1
|
Wang B, Subramaniam S, Tian D, Mahsoub HM, Heffron CL, Meng XJ. Phosphorylation of Ser711 residue in the hypervariable region of zoonotic genotype 3 hepatitis E virus is important for virus replication. mBio 2024; 15:e0263524. [PMID: 39377575 PMCID: PMC11559016 DOI: 10.1128/mbio.02635-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 10/09/2024] Open
Abstract
Hepatitis E virus (HEV) is distinct from other hepatotropic viruses because it is zoonotic. HEV-1 and HEV-2 exclusively infect humans, whereas HEV-3 and HEV-4 are zoonotic. However, the viral and/or host factors responsible for cross-species HEV transmission remain elusive. The hypervariable region (HVR) in HEV is extremely heterogenetic and is implicated in HEV adaptation. Here, we investigated the potential role of Serine phosphorylation in the HVR in HEV replication. We first analyzed HVR sequences across different HEV genotypes and identified a unique region at the N-terminus of the HVR, which is variable in the human-exclusive HEV genotypes but relatively conserved in zoonotic HEV genotypes. Using predictive tools, we identified four potential phosphorylation sites that are highly conserved in zoonotic HEV-3 and HEV-4 genomes but absent in human-exclusive HEV-1 strains. To explore the functional significance of these putative phosphorylation sites, we introduced mutations into the HEV-3 infectious clone and indicator replicon, replacing each Serine residue individually with alanine or aspartic acid, and assessed the impact of these substitutions on HEV-3 replication. We found that the phospho-blatant S711A mutant significantly reduced virus replication, whereas the phospho-mimetic S711D mutant modestly reduced virus replication. Conversely, mutations in the other three Serine residues did not significantly affect HEV-3 replication. Furthermore, we demonstrated that Ser711 phosphorylation did not alter host cell tropism of zoonotic HEV-3. In conclusion, our results showed that potential phosphorylation of the Ser711 residue significantly affects HEV-3 replication in vitro, providing new insights into the potential mechanisms of zoonotic HEV transmission.IMPORTANCEHEV is an important zoonotic pathogen, causing both acute and chronic hepatitis E and extrahepatic manifestation of diseases, such as neurological sequelae. The zoonotic HEV-3 is linked to chronic infection and neurological diseases. The specific viral and/or host factors facilitating cross-species HEV infection are unknown. The intrinsically disordered HVR in ORF1 is crucial for viral fitness and adaptation, both in vitro and in vivo. We hypothesized that phosphorylation of Serine residues in the HVR of zoonotic HEV by unknown host cellular kinases is associated with cross-species HEV transmission. In this study, we identified a conserved region within the HVR of zoonotic HEV strains but absent in the human-exclusive HEV-1 and HEV-2. We elucidated the important role of phosphorylation at the Ser711 residue in zoonotic HEV-3 replication, without altering the host cell tropism. These findings contribute to our understanding the mechanisms of cross-species HEV transmission.
Collapse
Affiliation(s)
- Bo Wang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Sakthivel Subramaniam
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Debin Tian
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Hassan M. Mahsoub
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - C. Lynn Heffron
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
2
|
Ferri G, Pennisi L, Malatesta F, Vergara A. First Detection of Hepatitis E Virus RNA in Ovine Raw Milk from Herds in Central Italy. Foods 2024; 13:3218. [PMID: 39456280 PMCID: PMC11507303 DOI: 10.3390/foods13203218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
HEV mainly enters animal and human hosts through the orofecal route, which presents a critical health concern alongside the associated environmental variable. Among products of animal origin, milk (both ovine and bovine) can harbor HEV RNA, which can potentially be transmitted to consumers. In this study, a total of 220 raw ovine milk samples were collected from Apennine breed subjects farmed (transhumance method) in three different Italian provinces, L'Aquila, Pescara, and Teramo, located in the Abruzzo region (Central Italy). All the specimens were screened using one-step real-time RT-qPCR and nested RT-PCR assays. Among them, 5/220 or 2.27% harbored HEV RNA fragments belonging to the ORF1 and ORF2 codifying regions of the genotype 3c. The average viral amount discovered was 102 GE/mL. These subjects represented 2/57 or 3.51% of the Pescara herd, and 3/105 or 2.86% of the Teramo herd. Although HEV RNA was discovered in sheep fecal samples, the original data obtained in the present study represent the first HEV RNA detection in ovine raw milk from Italy.
Collapse
Affiliation(s)
- Gianluigi Ferri
- Department of Veterinary Medicine, Post-Graduate Specialization School in Food Inspection “G. Tiecco”, University of Teramo, Strada Provinciale 18, 64100 Teramo, Italy; (L.P.); (A.V.)
| | - Luca Pennisi
- Department of Veterinary Medicine, Post-Graduate Specialization School in Food Inspection “G. Tiecco”, University of Teramo, Strada Provinciale 18, 64100 Teramo, Italy; (L.P.); (A.V.)
| | | | - Alberto Vergara
- Department of Veterinary Medicine, Post-Graduate Specialization School in Food Inspection “G. Tiecco”, University of Teramo, Strada Provinciale 18, 64100 Teramo, Italy; (L.P.); (A.V.)
| |
Collapse
|
3
|
Huang S, Li JW, Zheng LW, Qiao WW, McGrath C. One Health and Oral Health: A Scoping Review to Inform Research and Present Challenges. JDR Clin Trans Res 2024; 9:88S-98S. [PMID: 39558733 DOI: 10.1177/23800844241273821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND "One health" is an integrated, unifying approach that recognizes the interconnectedness between the health of people, animals, and the environment. Oral diseases are the most common diseases to affect humankind, and it is increasingly acknowledged that key determinants of oral heath are social and environmental. However, there is a dearth of information on the relationship between oral health and one health. AIMS A scoping review was conducted to examine how animal and environmental health affects human oral health and vice versa, to examine the interest in the field overtime, and to provide a synthesis of the literature concerning one health in the oral health context to date. METHODS A broad standardized search strategy was employed across 5 electronic databases. Screening of publications with defined inclusion and exclusion criteria followed PRISMA-ScR (the Systematic reviews and Meta-Analyses extension for Scoping Reviews) guidelines. RESULTS The initial search yielded 345 articles; 163 remained after removal of duplicates. Nineteen articles were identified as "potentially effective studies," and after consideration of the full text, 13 articles were identified as "effective studies" to inform this review. Most studies were published since 2020 (60.5%, 8/13), and there were reports from 5 of the 6 World Health Organization regions (except the Eastern Mediterranean region). Most studies were observation in nature and mostly of cross-sectional study design (84.7%, 11/13 studies). More than half of the studies (53.8%, 7/13) were concerned with how environmental factors such as chemical exposures affect human oral health. Studies involving animals (46.2%, 6/13) highlighted the risk of zoonotic infections from horses and livestock to humans. CONCLUSIONS There is a recent and growing interest in "one health" in the oral health context. Qualitative synthesis of data highlighted the interconnectedness between the health of animals and environment with human health with implications for consideration and action by dentistry. KNOWLEDGE TRANSFER STATEMENT The results of this scoping review address the importance of dentistry in the "one health" concept. This scoping review will allow other researchers to be aware of and fill literature gaps with respect to the impact of animal health and environment on oral health and contribute to future research.
Collapse
Affiliation(s)
- S Huang
- Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - J W Li
- Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - L W Zheng
- Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - W W Qiao
- Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - C McGrath
- Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
4
|
Takahashi M, Nishizawa T, Nishizono A, Kawakami M, Sato Y, Kawakami K, Irokawa M, Tamaru T, Miyazaki S, Shimada M, Ozaki H, Primadharsini PP, Nagashima S, Murata K, Okamoto H. Recent decline in hepatitis E virus prevalence among wild boars in Japan: Probably due to countermeasures implemented in response to outbreaks of classical swine fever virus infection. Virus Res 2024; 348:199438. [PMID: 39013518 PMCID: PMC11315222 DOI: 10.1016/j.virusres.2024.199438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 07/18/2024]
Abstract
Previous studies have emphasized the necessity of surveillance and control measures for hepatitis E virus (HEV) infection in wild boars, an important reservoir of HEV. To assess the current situation of HEV infection in wild boars in Japan, this study investigated the prevalence and genetic diversity of HEV among wild boars captured in 16 prefectures of Japan during 2018-2023. Serum samples from 968 wild boars were examined for anti-HEV IgG antibodies and HEV RNA. The prevalence of anti-HEV IgG varied geographically from 0 % to 35.0 %. HEV RNA was detected in 3.6 % of boars, with prevalence varying by prefecture from 0 % to 22.2 %. Genotype 3 was the most prevalent genotype (91.9 %), followed by genotype 4 (5.4 %), with one strain closely related to genotype 6. The prevalence of HEV infection among wild boars decreased from 2018/2019 to 2022/2023 with significant declines in levels of anti-HEV IgG antibodies (14.5 % vs. 6.2 %, P < 0.0001) and HEV RNA (7.6 % vs. 1.5 %, P < 0.0001). Regional analysis showed varying trends, with no HEV RNA-positive boars found in several regions in recent years. A plausible factor contributing to the decline in HEV infection is the application of countermeasures, including installing fences to prevent intrusion into pig farms, implemented in response to the emergence of classical swine fever virus (CSFV) infection in wild boars and domestic pigs, with incidents reported annually since 2018. Further investigation is warranted to explore the association between countermeasures to CSFV infection and the decrease in HEV infection among wild boars.
