1
|
Stepanova E, Isakova-Sivak I, Matyushenko V, Mezhenskaya D, Kudryavtsev I, Kostromitina A, Chistiakova A, Rak A, Bazhenova E, Prokopenko P, Kotomina T, Donina S, Novitskaya V, Sivak K, Karal-Ogly D, Rudenko L. Safety and Immunogenicity Study of a Bivalent Vaccine for Combined Prophylaxis of COVID-19 and Influenza in Non-Human Primates. Vaccines (Basel) 2024; 12:1099. [PMID: 39460266 PMCID: PMC11511058 DOI: 10.3390/vaccines12101099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Influenza and SARS-CoV-2 viruses are two highly variable pathogens. We have developed a candidate bivalent live vaccine based on the strain of licensed A/Leningrad/17-based cold-adapted live attenuated influenza vaccine (LAIV) of H3N2 subtype, which expressed SARS-CoV-2 immunogenic T-cell epitopes. A cassette encoding fragments of S and N proteins of SARS-CoV-2 was inserted into the influenza NA gene using the P2A autocleavage site. In this study, we present the results of preclinical evaluation of the developed bivalent vaccine in a non-human primate model. METHODS Rhesus macaques (Macaca mulatta) (n = 3 per group) were immunized intranasally with 7.5 lg EID50 of the LAIV/CoV-2 bivalent vaccine, a control non-modified H3N2 LAIV or a placebo (chorioallantoic fluid) using a sprayer device, twice, with a 28-day interval. The blood samples were collected at days 0, 3, 28 and 35 for hematological and biochemical assessment. Safety was also assessed by monitoring body weight, body temperature and clinical signs of the disease. Immune responses to influenza virus were assessed both by determining serum antibody titers in hemagglutination inhibition assay, microneutralization assay and IgG ELISA. T-cell responses were measured both to influenza and SARS-CoV-2 antigens using ELISPOT and flow cytometry. Three weeks after the second immunization, animals were challenged with 105 PFU of Delta SARS-CoV-2. The body temperature, weight and challenge virus shedding were monitored for 5 days post-challenge. In addition, virus titers in various organs and histopathology were evaluated on day 6 after SARS-CoV-2 infection. RESULTS There was no toxic effect of the immunizations on the hematological and coagulation hemostasis of animals. No difference in the dynamics of the average weight and thermometry results were found between the groups of animals. Both LAIV and LAIV/CoV-2 variants poorly replicated in the upper respiratory tract of rhesus macaques. Nevertheless, despite this low level of virus shedding, influenza-specific serum IgG responses were detected in the group of monkeys immunized with the LAIV/CoV-2 bivalent but not in the LAIV group. Furthermore, T-cell responses to both influenza and SARS-CoV-2 viruses were detected in the LAIV/CoV-2 vaccine group only. The animals were generally resistant to SARS-CoV-2 challenge, with minimal virus shedding in the placebo and LAIV groups. Histopathological changes in vaccinated animals were decreased compared to the PBS group, suggesting a protective effect of the chimeric vaccine candidate. CONCLUSIONS The candidate bivalent vaccine was safe and immunogenic for non-human primates and warrants its further evaluation in clinical trials.
Collapse
Affiliation(s)
- Ekaterina Stepanova
- Institute of Experimental Medicine, Saint-Petersburg 197022, Russia; (I.I.-S.); (V.M.); (D.M.); (I.K.); (A.K.); (A.C.); (A.R.); (P.P.); (T.K.); (V.N.); (L.R.)
| | - Irina Isakova-Sivak
- Institute of Experimental Medicine, Saint-Petersburg 197022, Russia; (I.I.-S.); (V.M.); (D.M.); (I.K.); (A.K.); (A.C.); (A.R.); (P.P.); (T.K.); (V.N.); (L.R.)
