One-step triplex TaqMan quantitative reverse transcription polymerase chain reaction for the detection of feline coronavirus, feline panleukopenia virus, and feline leukemia virus. Vet World 2024; 17:946-955. [PMID: 38911097 PMCID: PMC11188903 DOI: 10.14202/vetworld.2024.946-955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/10/2024] [Indexed: 06/25/2024] Open
Abstract
Background and Aim Feline coronavirus (FCoV), feline panleukopenia virus (FPV), and feline leukemia virus (FeLV) are prevalent throughout China and significantly threaten cat health. These viruses cause similar manifestations and pathological damage. Rapid and accurate diagnosis depends on detection in the laboratory. This study aimed to establish a reliable and rapid method for accurate detection of FCoV, FPV, and FeLV so that a definite diagnosis can be made and effective measures can be taken to prevent and control viral infection. Materials and Methods We designed three pairs of specific primers and probes for the detection of FCoV 5' untranslated region, FPV viral protein 2, and FeLV pol genes. Recombinant plasmid constructs were generated for use as standard plasmid constructs. Optimal reaction conditions, including primer and probe concentrations, reaction cycles, and annealing temperatures, were obtained on the basis of optimization tests. One-step triplex real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was successfully established to simultaneously detect FCoV, FPV, and FeLV. The specificity, sensitivity, and repeatability of the assay were analyzed, and its applicability was validated by testing 1175 clinical samples. Results One-step triplex RT-qPCR had a high degree of specificity only for the detection of FCoV, FPV, and FeLV; it had high sensitivity with limits of detection of 139.904, 143.099, and 152.079 copies/reaction for p-FCoV, p-FPV, and p-FeLV standard plasmid constructs, respectively, and it had reliable repeatability with 0.06%-0.87% intra-assay coefficients of variations. A total of 1175 clinical samples were examined for FCoV, FPV, and FeLV using triplex RT-qPCR, and the FCoV, FPV, and FeLV positivity rates were 18.47%, 19.91%, and 47.57%, respectively. The clinical sensitivity and specificity of one-step triplex RT-qPCR were 93.07% and 97.99%, respectively. Conclusion We developed a rapid and reliable one-step triplex RT-qPCR method for the detection of FCoV, FPV, and FeLV, which could be used as a diagnostic tool for clinical monitoring and diagnosis.
Collapse
Affiliation(s)
- Mengyi He
- Department of Basic Veterinary Medicine, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Shuping Feng
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China
| | - Kaichuang Shi
- Department of Basic Veterinary Medicine, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China
| | - Yandi Shi
- Department of Basic Veterinary Medicine, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Feng Long
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China
| | - Yanwen Yin
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China
| | - Zongqiang Li
- Department of Basic Veterinary Medicine, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| |
Collapse
|
8
|
Katayama M, Uemura Y, Katori D. Effect of Nucleic Acid Analog Administration on Fluctuations in the Albumin-to-Globulin Ratio in Cats with Feline Infectious Peritonitis. Animals (Basel) 2024; 14:1322. [PMID: 38731326 PMCID: PMC11083710 DOI: 10.3390/ani14091322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND feline infectious peritonitis (FIP) is a fatal disease in cats classified as either effusive ('wet'), non-effusive ('dry'), or a mixture of both forms ('mixed'). The anti-FIP therapeutic effects of Mutian and molnupiravir, two drugs with a nucleic acid analog as an active ingredient, have been confirmed recently. METHODS Of the cats with FIP, we observed a total of 122 and 56 cases that achieved remission after the administration of Mutian and molnupiravir as routine treatments, respectively. Changes in clinical indicators suggested to be correlated with FIP remission (weight, hematocrit, and albumin-to-globulin ratio) before and after the administration of each drug and during follow-up observation were statistically compared for each FIP type. RESULTS In all three FIP types, the administration of either Mutian or molnupiravir resulted in statistically significant increases in these indicators. Furthermore, the effect of Mutian on improving the albumin-to-globulin ratio was not observed at all in wet FIP, as compared with that of molnupiravir, but statistically significant in mixed and dry (p < 0.02 and p < 0.003, respectively). The differences in albumin-to-globulin ratio were all due to those of circulating globulin levels. CONCLUSIONS These results indicate that slight inflammatory responses might be elicited continuously by a residual virus that persisted through molnupiravir treatments.
Collapse
Affiliation(s)
- Masato Katayama
- Bloom Animal Hospital, Kajiyama 1-10-32, Tsurumi, Yokohama City 230-0072, Japan;
| | - Yukina Uemura
- Bloom Animal Hospital, Kajiyama 1-10-32, Tsurumi, Yokohama City 230-0072, Japan;
| | - Daichi Katori
- Katori Animal Hospital, Migawa-cho 2563-16, Mito City 310-0913, Japan;
| |
Collapse
|
9
|
Chang WT, Chen PY, Lo PY, Chen HW, Lin CH. Detection of Feline Coronavirus in Bronchoalveolar Lavage Fluid from Cats with Atypical Lower Airway and Lung Disease: Suspicion of Virus-Associated Pneumonia or Pneumonitis. Animals (Basel) 2024; 14:1219. [PMID: 38672364 PMCID: PMC11047629 DOI: 10.3390/ani14081219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The premortem understanding of the role of feline coronavirus (FeCoV) in the lungs of cats is limited as viruses are seldom inspected in the bronchoalveolar lavage (BAL) specimens of small animal patients. This study retrospectively analyzed the prevalence of FeCoV in BAL samples from cats with atypical lower airway and lung disease, as well as the clinical characteristics, diagnostic findings, and follow-up information. Of 1162 clinical samples submitted for FeCoV RT-nPCR, 25 were BAL fluid. After excluding 1 case with chronic aspiration, FeCoV was found in 3/24 (13%) BAL specimens, with 2 having immunofluorescence staining confirming the presence of FeCoV within the cytoplasm of alveolar macrophages. The cats with FeCoV in BAL fluid more often had pulmonary nodular lesions (66% vs. 19%, p = 0.14) and multinucleated cells on cytology (100% vs. 48%, p = 0.22) compared to the cats without, but these differences did not reach statistical significance due to the small sample size. Three cats showed an initial positive response to the corticosteroid treatment based on the clinical signs and radiological findings, but the long-term prognosis varied. The clinical suspicion of FeCoV-associated pneumonia or pneumonitis was raised since no other pathogens were found after extensive investigations. Further studies are warranted to investigate the interaction between FeCoV and lung responses in cats.
Collapse
Affiliation(s)
- Wei-Tao Chang
- National Taiwan University Veterinary Hospital, National Taiwan University, Taipei 10672, Taiwan
- Lab of Small Animal Respiratory and Cardiovascular Medicine, TACS-Alliance Research Center, Taipei, 10672, Taiwan
| | - Pin-Yen Chen
- National Taiwan University Veterinary Hospital, National Taiwan University, Taipei 10672, Taiwan
- Lab of Small Animal Respiratory and Cardiovascular Medicine, TACS-Alliance Research Center, Taipei, 10672, Taiwan
| | - Pei-Ying Lo
- Lab of Small Animal Respiratory and Cardiovascular Medicine, TACS-Alliance Research Center, Taipei, 10672, Taiwan
| | - Hui-Wen Chen
- Department of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
- Animal Resource Center, National Taiwan University, Taipei 10673, Taiwan
| | - Chung-Hui Lin
- National Taiwan University Veterinary Hospital, National Taiwan University, Taipei 10672, Taiwan
- Lab of Small Animal Respiratory and Cardiovascular Medicine, TACS-Alliance Research Center, Taipei, 10672, Taiwan
- Graduate Institute of Veterinary Clinical Sciences, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
10
|
Hu T, Zhang H, Zhang X, Hong X, Zhang T. Prevalence and Risk Factors Associated with Feline Infectious Peritonitis (FIP) in Mainland China between 2008 and 2023: A Systematic Review and Meta-Analysis. Animals (Basel) 2024; 14:1220. [PMID: 38672367 PMCID: PMC11047601 DOI: 10.3390/ani14081220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/01/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
To evaluate the overall prevalence of FIP infection in cats in mainland China and associated risk factors, studies on the prevalence of FIP conducted from 1 January 2008 to 20 December 2023 were retrieved from five databases-CNKI, Wanfang, PubMed, Web of Science, and ScienceDirect-and comprehensively reviewed. The 21 studies selected, with a total of 181,014 samples, underwent a rigorous meta-analysis after quality assessment. The results revealed a 2% prevalence of FIP (95% CI: 1-2%) through the random-effects model, showing considerable heterogeneity (I2 = 95.2%). The subsequent subgroup analysis revealed that the age and gender of cats are significant risk factors for FIP infection in mainland China. In order to effectively reduce and control the prevalence of FIP on the Chinese mainland, we suggest improving the immunity of cats, with special attention given to health management in kittens and intact cats, and continuously monitoring FIPV.
Collapse
Affiliation(s)
- Tingyu Hu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (T.H.); (X.Z.); (X.H.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | | | - Xueping Zhang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (T.H.); (X.Z.); (X.H.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Xingping Hong
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (T.H.); (X.Z.); (X.H.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Tangjie Zhang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (T.H.); (X.Z.); (X.H.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
11
|
Romanelli P, Bertazzolo W, Prisciandaro A, Leone A, Bonfanti U, Paltrinieri S. Measurement of Feline Alpha-1 Acid Glycoprotein in Serum and Effusion Using an ELISA Method: Analytical Validation and Diagnostic Role for Feline Infectious Peritonitis. Pathogens 2024; 13:289. [PMID: 38668244 PMCID: PMC11055121 DOI: 10.3390/pathogens13040289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Alpha-1 acid glycoprotein (AGP) may support a clinical diagnosis of feline infectious peritonitis (FIP). In this study, we assessed the analytical and diagnostic performances of a novel ELISA method to measure feline AGP. METHODS AGP was measured in sera and effusions from cats with FIP (n = 20) or with other diseases (n = 15). Precision was calculated based on the coefficient of variation (CV) of repeated testing, and accuracy was calculated by linearity under dilution (LUD). RESULTS The test is precise (intra-assay CVs: <6.0% in individual samples, <15.0% in pooled samples; inter-assay CVs <11.0% and <15.0%) and accurate (serum LUD r2: 0.995; effusion LUD r2: 0.950) in serum and in effusions. AGP is higher in cats with FIP than in other cats in both serum (median: 1968, I-III interquartile range: 1216-3371 μg/mL and 296, 246-1963 μg/mL; p = 0.009) and effusion (1717, 1011-2379 μg/mL and 233, 165-566 μg/mL; p < 0.001). AGP discriminates FIP from other diseases (area under the receiver operating characteristic curve: serum, 0.760; effusion, 0.877), and its likelihood ratio is high (serum: 8.50 if AGP > 1590 μg/mL; effusion: 3.75 if AGP > 3780 μg/mL). CONCLUSION This ELISA method is precise and accurate. AGP in serum and in effusions is a useful diagnostic marker for FIP.
Collapse
Affiliation(s)
- Pierpaolo Romanelli
- MYLAV Veterinary Laboratory, 20017 Passirana di Rho, Italy; (P.R.); (A.P.); (A.L.); (U.B.)
| | - Walter Bertazzolo
- MYLAV Veterinary Laboratory, 20017 Passirana di Rho, Italy; (P.R.); (A.P.); (A.L.); (U.B.)
| | - Andrea Prisciandaro
- MYLAV Veterinary Laboratory, 20017 Passirana di Rho, Italy; (P.R.); (A.P.); (A.L.); (U.B.)
| | - Andrea Leone
- MYLAV Veterinary Laboratory, 20017 Passirana di Rho, Italy; (P.R.); (A.P.); (A.L.); (U.B.)
| | - Ugo Bonfanti
- MYLAV Veterinary Laboratory, 20017 Passirana di Rho, Italy; (P.R.); (A.P.); (A.L.); (U.B.)
| | - Saverio Paltrinieri
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900 Lodi, Italy;
| |
Collapse
|
12
|
Jiao Z, Wang P, Hu X, Chen Y, Xu J, Zhang J, Wu B, Luo R, Shi Y, Peng G. Feline infectious peritonitis virus ORF7a is a virulence factor involved in inflammatory pathology in cats. Antiviral Res 2024; 222:105794. [PMID: 38176470 DOI: 10.1016/j.antiviral.2024.105794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/01/2023] [Accepted: 01/02/2024] [Indexed: 01/06/2024]
Abstract
A hyperinflammatory response is a prominent feature of feline infectious peritonitis (FIP), but the mechanisms behind the feline infectious peritonitis virus (FIPV)-induced cytokine storm in the host have not been clarified. Studies have shown that coronaviruses encode accessory proteins that are involved in viral replication and associated with viral virulence, the inflammatory response and immune regulation. Here, we found that FIPV ORF7a gene plays a key role in viral infection and host proinflammatory responses. The recombinant FIPV strains lacking ORF7a (rQS-79Δ7a) exhibit low replication rates in macrophages and do not induce dramatic upregulation of inflammatory factors. Furthermore, through animal experiments, we found that the rQS-79Δ7a strain is nonpathogenic and do not cause symptoms of FIP in cats. Unexpectedly, after three vaccinations with rQS-79Δ7a strain, humoral and cellular immunity was increased and provided protection against virulent strains in cats, and the protection rate reaches 40%. Importantly, our results demonstrated that ORF7a is a key virulence factor that exacerbates FIPV infection and inflammatory responses. Besides, our findings will provide novel implications for future development of live attenuated FIPV vaccines.