Collapse
Affiliation(s)
- Masaharu Takahashi
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0498, Japan
| | - Tsutomu Nishizawa
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0498, Japan
| | - Akira Nishizono
- Department of Microbiology, Faculty of Medicine and Research Center for Global and Local Infectious Diseases, Oita University, Yufu, Oita 879-5593, Japan
| | - Manri Kawakami
- Center for Liver Disease, Okayama Saiseikai General Hospital, Okayama, Okayama 700-8511, Japan
| | - Yukihiro Sato
- Department of Internal Medicine, Kamiichi General Hospital, Nakaniikawa-gun, Toyama 930-0391, Japan
| | - Kazunori Kawakami
- Ayagawa National Health Insurance Sue Hospital, Ayauta-gun, Kagawa 761-2103, Japan
| | | | - Tomoko Tamaru
- Nishiizu Ken-ikukai Hospital, Kamo-gun, Shizuoka 410-3514, Japan
| | - Shinichi Miyazaki
- Department of Gastroenterology, Tottori Seikyo Hospital, Tottori, Tottori 680-0833, Japan
| | - Mizuho Shimada
- Health Care Center, Jichi Medical University Hospital, Shimotsuke, Tochigi 329-0434, Japan
| | | | - Putu Prathiwi Primadharsini
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0498, Japan
| | - Shigeo Nagashima
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0498, Japan
| | - Kazumoto Murata
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0498, Japan
| | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0498, Japan.
| |
Collapse
|
5
|
Jung S, Yeo D, Seo DJ, Choi IS, Choi C. Cross-species transmission and histopathological variation in specific-pathogen-free minipigs infected with different hepatitis E virus strains. Vet Res 2024; 55:87. [PMID: 38982477 PMCID: PMC11234777 DOI: 10.1186/s13567-024-01337-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/25/2024] [Indexed: 07/11/2024] Open
Abstract
Hepatitis E virus (HEV) is a major cause of viral hepatitis worldwide. Pigs are the natural host of HEV genotype 3 and the main reservoir of HEV. As the host range of HEV genotype 3 expands, the possibility that HEV from various species can be transmitted to humans via pigs is increasing. We investigated the potential cross-species transmission of HEV by infecting minipigs with swine HEV (swHEV), rabbit HEV (rbHEV), and human HEV (huHEV) and examining their histopathological characteristics and distribution in various organs. Fifteen specific-pathogen-free Yucatan minipigs were infected with swHEV, rbHEV, huHEV, or a mock control. In the present study, we analysed faecal shedding, viremia, and serological parameters over a seven-week period. Our results indicated that swHEV exhibited more robust shedding and viremia than non-swHEVs. Only swHEV affected the serological parameters, suggesting strain-specific differences. Histopathological examination revealed distinct patterns in the liver, pancreas, intestine, and lymphoid tissues after infection with each HEV strain. Notably, all three HEVs induced histopathological changes in the pancreas, supporting the association of HEVs with acute pancreatitis. Our results also identified skeletal muscle as a site of HEV antigen presence, suggesting a potential link to myositis. In conclusion, this study provides valuable insights into the infection dynamics of different HEV strains in minipigs, emphasizing the strain-specific variations in virological, serological, and histological parameters. The observed differences in infection kinetics and tissue tropism will contribute to our understanding of HEV pathogenesis and the potential for cross-species transmission.
Collapse
Affiliation(s)
- Soontag Jung
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong, Gyeonggi-Do, 17546, Republic of Korea
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Deajeon, 34114, Republic of Korea
| | - Daseul Yeo
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong, Gyeonggi-Do, 17546, Republic of Korea
| | - Dong-Joo Seo
- Department of Food and Nutrition, Gwangju University, Gwangju, 61743, Republic of Korea
| | - In-Soo Choi
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Seoul, Gwangjin-gu, 05029, Republic of Korea
| | - Changsun Choi
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong, Gyeonggi-Do, 17546, Republic of Korea.
| |
Collapse
|
6
|
Semaan D, O'Connor L, Scobie L. Evaluation of Food Homogenates on Cell Survival In Vitro. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:253-260. [PMID: 38499912 PMCID: PMC11186945 DOI: 10.1007/s12560-024-09586-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/24/2024] [Indexed: 03/20/2024]
Abstract
A critical review on the approaches to assess the infectivity of the Hepatitis E virus (HEV) in food recommended that a cell culture-based method should be developed. Due to the observations that viral loads in food may be low, it is important to maximise the potential for detection of HEV in a food source in order to fully assess infectivity. To do so, would require minimal processing of any target material. In order to proceed with the development of an infectivity culture method that is simple, robust and reproducible, there are a number of points to address; one being to assess if food homogenates are cytotoxic to HEV susceptible target cells. Food matrices previously shown to have detectable HEV nucleic acid were selected for analysis and assessed for their effect on the percentage survival of three cell lines commonly used for infectivity assays. Target cells used were A549, PLC/PRF/5 and HepG2 cells. The results showed that, as expected, various food homogenates have differing effects on cells in vitro. In this study, the most robust cell line over a time period was the A549 cell line in comparison to HepG2, with PLC/PRF/5 cells being the most sensitive. Overall, this data would suggest that FH can be left in contact with A549 cells for a period of up to 72 h to maximise the potential for testing infection. Using food homogenates directly would negate any concerns over losing virus as a result of any additional processing steps.
Collapse
Affiliation(s)
- Dima Semaan
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Liam O'Connor
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Linda Scobie
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK.
| |
Collapse
|
7
|
Primadharsini PP, Takahashi M, Nishizawa T, Sato Y, Nagashima S, Murata K, Okamoto H. The Full-Genome Analysis and Generation of an Infectious cDNA Clone of a Genotype 6 Hepatitis E Virus Variant Obtained from a Japanese Wild Boar: In Vitro Cultivation in Human Cell Lines. Viruses 2024; 16:842. [PMID: 38932135 PMCID: PMC11209168 DOI: 10.3390/v16060842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Hepatitis E virus (HEV) can cause self-limiting acute and chronic hepatitis infections, particularly in immunocompromised individuals. In developing countries, HEV is mainly transmitted via drinking contaminated water, whereas zoonotic transmission dominates the route of infection in developed countries, including Japan. Pigs are an important reservoir for HEV infection. Wild boars, which share the same genus and species as domestic pigs, are also an HEV reservoir. During our nationwide study of HEV infection in wild boar populations in Japan, a genotype 6 (HEV-6) strain, wbJHG_23, was isolated in Hyogo Prefecture in 2023. The genomic length was 7244 nucleotides, excluding the poly(A) tract. The wbJHG_23 strain exhibited the highest nucleotide identity throughout its genome with two previously reported HEV-6 strains (80.3-80.9%). Conversely, it displayed lower similarity (73.3-78.1%) with the HEV-1-5, HEV-7, and HEV-8 strains, indicating that, although closely related, the wbJHG_23 strain differs significantly from the reported HEV-6 strains and might represent a novel subtype. The wbJHG_23 strain successfully infected the human-derived cancer cell lines, PLC/PRF/5 and A549 1-1H8 cells, suggesting that HEV-6 has the potential for zoonotic infection. An infectious cDNA clone was constructed using a reverse genetics system, and a cell culture system supporting the efficient propagation of the HEV-6 strain was established, providing important tools for further studies on this genotype. Using this cell culture system, we evaluated the sensitivity of the wbJHG_23 strain to ribavirin treatment. Its good response to this treatment suggested that it could be used to treat human infections caused by HEV-6.