| | - Victoria Matyushenko
- Institute of Experimental Medicine, Saint-Petersburg 197022, Russia; (I.I.-S.); (V.M.); (D.M.); (I.K.); (A.K.); (A.C.); (A.R.); (P.P.); (T.K.); (V.N.); (L.R.)
| | - Daria Mezhenskaya
- Institute of Experimental Medicine, Saint-Petersburg 197022, Russia; (I.I.-S.); (V.M.); (D.M.); (I.K.); (A.K.); (A.C.); (A.R.); (P.P.); (T.K.); (V.N.); (L.R.)
| | - Igor Kudryavtsev
- Institute of Experimental Medicine, Saint-Petersburg 197022, Russia; (I.I.-S.); (V.M.); (D.M.); (I.K.); (A.K.); (A.C.); (A.R.); (P.P.); (T.K.); (V.N.); (L.R.)
| | - Arina Kostromitina
- Institute of Experimental Medicine, Saint-Petersburg 197022, Russia; (I.I.-S.); (V.M.); (D.M.); (I.K.); (A.K.); (A.C.); (A.R.); (P.P.); (T.K.); (V.N.); (L.R.)
| | - Anna Chistiakova
- Institute of Experimental Medicine, Saint-Petersburg 197022, Russia; (I.I.-S.); (V.M.); (D.M.); (I.K.); (A.K.); (A.C.); (A.R.); (P.P.); (T.K.); (V.N.); (L.R.)
| | - Alexandra Rak
- Institute of Experimental Medicine, Saint-Petersburg 197022, Russia; (I.I.-S.); (V.M.); (D.M.); (I.K.); (A.K.); (A.C.); (A.R.); (P.P.); (T.K.); (V.N.); (L.R.)
| | - Ekaterina Bazhenova
- Institute of Experimental Medicine, Saint-Petersburg 197022, Russia; (I.I.-S.); (V.M.); (D.M.); (I.K.); (A.K.); (A.C.); (A.R.); (P.P.); (T.K.); (V.N.); (L.R.)
| | - Polina Prokopenko
- Institute of Experimental Medicine, Saint-Petersburg 197022, Russia; (I.I.-S.); (V.M.); (D.M.); (I.K.); (A.K.); (A.C.); (A.R.); (P.P.); (T.K.); (V.N.); (L.R.)
| | - Tatiana Kotomina
- Institute of Experimental Medicine, Saint-Petersburg 197022, Russia; (I.I.-S.); (V.M.); (D.M.); (I.K.); (A.K.); (A.C.); (A.R.); (P.P.); (T.K.); (V.N.); (L.R.)
| | - Svetlana Donina
- Institute of Experimental Medicine, Saint-Petersburg 197022, Russia; (I.I.-S.); (V.M.); (D.M.); (I.K.); (A.K.); (A.C.); (A.R.); (P.P.); (T.K.); (V.N.); (L.R.)
| | - Vlada Novitskaya
- Institute of Experimental Medicine, Saint-Petersburg 197022, Russia; (I.I.-S.); (V.M.); (D.M.); (I.K.); (A.K.); (A.C.); (A.R.); (P.P.); (T.K.); (V.N.); (L.R.)
| | - Konstantin Sivak
- Smorodintsev Research Institute of Influenza, Saint-Petersburg 197376, Russia;
| | - Dzhina Karal-Ogly
- Center of Preclinical Research, Research Institute of Medical Primatology, Sochi 354376, Russia;
| | - Larisa Rudenko
- Institute of Experimental Medicine, Saint-Petersburg 197022, Russia; (I.I.-S.); (V.M.); (D.M.); (I.K.); (A.K.); (A.C.); (A.R.); (P.P.); (T.K.); (V.N.); (L.R.)