Collapse
Affiliation(s)
- Zhe Jiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Hongshan Lab, Wuhan, China
| | - Pengpeng Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Hongshan Lab, Wuhan, China
| | - Xiaoshuai Hu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Hongshan Lab, Wuhan, China
| | - Yixi Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Hongshan Lab, Wuhan, China
| | - Juan Xu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Hongshan Lab, Wuhan, China
| | - Jintao Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Hongshan Lab, Wuhan, China
| | - Benyuan Wu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Hongshan Lab, Wuhan, China
| | - Ruxue Luo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Hongshan Lab, Wuhan, China
| | - Yuejun Shi
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Hongshan Lab, Wuhan, China.
| | - Guiqing Peng
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Hongshan Lab, Wuhan, China.
| |
Collapse
|
13
|
Curtis BE, Abdo Z, Graham B, LaVoy A, Evans SJM, Santangelo K, Dean GA. An Aptamer-Based Proteomic Analysis of Plasma from Cats ( Felis catus) with Clinical Feline Infectious Peritonitis. Viruses 2024; 16:141. [PMID: 38257841 PMCID: PMC10819688 DOI: 10.3390/v16010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Feline infectious peritonitis (FIP) is a systemic disease manifestation of feline coronavirus (FCoV) and is the most important cause of infectious disease-related deaths in domestic cats. FIP has a variable clinical manifestation but is most often characterized by widespread vasculitis with visceral involvement and/or neurological disease that is typically fatal in the absence of antiviral therapy. Using an aptamer-based proteomics assay, we analyzed the plasma protein profiles of cats who were naturally infected with FIP (n = 19) in comparison to the plasma protein profiles of cats who were clinically healthy and negative for FCoV (n = 17) and cats who were positive for the enteric form of FCoV (n = 9). We identified 442 proteins that were significantly differentiable; in total, 219 increased and 223 decreased in FIP plasma versus clinically healthy cat plasma. Pathway enrichment and associated analyses showed that differentiable proteins were related to immune system processes, including the innate immune response, cytokine signaling, and antigen presentation, as well as apoptosis and vascular integrity. The relevance of these findings is discussed in the context of previous studies. While these results have the potential to inform diagnostic, therapeutic, and preventative investigations, they represent only a first step, and will require further validation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gregg A. Dean
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (B.E.C.); (A.L.); (S.J.M.E.); (K.S.)
| |
Collapse
|
14
|
Zhu J, Deng S, Mou D, Zhang G, Fu Y, Huang W, Zhang Y, Lyu Y. Analysis of spike and accessory 3c genes mutations of less virulent and FIP-associated feline coronaviruses in Beijing, China. Virology 2024; 589:109919. [PMID: 37939649 DOI: 10.1016/j.virol.2023.109919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 11/10/2023]
Abstract
Mutations in S and 3c genes of feline coronavirus (FCoV) have been associated with the development of feline infectious peritonitis (FIP). In the present study, FCoV S and 3c genes mutations were analyzed in healthy and FIP cats. M1058L mutation was found in 13.64% (3/22) feces from FIP cats, but not in feces from healthy cats (0/39). The intact 3c gene was found in feces from both healthy cats (19/19) and FIP cats (12/12). All parenteral samples from FIP cats carried one or more of the M1058L mutation, S1060A mutation and mutated 3c gene. FCoV reverse-transcriptase polymerase chain reaction (RT-PCR) of parenteral samples (including ascites, pleural effusions and tissue) is recommended as the gold standard for clinical diagnosis of FIP rather than detection of the M1058L mutation, but when cats have severe gastrointestinal symptoms and lesions, detection of the M1058L mutation in feces may be helpful in diagnosing FIP.
Collapse
Affiliation(s)
- Jingru Zhu
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Shuqi Deng
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Danxia Mou
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Gege Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yingying Fu
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Wei Huang
- China Agricultural University Veterinary Teaching Hospital, Beijing, 100193, China
| | - Yueping Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yanli Lyu
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; China Agricultural University Veterinary Teaching Hospital, Beijing, 100193, China.
| |
Collapse
|
15
|
Chawla M, Cuspoca AF, Akthar N, Magdaleno JSL, Rattanabunyong S, Suwattanasophon C, Jongkon N, Choowongkomon K, Shaikh AR, Malik T, Cavallo L. Immunoinformatics-aided rational design of a multi-epitope vaccine targeting feline infectious peritonitis virus. Front Vet Sci 2023; 10:1280273. [PMID: 38192725 PMCID: PMC10773687 DOI: 10.3389/fvets.2023.1280273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
Feline infectious peritonitis (FIP) is a grave and frequently lethal ailment instigated by feline coronavirus (FCoV) in wild and domestic feline species. The spike (S) protein of FCoV assumes a critical function in viral ingress and infection, thereby presenting a promising avenue for the development of a vaccine. In this investigation, an immunoinformatics approach was employed to ascertain immunogenic epitopes within the S-protein of FIP and formulate an innovative vaccine candidate. By subjecting the amino acid sequence of the FIP S-protein to computational scrutiny, MHC-I binding T-cell epitopes were predicted, which were subsequently evaluated for their antigenicity, toxicity, and allergenicity through in silico tools. Our analyses yielded the identification of 11 potential epitopes capable of provoking a robust immune response against FIPV. Additionally, molecular docking analysis demonstrated the ability of these epitopes to bind with feline MHC class I molecules. Through the utilization of suitable linkers, these epitopes, along with adjuvants, were integrated to design a multi-epitope vaccine candidate. Furthermore, the stability of the interaction between the vaccine candidate and feline Toll-like receptor 4 (TLR4) was established via molecular docking and molecular dynamics simulation analyses. This suggests good prospects for future experimental validation to ascertain the efficacy of our vaccine candidate in inducing a protective immune response against FIP.
Collapse
Affiliation(s)
- Mohit Chawla
- Physical Sciences and Engineering Division, Kaust Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Andrés Felipe Cuspoca
- Grupo de Investigación en Epidemiología Clínica de Colombia (GRECO), Universidad Pedagógica yTecnológica de Colombia, Tunja, Colombia
- Centro de Atención e Investigación Médica–CAIMED, Chía, Colombia
| | - Nahid Akthar
- Department of Research and Innovation, STEMskills Research and Education Lab Private Limited, Faridabad, Haryana, India
| | - Jorge Samuel Leon Magdaleno
- Physical Sciences and Engineering Division, Kaust Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | | | - Nathjanan Jongkon
- Department of Social and Applied Science, College of Industrial Technology, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand
| | | | - Abdul Rajjak Shaikh
- Department of Research and Innovation, STEMskills Research and Education Lab Private Limited, Faridabad, Haryana, India
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Luigi Cavallo
- Physical Sciences and Engineering Division, Kaust Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
16
|
Müller TR, Penninck DG, Webster CRL, Conrado FO. Abdominal ultrasonographic findings of cats with feline infectious peritonitis: an update. J Feline Med Surg 2023; 25:1098612X231216000. [PMID: 38095890 PMCID: PMC10811767 DOI: 10.1177/1098612x231216000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
OBJECTIVES The aim of this study was to describe the abdominal ultrasonographic findings in cats with confirmed or presumed feline infectious peritonitis (FIP). METHODS This was a retrospective study performed in an academic veterinary hospital. The diagnosis of FIP was reached on review of history, signalment, clinical presentation, complete blood count, biochemistry panel, peritoneal fluid analysis, cytology and/or histopathology results from abnormal organs, and/or molecular testing (immunohistochemical or FIP coronavirus [FCoV] RT-PCR). Cats with confirmed FIP by molecular testing or with a highly suspicious diagnosis of FIP were included. Abdominal ultrasound examination findings were reviewed. RESULTS In total, 25 cats were included. Common clinical signs/pathology findings included hyperglobulinemia (96%), anorexia/hyporexia (80%) and lethargy (56%). Abdominal ultrasound findings included effusion in 88% and lymphadenopathy in 80%. Hepatic changes were noted in 80%, the most common being hepatomegaly (58%) and a hypoechoic liver (48%). Intestinal changes were noted in 68% of cats, characterized by asymmetric wall thickening and/or loss of wall layering, with 52% being ileocecocolic junction and/or colonic in location. Splenic changes were present in 36% of cats, including splenomegaly, mottled parenchyma and hypoechoic nodules. Renal changes were present in 32%, encompassing a hypoechoic subcapsular rim and/or cortical nodules. Mesenteric and peritoneal abnormalities were seen in 28% and 16% of cats, respectively. Most cats (92%) had two or more locations of abdominal abnormalities on ultrasound. CONCLUSIONS AND RELEVANCE The present study documents a wider range and distribution of ultrasonographic lesions in cats with FIP than previously reported. The presence of effusion and lymph node, hepatic and/or gastrointestinal tract changes were the most common findings, and most of the cats had a combination of two or more abdominal abnormalities.
Collapse
Affiliation(s)
- Thiago R Müller
- Department of Clinical Sciences, Tufts University, Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | - Dominique G Penninck
- Department of Clinical Sciences, Tufts University, Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | - Cynthia RL Webster
- Department of Clinical Sciences, Tufts University, Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | - Francisco O Conrado
- Department of Comparative Pathobiology, Tufts University, Cummings School of Veterinary Medicine, North Grafton, MA, USA
| |
Collapse
|
17
|
Chen D, López‐Pérez AM, Vernau KM, Maggs DJ, Kim S, Foley J. Prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and feline enteric coronavirus (FECV) in shelter-housed cats in the Central Valley of California, USA. Vet Rec Open 2023; 10:e73. [PMID: 37868705 PMCID: PMC10589393 DOI: 10.1002/vro2.73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 08/24/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
Background Non-human animals are natural hosts for the virus causing COVID-19 (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) and a diversity of species appear susceptible to infection. Cats are of particular concern because of their close affiliation with humans and susceptibility to infection. Cats also harbour feline enteric coronavirus (FECV). Our objectives were to document the prevalence of SARS-CoV-2 and FECV in feline populations with high turnover and movement among households in the Central Valley of California, USA. Methods A cross-sectional study of 128 shelter and foster cats and kittens in the Central Valley of California was performed from July to December 2020. PCR was performed on rectal and oropharyngeal samples to detect SARS-CoV-2 RNA and on rectal samples to detect FECV RNA. Results Among 163 rectal and oropharyngeal fluid samples gathered from sheltered and fostered cats and kittens in central California, SARS-CoV-2 nucleic acids were not detected from any cat or kitten. In contrast, FECV nucleic acids were detected in 18% of shelter-housed cats; 83% of these positive samples were collected from cats housed in adjacent cages. Conclusions These data may be helpful when considering the allocation of resources to minimise the harm of FECV and SARS-CoV-2 in household pets and shelter environments.