Collapse
Affiliation(s)
- Putu Prathiwi Primadharsini
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0498, Japan; (P.P.P.); (M.T.); (T.N.); (S.N.); (K.M.)
| | - Masaharu Takahashi
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0498, Japan; (P.P.P.); (M.T.); (T.N.); (S.N.); (K.M.)
| | - Tsutomu Nishizawa
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0498, Japan; (P.P.P.); (M.T.); (T.N.); (S.N.); (K.M.)
| | - Yukihiro Sato
- Department of Internal Medicine, Kamiichi General Hospital, Nakaniikawa-Gun, Toyama 930-0391, Japan;
| | - Shigeo Nagashima
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0498, Japan; (P.P.P.); (M.T.); (T.N.); (S.N.); (K.M.)
| | - Kazumoto Murata
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0498, Japan; (P.P.P.); (M.T.); (T.N.); (S.N.); (K.M.)
| | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0498, Japan; (P.P.P.); (M.T.); (T.N.); (S.N.); (K.M.)
| |
Collapse
|
8
|
Sheng Y, Deng Y, Li X, Ji P, Sun X, Liu B, Zhu J, Zhao J, Nan Y, Zhou EM, Hiscox JA, Stewart JP, Sun Y, Zhao Q. Hepatitis E virus ORF3 protein hijacking thioredoxin domain-containing protein 5 (TXNDC5) for its stability to promote viral particle release. J Virol 2024; 98:e0164923. [PMID: 38548704 PMCID: PMC11019958 DOI: 10.1128/jvi.01649-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/06/2024] [Indexed: 04/17/2024] Open
Abstract
Hepatitis E virus (HEV) is the most common cause of acute viral hepatitis worldwide, responsible for approximately 20 million infections annually. Among the three open reading frames (ORFs) of the HEV genome, the ORF3 protein is involved in virus release. However, the host proteins involved in HEV release need to be clarified. In this study, a host protein, thioredoxin domain-containing protein 5 (TXNDC5), interacted with the non-palmitoylated ORF3 protein by co-immunoprecipitation analysis. We determined that the overexpression or knockdown of TXNDC5 positively regulated HEV release from the host cells. The 17FCL19 mutation of the ORF3 protein lost the ability to interact with TXNDC5. The releasing amounts of HEV with the ORF3 mutation (FCL17-19SSP) were decreased compared with wild-type HEV. The overexpression of TXNDC5 can stabilize and increase ORF3 protein amounts, but not the TXNDC5 mutant with amino acids 1-88 deletion. Meanwhile, we determined that the function of TXNDC5 on the stabilization of ORF3 protein is independent of the Trx-like domains. Knockdown of TXNDC5 could lead to the degradation of ORF3 protein by the endoplasmic reticulum (ER)-associated protein degradation-proteasome system. However, the ORF3 protein cannot be degraded in the knockout-TXNDC5 stable cells, suggesting that it may hijack other proteins for its stabilization. Subsequently, we found that the other members of protein disulfide isomerase (PDI), including PDIA1, PDIA3, PDIA4, and PDIA6, can increase ORF3 protein amounts, and PDIA3 and PDIA6 interact with ORF3 protein. Collectively, our study suggested that HEV ORF3 protein can utilize TXNDC5 for its stability in ER to facilitate viral release. IMPORTANCE Hepatitis E virus (HEV) infection is the leading cause of acute viral hepatitis worldwide. After the synthesis and modification in the cells, the mature ORF3 protein is essential for HEV release. However, the host protein involved in this process has yet to be determined. Here, we reported a novel host protein, thioredoxin domain-containing protein 5 (TXNDC5), as a chaperone, contributing to HEV release by facilitating ORF3 protein stability in the endoplasmic reticulum through interacting with non-palmitoylated ORF3 protein. However, we also found that in the knockout-TXNDC5 stable cell lines, the HEV ORF3 protein may hijack other proteins for its stabilization. For the first time, our study demonstrated the involvement of TXNDC5 in viral particle release. These findings provide some new insights into the process of the HEV life cycle, the interaction between HEV and host factors, and a new direction for antiviral design.
Collapse
Affiliation(s)
- Yamin Sheng
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yingying Deng
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoxuan Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Pinpin Ji
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xuwen Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Baoyuan Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiahong Zhu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiakai Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Julian A. Hiscox
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - James P. Stewart
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Yani Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
9
|
Zhang S, Li YD, Cai YR, Kang XP, Feng Y, Li YC, Chen YH, Li J, Bao LL, Jiang T. Compositional features analysis by machine learning in genome represents linear adaptation of monkeypox virus. Front Genet 2024; 15:1361952. [PMID: 38495668 PMCID: PMC10940399 DOI: 10.3389/fgene.2024.1361952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/21/2024] [Indexed: 03/19/2024] Open
Abstract
Introduction: The global headlines have been dominated by the sudden and widespread outbreak of monkeypox, a rare and endemic zoonotic disease caused by the monkeypox virus (MPXV). Genomic composition based machine learning (ML) methods have recently shown promise in identifying host adaptability and evolutionary patterns of virus. Our study aimed to analyze the genomic characteristics and evolutionary patterns of MPXV using ML methods. Methods: The open reading frame (ORF) regions of full-length MPXV genomes were filtered and 165 ORFs were selected as clusters with the highest homology. Unsupervised machine learning methods of t-distributed stochastic neighbor embedding (t-SNE), Principal Component Analysis (PCA), and hierarchical clustering were performed to observe the DCR characteristics of the selected ORF clusters. Results: The results showed that MPXV sequences post-2022 showed an obvious linear adaptive evolution, indicating that it has become more adapted to the human host after accumulating mutations. For further accurate analysis, the ORF regions with larger variations were filtered out based on the ranking of homology difference to narrow down the key ORF clusters, which drew the same conclusion of linear adaptability. Then key differential protein structures were predicted by AlphaFold 2, which meant that difference in main domains might be one of the internal reasons for linear adaptive evolution. Discussion: Understanding the process of linear adaptation is critical in the constant evolutionary struggle between viruses and their hosts, playing a significant role in crafting effective measures to tackle viral diseases. Therefore, the present study provides valuable insights into the evolutionary patterns of the MPXV in 2022 from the perspective of genomic composition characteristics analysis through ML methods.
Collapse
Affiliation(s)
- Sen Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Ya-Dan Li
- College of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yu-Rong Cai
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
- College of the First Clinical Medical, Inner Mongolia Medical University, Hohhot, China
| | - Xiao-Ping Kang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Ye Feng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Yu-Chang Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Yue-Hong Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Jing Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
- College of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Li-Li Bao
- College of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Tao Jiang
- College of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
10
|
Song X, Wu J, Zhou K, Zhang Z, Tang C, Zhang B. Prevalence of hepatitis E virus genotype 4 of probable human origin in Tibetan pigs from the Qinghai-Tibetan Plateau, China. Zoonoses Public Health 2024; 71:120-126. [PMID: 37817386 DOI: 10.1111/zph.13078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 08/15/2023] [Accepted: 09/15/2023] [Indexed: 10/12/2023]
Abstract
Hepatitis E virus (HEV) is the most common cause of acute viral hepatitis worldwide. In 2018-2022, we investigated the presence of HEV RNA in 1233 stool samples collected in the Qinghai-Tibetan Plateau, including humans (16), Tibetan pigs (624), yaks (312), sheep (267), and dogs (14). HEV RNA was only detected in Tibetan pig faecal samples (18.27%, 114/624). To perform molecular characterization of HEV strains in Tibetan pigs, we obtained 21 complete HEV genome sequences between 2018 and 2022. Sequence comparisons showed that 21 HEV strains from Tibetan pigs shared the mean nucleotide identities with the reference HEV strains ranging between 82.9% and 94.9% and 89.3% and 92.1% similarities with human HEV strains. Phylogenetic analysis confirmed that all HEV strains were genotype 4, closely related to human HEV strains. Sequence recombinant analysis showed five potential recombinant strains identified in this study, of which SWU/D18/2018 (GenBank No. MK410044) was recombinant with human and swine HEV strains, located 6509-6878 nt from the recombination point. Based on the Bayesian evolutionary trees, we found that most HEV strains diverged later than human HEV (16 Tibetan pig HEV strains diverged later than 1979, and seven human HEV strains diverged earlier than 1979). Therefore, we speculated that the prevalence of HEV 4 in Tibetan pigs possibly originated from humans in the Qinghai-Tibetan Plateau.