| |
Collapse
|
2
|
Stepanova E, Isakova-Sivak I, Mezhenskaya D, Niskanen S, Matyushenko V, Bazhenova E, Rak A, Wong PF, Prokopenko P, Kotomina T, Krutikova E, Legotskiy S, Neterebskii B, Ostroukhova T, Sivak K, Orshanskaya Y, Yakovlev K, Rudenko L. Expression of the SARS-CoV-2 receptor-binding domain by live attenuated influenza vaccine virus as a strategy for designing a bivalent vaccine against COVID-19 and influenza. Virol J 2024; 21:82. [PMID: 38589848 PMCID: PMC11003101 DOI: 10.1186/s12985-024-02350-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/22/2024] [Indexed: 04/10/2024] Open
Abstract
Influenza and SARS-CoV-2 are two major respiratory pathogens that cocirculate in humans and cause serious illness with the potential to exacerbate disease in the event of co-infection. To develop a bivalent vaccine, capable of protecting against both infections, we inserted the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein into hemagglutinin (HA) molecule or into the open reading frame of the truncated nonstructural protein 1 (NS1) of live attenuated influenza vaccine (LAIV) virus and assessed phenotypic characteristics of the rescued LAIV-RBD viruses, as well as their immunogenicity in mouse and Syrian hamster animal models. A panel of 9 recombinant LAIV-RBD viruses was rescued using the A/Leningrad/17 backbone. Notably, only two variants with RBD insertions into the HA molecule could express sufficient quantities of RBD protein in infected MDCK cells. Intranasal immunization of mice induced high levels of anti-influenza antibody responses in all chimeric LAIV-RBD viruses, which was comparable to the LAIV virus vector. The RBD-specific antibody responses were most pronounced in the variant expressing RBD194 fragment as a chimeric HA protein. This candidate was further tested in Syrian hamsters and was shown to be immunogenic and capable of protecting animals against both infections.
Collapse
Affiliation(s)
| | | | - Daria Mezhenskaya
- Institute of Experimental Medicine, Saint Petersburg, 197022, Russia
| | - Sergei Niskanen
- Joint-Stock Company «BIOCAD» (JSC «BIOCAD») Saint Petersburg, Intracity Municipality the Settlement of Strelna, the Settlement of Strelna, ul. Svyazi, d. 38, str. 1, pomeshch. 89, Saint Petersburg, 198515, Russia
| | | | | | - Alexandra Rak
- Institute of Experimental Medicine, Saint Petersburg, 197022, Russia
| | - Pei Fong Wong
- Institute of Experimental Medicine, Saint Petersburg, 197022, Russia
| | - Polina Prokopenko
- Institute of Experimental Medicine, Saint Petersburg, 197022, Russia
| | - Tatiana Kotomina
- Institute of Experimental Medicine, Saint Petersburg, 197022, Russia
| | - Elena Krutikova
- Institute of Experimental Medicine, Saint Petersburg, 197022, Russia
| | - Sergei Legotskiy
- Joint-Stock Company «BIOCAD» (JSC «BIOCAD») Saint Petersburg, Intracity Municipality the Settlement of Strelna, the Settlement of Strelna, ul. Svyazi, d. 38, str. 1, pomeshch. 89, Saint Petersburg, 198515, Russia
| | - Bogdan Neterebskii
- Joint-Stock Company «BIOCAD» (JSC «BIOCAD») Saint Petersburg, Intracity Municipality the Settlement of Strelna, the Settlement of Strelna, ul. Svyazi, d. 38, str. 1, pomeshch. 89, Saint Petersburg, 198515, Russia
| | - Tatiana Ostroukhova
- Joint-Stock Company «BIOCAD» (JSC «BIOCAD») Saint Petersburg, Intracity Municipality the Settlement of Strelna, the Settlement of Strelna, ul. Svyazi, d. 38, str. 1, pomeshch. 89, Saint Petersburg, 198515, Russia
| | - Konstantin Sivak
- Smorodintsev Research Institute of Influenza, Saint Petersburg, 197376, Russia
| | - Yana Orshanskaya
- Smorodintsev Research Institute of Influenza, Saint Petersburg, 197376, Russia
| | - Kirill Yakovlev
- Smorodintsev Research Institute of Influenza, Saint Petersburg, 197376, Russia
| | - Larisa Rudenko
- Institute of Experimental Medicine, Saint Petersburg, 197022, Russia
| |
Collapse
|
3
|
Souan L, Abdel-Razeq H, Al Zughbieh M, Al Badr S, Sughayer MA. Comparative Assessment of the Kinetics of Cellular and Humoral Immune Responses to COVID-19 Vaccination in Cancer Patients. Viruses 2023; 15:1439. [PMID: 37515127 PMCID: PMC10383486 DOI: 10.3390/v15071439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