Collapse
Affiliation(s)
- Daniel Chen
- Department of Medicine and EpidemiologySchool of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Andrés M. López‐Pérez
- Department of Medicine and EpidemiologySchool of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
- Red de Biología y Conservación de VertebradosInstituto de EcologíaXalapaMéxico
| | - Karen M. Vernau
- Department of Surgical and Radiological SciencesSchool of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - David J. Maggs
- Department of Surgical and Radiological SciencesSchool of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Soohyun Kim
- William R. Pritchard Veterinary Medical Teaching HospitalSchool of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Janet Foley
- Department of Medicine and EpidemiologySchool of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| |
Collapse
|
18
|
Gülersoy E, Ok M, Üney K, Durgut MK, Parlak TM, Ekici YE. Intestinal injury and vasculitis biomarkers in cats with feline enteric coronavirus and effusive feline infectious peritonitis. Vet Med Sci 2023; 9:2420-2429. [PMID: 37872840 PMCID: PMC10650239 DOI: 10.1002/vms3.1299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 09/09/2023] [Accepted: 10/05/2023] [Indexed: 10/25/2023] Open
Abstract
OBJECTIVE To investigate intestinal injury, repair and vasculitis biomarkers that may illuminate the progression and/or pathogenesis of feline infectious peritonitis (FIP) or feline enteric coronavirus (FECV) infection. MATERIALS AND METHODS A total of 40 cats with effusive FIP (30 with abdominal effusion, AE group; 10 with thoracic effusion, TE group) and 10 asymptomatic but FECV positive cats (FECV group), all were confirmed by reverse transcription polymerase chain reaction either in faeces or effusion samples. Physical examinations and effusion tests were performed. Trefoil factor-3 (TFF-3), intestinal alkaline phosphatase (IAP), intestinal fatty acid binding protein (I-FABP), myeloperoxidase-anti-neutrophilic cytoplasmic antibody (MPO-ANCA) and proteinase 3-ANCA (PR3-ANCA) concentrations were measured both in serum and effusion samples. RESULTS Rectal temperature and respiratory rate were highest in the TE group (p < 0.000). Effusion white blood cell count was higher in the AE group than TE group (p < 0.042). Serum TFF-3, IAP and I-FABP concentrations were higher in cats with effusive FIP than the cats with FECV (p < 0.05). Compared with the AE group, TE group had lower effusion MPO-ANCA (p < 0.036), higher IAP (p < 0.050) and higher TFF-3 (p < 0.016) concentrations. CLINICAL SIGNIFICANCE Markers of intestinal and epithelial surface injury were higher in cats with effusive FIP than those with FECV. Compared to cats with abdominal effusions, markers of apoptosis inhibition and immunostimulation to the injured epithelium were more potent in cats with thoracic effusion, suggesting the possibility of a poorer prognosis or more advanced disease in these patients.
Collapse
Affiliation(s)
- Erdem Gülersoy
- Department of Internal MedicineVeterinary FacultyHarran UniversityŞanlıurfaTurkey
| | - Mahmut Ok
- Department of Internal MedicineVeterinary FacultySelçuk UniversityKonyaTurkey
| | - Kamil Üney
- Department of Pharmacology and ToxicologyVeterinary FacultySelçuk UniversityKonyaTurkey
| | - Murat Kaan Durgut
- Department of Internal MedicineVeterinary FacultySelçuk UniversityKonyaTurkey
| | - Tuğba Melike Parlak
- Department of Pharmacology and ToxicologyVeterinary FacultySelçuk UniversityKonyaTurkey
| | - Yusuf Emre Ekici
- Department of Internal MedicineVeterinary FacultySelçuk UniversityKonyaTurkey
| |
Collapse
|
19
|
Krentz D, Bergmann M, Felten S, Hartmann K. [Options for treatment of feline infectious peritonitis - previously and today]. TIERARZTLICHE PRAXIS. AUSGABE K, KLEINTIERE/HEIMTIERE 2023; 51:351-360.. [PMID: 37956666 DOI: 10.1055/a-2147-3999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Feline infectious peritonitis (FIP) is one of the most common infectious diseases in cats that is fatal when untreated. So far, there is no legally available effective treatment in Germany. Treatment options include only symptomatic treatment (e. g. glucocorticoids, propentofylline), immunomodulatory approaches (e. g. interferons, polyprenyl immunostimulant), and antiviral chemotherapy with protease inhibitors (e. g. GC376) or nucleoside analogues (e. g. GS-441524, remdesivir). Symptomatic treatment does not cure FIP but may lead to a short-term improvement of clinical signs in a subset of cats. Immunomodulatory treatment has also not shown to be very promising. In contrary, the antiviral compounds GS-441524 and GC376 exhibited significant efficacy in several studies and their use saved the lives of many cats suffering from FIP. However, both agents are currently not licensed and thus cannot be legally administered by veterinarians in Germany. Legally, cats may only be legally treated with GS-441524 in a few countries (e.g. Great Britain and Australia). In other countries, GS-441524 is imported by cat owners via the black market and administered on their own. This article provides an overview of the available treatment options and an outlook on the legal use of effective antiviral drugs.
Collapse
Affiliation(s)
- Daniela Krentz
- Medizinische Kleintierklinik der Ludwig-Maximilians-Universität München
| | - Michèle Bergmann
- Medizinische Kleintierklinik der Ludwig-Maximilians-Universität München
| | - Sandra Felten
- Medizinische Kleintierklinik der Ludwig-Maximilians-Universität München
| | - Katrin Hartmann
- Medizinische Kleintierklinik der Ludwig-Maximilians-Universität München
| |
Collapse
|
20
|
Sase O. Molnupiravir treatment of 18 cats with feline infectious peritonitis: A case series. J Vet Intern Med 2023; 37:1876-1880. [PMID: 37551843 PMCID: PMC10472991 DOI: 10.1111/jvim.16832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 07/13/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Feline infectious peritonitis (FIP) is a viral disease in cats, caused by certain strains of coronavirus and has a high case fatality rate. OBJECTIVE This case series reports the outcomes of treatment of cats with FIP using molnupiravir. ANIMALS Eighteen cats diagnosed with FIP at the You-Me Animal Clinic, Sakura-shi, Japan between January and August 2022, and whose owners gave informed consent to this experimental treatment. METHODS For this prospective observational study, molnupiravir tablets were compounded in-house at the You-Me Animal Clinic. Owners administered 10-20 mg/kg PO twice daily. Standard treatment duration was 84 days. RESULTS Among 18 cats, 13 cats had effusive FIP and 5 had noneffusive FIP. Three cats had neurological or ocular signs of FIP before treatment. Four cats, all with effusive FIP, died or were euthanized within 7 days of starting treatment. The remaining 14 cats completed treatment and remained in remission at the time of writing (139-206 days after starting treatment). Elevated serum alanine transaminase (ALT) activity was found in 3 cats, all at Days 7-9, and all recovered without management. Two cats with jaundice were hospitalized, 1 during treatment (Day 37) and 1 with severe anemia at the start of treatment. CONCLUSIONS AND CLINICAL IMPORTANCE This case series suggests that molnupiravir might be an effective and safe treatment for domestic cats with FIP at a dose of 10-20 mg/kg twice daily.
Collapse
|
21
|
Taylor SS, Coggins S, Barker EN, Gunn-Moore D, Jeevaratnam K, Norris JM, Hughes D, Stacey E, MacFarlane L, O'Brien C, Korman R, McLauchlan G, Salord Torres X, Taylor A, Bongers J, Espada Castro L, Foreman M, McMurrough J, Thomas B, Royaux E, Calvo Saiz I, Bertoldi G, Harlos C, Work M, Prior C, Sorrell S, Malik R, Tasker S. Retrospective study and outcome of 307 cats with feline infectious peritonitis treated with legally sourced veterinary compounded preparations of remdesivir and GS-441524 (2020-2022). J Feline Med Surg 2023; 25:1098612X231194460. [PMID: 37732386 PMCID: PMC10812036 DOI: 10.1177/1098612x231194460] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
OBJECTIVES Feline infectious peritonitis (FIP) is a serious disease that arises due to feline coronavirus infection. The nucleoside analogues remdesivir and GS-441524 can be effective in its treatment, but most studies have used unregulated products of unknown composition. The aim of the present study was to describe the treatment of FIP using legally sourced veterinary-prescribed regulated veterinary compounded products containing known amounts of remdesivir (injectable) or GS-441524 (oral tablets). METHODS Cats were recruited via email advice services, product sales contacts and study publicity. Cats were excluded if they were deemed unlikely to have FIP, were not treated exclusively with the veterinary compounded products, or if there was a lack of cat and/or treatment (including response) data. Extensive cat and treatment data were collected. RESULTS Among the 307 cats recruited, the predominant type of FIP was most commonly abdominal effusive (49.5%) and then neurological (14.3%). Three treatment protocols were used; remdesivir alone (33.9%), remdesivir followed by GS-441524 (55.7%) and GS-441524 alone (10.4%). The median (range) initial treatment period duration and longest follow-up time point after starting treatment were 84 (1-330) days and 248 (1-814) days, respectively. The most common side effect was injection pain (in 47.8% of those given subcutaneous remdesivir). Of the 307 cats, 33 (10.8%) relapsed, 15 (45.5%) during and 18 (54.5%) after the initial treatment period. At the longest follow-up time point after completion of the initial treatment period, 84.4% of cats were alive. The cats achieving a complete response within 30 days of starting treatment were significantly more likely to be alive at the end of the initial treatment period than those cats that did not. CONCLUSIONS AND RELEVANCE Legally sourced remdesivir and GS-441524 products, either alone or used sequentially, were very effective in the treatment of FIP in this group of cats. Variable protocols precluded statistical comparison of treatment regimens.
Collapse
Affiliation(s)
- Samantha S Taylor
- International Society of Feline Medicine, Tisbury, UK
- Linnaeus Veterinary Limited, Shirley, UK
- University of Surrey, Guildford, UK
| | | | - Emi N Barker
- Langford Vets, University of Bristol, Langford, UK
- Bristol Veterinary School, University of Bristol, Langford, UK
| | | | | | | | - David Hughes
- Concord Veterinary Hospital, Sydney, NSW, Australia
| | | | | | | | | | | | | | - Aimee Taylor
- Langford Vets, University of Bristol, Langford, UK
| | | | | | | | | | | | | | | | | | | | - Megan Work
- Willows Veterinary Centre and Referral Service, Shirley, UK
| | - Cameron Prior
- Willows Veterinary Centre and Referral Service, Shirley, UK
| | | | | | - Séverine Tasker
- Linnaeus Veterinary Limited, Shirley, UK
- Bristol Veterinary School, University of Bristol, Langford, UK
| |
Collapse
|
22
|
Tasker S, Addie DD, Egberink H, Hofmann-Lehmann R, Hosie MJ, Truyen U, Belák S, Boucraut-Baralon C, Frymus T, Lloret A, Marsilio F, Pennisi MG, Thiry E, Möstl K, Hartmann K. Feline Infectious Peritonitis: European Advisory Board on Cat Diseases Guidelines. Viruses 2023; 15:1847. [PMID: 37766254 PMCID: PMC10535984 DOI: 10.3390/v15091847] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Feline coronavirus (FCoV) is a ubiquitous RNA virus of cats, which is transmitted faeco-orally. In these guidelines, the European Advisory Board on Cat Diseases (ABCD) presents a comprehensive review of feline infectious peritonitis (FIP). FCoV is primarily an enteric virus and most infections do not cause clinical signs, or result in only enteritis, but a small proportion of FCoV-infected cats develop FIP. The pathology in FIP comprises a perivascular phlebitis that can affect any organ. Cats under two years old are most frequently affected by FIP. Most cats present with fever, anorexia, and weight loss; many have effusions, and some have ocular and/or neurological signs. Making a diagnosis is complex and ABCD FIP Diagnostic Approach Tools are available to aid veterinarians. Sampling an effusion, when present, for cytology, biochemistry, and FCoV RNA or FCoV antigen detection is very useful diagnostically. In the absence of an effusion, fine-needle aspirates from affected organs for cytology and FCoV RNA or FCoV antigen detection are helpful. Definitive diagnosis usually requires histopathology with FCoV antigen detection. Antiviral treatments now enable recovery in many cases from this previously fatal disease; nucleoside analogues (e.g., oral GS-441524) are very effective, although they are not available in all countries.