Collapse
Affiliation(s)
- Xin Song
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Jinbo Wu
- Animal Husbandry Science Institute of ABa Autonomous Prefecture, Hongyuan, China
| | - Kelei Zhou
- Agricultural and Rural Bureau of Liangshan Yi Autonomous Prefecture of Sichuan Province, Liangshan, China
| | - Zhaohui Zhang
- Center for Animal Disease Control and Prevention, Ganzi Tibetan Autonomous Prefecture, Kangding, China
| | - Cheng Tang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, China
| | - Bin Zhang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, China
| |
Collapse
|
11
|
Mesquita JR, Santos-Silva S, Ferreira N, Rivero-Juarez A, Gonçalves G, São José Nascimento M. Hepatitis E Virus in Individuals Undergoing Heparin Therapy: An Observational Serological and Molecular Study. Curr Drug Saf 2024; 19:377-381. [PMID: 38204276 DOI: 10.2174/0115748863272272231122114732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 01/12/2024]
Abstract
INTRODUCTION Heparin is derived from swine and has been suggested as a possible source of HEV. To study the potential risk of HEV infection associated with heparin treatment, two groups of individuals were compared. Sera from heparinized (N=93) and non-heparinized individuals (N=111) were tested for markers of acute HEV infection and anti-HEV IgG seroprevalence. METHODS An acute HEV case was defined by the presence of anti-HEV IgM and/or HEV RNA. From the 93 heparinized individuals, one was positive for IgM and IgG anti-HEV and two were positive for HEV RNA (for both ORF3 and ORF2), and there were a total of two (2.2%) cases of current or recent HEV infection. From the 111 non-heparinized individuals, three were positive for IgM anti-HEV, one was positive for both IgM and IgG anti-HEV, and none was positive for HEV RNA, and there were a total of three (2.7%) cases of current or recent HEV infection. The difference between HEV cases in the heparinized individuals and the non-heparinized individuals was not statistically significant (2.2% vs. 2.7%; p = 0.799). RESULTS Concerning IgG anti-HEV, it was detected in 32 individuals from the heparinized group and in 18 from the non-heparinized control group. A statistically significant difference was observed in the presence of anti-HEV IgG in heparinized individuals and controls (p = 0.003). CONCLUSION This study has not found any association between heparin treatment and acute HEV infection, but has shown the use of therapeutic heparin as a risk factor for IgG anti-HEV seropositivity.
Collapse
Affiliation(s)
- João R Mesquita
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
- Epidemiology Research Unit (EPIUnit), Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
| | - Sérgio Santos-Silva
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Nanci Ferreira
- Faculdade de Farmácia, Universidade do Porto (FFUP), Porto, Portugal
| | - Antonio Rivero-Juarez
- CIBER Infectious Diseases (CIBERINFEC), Health Institute Carlos III, 28029 Madrid, Spain
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Reina Sofía, Universidad de Córdoba, Córdoba, Spain
| | - Guilherme Gonçalves
- Unidade de Saúde Pública do ACES Ave-Famalicão, ARS Norte, Ministério da Saúde, Portugal
| | | |
Collapse
|
12
|
Yoshida Y, Ito A, Eto H, Suzuki A, Abe T, Endo K, Kakisaka K, Oikawa T, Kuroda H, Miyasaka A, Matsumoto T, Takahashi M, Okamoto H. Seroprevalence and incidence of hepatitis E virus infection in the general population of Iwate prefecture, Japan: A retrospective cohort study. Hepatol Res 2024; 54:24-31. [PMID: 37635642 DOI: 10.1111/hepr.13961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
AIM Hepatitis E virus (HEV) causes subclinical or acute self-limiting hepatitis. We surveyed the current seroprevalence and incidence of HEV infection among the general population in Iwate Prefecture, Japan, where the endemic infection is presumed to be low. METHODS Between 2014 and 2016, we recruited individuals from Iwate Prefecture, Japan, who visited a general medical work-up program. Serum anti-HEV antibody and HEV RNA were measured twice, with an interval of 2 years. Anti-HEV antibody was measured with enzyme-linked immunosorbent assay and HEV RNA with reverse transcription-polymerase chain reaction. RESULTS Study participants comprised 1284 Japanese (650 men and 634 women) with age ranging 20-89 years. A total of 90 participants were found to be positive for anti-HEV immunoglobulin G on the first visit, with a prevalence of 7.0% (95% confidence interval [CI] 5.6%-8.4%). Seroprevalence was higher in men than in women (10.1% vs. 3.7%, p < 0.001), and in those aged in their 50s-80s than in those aged in their 20s-40s (p = 0.006). Positive seroconversion indicating new HEV infection was found in seven of 1194 seronegative participants (0.59%; 95% CI 0.15%-1.0%), indicating the incidence of HEV infection to be 272 per 100 000 person-years (95% CI 109-561). CONCLUSIONS Our observations suggest that the incidence of HEV infection is high and that it is a leading cause of hepatitis virus infection in Iwate Prefecture, Japan.
Collapse
Affiliation(s)
- Yuichi Yoshida
- Division of Gastroenterology, Department of Internal Medicine, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Asami Ito
- Division of Gastroenterology, Department of Internal Medicine, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Hisashi Eto
- Division of Gastroenterology, Department of Internal Medicine, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Akiko Suzuki
- Division of Gastroenterology, Department of Internal Medicine, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Tamami Abe
- Division of Gastroenterology, Department of Internal Medicine, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Kei Endo
- Division of Gastroenterology, Department of Internal Medicine, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Keisuke Kakisaka
- Division of Gastroenterology, Department of Internal Medicine, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Takayoshi Oikawa
- Division of Gastroenterology, Department of Internal Medicine, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Hidekatsu Kuroda
- Division of Gastroenterology, Department of Internal Medicine, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Akio Miyasaka
- Division of Gastroenterology, Department of Internal Medicine, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Takayuki Matsumoto
- Division of Gastroenterology, Department of Internal Medicine, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Masaharu Takahashi
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Japan
| |
Collapse
|
13
|
Kumar S, Ansari S, Narayanan S, Ranjith-Kumar CT, Surjit M. Antiviral activity of zinc against hepatitis viruses: current status and future prospects. Front Microbiol 2023; 14:1218654. [PMID: 37908540 PMCID: PMC10613677 DOI: 10.3389/fmicb.2023.1218654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/28/2023] [Indexed: 11/02/2023] Open
Abstract
Viral hepatitis is a major public health concern globally. World health organization aims at eliminating viral hepatitis as a public health threat by 2030. Among the hepatitis causing viruses, hepatitis B and C are primarily transmitted via contaminated blood. Hepatitis A and E, which gets transmitted primarily via the feco-oral route, are the leading cause of acute viral hepatitis. Although vaccines are available against some of these viruses, new cases continue to be reported. There is an urgent need to devise a potent yet economical antiviral strategy against the hepatitis-causing viruses (denoted as hepatitis viruses) for achieving global elimination of viral hepatitis. Although zinc was known to mankind for a long time (since before Christ era), it was identified as an element in 1746 and its importance for human health was discovered in 1963 by the pioneering work of Dr. Ananda S. Prasad. A series of follow up studies involving zinc supplementation as a therapy demonstrated zinc as an essential element for humans, leading to establishment of a recommended dietary allowance (RDA) of 15 milligram zinc [United States RDA for zinc]. Being an essential component of many cellular enzymes and transcription factors, zinc is vital for growth and homeostasis of most living organisms, including human. Importantly, several studies indicate potent antiviral activity of zinc. Multiple studies have demonstrated antiviral activity of zinc against viruses that cause hepatitis. This article provides a comprehensive overview of the findings on antiviral activity of zinc against hepatitis viruses, discusses the mechanisms underlying the antiviral properties of zinc and summarizes the prospects of harnessing the therapeutic benefit of zinc supplementation therapy in reducing the disease burden due to viral hepatitis.
Collapse
Affiliation(s)
- Shiv Kumar
- Virology Laboratory, Centre for Virus Research, Therapeutics and Vaccines, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Shabnam Ansari
- Virology Laboratory, Centre for Virus Research, Therapeutics and Vaccines, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Sriram Narayanan
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - C. T. Ranjith-Kumar
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Milan Surjit
- Virology Laboratory, Centre for Virus Research, Therapeutics and Vaccines, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
14
|
Primadharsini PP, Nagashima S, Nishiyama T, Okamoto H. Three Distinct Reporter Systems of Hepatitis E Virus and Their Utility as Drug Screening Platforms. Viruses 2023; 15:1989. [PMID: 37896767 PMCID: PMC10611241 DOI: 10.3390/v15101989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
The hepatitis E virus (HEV) is increasingly acknowledged as the primary cause of acute hepatitis. While most HEV infections are self-limiting, cases of chronic infection and fulminant hepatitis necessitate the administration of anti-HEV medications. However, there is a lack of specific antiviral drugs designed for HEV, and the currently available drug (ribavirin) has been associated with significant adverse effects. The development of innovative antiviral drugs involves targeting distinct steps within the viral life cycle: the early step (attachment and internalization), middle step (translation and RNA replication), and late step (virus particle formation and virion release). We recently established three HEV reporter systems, each covering one or two of these steps. Using these reporter systems, we identified various potential drug candidates that target different steps of the HEV life cycle. Through rigorous in vitro testing using our robust cell culture system with the genotype 3 HEV strain (JE03-1760F/P10), we confirmed the efficacy of these drugs, when used alone or in combination with existing anti-HEV drugs. This underscores their significance in the quest for an effective anti-HEV treatment. In the present review, we discuss the development of the three reporter systems, their applications in drug screening, and their potential to advance our understanding of the incompletely elucidated HEV life cycle.