OBJECTIVE The kinetics of immune responses to various SARS-CoV-2 vaccines in cancer patients were investigated. METHODS In total, 57 cancer patients who received BNT162b2-RNA or BBIBP-CorV vaccines were enrolled. Cellular and humoral immunity were assessed at three-time points, before the first vaccine dose and 14-21 days after the first and second doses. Chemiluminescent microparticle immunoassay was used to evaluate SARS-CoV-2 anti-spike IgG response, and QuantiFERON® SARS-CoV-2 kit assessed T-cell response. RESULTS Data showed that cancer patients' CD4+ and CD8+ T cell-median IFN-γ secretion of SARS-CoV-2 antigens increased after the first and second vaccine doses (p = 0.027 and p = 0.042). BNT162b2 vaccinees had significantly higher IFN-γ levels to CD4+ and CD8+ T cell epitopes than BBIBP-CorV vaccinees (p = 0.028). There was a positive correlation between IgG antibody titer and T cell response regardless of vaccine type (p < 0.05). CONCLUSIONS This study is one of the first to investigate cellular and humoral immune responses to SARS-CoV-2 immunization in cancer patients on active therapy after each vaccine dose. COVID-19 immunizations helped cancer patients develop an effective immune response. Understanding the cellular and humoral immune response to COVID-19 in cancer patients undergoing active treatment is necessary to improve vaccines and avoid future SARS pandemics.
Collapse
Affiliation(s)
- Lina Souan
- Laboratory Medicine, Department of Pathology, King Hussein Cancer Center, Amman 11941, Jordan
| | | | - Muna Al Zughbieh
- Laboratory Medicine, Department of Pathology, King Hussein Cancer Center, Amman 11941, Jordan
| | - Sara Al Badr
- Laboratory Medicine, Department of Pathology, King Hussein Cancer Center, Amman 11941, Jordan
| | - Maher A Sughayer
- Laboratory Medicine, Department of Pathology, King Hussein Cancer Center, Amman 11941, Jordan
| |
Collapse
|
4
|
Goshina A, Matyushenko V, Mezhenskaya D, Rak A, Katelnikova A, Gusev D, Rudenko L, Isakova-Sivak I. RDE Treatment Prevents Non-Specific Detection of SARS-CoV-2- and Influenza-Specific IgG Antibodies in Heat-Inactivated Serum Samples. Antibodies (Basel) 2023; 12:39. [PMID: 37366655 PMCID: PMC10295076 DOI: 10.3390/antib12020039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/28/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
Assessing the levels of serum IgG antibodies is widely used to measure immunity to influenza and the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) after natural infection or vaccination with specific vaccines, as well as to study immune responses to these viruses in animal models. For safety reasons, sometimes serum specimens collected from infected individuals are subjected to heat inactivation at 56 °C to reduce the risk of infecting personnel during serological studies. However, this procedure may affect the level of virus-specific antibodies, making the results of antibody immunoassays uninterpretable. Here, we evaluated the effect of the heat inactivation of human, ferret and hamster serum samples on the binding of IgG antibodies to the influenza and SARS-CoV-2 antigens. For this, serum samples of naive and immune hosts were analyzed in three variants: (i) untreated sera, (ii) heated at 56 °C for 1 h, and (iii) treated with receptor-destroying enzyme (RDE). The samples were studied through an in-house enzyme-linked immunosorbent assay (ELISA) using whole influenza virus or recombinant proteins corresponding to nucleocapsid (N) protein and the receptor-binding domain of SARS-CoV-2 Spike (RBD) as antigens. We demonstrated that the heat inactivation of the naive serum samples of various hosts can lead to false-positive results, while RDE treatment abolished the effect of the non-specific binding of IgG antibodies to the viral antigens. Furthermore, RDE also significantly decreased the level of virus-specific IgG antibodies in SARS-CoV-2 and influenza-immune sera of humans and animals, although it is unknown whether it actually removes true virus-specific IgG antibodies or only non-specifically binding artifacts. Nevertheless, we suggest that the RDE treatment of human and animal sera may be useful in preventing false-positive results in various immunoassays, while also neutralizing infectious virus, since the standard protocol for the use of RDE also includes heating the sample at 56 °C.