Collapse
Affiliation(s)
- Séverine Tasker
- Bristol Veterinary School, University of Bristol, Bristol BS40 5DU, UK
- Linnaeus Veterinary Limited, Shirley, Solihull B90 4BN, UK
| | - Diane D. Addie
- Independent Researcher, 64000 Pyrénées Aquitaine, France;
| | - Herman Egberink
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, University of Utrecht, 3584 CL Utrecht, The Netherlands;
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
| | - Margaret J. Hosie
- MRC-University of Glasgow Centre for Virus Research, Garscube Estate, Glasgow G61 1QH, UK;
| | - Uwe Truyen
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, 04103 Leipzig, Germany;
| | - Sándor Belák
- Department of Biomedical Sciences and Veterinary Public Health (BVF), Swedish University of Agricultural Sciences (SLU), P.O. Box 7036, 750 07 Uppsala, Sweden;
| | | | - Tadeusz Frymus
- Department of Small Animal Diseases with Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-787 Warsaw, Poland;
| | - Albert Lloret
- Fundació Hospital Clínic Veterinari, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain;
| | - Fulvio Marsilio
- Faculty of Veterinary Medicine, Università Degli Studi di Teramo, 64100 Teramo, Italy;
| | - Maria Grazia Pennisi
- Dipartimento di Scienze Veterinarie, Università di Messina, 98168 Messina, Italy;
| | - Etienne Thiry
- Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, FARAH Research Centre, Faculty of Veterinary Medicine, Liège University, B-4000 Liège, Belgium;
| | - Karin Möstl
- Institute of Virology, Department for Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Katrin Hartmann
- LMU Small Animal Clinic, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany;
| |
Collapse
|
23
|
Cosaro E, Pires J, Castillo D, Murphy BG, Reagan KL. Efficacy of Oral Remdesivir Compared to GS-441524 for Treatment of Cats with Naturally Occurring Effusive Feline Infectious Peritonitis: A Blinded, Non-Inferiority Study. Viruses 2023; 15:1680. [PMID: 37632022 PMCID: PMC10458979 DOI: 10.3390/v15081680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Nucleoside analogs GS-441524 and remdesivir (GS-5734) are effective in treating cats with feline infectious peritonitis (FIP). However, no studies have compared the efficacy between antiviral medications. The objective of this study was to evaluate the efficacy of orally administered GS-442514 (12.5-15 mg/kg) compared to orally administered remdesivir (25-30 mg/kg) in a double-blinded non-inferiority trial. Eighteen cats with effusive FIP were prospectively enrolled and randomly assigned to receive either GS-442514 or remdesivir. Cats were treated daily for 12 weeks and evaluated at week 0, 12, and 16. Survival and disease remission at week 16 were compared between groups. Five of 9 (55%) cats treated GS-441524 and 7/9 (77%) cats treated with remdesivir survived, with no difference in survival rate (p = 0.2). Remdesivir fulfilled the criteria for non-inferiority with a difference in survival of 22% (90% CI; -13.5-57.5%). Three of the 18 cats died within 48 h of enrollment. Excluding these cats, 5/6 (83%) of the cats treated with GS-441524 and 7/9 (77%) of the cats treated with remdesivir survived. These findings suggest that both orally administered GS-441524 and remdesivir are safe and effective anti-viral medications for the treatment of effusive FIP. Further optimization of the first 48 h of treatment is needed.
Collapse
Affiliation(s)
- Emma Cosaro
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Jully Pires
- Veterinary Center for Clinical Trials, School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
| | - Diego Castillo
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (D.C.); (B.G.M.)
| | - Brian G. Murphy
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (D.C.); (B.G.M.)
| | - Krystle L. Reagan
- Department of Veterinary Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
| |
Collapse
|
24
|
de Almeida JCN, de Carvalho HCT, Gila LI, Martins NB, Szabó MPJ, da Hora AS. Use of selected samples to diagnose a tricky feline viral disease in a cat with uveitis and neurological signs. BRAZILIAN JOURNAL OF VETERINARY MEDICINE 2023; 45:e001223. [PMID: 37521360 PMCID: PMC10374292 DOI: 10.29374/2527-2179.bjvm001223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/06/2023] [Indexed: 08/01/2023] Open
Abstract
This case involved a 2-year-old neutered male domestic mixed-breed cat that was rescued from the street eight months earlier. The animal presented with weakness, hyporexia, progressive weight loss, fatigue, uveitis, pale mucous membranes, dehydration (7%), and pelvic limb paresis. Aqueous humor was collected for molecular analysis for the differential diagnosis of potential etiological agents [Feline coronavirus (FCoV), Feline leukemia virus (FeLV), Feline immunodeficiency virus (FIV), Toxoplasma gondii, Cryptococcus spp., Felid herpesvirus-1 (FHV-1) and Bartonella spp.] of feline uveitis. The sample was positive by real-time reverse transcription-polymerase chain reaction (RT-qPCR) for FCoV and RT-qPCR and real-time polymerase chain reaction (qPCR) for FeLV and qPCR FIV. The cat was euthanized due to poor clinical outcomes and prognosis. A cerebrospinal fluid (CSF) sample was collected and tested, and the same pathogens were found in the aqueous humor. Small-cell follicular multicenter lymphoma and multifocal pyogranulomatous meningoencephalitis were observed upon histopathological analysis. In this study, aqueous humor and cerebrospinal fluid samples were efficient for the detection of coinfection with FIV, FeLV, and FCoV.
Collapse
Affiliation(s)
- Julio Cesar Neves de Almeida
- Veterinarian, Programa de Pós-Graduação em Ciências Veterinárias (PPGCV), Universidade Federal de Uberlândia (UFU). Umuarama, Umuarama, MG, Brazil
| | | | - Lana Isabella Gila
- Veterinarian, Programa de Pós-Graduação em Ciências Veterinárias (PPGCV), Universidade Federal de Uberlândia (UFU). Umuarama, Umuarama, MG, Brazil
| | - Nathana Beatriz Martins
- Veterinarian, MSc., Programa de Pós-Graduação em Ciências Veterinárias (PPGCV), Universidade Federal de Uberlândia (UFU). Umuarama, Umuarama, MG, Brazil
| | | | - Aline Santana da Hora
- Veterinarian, DSc. Laboratório de Investigação Etiológica Veterinária UFU. Umuarama, Umuarama, MG, Brazil
| |
Collapse
|
25
|
Le SJ, Xin GY, Wu WC, Shi M. Genetic Diversity and Evolution of Viruses Infecting Felis catus: A Global Perspective. Viruses 2023; 15:1338. [PMID: 37376637 DOI: 10.3390/v15061338] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Cats harbor many important viral pathogens, and the knowledge of their diversity has been greatly expanded thanks to increasingly popular molecular sequencing techniques. While the diversity is mostly described in numerous regionally defined studies, there lacks a global overview of the diversity for the majority of cat viruses, and therefore our understanding of the evolution and epidemiology of these viruses was generally inadequate. In this study, we analyzed 12,377 genetic sequences from 25 cat virus species and conducted comprehensive phylodynamic analyses. It revealed, for the first time, the global diversity for all cat viruses known to date, taking into account highly virulent strains and vaccine strains. From there, we further characterized and compared the geographic expansion patterns, temporal dynamics and recombination frequencies of these viruses. While respiratory pathogens such as feline calicivirus showed some degree of geographical panmixes, the other viral species are more geographically defined. Furthermore, recombination rates were much higher in feline parvovirus, feline coronavirus, feline calicivirus and feline foamy virus than the other feline virus species. Collectively, our findings deepen the understanding of the evolutionary and epidemiological features of cat viruses, which in turn provide important insight into the prevention and control of cat pathogens.
Collapse
Affiliation(s)
- Shi-Jia Le
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Gen-Yang Xin
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Wei-Chen Wu
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Mang Shi
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
26
|
Moyadee W, Chiteafea N, Tuanthap S, Choowongkomon K, Roytrakul S, Rungsuriyawiboon O, Boonkaewwan C, Tansakul N, Rattanasrisomporn A, Rattanasrisomporn J. The first study on clinicopathological changes in cats with feline infectious peritonitis with and without retrovirus coinfection. Vet World 2023; 16:820-827. [PMID: 37235153 PMCID: PMC10206975 DOI: 10.14202/vetworld.2023.820-827] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/15/2023] [Indexed: 05/28/2023] Open
Abstract
Background and Aim Feline infectious peritonitis (FIP) is an infectious, immune-mediated, and fatal disease in cats caused by a mutant feline coronavirus (FCoV) infection. Feline immunodeficiency virus (FIV) and feline leukemia virus (FeLV) are two common retroviruses that play a role in reducing feline immune function with opportunistic retrovirus infection being a predisposing factor for the development of FIP. This study aimed to evaluate the clinicopathological parameters of FIP in cats with and without retrovirus coinfection. Materials and Methods In total, 62 cats presenting with pleural and/or peritoneal effusion at the Kasetsart University Veterinary Teaching Hospital, Bangkok, Thailand, were selected for the study. Effusion samples were collected and a reverse transcriptase-polymerase chain reaction (RT-PCR) assay was performed on all samples using the 3' untranslated region primer. All FCoV-positive cats were tested for retrovirus infection using a commercial kit (Witness FeLV-FIV [Zoetis]; United States). Clinical signs, hematological, and biochemical parameters of these cats were investigated and grouped. Results Of the 62 cats with pleural and/or peritoneal effusion, FCoV was detected in 32, of which 21 were highly suspicious for FIP. The cats suspected of FIP were divided into three subgroups following viral detection. A total of 14 had only FCoV infection (Group A), four had FCoV and FeLV infection (Group B), and three had FCoV, FeLV, and FIV infection (Group C). Of the rest, 11 had definitive diagnoses, which included three being FCoV and FeLV-positive (Group D), and eight were retrovirus-negative (Group E). Mild anemia and lymphopenia were found in cats infected with these three viruses. An albumin-to-globulin ratio lower than 0.5 was found in FIP cats with only FCoV infection. Conclusion Typically, cats with clinical effusion and FIP, with and without retrovirus coinfection, had similar hematological findings. Clinical signs, blood parameters, fluid analysis with cytological assessment, and RT-PCR assays could identify better criteria to diagnose FIP with and without retrovirus coinfection.
Collapse
Affiliation(s)
- Wassamon Moyadee
- Center for Advanced Studies for Agriculture and Food, Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand
- Graduate Program in Animal Health and Biomedical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Natdaroon Chiteafea
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Supansa Tuanthap
- Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-ok, Chonburi, Thailand
| | | | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology for Development Agency, Pathum Thani, Thailand
| | - Oumaporn Rungsuriyawiboon
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
| | - Chaiwat Boonkaewwan
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, Thailand
| | - Natthasit Tansakul
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Amonpun Rattanasrisomporn
- Interdisciplinary of Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, Bangkok, Thailand
| | - Jatuporn Rattanasrisomporn
- Center for Advanced Studies for Agriculture and Food, Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand
- Graduate Program in Animal Health and Biomedical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
27
|
Xu L, Ye S, Ding Y, Xiao Y, Yao C, Wang Z, Cai S, Ou J, Mao J, Hu X, Cheng S, Wang J, Lu G, Li S. A Combined Method Based on the FIPV N Monoclonal Antibody Immunofluorescence Assay and RT-nPCR Method for the Rapid Diagnosis of FIP-Suspected Ascites. Transbound Emerg Dis 2023. [DOI: 10.1155/2023/8429106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Feline infectious peritonitis (FIP), which is caused by feline infectious peritonitis virus (FIPV), is a fatal and immunologically mediated infectious disease among cats. At present, due to the atypical clinical symptoms and clinicopathological changes, the clinical diagnosis of FIP is still difficult. The gold standard method for the differential diagnosis of FIP is immunohistochemistry (IHC) which is time-consuming and requires specialized personnel and equipment. Therefore, a rapid and accurate clinical diagnostic method for FIPV infection is still urgently needed. In this study, based on the etiological investigation of FIPV in parts of southern China, we attempted to explore a new rapid and highly sensitive method for clinical diagnosis. The results of the etiological investigation showed that the N gene of the FIPV BS8 strain had the highest homology with other strains. Based on this, a specific FIPV BS8 N protein monoclonal antibody was successfully prepared by expression of the recombinant proteins, immunization of mice, fusion and selection of hybridoma cell lines, and screening and purification of monoclonal antibodies. Furthermore, we carried out a time-saving combination method including indirect immunofluorescence assay (IFA) and nested reverse transcription polymerase chain reaction (RT-nPCR) to examine FIP-suspected clinical samples. These results were 100% consistent with IHC. The results revealed that the combined method could be a rapid and accurate application in the diagnosis of suspected FIPV infection within 24 hours. In conclusion, the combination of IFA and RT-nPCR was shown to be a fast and reliable method for clinical FIPV diagnosis. This study will provide insight into the exploitation of FIPV N antibodies for the clinical diagnosis of FIP-suspected ascites samples.