Collapse
Affiliation(s)
- Putu Prathiwi Primadharsini
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke 329-0498, Tochigi, Japan; (P.P.P.); (S.N.)
| | - Shigeo Nagashima
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke 329-0498, Tochigi, Japan; (P.P.P.); (S.N.)
| | - Takashi Nishiyama
- Laboratory of Membrane Proteins, Research Division for Quantitative Life Sciences, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan;
| | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke 329-0498, Tochigi, Japan; (P.P.P.); (S.N.)
| |
Collapse
|
15
|
Santos-Silva S, da Silva Dias Moraes DF, López-López P, Rivero-Juarez A, Mesquita JR, Nascimento MSJ. Hepatitis E Virus in the Iberian Peninsula: A Systematic Review. FOOD AND ENVIRONMENTAL VIROLOGY 2023; 15:193-211. [PMID: 37434079 PMCID: PMC10499749 DOI: 10.1007/s12560-023-09560-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023]
Abstract
One of the most frequent causes of acute viral hepatitis is hepatitis E virus (HEV) causing 20 million infections worldwide each year and 44,000 deaths. Studies on HEV in the Iberian Peninsula have been increasing through time with HEV infection being identified in humans and animals. The aim of the present systematic review was to compile and evaluate all the published data on HEV from studies performed in humans, animals and environmental samples in the Iberian Peninsula. The electronic databases Mendeley, PubMed, Scopus, and Web of Science were thoroughly searched, and research published up until February 01, 2023 were included. Resulting in a total of 151 eligible papers by full reading and application of PRISMA exclusion/inclusion criteria. Overall, the present review shows that several HEV genotypes, namely HEV-1, 3, 4, and 6 as well as Rocahepevirus, are circulating in humans, animals, and in the environment in the Iberian Peninsula. HEV-3 was the most common genotype circulating in humans in Portugal and Spain, as expected for developed countries, with HEV-1 only being detected in travelers and emigrants from HEV endemic regions. Spain is the biggest pork producer in Europe and given the high circulation of HEV in pigs, with HEV-3 being primarily associated to zoonotic transmission through consumption of swine meat and meat products, in our opinion, the introduction of an HEV surveillance system in swine and inclusion of HEV in diagnostic routines for acute and chronic human hepatitis would be important. Additionally, we propose that establishing a monitoring mechanism for HEV is crucial in order to gain a comprehensive understanding of the prevalence of this illness and the various strains present in the Iberian Peninsula, as well as their potential impact on public health.
Collapse
Affiliation(s)
- Sérgio Santos-Silva
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | | | - Pedro López-López
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Reina Sofía, Universidad de Córdoba, Córdoba, Spain
- CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - António Rivero-Juarez
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Reina Sofía, Universidad de Córdoba, Córdoba, Spain
- CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - João R Mesquita
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.
- Epidemiology Research Unit (EPIUnit), Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal.
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal.
| | | |
Collapse
|
16
|
Wang B, Mahsoub HM, Li W, Heffron CL, Tian D, Hassebroek AM, LeRoith T, Meng XJ. Ribavirin Treatment Failure-Associated Mutation, Y1320H, in the RNA-Dependent RNA Polymerase of Genotype 3 Hepatitis E Virus (HEV) Enhances Virus Replication in a Rabbit HEV Infection Model. mBio 2023; 14:e0337222. [PMID: 36809085 PMCID: PMC10128057 DOI: 10.1128/mbio.03372-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/23/2023] [Indexed: 02/23/2023] Open
Abstract
Chronic hepatitis E virus (HEV) infection has become a significant clinical problem that requires treatment in immunocompromised individuals. In the absence of an HEV-specific antiviral, ribavirin (RBV) has been used off-label, but treatment failure may occur due to mutations in the viral RNA-dependent RNA polymerase (RdRp), including Y1320H, K1383N, and G1634R. Chronic hepatitis E is mostly caused by zoonotic genotype 3 HEV (HEV-3), and HEV variants from rabbits (HEV-3ra) are closely related to human HEV-3. Here, we explored whether HEV-3ra, along with its cognate host, can serve as a model to study RBV treatment failure-associated mutations observed in human HEV-3-infected patients. By utilizing the HEV-3ra infectious clone and indicator replicon, we generated multiple single mutants (Y1320H, K1383N, K1634G, and K1634R) and a double mutant (Y1320H/K1383N) and assessed the role of mutations on replication and antiviral activity of HEV-3ra in cell culture. Furthermore, we also compared the replication of the Y1320H mutant with the wild-type HEV-3ra in experimentally infected rabbits. Our in vitro analyses revealed that the effects of these mutations on rabbit HEV-3ra are altogether highly consistent with those on human HEV-3. Importantly, we found that the Y1320H enhances virus replication during the acute stage of HEV-3ra infection in rabbits, which corroborated our in vitro results showing an enhanced viral replication of Y1320H. Taken together, our data suggest that HEV-3ra and its cognate host is a useful and relevant naturally occurring homologous animal model to study the clinical relevance of antiviral-resistant mutations observed in human HEV-3 chronically-infected patients. IMPORTANCE HEV-3 causes chronic hepatitis E that requires antiviral therapy in immunosuppressed individuals. RBV is the main therapeutic option for chronic hepatitis E as an off-label use. Several amino acid changes, including Y1320H, K1383N, and G1634R, in the RdRp of human HEV-3 have reportedly been associated with RBV treatment failure in chronic hepatitis E patients. In this study, we utilized an HEV-3ra from rabbit and its cognate host to investigate the effect of these RBV treatment failure-associated HEV-3 RdRp mutations on viral replication efficiency and antiviral susceptibility. The in vitro data using rabbit HEV-3ra was highly comparable to those from human HEV-3. We demonstrated that the Y1320H mutation significantly enhanced HEV-3ra replication in cell culture and enhanced virus replication during the acute stage of HEV-3ra infection in rabbits. The rabbit HEV-3ra infection model should be useful in delineating the role of human HEV-3 RBV treatment failure-associated mutations in antiviral resistance.
Collapse
Affiliation(s)
- Bo Wang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Hassan M. Mahsoub
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Wen Li
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - C. Lynn Heffron
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Debin Tian
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Anna M. Hassebroek
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Tanya LeRoith
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
17
|
Primadharsini PP, Nagashima S, Tanaka T, Jirintai S, Takahashi M, Murata K, Okamoto H. Development and Characterization of Efficient Cell Culture Systems for Genotype 1 Hepatitis E Virus and Its Infectious cDNA Clone. Viruses 2023; 15:v15040845. [PMID: 37112827 PMCID: PMC10146093 DOI: 10.3390/v15040845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/21/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
Hepatitis E virus (HEV) is a major cause of acute viral hepatitis globally. Genotype 1 HEV (HEV-1) is responsible for multiple outbreaks in developing countries, causing high mortality rates in pregnant women. However, studies on HEV-1 have been hindered by its poor replication in cultured cells. The JE04-1601S strain recovered from a Japanese patient with fulminant hepatitis E who contracted HEV-1 while traveling to India was serially passaged 12 times in human cell lines. The cell-culture-generated viruses (passage 12; p12) grew efficiently in human cell lines, but the replication was not fully supported in porcine cells. A full-length cDNA clone was constructed using JE04-1601S_p12 as a template. It was able to produce an infectious virus, and viral protein expression was detectable in the transfected PLC/PRF/5 cells and culture supernatants. Consistently, HEV-1 growth was also not fully supported in the cell culture of cDNA-derived JE04-1601S_p12 progenies, potentially recapitulating the narrow tropism of HEV-1 observed in vivo. The availability of an efficient cell culture system for HEV-1 and its infectious cDNA clone will be useful for studying HEV species tropism and mechanisms underlying severe hepatitis in HEV-1-infected pregnant women as well as for discovering and developing safer treatment options for this condition.
Collapse
Affiliation(s)
- Putu Prathiwi Primadharsini
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0414, Japan
| | - Shigeo Nagashima
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0414, Japan
| | - Toshinori Tanaka
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0414, Japan
| | - Suljid Jirintai
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0414, Japan
- Division of Pathology, Department of Basic Veterinary Medicine, Inner Mongolia Agricultural University College of Veterinary Medicine, Hohhot 010018, China
| | - Masaharu Takahashi
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0414, Japan
| | - Kazumoto Murata
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0414, Japan
| | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0414, Japan
- Correspondence: ; Tel.: +81-285-58-7404
| |
Collapse
|
18
|
Jelicic P, Ferenc T, Mrzljak A, Jemersic L, Janev-Holcer N, Milosevic M, Bogdanic M, Barbic L, Kolaric B, Stevanovic V, Vujica M, Jurekovic Z, Pavicic Saric J, Vilibic M, Vilibic-Cavlek T. Insights into hepatitis E virus epidemiology in Croatia. World J Gastroenterol 2022; 28:5494-5505. [PMID: 36312833 PMCID: PMC9611701 DOI: 10.3748/wjg.v28.i37.5494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/15/2022] [Accepted: 09/16/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatitis E virus (HEV) is an emerging virus of global health concern. The seroprevalence rates differ greatly according to geographic region and population group.