Collapse
Affiliation(s)
- Arina Goshina
- Department of Virology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (A.G.); (V.M.); (D.M.); (A.R.)
| | - Victoria Matyushenko
- Department of Virology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (A.G.); (V.M.); (D.M.); (A.R.)
| | - Daria Mezhenskaya
- Department of Virology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (A.G.); (V.M.); (D.M.); (A.R.)
| | - Alexandra Rak
- Department of Virology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (A.G.); (V.M.); (D.M.); (A.R.)
| | - Anastasia Katelnikova
- Department of Toxicology and Microbiology, Institute of Preclinical Research Ltd., 188663 Saint Petersburg, Russia;
| | - Denis Gusev
- Botkin Infectious Diseases Hospital, Piskarovskiy Ave 49, 195067 Saint Petersburg, Russia
| | - Larisa Rudenko
- Department of Virology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (A.G.); (V.M.); (D.M.); (A.R.)
| | - Irina Isakova-Sivak
- Department of Virology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (A.G.); (V.M.); (D.M.); (A.R.)
| |
Collapse
|
5
|
Sokolov AV, Isakova-Sivak IN, Mezhenskaya DA, Kostevich VA, Gorbunov NP, Elizarova AY, Matyushenko VA, Berson YM, Grudinina NA, Kolmakov NN, Zabrodskaya YA, Komlev AS, Semak IV, Budevich AI, Rudenko LG, Vasilyev VB. Molecular mimicry of the receptor-binding domain of the SARS-CoV-2 spike protein: from the interaction of spike-specific antibodies with transferrin and lactoferrin to the antiviral effects of human recombinant lactoferrin. Biometals 2023; 36:437-462. [PMID: 36334191 PMCID: PMC9638208 DOI: 10.1007/s10534-022-00458-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/21/2022] [Indexed: 11/08/2022]
Abstract
The pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection involves dysregulations of iron metabolism, and although the mechanism of this pathology is not yet fully understood, correction of iron metabolism pathways seems a promising pharmacological target. The previously observed effect of inhibiting SARS-CoV-2 infection by ferristatin II, an inducer of transferrin receptor 1 (TfR1) degradation, prompted the study of competition between Spike protein and TfR1 ligands, especially lactoferrin (Lf) and transferrin (Tf). We hypothesized molecular mimicry of Spike protein as cross-reactivity of Spike-specific antibodies with Tf and Lf. Thus, strong positive correlations (R2 > 0.95) were found between the level of Spike-specific IgG antibodies present in serum samples of COVID-19-recovered and Sputnik V-vaccinated individuals and their Tf-binding activity assayed with peroxidase-labeled anti-Tf. In addition, we observed cross-reactivity of Lf-specific murine monoclonal antibody (mAb) towards the SARS-CoV-2 Spike protein. On the other hand, the interaction of mAbs produced to the receptor-binding domain (RBD) of the Spike protein with recombinant RBD protein was disrupted by Tf, Lf, soluble TfR1, anti-TfR1 aptamer, as well as by peptides RGD and GHAIYPRH. Furthermore, direct interaction of RBD protein with Lf, but not Tf, was observed, with affinity of binding estimated by KD to be 23 nM and 16 nM for apo-Lf and holo-Lf, respectively. Treatment of Vero E6 cells with apo-Lf and holo-Lf (1-4 mg/mL) significantly inhibited SARS-CoV-2 replication of both Wuhan and Delta lineages. Protective effects of Lf on different arms of SARS-CoV-2-induced pathogenesis and possible consequences of cross-reactivity of Spike-specific antibodies are discussed.