Collapse
|
28
|
Zehr JD, Kosakovsky Pond SL, Millet JK, Olarte-Castillo XA, Lucaci AG, Shank SD, Ceres KM, Choi A, Whittaker GR, Goodman LB, Stanhope MJ. Natural selection differences detected in key protein domains between non-pathogenic and pathogenic feline coronavirus phenotypes. Virus Evol 2023; 9:vead019. [PMID: 37038392 PMCID: PMC10082545 DOI: 10.1093/ve/vead019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/14/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Feline coronaviruses (FCoVs) commonly cause mild enteric infections in felines worldwide (termed feline enteric coronavirus [FECV]), with around 12 per cent developing into deadly feline infectious peritonitis (FIP; feline infectious peritonitis virus [FIPV]). Genomic differences between FECV and FIPV have been reported, yet the putative genotypic basis of the highly pathogenic phenotype remains unclear. Here, we used state-of-the-art molecular evolutionary genetic statistical techniques to identify and compare differences in natural selection pressure between FECV and FIPV sequences, as well as to identify FIPV- and FECV-specific signals of positive selection. We analyzed full-length FCoV protein coding genes thought to contain mutations associated with FIPV (Spike, ORF3abc, and ORF7ab). We identified two sites exhibiting differences in natural selection pressure between FECV and FIPV: one within the S1/S2 furin cleavage site (FCS) and the other within the fusion domain of Spike. We also found fifteen sites subject to positive selection associated with FIPV within Spike, eleven of which have not previously been suggested as possibly relevant to FIP development. These sites fall within Spike protein subdomains that participate in host cell receptor interaction, immune evasion, tropism shifts, host cellular entry, and viral escape. There were fourteen sites (twelve novel sites) within Spike under positive selection associated with the FECV phenotype, almost exclusively within the S1/S2 FCS and adjacent to C domain, along with a signal of relaxed selection in FIPV relative to FECV, suggesting that furin cleavage functionality may not be needed for FIPV. Positive selection inferred in ORF7b was associated with the FECV phenotype and included twenty-four positively selected sites, while ORF7b had signals of relaxed selection in FIPV. We found evidence of positive selection in ORF3c in FCoV-wide analyses, but no specific association with the FIPV or FECV phenotype. We hypothesize that some combination of mutations in FECV may contribute to FIP development, and that it is unlikely to be one singular 'switch' mutational event. This work expands our understanding of the complexities of FIP development and provides insights into how evolutionary forces may alter pathogenesis in coronavirus genomes.
Collapse
Affiliation(s)
- Jordan D Zehr
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Sergei L Kosakovsky Pond
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Jean K Millet
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, Jouy-en-Josas 78352, France
| | - Ximena A Olarte-Castillo
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- James A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Alexander G Lucaci
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Stephen D Shank
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Kristina M Ceres
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Annette Choi
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Gary R Whittaker
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Laura B Goodman
- James A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Michael J Stanhope
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
29
|
Comparison of Clinical and Laboratory Findings at Different Clinical Stages in Cats Naturally Infected with Feline Coronavirus. ACTA VET-BEOGRAD 2023. [DOI: 10.2478/acve-2023-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Abstract
Feline coronavirus (FCoV) infections occur commonly in cats, with entrocyte and monocyte-macrophage tropism. Most FCoV-infected cats remain asymp tomatic, but up to 10% develop fatal feline infectious peritonitis (FIP). This study aims to investigate the diagnostic utility of clinical and laboratory examinations including serum and effusion AGP levels in cats either with symptomatic effusive FIP or asymptomatic feline enteric coronavirus (FECV). The study included 40 cats with effusive FIP and 10 cats with FECV infection. The FIP group was divided into two subgroups: abdominal (AE; n=30) and thoracic effusion (TE; n=10). Clinical and laboratory examinations, including serum or effusion AGP measurement, were performed. Among all the groups, TE group had higher body temperature, heart and respiratory rates (P<0.000). Compared with the FECV group, the FIP group had lower pH and HCO3 levels and higher base excess and lactate levels (P<0.05). The leukocyte and lymphocyte counts were higher and the hematocrit was lower in the AE group among all the groups (P<0.023). MCV was lower in the FIP group compared to the FECV group (P<0.002). In the AE group, total protein level was the lowest and the AST, GGT, total bilirubin and cholesterol levels were the highest (P<0.032) among all the groups. Magnesium level was lower in the FIP group compared to the FECV group (P<0.044). Although the serum AGP level was highest in the TE group among all groups (P<0.004), the AGP levels of cats with FECV were similar to the AE group (P>0.05). Since FECV-positive cats will likely develop FIP, differences in clinical and laboratory findings in FECV-positive cats were identified. Among them, pH, HCO3, base excess, lactate, MCV and magnesium were found to be important in the course of the disease, and AGP in the evaluation of the presence of an inflammatory state. It was concluded that clinical, laboratory and serum AGP evaluation could be used in the index of suspicion of development of FIP and FECV.
Collapse
|
30
|
Gao YY, Wang Q, Liang XY, Zhang S, Bao D, Zhao H, Li SB, Wang K, Hu GX, Gao FS. An updated review of feline coronavirus: mind the two biotypes. Virus Res 2023; 326:199059. [PMID: 36731629 DOI: 10.1016/j.virusres.2023.199059] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023]
Abstract
Feline coronavirus (FCoV) includes two biotypes: feline infectious peritonitis virus (FIPV) and feline enteric coronavirus (FECV). Although both biotypes can infect cats, their pathogenicities differ. The FIPV biotype is more virulent than the FECV biotype and can cause peritonitis or even death in cats, while most FECV biotypes do not cause lesions. Even pathogenic strains of the FECV biotype can cause only mild enteritis because of their very low virulence. This article reviews recent progress in FCoV research with regard to FCoV etiological characteristics; epidemiology; clinical symptoms and pathological changes; pathogenesis; and current diagnosis, prevention and treatment methods. It is hoped that this review will provide a reference for further research on FCoV and other coronaviruses.
Collapse
Affiliation(s)
- Yong-Yu Gao
- Department of Preventive Veterinary Medicine, College of Animal Medicine, Jilin Agricultural University, Xincheng Street 2888, Changchun, Jilin 130118, China
| | - Qian Wang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Xiang-Yu Liang
- Department of Preventive Veterinary Medicine, College of Animal Medicine, Jilin Agricultural University, Xincheng Street 2888, Changchun, Jilin 130118, China
| | - Shuang Zhang
- Department of Preventive Veterinary Medicine, College of Animal Medicine, Jilin Agricultural University, Xincheng Street 2888, Changchun, Jilin 130118, China
| | - Di Bao
- Department of Preventive Veterinary Medicine, College of Animal Medicine, Jilin Agricultural University, Xincheng Street 2888, Changchun, Jilin 130118, China
| | - Han Zhao
- Department of Preventive Veterinary Medicine, College of Animal Medicine, Jilin Agricultural University, Xincheng Street 2888, Changchun, Jilin 130118, China
| | - Shao-Bai Li
- Department of Preventive Veterinary Medicine, College of Animal Medicine, Jilin Agricultural University, Xincheng Street 2888, Changchun, Jilin 130118, China
| | - Kai Wang
- Department of Preventive Veterinary Medicine, College of Animal Medicine, Jilin Agricultural University, Xincheng Street 2888, Changchun, Jilin 130118, China.
| | - Gui-Xue Hu
- Department of Preventive Veterinary Medicine, College of Animal Medicine, Jilin Agricultural University, Xincheng Street 2888, Changchun, Jilin 130118, China.
| | - Feng-Shan Gao
- Department of Bioengineering, College of Life and Health, Dalian University, Xuefu Street 10, Dalian, Liaoning 116622, China; The Dalian Gene and Protein Engineering for Drug Screening Key Laboratory, Dalian 116622, China.
| |
Collapse
|
31
|
Prognostic Prediction for Therapeutic Effects of Mutian on 324 Client-Owned Cats with Feline Infectious Peritonitis Based on Clinical Laboratory Indicators and Physical Signs. Vet Sci 2023; 10:vetsci10020136. [PMID: 36851440 PMCID: PMC9964428 DOI: 10.3390/vetsci10020136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Feline infectious peritonitis (FIP) is a fatal disease classified as either effusive, non-effusive ('dry'), or a mixture ('mixed') of the forms of FIP, with mixed showing signs of both effusive and dry. To determine whether the therapeutic effect of Mutian on dry and mixed FIP can be predicted using clinical indicators before starting treatment, we entered 161 cats with mixed FIP and 163 cats with dry FIP into this study. Physical assessments, the reverse transcriptase-PCR detection of viral genes, and clinical laboratory tests (hematocrit, albumin/globulin ratio, serum amyloid A, α1-acid glycoprotein, and total bilirubin) were performed before Mutian was administered. These indicators were compared between the FIP groups that survived after receiving Mutian for 84 days and those that died before the completion of treatment. Significant differences in body temperature, appetite, and activity scores were confirmed between the surviving and non-surviving groups. The therapeutic effect was insufficient when total bilirubin levels increased in cats with the mixed form. In both of the FIP types, therapeutic effects were difficult to obtain when neurological clinical signs were observed. The therapeutic effects of Mutian on the cats with dry and mixed FIP can be predicted based on pre-treatment body temperature, appetite scores, and activity scores, as well as the presence of neurological signs.
Collapse
|
32
|
Rossi G. Acute phase proteins in cats: Diagnostic and prognostic role, future directions, and analytical challenges. Vet Clin Pathol 2023; 52 Suppl 1:37-49. [PMID: 36740231 DOI: 10.1111/vcp.13238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 02/07/2023]
Abstract
While clinical studies on acute phase proteins (APPs) have significantly increased in the last decade, and most commercial labs are now offering major APPs in their biochemical profiles, APP testing has not been widely adopted by veterinary clinical pathologists and veterinarians. Measurement of APP concentration is a useful marker for detecting the presence or absence of inflammation in cats with various diseases. APPs can also be reliably measured in different biological fluids (eg, effusions and urine) to improve their diagnostic utility. Measurement of APPs can be extremely beneficial in cats with feline infectious peritonitis (FIP) to discriminate between FIP and non-FIP cats with similar clinical presentations. Additional benefits come from multiple and sequential measurements of APPs, particularly in the assessment of therapeutic efficacy. APPs are more sensitive than WBC counts for early detection of inflammation and to demonstrate an early remission or recurrence of the diseases. Given the potential utility of APPs, more studies are warranted, with a particular focus on the applications of APPs to guide the length of antimicrobial therapies, as suggested by the antimicrobial stewardship policy. New inflammatory markers have been discovered in human medicine, with a higher specificity for distinguishing between septic versus nonseptic inflammatory diseases. It is desirable that these new markers be investigated in veterinary medicine, to further test the power of APPs in diagnostic setting.
Collapse
Affiliation(s)
- Gabriele Rossi
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, Perth, Western Australia, Australia.,Centre for Animal Production and Health, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
33
|
Zehr JD, Pond SLK, Millet JK, Olarte-Castillo XA, Lucaci AG, Shank SD, Ceres KM, Choi A, Whittaker GR, Goodman LB, Stanhope MJ. Natural selection differences detected in key protein domains between non-pathogenic and pathogenic Feline Coronavirus phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523607. [PMID: 36712007 PMCID: PMC9882035 DOI: 10.1101/2023.01.11.523607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Feline Coronaviruses (FCoVs) commonly cause mild enteric infections in felines worldwide (termed Feline Enteric Coronavirus [FECV]), with around 12% developing into deadly Feline Infectious Peritonitis (FIP; Feline Infectious Peritonitis Virus [FIPV]). Genomic differences between FECV and FIPV have been reported, yet the putative genotypic basis of the highly pathogenic phenotype remains unclear. Here, we used state-of-the-art molecular evolutionary genetic statistical techniques to identify and compare differences in natural selection pressure between FECV and FIPV sequences, as well as to identify FIPV and FECV specific signals of positive selection. We analyzed full length FCoV protein coding genes thought to contain mutations associated with FIPV (Spike, ORF3abc, and ORF7ab). We identified two sites exhibiting differences in natural selection pressure between FECV and FIPV: one within the S1/S2 furin cleavage site, and the other within the fusion domain of Spike. We also found 15 sites subject to positive selection associated with FIPV within Spike, 11 of which have not previously been suggested as possibly relevant to FIP development. These sites fall within Spike protein subdomains that participate in host cell receptor interaction, immune evasion, tropism shifts, host cellular entry, and viral escape. There were 14 sites (12 novel) within Spike under positive selection associated with the FECV phenotype, almost exclusively within the S1/S2 furin cleavage site and adjacent C domain, along with a signal of relaxed selection in FIPV relative to FECV, suggesting that furin cleavage functionality may not be needed for FIPV. Positive selection inferred in ORF7b was associated with the FECV phenotype, and included 24 positively selected sites, while ORF7b had signals of relaxed selection in FIPV. We found evidence of positive selection in ORF3c in FCoV wide analyses, but no specific association with the FIPV or FECV phenotype. We hypothesize that some combination of mutations in FECV may contribute to FIP development, and that is unlikely to be one singular "switch" mutational event. This work expands our understanding of the complexities of FIP development and provides insights into how evolutionary forces may alter pathogenesis in coronavirus genomes.