AIM To analyze the seroprevalence of HEV in exposed (animal-related professions) and nonexposed populations, as well as solid organ and hematopoietic stem cell transplant patients.
METHODS Forestry workers (n = 93), hunters (n = 74), and veterinarians (n = 151) represented the exposed population. The general population (n = 126) and pregnant women (n = 118) constituted the control group. Transplant patients included liver transplant recipients (LTRs) (n = 83), kidney transplant recipients (KTRs) (n = 43), and hematopoietic stem cell transplant recipients (HSCRs) (n = 39). HEV immunoglobulin G antibodies were detected using the enzyme-linked immunosorbent assay and confirmed by the immunoblot test.
RESULTS The HEV seroprevalence significantly differed between groups: Veterinarians 15.2%, hunters 14.9%, forestry workers 6.5%, general population 7.1%, and pregnant women 1.7%. In transplant patients, the seropositivity was highest in LTRs (19.3%), while in KTRs and HSCRs, the seroprevalence was similar to the general population (6.9% and 5.1%, respectively). A significant increase in seropositivity with age was observed from 2.9% in individuals less than 30 years to 23.5% in those older than 60 years. Sociodemographic characteristics (sex, educational level, area of residence, and number of household members), eating habits (game meat, offal, and pork products consumption), and environmental and housing conditions (drinking water supply, type of water drainage/sewer, waste disposal, domestic animals) were not associated with HEV seropositivity. However, individuals who reported a pet ownership were more often seropositive compared to those who did not have pet animals (12.5% vs 7.0%).
CONCLUSION The results of this study showed that individuals in professional contact with animals and LTRs are at higher risk for HEV infection. In addition, age is a significant risk factor for HEV seropositivity.
Collapse
Affiliation(s)
- Pavle Jelicic
- Department of Environmental Health, Croatian Institute of Public Health, Zagreb 10000, Croatia
| | - Thomas Ferenc
- Department of Radiology, Merkur University Hospital, Zagreb 10000, Croatia
| | - Anna Mrzljak
- Department of Gastroenterology and Hepatology, University Hospital Center Zagreb, Zagreb 10000, Croatia
- School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Lorena Jemersic
- Department of Virology, Croatian Veterinary Institute, Zagreb 10000, Croatia
| | - Natasa Janev-Holcer
- Department of Environmental Health, Croatian Institute of Public Health, Zagreb 10000, Croatia
- Department of Social Medicine and Epidemiology, Faculty of Medicine University of Rijeka, Rijeka 51000, Croatia
| | - Milan Milosevic
- Department of Occupational and Environmental Health, Andrija Stampar School of Public Health, Zagreb 10000, Croatia
| | - Maja Bogdanic
- Department of Virology, Croatian Institute of Public Health, Zagreb 10000, Croatia
| | - Ljubo Barbic
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine University of Zagreb, Zagreb 10000, Croatia
| | - Branko Kolaric
- Department of Gerontology and Social Medicine, Andrija Stampar Teaching Institute of Public Health, Zagreb 10000, Croatia
| | - Vladimir Stevanovic
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine University of Zagreb, Zagreb 10000, Croatia
| | - Mateja Vujica
- Institute of Emergency Medicine of Krapina-Zagorje County, Krapina 49000, Croatia
| | - Zeljka Jurekovic
- Department of Nephrology, Merkur University Hospital, Zagreb 10000, Croatia
| | | | - Maja Vilibic
- Department for Social Psychiatry, Psychotherapy and Psychodiagnostics, University Clinical Hospital Center “Sestre Milosrdnice”, Zagreb 10000, Croatia
| | - Tatjana Vilibic-Cavlek
- School of Medicine, University of Zagreb, Zagreb 10000, Croatia
- Department of Virology, Croatian Institute of Public Health, Zagreb 10000, Croatia
| |
Collapse
|
19
|
Wu T, Wang M, Cheng X, Liu W, Zhu S, Zhang X. Predicting incidence of hepatitis E for thirteen cities in Jiangsu Province, China. Front Public Health 2022; 10:942543. [PMID: 36262244 PMCID: PMC9574096 DOI: 10.3389/fpubh.2022.942543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/16/2022] [Indexed: 01/25/2023] Open
Abstract
Hepatitis E has placed a heavy burden on China, especially in Jiangsu Province, so accurately predicting the incidence of hepatitis E benefits to alleviate the medical burden. In this paper, we propose a new attentive bidirectional long short-term memory network (denoted as BiLSTM-Attention) to predict the incidence of hepatitis E for all 13 cities in Jiangsu Province, China. Besides, we also explore the performance of adding meteorological factors and the Baidu (the most widely used Chinese search engine) index as additional training data for the prediction of our BiLSTM-Attention model. SARIMAX, GBDT, LSTM, BiLSTM, and BiLSTM-Attention models are tested in this study, based on the monthly incidence rates of hepatitis E, meteorological factors, and the Baidu index collected from 2011 to 2019 for the 13 cities in Jiangsu province, China. From January 2011 to December 2019, a total of 29,339 cases of hepatitis E were detected in all cities in Jiangsu Province, and the average monthly incidence rate for each city is 0.359 per 100,000 persons. Root mean square error (RMSE) and mean absolute error (MAE) are used for model selection and performance evaluation. The BiLSTM-Attention model considering meteorological factors and the Baidu index has the best performance for hepatitis E prediction in all cities, and it gets at least 10% improvement in RMSE and MAE for all 13 cities in Jiangsu province, which means the model has significantly improved the learning ability, generalizability, and prediction accuracy when comparing with others.
Collapse
Affiliation(s)
- Tianxing Wu
- School of Computer Science and Engineering, Southeast University, Nanjing, China
| | - Minghao Wang
- School of Computer Science and Engineering, Southeast University, Nanjing, China,*Correspondence: Minghao Wang
| | - Xiaoqing Cheng
- Jiangsu Provincial Centre for Disease Control and Prevention, Jiangsu Institution of Public Health, Nanjing, China,Chinese Field Epidemiology Training Program, Chinese Center for Disease Control and Prevention, Beijing, China,Xiaoqing Cheng
| | - Wendong Liu
- Jiangsu Provincial Centre for Disease Control and Prevention, Jiangsu Institution of Public Health, Nanjing, China
| | - Shutong Zhu
- School of Computer Science and Engineering, Southeast University, Nanjing, China
| | - Xuefeng Zhang
- Jiangsu Provincial Centre for Disease Control and Prevention, Jiangsu Institution of Public Health, Nanjing, China,Xuefeng Zhang
| |
Collapse
|
20
|
Hepatitis E Virus; An Underestimated Threat for the Viral Hepatitis Elimination Program. HEPATITIS MONTHLY 2022. [DOI: 10.5812/hepatmon-129678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
21
|
Human pathogenic RNA viruses establish noncompeting lineages by occupying independent niches. Proc Natl Acad Sci U S A 2022; 119:e2121335119. [PMID: 35639694 PMCID: PMC9191635 DOI: 10.1073/pnas.2121335119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Numerous pathogenic viruses are endemic in humans and cause a broad variety of diseases, but what is their potential for causing new pandemics? We show that most human pathogenic RNA viruses form multiple, cocirculating lineages with low turnover rates. These lineages appear to be largely noncompeting and occupy distinct epidemiological niches that are not regionally or seasonally defined, and their persistence appears to stem from limited outbreaks in small communities so that only a small fraction of the global susceptible population is infected at any time. However, due to globalization, interaction and competition between lineages might increase, potentially leading to increased diversification and pathogenicity. Thus, endemic viruses appear to merit global attention with respect to the prevention of future pandemics. Many pathogenic viruses are endemic among human populations and can cause a broad variety of diseases, some potentially leading to devastating pandemics. How virus populations maintain diversity and what selective pressures drive population turnover is not thoroughly understood. We conducted a large-scale phylodynamic analysis of 27 human pathogenic RNA viruses spanning diverse life history traits, in search of unifying trends that shape virus evolution. For most virus species, we identify multiple, cocirculating lineages with low turnover rates. These lineages appear to be largely noncompeting and likely occupy semiindependent epidemiological niches that are not regionally or seasonally defined. Typically, intralineage mutational signatures are similar to interlineage signatures. The principal exception are members of the family Picornaviridae, for which mutations in capsid protein genes are primarily lineage defining. Interlineage turnover is slower than expected under a neutral model, whereas intralineage turnover is faster than the neutral expectation, further supporting the existence of independent niches. The persistence of virus lineages appears to stem from limited outbreaks within small communities, so that only a small fraction of the global susceptible population is infected at any time. As disparate communities become increasingly connected through globalization, interaction and competition between lineages might increase as well, which could result in changing selective pressures and increased diversification and/or pathogenicity. Thus, in addition to zoonotic events, ongoing surveillance of familiar, endemic viruses appears to merit global attention with respect to the prevention or mitigation of future pandemics.