Collapse
Affiliation(s)
- Jordan D. Zehr
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Sergei L. Kosakovsky Pond
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Jean K. Millet
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, 78352 Jouyen-Josas, France
| | - Ximena A. Olarte-Castillo
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- James A. Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Alexander G. Lucaci
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Stephen D. Shank
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Kristina M. Ceres
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Annette Choi
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gary R. Whittaker
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Laura B. Goodman
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- James A. Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Michael J. Stanhope
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
34
|
Aksono EB, Iradatya KR, Sucipto TH, Fajar NS, Yuniarti WM. Phylogenetic analysis of feline infectious peritonitis virus, feline enteric coronavirus, and severe acute respiratory syndrome coronavirus 2 of cats in Surabaya, Indonesia. Vet World 2023; 16:76-81. [PMID: 36855370 PMCID: PMC9967723 DOI: 10.14202/vetworld.2023.76-81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/23/2022] [Indexed: 01/12/2023] Open
Abstract
Background and Aim Questions about the origin of coronavirus and its introduction to human beings have persisted. The detection of a variety of coronavirus related to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in bats and pangolins led to the widespread belief that SARS-CoV-2 originated from wild ani-mals and was introduced to humans through an inter-mediate animal. Thus, coronaviruses from animals, especially those in close contact with humans, have attracted particular attention. This study aimed to phylogenetically analyze feline enteric coronavirus (FECV), feline infectious peritonitis virus (FIPV), and SARS-CoV-2 found in cats in Surabaya amid the COVID-19 pandemic. The results will provide a basis for developing basic preventive and pet healthcare strategies. Materials and Methods Samples were collected on physical examinations of domestic and Persian cats (males and females) from March 2020 to March 2022. Samples were collected if there were clinical signs of FECV and FIP based on a veterinarian's diagnosis in several clinics in Surabaya. Laboratory examinations in this study were performed by reverse-transcription-polymerase chain reaction (RT-PCR) with primers for conserved regions of FIP and FECV, DNA sequencing was performed with Applied Biosystem Genetic Analyzer protocol, homology analysis was performed using Basic Local Alignment Search Tool NCBI, phylogenetic analysis was carried out with BioEdit 7.2 software, and sequences were compared with references from GenBank. Results Samples were collected from ten cats showing clinical signs of FECV and FIP, based on a veterinarian's diagnosis. On RT-PCR examinations performed with specifically designed primers for detecting FIPV in blood, peritoneal fluid, and feces, only one sample showed positivity for FIPV (1/10), namely, a peritoneal sample from a domestic cat in Surabaya. Homology analysis of the FIPV Surabaya isolate showed 98% similarity with FECV and FIPV reported in GenBank (MT444152 and DQ010921, respectively). In phylogenetic analysis, the FIPV Surabaya isolate was clustered together with SARS-CoV-2 of Clade A (MT198653) from Spain, SARS-CoV-2 Clade A (MT192765) from the USA, SARS-CoV-2 Clade D (039888) from the USA, and SARS-CoV-2 Clade F (MT020781) from Finland. Conclusion This study revealed a relationship between the SARS-CoV-2 viruses that infect humans and cats (FECV), which is an important finding for those keeping cats at home. However, this finding requires further comprehensive support from laboratory studies.
Collapse
Affiliation(s)
- Eduardus Bimo Aksono
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia,Natural Science and Engineering Institute, Universitas Airlangga, Surabaya 60115, Indonesia,Corresponding author: Eduardus Bimo Aksono, e-mail: Co-authors: KRI: , THS: , NSF: , WMY:
| | - Kania Rifa Iradatya
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Teguh Hari Sucipto
- Institute of Tropical Disease, Universitas Airlangga, Surabaya 60115, Indonesia
| | | | - Wiwik Misaco Yuniarti
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
35
|
Cao H, Gu H, Kang H, Jia H. Development of a rapid reverse genetics system for feline coronavirus based on TAR cloning in yeast. Front Microbiol 2023; 14:1141101. [PMID: 37032894 PMCID: PMC10076789 DOI: 10.3389/fmicb.2023.1141101] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/01/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Reverse genetics has become an indispensable tool to gain insight into the pathogenesis of viruses and the development of vaccines. The yeast-based synthetic genomics platform has demonstrated the novel capabilities to genetically reconstruct different viruses. Methods In this study, a transformation-associated recombination (TAR) system in yeast was used to rapidly rescue different strains of feline infectious peritonitis virus, which causes a deadly disease of cats for which there is no effective vaccine. Results and discussion Using this system, the viruses could be rescued rapidly and stably without multiple cloning steps. Considering its speed and ease of manipulation in virus genome assembly, the reverse genetics system developed in this study will facilitate the research of the feline coronaviruses pathogenetic mechanism and the vaccine development.
Collapse
|
36
|
Zou J, Yu J, Mu Y, Xie X, Wang R, Wu H, Liu X, Xu F, Wang J, Wang Y. Development of a TaqMan-based multiplex real-time PCR for simultaneous detection of four feline diarrhea-associated viruses. Front Vet Sci 2022; 9:1005759. [PMID: 36406081 PMCID: PMC9669448 DOI: 10.3389/fvets.2022.1005759] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/17/2022] [Indexed: 09/29/2023] Open
Abstract
Since their recent discovery, the prevalence of novel feline enteric viruses, including feline bocavirus 1 (FBoV-1), feline astrovirus (FeAstV), and feline kobuvirus (FeKoV), has been reported in China. Co-infections of these viruses with feline parvovirus (FPV) are common causes of diarrhea in cats. Viral co-infections are difficult to identify because of their non-specific clinical signs. To detect and identify these viruses, a quick and specific pathogen-testing approach is required. Here, we establish a real-time PCR (qPCR) based on multiple TaqMan probes for the simultaneous detection of FBoV-1, FeAstV, FeKoV, and FPV. Specific primers and TaqMan fluorescent probes were designed to ensure specificity. The results showed that the detection limit of single qPCR was up to 10 copies, and the detection limit of multiplex qPCR was up to 100 copies, with correlation coefficients >0.995 in all cases. Clinical sample detection revealed a 25.19% (34/135) total rate of co-infection among the viruses and a 1.48% (2/135) quadruple infection rate. Thus, this multiplex qPCR approach can serve as a quick, sensitive, and specific diagnostic tool for FBoV-1, FeAstV, FeKoV, and FPV identification, and it may be utilized for routine surveillance of these emerging and reemerging feline enteric viruses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yong Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
37
|
Lv J, Bai Y, Wang Y, Yang L, Jin Y, Dong J. Effect of GS-441524 in combination with the 3C-like protease inhibitor GC376 on the treatment of naturally transmitted feline infectious peritonitis. Front Vet Sci 2022; 9:1002488. [PMID: 36387398 PMCID: PMC9650422 DOI: 10.3389/fvets.2022.1002488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/03/2022] [Indexed: 11/15/2023] Open
Abstract
OBJECTIVES The main objectives of this study were to investigate the efficacy of the nucleotide analog GS-441524 in combination with the 3C-like protease inhibitor GC376 for the treatment of naturally aquired feline infectious peritonitis (FIP) and to test whether their combination shortens the dosing period and improves the cure rate. METHODS In total, 46 FIP-affected cats were enrolled in this experiment, including 36 with wet FIP (29 with abdominal effusion, six with thoracic effusion, and one with thoracic+abdominal effusion), and 10 with dry FIP. The cats were aged from 3 to 96 months. Thoracic+abdominal effusion, lymph-node puncture fluid and perirenal puncture fluid was collected from the affected cats for qPCR testing, and all 46 cats were positive for feline coronavirus (FCoV). The cats divided into different dose groups, all treated for 4 weeks: group 1 (GS-441524, 5 mg/kg.sc.q.24 h; GC376, 20 mg/kg.sc.q.12 h), group 2 (GS-441524, 2.5 mg/kg.sc.q.24 h; GC376, 20 mg/kg.sc.q.12 h), group 3 (GS-441524, 2.5 mg/kg.sc.q.24 h; GC376, 10 mg/kg.sc.q.12 h), and group 4 (GS-441524, 5 mg/kg.sc.q.24 h; GC376, 10 mg/kg.sc.q.12 h). RESULTS After the 4-week combination treatment, 45 of the 46 (97.8%) cats survived, and 43 of those became clinically normal. Two cats required longer (7 to 12 weeks) treatment to achieve full recovery. As of writing (10 months after completion of the trial), all 45 cats were alive and no relapse was observed. CONCLUSIONS AND RELEVANCE GS-441524 combined with GC376 can be safely and effectively used to treat FIP and reduces the treatment period to 4 weeks, with an excellent cure rate.
Collapse
Affiliation(s)
| | | | | | | | - Yipeng Jin
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jun Dong
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
38
|
Roy M, Jacque N, Novicoff W, Li E, Negash R, Evans SJM. Unlicensed Molnupiravir is an Effective Rescue Treatment Following Failure of Unlicensed GS-441524-like Therapy for Cats with Suspected Feline Infectious Peritonitis. Pathogens 2022; 11:1209. [PMID: 36297266 PMCID: PMC9612227 DOI: 10.3390/pathogens11101209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/09/2022] [Accepted: 10/19/2022] [Indexed: 02/03/2023] Open
Abstract
Feline infectious peritonitis (FIP) is a complex and historically fatal disease, though recent advances in antiviral therapy have uncovered potential treatments. A newer therapeutic option, unlicensed molnupiravir, is being used as a first-line therapy for suspect FIP and as a rescue therapy to treat cats who have persistent or relapsed clinical signs of FIP after GS-441524 and/or GC376 therapy. Using owner-reported data, treatment protocols for 30 cats were documented. The 26 cats treated with unlicensed molnupiravir as a rescue therapy were treated with an average starting dosage of 12.8 mg/kg and an average ending dosage of 14.7 mg/kg twice daily for a median of 12 weeks (IQR = 10-15). In total, 24 of 26 cats were still living disease-free at the time of writing. One cat was euthanized after completing treatment due to a prolonged seizure, and the other cat underwent retreatment for relapsed clinical signs. Few adverse effects were reported, with the most notable-folded ears (1), broken whiskers (1), and severe leukopenia (1)-seen at dosages above 23 mg/kg twice daily. This study provides a proof of principle for the use of molnupiravir in cats and supports the need for future studies to further evaluate molnupiravir as a potentially safe and effective therapy for FIP.
Collapse
Affiliation(s)
- Meagan Roy
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | | - Wendy Novicoff
- Departments of Orthopaedic Surgery and Public Health Sciences, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Emma Li
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Rosa Negash
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Samantha J. M. Evans
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
39
|
Thayer V, Gogolski S, Felten S, Hartmann K, Kennedy M, Olah GA. 2022 AAFP/EveryCat Feline Infectious Peritonitis Diagnosis Guidelines. J Feline Med Surg 2022; 24:905-933. [PMID: 36002137 PMCID: PMC10812230 DOI: 10.1177/1098612x221118761] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
CLINICAL IMPORTANCE Feline infectious peritonitis (FIP) is one of the most important infectious diseases and causes of death in cats; young cats less than 2 years of age are especially vulnerable. FIP is caused by a feline coronavirus (FCoV). It has been estimated that around 0.3% to 1.4% of feline deaths at veterinary institutions are caused by FIP. SCOPE This document has been developed by a Task Force of experts in feline clinical medicine as the 2022 AAFP/EveryCat Feline Infectious Peritonitis Diagnosis Guidelines to provide veterinarians with essential information to aid their ability to recognize cats presenting with FIP. TESTING AND INTERPRETATION Nearly every small animal veterinary practitioner will see cases. FIP can be challenging to diagnose owing to the lack of pathognomonic clinical signs or laboratory changes, especially when no effusion is present. A good understanding of each diagnostic test's sensitivity, specificity, predictive value, likelihood ratio and diagnostic accuracy is important when building a case for FIP. Before proceeding with any diagnostic test or commercial laboratory profile, the clinician should be able to answer the questions of 'why this test?' and 'what do the results mean?' Ultimately, the approach to diagnosing FIP must be tailored to the specific presentation of the individual cat. RELEVANCE Given that the disease is fatal when untreated, the ability to obtain a correct diagnosis is critical. The clinician must consider the individual patient's history, signalment and comprehensive physical examination findings when selecting diagnostic tests and sample types in order to build the index of suspicion 'brick by brick'. Research has demonstrated efficacy of new antivirals in FIP treatment, but these products are not legally available in many countries at this time. The Task Force encourages veterinarians to review the literature and stay informed on clinical trials and new drug approvals.
Collapse
|
40
|
Goericke-Pesch S, Packeiser EM. Reproductive Management in Catteries: Optimising health and wellbeing through veterinarian-breeder collaboration. J Feline Med Surg 2022; 24:881-904. [PMID: 36002135 PMCID: PMC10812226 DOI: 10.1177/1098612x221118760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PRACTICAL RELEVANCE Many veterinarians - even those engaged in small animal reproduction - are uncomfortable with taking care of cat breeders or being in charge of catteries. Likely reasons for this are that feline reproduction is largely under-represented in undergraduate and graduate reproduction teaching, as well as in postgraduate education and science, whereas cat breeders themselves are often well informed and actively share knowledge with other cat breeders via the internet and social media. CLINICAL CHALLENGES A variety of problems can exist within a cattery, and collaboration between veterinarian and breeder to solve these is ultimately beneficial for the breeder, for the veterinarian, and for the health and wellbeing of the individual cats and of the cattery as a whole. AIM This review presents a comprehensive overview of aspects of cattery management that might negatively impact reproduction, including sanitation, hygiene and infectious disease control. It also discusses monitoring of reproductive performance, breeding recommendations, and the diagnostic and therapeutic approach to some common and specific problems. EQUIPMENT AND TECHNICAL SKILLS Reproductive management in the cattery requires no specialised equipment, as such. What it does need is an open mind, in terms of seeing how things are done, an open ear, for listening to the breeder, and the veterinarian's clinical skills in palpation, auscultation and, where required, further examination of the animals. Keeping abreast of the latest information on infectious diseases, disinfection and genetics ensures proper advice is provided. EVIDENCE BASE Current knowledge of reproductive management in catteries is summarised in order to apply an evidence-based approach, whenever possible. Notwithstanding, much of the information remains empirical.
Collapse
Affiliation(s)
- Sandra Goericke-Pesch
- Reproductive Unit – Clinic for Small Animals, University of Veterinary Medicine Hannover, Foundation, Hannover, Bünteweg 15, 30559 Hannover, Germany
| | - Eva-Maria Packeiser
- Reproductive Unit – Clinic for Small Animals, University of Veterinary Medicine Hannover, Foundation, Hannover, Bünteweg 15, 30559 Hannover, Germany
| |
Collapse
|
41
|
Bohm M. Successful treatment of a South African cat with effusive feline infectious peritonitis with remdesivir. J S Afr Vet Assoc 2022; 93:112-115. [DOI: 10.36303/jsava.238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Affiliation(s)
- M Bohm
- King Edward Veterinary Referral Hospital,
South Africa
| |
Collapse
|
42
|
Romanelli P, Paltrinieri S, Bonfanti U, Castaman MG, Monza E, Bertazzolo W. Utility of the Ratio between Lactate Dehydrogenase (LDH) Activity and Total Nucleated Cell Counts in Effusions (LDH/TNCC Ratio) for the Diagnosis of Feline Infectious Peritonitis (FIP). Animals (Basel) 2022; 12:ani12172262. [PMID: 36077981 PMCID: PMC9454717 DOI: 10.3390/ani12172262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/15/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Background: We tested the hypothesis that the ratio between lactate dehydrogenase activity (LDH) and total nucleated cell counts (TNCC) in effusions may be useful to diagnose feline infectious peritonitis (FIP). Methods: LDH/TNCC ratio was retrospectively evaluated in 648 effusions grouped based on cytology and physicochemical analysis (step 1), on the probability of FIP estimated by additional tests on fluids (step 2) or on other biological samples (step 3, n = 471). Results of different steps were statistically compared. Receiver Operating Characteristic (ROC) curves were designed to assess whether the ratio identify the samples with FIP “probable/almost confirmed”. The cut-offs with the highest positive likelihood ratio (LR+) or Youden Index (YI) or with equal sensitivity and specificity were determined. Results: A high median LDH/TNCC ratio was found in FIP effusions (step1: 2.01) and with probable or almost confirmed FIP (step 2: 1.99; 2.20 respectively; step 3: 1.26; 2.30 respectively). The optimal cut-offs were 7.54 (LR+ 6.58), 0.62 (IY 0.67, sensitivity: 89.1%; specificity 77.7%), 0.72 (sensitivity and specificity: 79.2%) in step 2 and 2.27 (LR+ 10.39), 0.62 (IY 0.65, sensitivity: 82.1%; specificity 83.0%), 0.54 (sensitivity: 82.1%; specificity 81.9%) in step 3. Conclusions: a high LDH/TNCC ratio support a FIP diagnosis.
Collapse
Affiliation(s)
- Pierpaolo Romanelli
- MYLAV Veterinary Laboratory La Vallonea, 20017 Passirana di Rho, Italy
- Correspondence:
| | - Saverio Paltrinieri
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900 Lodi, Italy
| | - Ugo Bonfanti
- MYLAV Veterinary Laboratory La Vallonea, 20017 Passirana di Rho, Italy
| | | | - Elisa Monza
- MYLAV Veterinary Laboratory La Vallonea, 20017 Passirana di Rho, Italy
| | - Walter Bertazzolo
- MYLAV Veterinary Laboratory La Vallonea, 20017 Passirana di Rho, Italy
| |
Collapse
|
43
|
Development of Colorimetric Reverse Transcription Loop-Mediated Isothermal Amplification Assay for Detecting Feline Coronavirus. Animals (Basel) 2022; 12:ani12162075. [PMID: 36009664 PMCID: PMC9405184 DOI: 10.3390/ani12162075] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/30/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Feline coronavirus infecting domestic cats can cause feline infectious peritonitis (FIP), a fatal infectious disease. Several relevant clinical diagnoses and molecular methods are complicated and often ambiguous for veterinarians. In this work developed a rapid, sensitive, specific, and easy-to-visualize colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay with a novel LAMP primer set that has high specificity was developed using neutral red as an indicator dye. This proposed procedure could reliably detect FCoV RNA from effusion fluids comparable to the conventional PCR method. Considering these advantages, the RT-LAMP developed here has great potential on FIP-associated FCoV surveillance. Together with other sophisticated molecular diagnostic tools, this method can further be exploited in clinical laboratories to inspect suspected cats with effusive FIP. Abstract Feline infectious peritonitis (FIP) is a worldwide fatal disease caused by a mutant feline coronavirus (FCoV). Simple and efficient molecular detection methods are needed. Here, sensitive, specific, rapid, and reliable colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) was developed to detect the ORF1a/1b gene of FCoV from cats with suspected FIP using neutral red as an indicator. Novel LAMP primers were specifically designed based on the gene of interest. The isothermal assay could visually detect FCoV at 58 °C for 50 min. The RT-LAMP assay was highly specific and had no cross-reactivity with other related feline viruses. The detection limit of FCoV detection by RT-LAMP was 20 fg/µL. A blind clinical test (n = 81) of the developed RT-LAMP procedure was in good agreement with the conventional PCR method. In the light of its performance specificity, sensitivity, and easy visualization, this neutral-red-based RT-LAMP approach would be a fruitful alternative molecular diagnostic tool for veterinary inspection of FCoV when combined with nucleotide sequencing or specific PCR to affirm the highly virulent FIP-associated FCoV.
Collapse
|
44
|
Detection of Feline Coronavirus Variants in Cats without Feline Infectious Peritonitis. Viruses 2022; 14:v14081671. [PMID: 36016293 PMCID: PMC9412601 DOI: 10.3390/v14081671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
(1) Background: This study aimed to detect feline coronavirus (FCoV) and characterize spike (S) gene mutation profiles in cats suffering from diseases other than feline infectious peritonitis (FIP) using commercial real-time reverse transcription polymerase chain reaction (RT-qPCR) and reevaluating results by sequencing. (2) Methods: In 87 cats in which FIP was excluded by histopathology and immunohistochemistry, FCoV 7b gene and S gene mutation RT-qPCR was performed prospectively on incisional biopsies and fine-needle aspirates of different organs, body fluids, and feces. Samples positive for S gene mutations or mixed FCoV underwent sequencing. (3) Results: In 21/87 cats, FCoV RNA was detectable. S gene mutations were detected by commercial RT-qPCR (and a diagnostic algorithm that was used at the time of sample submission) in at least one sample in 14/21 cats (66.7%), with only mutated FCoV in 2/21, only mixed in 1/21, and different results in 11/21 cats; in the remaining 7/21 cats, RNA load was too low to differentiate. However, sequencing of 8 tissue samples and 8 fecal samples of 9 cats did not confirm mutated FCoV in any of the FCoV RNA-positive cats without FIP. (4) Conclusions: Sequencing results did not confirm results of the commercial S gene mutation RT-qPCR.
Collapse
|
45
|
Lu J, Chen SA, Khan MB, Brassard R, Arutyunova E, Lamer T, Vuong W, Fischer C, Young HS, Vederas JC, Lemieux MJ. Crystallization of Feline Coronavirus M pro With GC376 Reveals Mechanism of Inhibition. Front Chem 2022; 10:852210. [PMID: 35281564 PMCID: PMC8907848 DOI: 10.3389/fchem.2022.852210] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/01/2022] [Indexed: 12/28/2022] Open
Abstract
Coronaviruses infect a variety of hosts in the animal kingdom, and while each virus is taxonomically different, they all infect their host via the same mechanism. The coronavirus main protease (Mpro, also called 3CLpro), is an attractive target for drug development due to its essential role in mediating viral replication and transcription. An Mpro inhibitor, GC376, has been shown to treat feline infectious peritonitis (FIP), a fatal infection in cats caused by internal mutations in the feline enteric coronavirus (FECV). Recently, our lab demonstrated that the feline drug, GC373, and prodrug, GC376, are potent inhibitors of SARS-CoV-2 Mpro and solved the structures in complex with the drugs; however, no crystal structures of the FIP virus (FIPV) Mpro with the feline drugs have been published so far. Here, we present crystal structures of FIPV Mpro-GC373/GC376 complexes, revealing the inhibitors covalently bound to Cys144 in the active site, similar to SARS-CoV-2 Mpro. Additionally, GC376 has a higher affinity for FIPV Mpro with lower nanomolar Ki values compared to SARS-CoV and SARS-CoV-2 Mpro. We also show that improved derivatives of GC376 have higher potency for FIPV Mpro. Since GC373 and GC376 represent strong starting points for structure-guided drug design, determining the crystal structures of FIPV Mpro with these inhibitors are important steps in drug optimization and structure-based broad-spectrum antiviral drug discovery.
Collapse
Affiliation(s)
- Jimmy Lu
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Sizhu Amelia Chen
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | | | - Raelynn Brassard
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Elena Arutyunova
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Tess Lamer
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Wayne Vuong
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Conrad Fischer
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Howard S. Young
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - John C. Vederas
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - M. Joanne Lemieux
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
46
|
Healey EA, Andre NM, Miller AD, Whittaker GR, Berliner EA. Outbreak of feline infectious peritonitis (FIP) in shelter-housed cats: molecular analysis of the feline coronavirus S1/S2 cleavage site consistent with a 'circulating virulent-avirulent theory' of FIP pathogenesis. JFMS Open Rep 2022; 8:20551169221074226. [PMID: 35173971 PMCID: PMC8841931 DOI: 10.1177/20551169221074226] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Case series summary This case series describes three shelter-housed cats concurrently diagnosed with feline infectious peritonitis (FIP). The cats were from a cohort of seven surrendered from the site of a house fire. The three cats presented with mild upper respiratory signs. Within 10 days they clinically declined: progressive signs included pyrexia, icterus, lethargy, anorexia and cavitary effusions. Necropsy followed by histopathology and immunohistochemistry confirmed a diagnosis of FIP in all three. Molecular analysis of the causative feline coronavirus (FCoV) revealed varied amino acid alterations in the spike gene both between cats and between sample types in individual cats. A fourth cat from the cohort remained healthy in the shelter but succumbed to FIP 6 weeks post-adoption. Relevance and novel information This case series places FCoV genetic sequences in the context of clinical signs in a small shelter outbreak. Each of the three cats concurrently developed a slightly different clinical presentation. PCR amplification and genetic sequencing revealed that two cats shared an S1/S2 cleavage site mutation (R790S) previously described to be associated with the development of FIP; one of the cats had an additional S1/S2 cleavage site mutation (R793S). The third cat had a single, identical S1/S2 point mutation (R790G) unique from the other two cats; the R790G mutation has not been previously reported. This case series provides interesting data on point mutations associated with the development of FIP and provides support for a 'circulating virulent-avirulent theory' of FIP pathogenesis in a small shelter outbreak.