Collapse
|
22
|
Thirumdas R. Inactivation of viruses related to foodborne infections using cold plasma technology. J Food Saf 2022. [DOI: 10.1111/jfs.12988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rohit Thirumdas
- Department of Food Process Technology College of Food Science & Technology, PJTSAU Hyderabad Telangana India
| |
Collapse
|
23
|
Chirohepevirus from Bats: Insights into Hepatitis E Virus Diversity and Evolution. Viruses 2022; 14:v14050905. [PMID: 35632647 PMCID: PMC9146828 DOI: 10.3390/v14050905] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 02/06/2023] Open
Abstract
Homologs of the human hepatitis E virus (HEV) have been identified in more than a dozen animal species. Some of them have been evidenced to cross species barriers and infect humans. Zoonotic HEV infections cause chronic liver diseases as well as a broad range of extrahepatic manifestations, which increasingly become significant clinical problems. Bats comprise approximately one-fifth of all named mammal species and are unique in their distinct immune response to viral infection. Most importantly, they are natural reservoirs of several highly pathogenic viruses, which have induced severe human diseases. Since the first discovery of HEV-related viruses in bats in 2012, multiple genetically divergent HEV variants have been reported in a total of 12 bat species over the last decade, which markedly expanded the host range of the HEV family and shed light on the evolutionary origin of human HEV. Meanwhile, bat-borne HEV also raised critical public health concerns about its zoonotic potential. Bat HEV strains resemble genomic features but exhibit considerable heterogeneity. Due to the close evolutionary relationships, bat HEV altogether has been recently assigned to an independent genus, Chirohepevirus. This review focuses on the current state of bat HEV and provides novel insights into HEV genetic diversity and molecular evolution.
Collapse
|
24
|
Lampejo T, Curtis C, Ijaz S, Haywood B, Flores A, Sudhanva M, El Bouzidi K, Patel S, Dowling M, Zuckerman M. Nosocomial transmission of hepatitis E virus and development of chronic infection: The wider impact of COVID-19. J Clin Virol 2022; 148:105083. [PMID: 35086023 PMCID: PMC8785262 DOI: 10.1016/j.jcv.2022.105083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 12/16/2022]
Abstract
Background Transmission of hepatitis E virus (HEV) within the healthcare setting is extremely rare. Additionally, the development of chronic HEV infection in association with severe acute respiratory syndrome coronavirus disease 2 (SARS-CoV-2) infection and/or its immunomodulatory therapy has not been reported previously. Aims To describe the investigation and management of a nosocomial HEV transmission incident during the coronavirus disease 2019 (COVID-19) pandemic. Methods Epidemiological and molecular investigation of two individuals hospitalised with COVID-19 who were both diagnosed with HEV infection. Results Findings from our investigation were consistent with transmission of HEV from one patient with a community-acquired HEV infection to another individual (identical HEV sequences were identified in the two patients), most likely due to a breach in infection control practices whilst both patients shared a bed space on the intensive care unit (ICU). Chronic HEV infection requiring treatment with ribavirin developed in one patient with prolonged lymphopaenia attributable to COVID-19 and/or the immunomodulators received for its treatment. Further investigation did not identify transmission of HEV to any other patients or to healthcare workers. Conclusions The extraordinary demands that the COVID-19 pandemic has placed on all aspects of healthcare, particularly within ICU settings, has greatly challenged the ability to consistently maintain optimal infection prevention and control practices. Under the significant pressures of the COVID-19 pandemic a highly unusual nosocomial HEV transmission incident occurred complicated further by progression to a chronic HEV infection in one patient.
Collapse
Affiliation(s)
- Temi Lampejo
- Department of Infection Sciences, King's College Hospital, London, United Kingdom.
| | - Carmel Curtis
- Department of Infection Sciences, King's College Hospital, London, United Kingdom
| | - Samreen Ijaz
- Virus Reference Department, UK Health Security Agency, London, United Kingdom
| | - Becky Haywood
- Virus Reference Department, UK Health Security Agency, London, United Kingdom
| | - Ashley Flores
- Department of Infection Prevention and Control, King's College Hospital, London, United Kingdom
| | - Malur Sudhanva
- Department of Infection Sciences, King's College Hospital, London, United Kingdom
| | - Kate El Bouzidi
- Department of Infection Sciences, King's College Hospital, London, United Kingdom
| | - Sameer Patel
- Department of Critical Care Medicine, King's College Hospital, London, United Kingdom
| | - Mick Dowling
- Department of Critical Care Medicine, King's College Hospital, London, United Kingdom
| | - Mark Zuckerman
- Department of Infection Sciences, King's College Hospital, London, United Kingdom
| |
Collapse
|
25
|
Fonti N, Pacini MI, Forzan M, Parisi F, Periccioli M, Mazzei M, Poli A. Molecular and Pathological Detection of Hepatitis E Virus in Roe Deer (Capreolus capreolus) and Fallow Deer (Dama dama) in Central Italy. Vet Sci 2022; 9:vetsci9030100. [PMID: 35324829 PMCID: PMC8950858 DOI: 10.3390/vetsci9030100] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/10/2022] [Accepted: 02/22/2022] [Indexed: 12/14/2022] Open
Abstract
Hepatitis E virus (HEV) is a common causative agent of acute hepatitis in the world, with a serious public health burden in both developing and industrialized countries. Cervids, along with wild boars and lagomorphs, are the main wild hosts of HEV in Europe and constitute a documented source of infection for humans. The aim of this study was to evaluate the presence of HEV in roe deer (Capreolus capreolus) and fallow deer (Dama dama) living in Tuscany, Central Italy. Liver samples from 48 roe deer and 60 fallow deer were collected from carcasses during the hunting seasons. Following the results obtained from molecular and histopathologic studies, 5/48 (10.4%) roe deer and 1/60 (1.7%) fallow deer liver samples were positive for the presence of HEV RNA. All PCR-positive livers were also IHC-positive for viral antigen presence, associated with degenerative and inflammatory lesions with predominantly CD3+ cellular infiltrates. This study represents the first identification in Italy of HEV RNA in roe and fallow deer and the first study in literature describing liver alterations associated with HEV infection in cervids. These results demonstrate that HEV is present in wild cervid populations in Italy and confirm the potential zoonotic role of these species.
Collapse
Affiliation(s)
- Niccolò Fonti
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge, 2-56124 Pisa, Italy; (N.F.); (M.I.P.); (M.F.); (F.P.); (M.M.)
| | - Maria Irene Pacini
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge, 2-56124 Pisa, Italy; (N.F.); (M.I.P.); (M.F.); (F.P.); (M.M.)
| | - Mario Forzan
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge, 2-56124 Pisa, Italy; (N.F.); (M.I.P.); (M.F.); (F.P.); (M.M.)
| | - Francesca Parisi
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge, 2-56124 Pisa, Italy; (N.F.); (M.I.P.); (M.F.); (F.P.); (M.M.)
| | - Marcello Periccioli
- Unità Funzionale di Sanità Pubblica Veterinaria e Sicurezza Alimentare Zona Distretto Grossetana, Dipartimento di Prevenzione, Azienda USL Toscana Sud Est, Amiata Grossetana e Colline Metallifere, Viale Cimabue, 109-58100 Grosseto, Italy;
| | - Maurizio Mazzei
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge, 2-56124 Pisa, Italy; (N.F.); (M.I.P.); (M.F.); (F.P.); (M.M.)
| | - Alessandro Poli
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge, 2-56124 Pisa, Italy; (N.F.); (M.I.P.); (M.F.); (F.P.); (M.M.)