Collapse
Affiliation(s)
- Eleni A Healey
- Cornell University College of
Veterinary Medicine, Ithaca, NY, USA
| | - Nicole M Andre
- Department of Microbiology and
Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Andrew D Miller
- Department of Biomedical Sciences,
Section of Anatomic Pathology, Cornell University College of Veterinary Medicine,
Ithaca, NY, USA
| | - Gary R Whittaker
- Department of Microbiology and
Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
- Master of Public Health Program,
Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Elizabeth A Berliner
- Department of Population Medicine and
Diagnostic Sciences, Maddie’s Shelter Medicine Program, Cornell University College
of Veterinary Medicine, Ithaca, NY, USA
- Elizabeth A Berliner DVM, DABVP (Shelter
Medicine Practice; Canine and Feline Practice), Department of Population
Medicine and Diagnostic Sciences, Maddie’s Shelter Medicine Program, Cornell
University College of Veterinary Medicine, 930 N Campus Rd, Ithaca NY 14853, USA
| |
Collapse
|
47
|
Dong B, Zhang G, Zhang X, Chen X, Zhang M, Li L, Lin W. Development of an Indirect ELISA Based on Spike Protein to Detect Antibodies against Feline Coronavirus. Viruses 2021; 13:v13122496. [PMID: 34960764 PMCID: PMC8707903 DOI: 10.3390/v13122496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/30/2022] Open
Abstract
Feline coronavirus (FCoV) is a pathogenic virus commonly found in cats that causes a benign enteric illness and fatal systemic disease, feline infectious peritonitis. The development of serological diagnostic tools for FCoV is helpful for clinical diagnosis and epidemiological investigation. Therefore, this study aimed to develop an indirect enzyme-linked immunosorbent assay (iELISA) to detect antibodies against FCoV using histidine-tagged recombinant spike protein. FCoV S protein (1127–1400 aa) was expressed and used as an antigen to establish an ELISA. Mice and rabbits immunized with the protein produced antibodies that were recognized and bound to the protein. The intra-assay coefficient of variation (CV) was 1.15–5.04% and the inter-assay CV was 4.28–15.13%, suggesting an acceptable repeatability. iELISA did not cross-react with antisera against other feline viruses. The receiver operating characteristic curve analysis revealed an 86.7% sensitivity and 93.3% specificity for iELISA. Serum samples (n = 107) were tested for anti-FCoV antibodies, and 70.09% of samples were positive for antibodies against FCoV. The iELISA developed in our study can be used to measure serum FCoV antibodies due to its acceptable repeatability, sensitivity, and specificity. Additionally, field sample analysis data demonstrated that FCoV is highly prevalent in cat populations in Fujian province, China.
Collapse
Affiliation(s)
- Bo Dong
- Department of Veterinary Medicine and Animal Science, College of Life Science of Longyan University, Longyan 364012, China; (G.Z.); (X.Z.); (X.C.); (M.Z.); (L.L.)
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan 364012, China
- Correspondence: (W.L.); (B.D.); Tel.: +86-597-279-7255 (B.D. & W.L.)
| | - Gaoqiang Zhang
- Department of Veterinary Medicine and Animal Science, College of Life Science of Longyan University, Longyan 364012, China; (G.Z.); (X.Z.); (X.C.); (M.Z.); (L.L.)
| | - Xiaodong Zhang
- Department of Veterinary Medicine and Animal Science, College of Life Science of Longyan University, Longyan 364012, China; (G.Z.); (X.Z.); (X.C.); (M.Z.); (L.L.)
| | - Xufei Chen
- Department of Veterinary Medicine and Animal Science, College of Life Science of Longyan University, Longyan 364012, China; (G.Z.); (X.Z.); (X.C.); (M.Z.); (L.L.)
| | - Meiling Zhang
- Department of Veterinary Medicine and Animal Science, College of Life Science of Longyan University, Longyan 364012, China; (G.Z.); (X.Z.); (X.C.); (M.Z.); (L.L.)
| | - Linglin Li
- Department of Veterinary Medicine and Animal Science, College of Life Science of Longyan University, Longyan 364012, China; (G.Z.); (X.Z.); (X.C.); (M.Z.); (L.L.)
| | - Weiming Lin
- Department of Veterinary Medicine and Animal Science, College of Life Science of Longyan University, Longyan 364012, China; (G.Z.); (X.Z.); (X.C.); (M.Z.); (L.L.)
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan 364012, China
- Correspondence: (W.L.); (B.D.); Tel.: +86-597-279-7255 (B.D. & W.L.)
| |
Collapse
|
48
|
Therapeutic Effects of Mutian ® Xraphconn on 141 Client-Owned Cats with Feline Infectious Peritonitis Predicted by Total Bilirubin Levels. Vet Sci 2021; 8:vetsci8120328. [PMID: 34941855 PMCID: PMC8705141 DOI: 10.3390/vetsci8120328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 11/21/2022] Open
Abstract
Feline infectious peritonitis (FIP) is a fatal disease caused by feline coronavirus or its variant, referred to as the FIP virus. Recently, favorable treatment outcomes of the anti-viral drug Mutian® Xraphconn (Mutian X) were noted in cats with FIP. Thus, the therapeutic efficacy of Mutian X in cats with FIP must be explored, although the predictors of therapeutic success remain unknown. In the present study, we administered Mutian X to 141 pet cats with effusive FIP following initial veterinarian examinations. Of these, 116 cats survived but the remaining 25 died during treatment. Pre-treatment signalment, viral gene expression, and representative laboratory parameters for routine FIP diagnosis (i.e., hematocrit, albumin-to-globulin ratio, total bilirubin, serum amyloid-A, and α1-acid glycoprotein) were statistically compared between the survivor and non-survivor groups. The majority of these parameters, including hematocrit, albumin-to-globulin ratio, serum amyloid-A, α1-acid glycoprotein, and viral gene expression, were comparable between the two groups. Interestingly, however, total bilirubin levels in the survivor group were significantly lower than those in the non-survivor group (p < 0.0001). Furthermore, in almost all surviving cats with effusive FIP (96.6%, 28/29), the pre-treatment total bilirubin levels were below 0.5 mg/dL; however, the survival rate decreased drastically (14.3%, 1/7) when the pre-treatment total bilirubin levels exceeded 4.0 mg/dL. Thus, circulating total bilirubin levels may act as a prognostic risk factor for severe FIP and may serve as the predictor of the therapeutic efficacy of Mutian X against this fatal disease.
Collapse
|
49
|
Krentz D, Zenger K, Alberer M, Felten S, Bergmann M, Dorsch R, Matiasek K, Kolberg L, Hofmann-Lehmann R, Meli ML, Spiri AM, Horak J, Weber S, Holicki CM, Groschup MH, Zablotski Y, Lescrinier E, Koletzko B, von Both U, Hartmann K. Curing Cats with Feline Infectious Peritonitis with an Oral Multi-Component Drug Containing GS-441524. Viruses 2021; 13:v13112228. [PMID: 34835034 PMCID: PMC8621566 DOI: 10.3390/v13112228] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 12/26/2022] Open
Abstract
Feline infectious peritonitis (FIP) caused by feline coronavirus (FCoV) is a common dis-ease in cats, fatal if untreated, and no effective treatment is currently legally available. The aim of this study was to evaluate efficacy and toxicity of the multi-component drug Xraphconn® in vitro and as oral treatment in cats with spontaneous FIP by examining survival rate, development of clinical and laboratory parameters, viral loads, anti-FCoV antibodies, and adverse effects. Mass spectrometry and nuclear magnetic resonance identified GS-441524 as an active component of Xraphconn®. Eighteen cats with FIP were prospectively followed up while being treated orally for 84 days. Values of key parameters on each examination day were compared to values before treatment initiation using linear mixed-effect models. Xraphconn® displayed high virucidal activity in cell culture. All cats recovered with dramatic improvement of clinical and laboratory parameters and massive reduction in viral loads within the first few days of treatment without serious adverse effects. Oral treatment with Xraphconn® containing GS-441524 was highly effective for FIP without causing serious adverse effects. This drug is an excellent option for the oral treatment of FIP and should be trialed as potential effective treatment option for other severe coronavirus-associated diseases across species.
Collapse
Affiliation(s)
- Daniela Krentz
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany; (K.Z.); (S.F.); (M.B.); (R.D.); (Y.Z.); (K.H.)
- Correspondence:
| | - Katharina Zenger
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany; (K.Z.); (S.F.); (M.B.); (R.D.); (Y.Z.); (K.H.)
| | - Martin Alberer
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany; (M.A.); (L.K.); (U.v.B.)
| | - Sandra Felten
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany; (K.Z.); (S.F.); (M.B.); (R.D.); (Y.Z.); (K.H.)
| | - Michèle Bergmann
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany; (K.Z.); (S.F.); (M.B.); (R.D.); (Y.Z.); (K.H.)
| | - Roswitha Dorsch
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany; (K.Z.); (S.F.); (M.B.); (R.D.); (Y.Z.); (K.H.)
| | - Kaspar Matiasek
- Section of Clinical and Comparative Neuropathology, Institute of Veterinary Pathology, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany;
| | - Laura Kolberg
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany; (M.A.); (L.K.); (U.v.B.)
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (R.H.-L.); (M.L.M.); (A.M.S.)
| | - Marina L. Meli
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (R.H.-L.); (M.L.M.); (A.M.S.)
| | - Andrea M. Spiri
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (R.H.-L.); (M.L.M.); (A.M.S.)
| | - Jeannie Horak
- Department Paediatrics, Division Metabolic and Nutritional Medicine, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany; (J.H.); (B.K.)
| | - Saskia Weber
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, 17493 Greifswald, Germany; (S.W.); (C.M.H.); (M.H.G.)
| | - Cora M. Holicki
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, 17493 Greifswald, Germany; (S.W.); (C.M.H.); (M.H.G.)
| | - Martin H. Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, 17493 Greifswald, Germany; (S.W.); (C.M.H.); (M.H.G.)
- German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Riems, Greifswald-Insel Riems, 17493 Greifswald, Germany
| | - Yury Zablotski
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany; (K.Z.); (S.F.); (M.B.); (R.D.); (Y.Z.); (K.H.)
| | - Eveline Lescrinier
- Medicinal Chemistry, KU Leuven, Rega Institute for Medical Research, 3000 Leuven, Belgium;
| | - Berthold Koletzko
- Department Paediatrics, Division Metabolic and Nutritional Medicine, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany; (J.H.); (B.K.)
| | - Ulrich von Both
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany; (M.A.); (L.K.); (U.v.B.)
- German Center for Infection Research (DZIF), Partner Site Munich, 80337 Munich, Germany
| | - Katrin Hartmann
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany; (K.Z.); (S.F.); (M.B.); (R.D.); (Y.Z.); (K.H.)
| |
Collapse
|
50
|
Establishment of Full-Length cDNA Clones and an Efficient Oral Infection Model for Feline Coronavirus in Cats. J Virol 2021; 95:e0074521. [PMID: 34406859 DOI: 10.1128/jvi.00745-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Feline infectious peritonitis virus (FIPV) is the etiologic agent of feline infectious peritonitis (FIP) and causes fatal disease in cats of almost all ages. Currently, there are no clinically approved drugs or effective vaccines for FIP. Furthermore, the pathogenesis of FIP is still not fully understood. There is an urgent need for an effective infection model of feline infectious peritonitis induced by FIPV. Here, we constructed a field type I FIPV full-length cDNA clone, pBAC-QS, corresponding to the isolated FIPV QS. By replacing the FIPV QS spike gene with the commercially available type II FIPV 79-1146 (79-1146_CA) spike gene, we established and rescued a recombinant virus, designated rQS-79. Moreover, we constructed 79-1146_CA infectious full-length cDNA pBAC-79-1146_CA, corresponding to recombinant feline coronavirus (FCoV) 79-1146_CA (r79-1146_CA). In animal experiments with 1- to 2-year-old adult cats orally infected with the recombinant virus, rQS-79 induced typical FIP signs and 100% mortality. In contrast to cats infected with rQS-79, cats infected with 79-1146_CA did not show obvious signs. Furthermore, by rechallenging rQS-79 in surviving cats previously infected with 79-1146_CA, we found that there was no protection against rQS-79 with different titers of neutralizing antibodies. However, high titers of neutralizing antibodies may help prolong the cat survival time. Overall, we report the first reverse genetics of virulent recombinant FCoV (causing 100% mortality in adult cats) and attenuated FCoV (causing no mortality in adult cats), which will be powerful tools to study pathogenesis, antiviral drugs, and vaccines for FCoV. IMPORTANCE Tissue- or cell culture-adapted feline infectious peritonitis virus (FIPV) usually loses pathogenicity. To develop a highly virulent FIPV, we constructed a field isolate type I FIPV full-length clone with the spike gene replaced by the 79-1146 spike gene, corresponding to a virus named rQS-79, which induces high mortality in adult cats. rQS-79 represents the first described reverse genetics system for highly pathogenic FCoV. By further constructing the cell culture-adapted FCoV 79-1146_CA, we obtained infectious clones of virulent and attenuated FCoV. By in vitro and in vivo experiments, we established a model that can serve to study the pathogenic mechanisms of FIPV. Importantly, the wild-type FIPV replicase skeleton of serotype I will greatly facilitate the screening of antiviral drugs, both in vivo and in vitro.
Collapse
|