- Correspondence:
| |
Collapse
|
26
|
Gordeychuk I, Kyuregyan K, Kondrashova A, Bayurova E, Gulyaev S, Gulyaeva T, Potemkin I, Karlsen A, Isaeva O, Belyakova A, Lyashenko A, Sorokin A, Chumakov A, Morozov I, Isaguliants M, Ishmukhametov A, Mikhailov M. Immunization with recombinant ORF2 p551 protein protects common marmosets (Callithrix jacchus) against homologous and heterologous hepatitis E virus challenge. Vaccine 2022; 40:89-99. [PMID: 34836660 DOI: 10.1016/j.vaccine.2021.11.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/18/2021] [Accepted: 11/14/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Hepatitis E virus (HEV) is a major causative agent of acute hepatitis worldwide, prompting continuous HEV vaccine efforts. Vaccine development is hampered by the lack of convenient animal models susceptible to infection with different HEV genotypes. We produced recombinant open reading frame 2 protein (pORF2; p551) of HEV genotype (GT) 3 and assessed its immunogenicity and protectivity against HEV challenge in common marmosets (Callithrix jacchus, CM). METHODS p551 with consensus sequence corresponding to amino acid residues 110-660 of HEV GT3 pORF2 was expressed in E. coli and purified by affinity chromatography. CMs were immunized intramuscularly with 20 μg of p551 VLPs with alum adjuvant (n = 4) or adjuvant alone (n = 2) at weeks 0, 3, 7 and 19. At week 27, p551-immunized and control animals were challenged with HEV GT1 or GT3 and thereafter longitudinally screened for markers of liver function, anti-HEV IgG and HEV RNA in feces and sera. RESULTS Purified p551 formed VLPs with particle size of 27.71 ± 2.42 nm. Two immunizations with p551 induced anti-HEV IgG mean titer of 1:1810. Immunized CMs challenged with homologous and heterologous HEV genotype did not develop HEV infection during the follow-up. Control CMs infected with both HEV GT1 and GT3 demonstrated signs of HEV infection with virus shedding and elevation of the levels of liver enzymes. High levels of anti-HEV IgG persisted in vaccinated CMs and control CMs that resolved HEV infection, for up to two years post challenge. CONCLUSIONS CMs are shown to be a convenient laboratory animal model susceptible to infection with HEV GT1 and GT3. Immunization with HEV GT3 ORF2/p551 triggers potent anti-HEV antibody response protecting CMs from homologous and heterologous HEV challenge. This advances p551 in VLPs as a prototype vaccine against HEV.
Collapse
Affiliation(s)
- Ilya Gordeychuk
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia; Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 127994, Russia.
| | - Karen Kyuregyan
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia; I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow 105064, Russia; Russian Medical Academy of Continuous Professional Education, Moscow 125993, Russia.
| | - Alla Kondrashova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia; Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 127994, Russia
| | - Ekaterina Bayurova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia.
| | - Stanislav Gulyaev
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia.
| | - Tatiana Gulyaeva
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia.
| | - Ilya Potemkin
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia; I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow 105064, Russia; Russian Medical Academy of Continuous Professional Education, Moscow 125993, Russia.
| | - Anastasia Karlsen
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia; I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow 105064, Russia; Russian Medical Academy of Continuous Professional Education, Moscow 125993, Russia; N.F. Gamaleya Federal Research Center for Epidemiology & Microbiology, Moscow 123098, Russia
| | - Olga Isaeva
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow 105064, Russia; Russian Medical Academy of Continuous Professional Education, Moscow 125993, Russia.
| | - Alla Belyakova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia.
| | - Anna Lyashenko
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia.
| | - Alexey Sorokin
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia
| | - Alexey Chumakov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia; Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 127994, Russia
| | - Igor Morozov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia.
| | - Maria Isaguliants
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia; N.F. Gamaleya Federal Research Center for Epidemiology & Microbiology, Moscow 123098, Russia; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden.
| | - Aydar Ishmukhametov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia; Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 127994, Russia.
| | - Mikhail Mikhailov
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow 105064, Russia; Russian Medical Academy of Continuous Professional Education, Moscow 125993, Russia.
| |
Collapse
|
27
|
Genetic Diversity of Hepatitis E Virus Type 3 in Switzerland-From Stable to Table. Animals (Basel) 2021; 11:ani11113177. [PMID: 34827909 PMCID: PMC8614342 DOI: 10.3390/ani11113177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary The main hosts of hepatitis E virus (HEV) genotype 3 are porcine species. Transmission of the virus to humans, for example via undercooked meat, may cause acute or chronic hepatitis. To determine sources and routes of infection, comparing the viruses present in humans to the ones present in main hosts is a helpful tool. However, it requires knowledge of the genetic diversity of the circulating viruses. Therefore, we tested Swiss pigs and wild boars for HEV and determined the virus subtype and part of its genome. In addition, we determined the HEV subtype present in 11 positive meat products. One pig liver from the slaughterhouses (0.3%) and seven livers from a carcass collection (13%) as well as seven wild boar livers (5.8%) were found HEV positive. The same virus subtypes were found in Swiss pigs, wild boars, and meat products. Most of the viruses belonged to a Swiss-specific cluster within the subtype 3h. In addition, one pig liver and one wild boar liver were found positive for 3l and two meat products from Germany for 3c. Our data indicate that Switzerland has its “own” HEV viruses that circulate independent from the rest of Europe. Abstract Hepatitis E caused by hepatitis E viruses of the genotype 3 (HEV-3) is a major health concern in industrialized countries and due to its zoonotic character requires a “One Health” approach to unravel routes and sources of transmission. Knowing the viral diversity present in reservoir hosts, i.e., pigs but also wild boars, is an important prerequisite for molecular epidemiology. The aim of this study was to gain primary information on the diversity of HEV-3 subtypes present along the food chain in Switzerland, as well as the diversity within these subtypes. To this end, samples of domestic pigs from slaughterhouses and carcass collection points, as well as from hunted wild boars, were tested for HEV RNA and antibodies. HEV positive meat products were provided by food testing labs. The HEV subtypes were determined using Sanger and next generation sequencing. The genetic analyses confirmed the predominance of a Swiss-specific cluster within subtype HEV-3h in pigs, meat products, and wild boars. This cluster, which may result from local virus evolution due to the isolated Swiss pig industry, supports fast differentiation of domestic and imported infections with HEV.
Collapse
|
28
|
Wu J, Bortolanza M, Zhai G, Shang A, Ling Z, Jiang B, Shen X, Yao Y, Yu J, Li L, Cao H. Gut microbiota dysbiosis associated with plasma levels of Interferon-γ and viral load in patients with acute hepatitis E infection. J Med Virol 2021; 94:692-702. [PMID: 34549810 DOI: 10.1002/jmv.27356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022]
Abstract
Few studies have focused on the effect of hepatitis E virus (HEV) infection on gut microbiota. To explore the relationship between changes in gut microbiota and inflammatory factors and viral load, we conducted a comparative study of 33 patients with acute hepatitis E (AHE) patients and 25 healthy controls (HCs) using high-throughput 16S ribosomal ribonucleic acid gene sequencing. Shannon and Simpson's indices showed no significant differences in bacterial diversity between the AHE and HCs groups. Proteobacteria, Gammaproteobacteria, and Enterobacteriaceae were most abundant in the AHE group, which contributed to the difference between the gut microbiota of the AHE and HCs groups, and the same difference between the HEV-RNA-positive and HEV-RNA-negative groups. Functional prediction analysis showed that ribosome, purine metabolism, and two-component system were the top three pathways. Compared with the AHE group with normal interferon (IFN)-γ, Proteobacteria, Gammaproteobacteria, Xanthomonadaceae, and Enterobacteriaceae were more abundant in the high-IFN-γ group. The abundance of Gammaproteobacteria was positively correlated with the level of serum alanine transaminase and total bilirubin. The abundance of Gammaproteobacteria could discriminate AHE patients from HCs, and could better predict the severity of AHE patients. We believe that our findings will contribute toward a novel treatment strategy for AHE.
Collapse
Affiliation(s)
- Jian Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Mariza Bortolanza
- Department of Internal Medicine V-Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, Homburg, Germany
| | - Guanghua Zhai
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Anquan Shang
- Department of Clinical Laboratory, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zongxin Ling
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bin Jiang
- Department of Laboratory Medicine, The Central Blood Station of Yancheng City, Yancheng, China
| | - Xiaochen Shen
- Department of Health Examination Center, The First People's Hospital of Yancheng City, Yancheng, China
| | - Yiwen Yao
- Department of Internal Medicine V-Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, Homburg, Germany
| | - Jiong Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongcui Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, Hangzhou, China
| |
Collapse
|
29
|
Cellular Organelles Involved in Hepatitis E Virus Infection. Pathogens 2021; 10:pathogens10091206. [PMID: 34578238 PMCID: PMC8469867 DOI: 10.3390/pathogens10091206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatitis E virus (HEV), a major cause of acute hepatitis worldwide, infects approximately 20 million individuals annually. HEV can infect a wide range of mammalian and avian species, and cause frequent zoonotic spillover, increasingly raising public health concerns. To establish a successful infection, HEV needs to usurp host machineries to accomplish its life cycle from initial attachment to egress. However, relatively little is known about the HEV life cycle, especially the functional role(s) of cellular organelles and their associated proteins at different stages of HEV infection. Here, we summarize current knowledge regarding the relation of HEV with the different cell organelles during HEV infection. Furthermore, we discuss the underlying mechanisms by which HEV infection is precisely regulated in infected cells and the modification of host cell organelles and their associated proteins upon HEV infection.
Collapse
|