Collapse
Affiliation(s)
- A V Sokolov
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia.
| | - I N Isakova-Sivak
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| | - D A Mezhenskaya
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| | - V A Kostevich
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| | - N P Gorbunov
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| | - A Yu Elizarova
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| | - V A Matyushenko
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| | - Yu M Berson
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| | - N A Grudinina
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| | - N N Kolmakov
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| | - Y A Zabrodskaya
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, Prof. Popova Str. 15/17, St. Petersburg, 197376, Russia
- Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, 194064, Saint Petersburg, Russia
| | - A S Komlev
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| | - I V Semak
- Department of Biochemistry, Faculty of Biology, Belarusian State University, Nezavisimisty Ave. 4, 220030, Minsk, Belarus
| | - A I Budevich
- Scientific and Practical Center of the National Academy of Sciences of Belarus for Animal Breeding, 11 Frunze Str., 222160, Zhodino, Belarus
| | - L G Rudenko
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| | - V B Vasilyev
- Institute of Experimental Medicine, Academica Pavlova Str. 12, St. Petersburg, 197376, Russia
| |
Collapse
|
6
|
Peng D, Zhao T, Hong W, Fu M, He C, Chen L, Ren W, Lei H, Yang J, Alu A, Ni Y, Liu J, Li J, Wang W, Shen G, Zhao Z, Yang L, Yang J, Wang Z, Tanaka Y, Lu G, Song X, Wei X. Heterologous vaccination with subunit protein vaccine induces a superior neutralizing capacity against BA.4/5-included SARS-CoV-2 variants than homologous vaccination of mRNA vaccine. MedComm (Beijing) 2023; 4:e238. [PMID: 36911160 PMCID: PMC10000276 DOI: 10.1002/mco2.238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
BA.4 and BA.5 (BA.4/5), the subvariants of Omicron, are more transmissible than BA.1 with more robust immune evasion capability because of its unique spike protein mutations. In light of such situation, the vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is in desperate need of the third booster. It has been reported that heterologous boosters might produce more effective immunity against wild-type SARS-CoV-2 and the variants. Additionally, the third heterologous protein subunit booster should be considered potentially. In the present study, we prepared a Delta full-length spike protein sequence-based mRNA vaccine as the "priming" shot and developed a recombinant trimeric receptor-binding domain (RBD) protein vaccine referred to as RBD-HR/trimer as a third heterologous booster. Compared to the homologous mRNA group, the heterologous group (RBD-HR/trimer vaccine primed with two mRNA vaccines) induced higher neutralizing antibody titers against BA.4/5-included SARS-CoV-2 variants. In addition, heterologous vaccination exhibited stronger cellular immune response and long-lasting memory response than the homologous mRNA vaccine. In conclusion, a third heterologous boosting with RBD-HR/trimer following two-dose mRNA priming vaccination should be a superior strategy than a third homologous mRNA vaccine. The RBD-HR/trimer vaccine becomes an appropriate candidate for a booster immune injection.
Collapse
Affiliation(s)
- Dandan Peng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduChina
| | - Tingmei Zhao
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduChina
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduChina
| | - Minyang Fu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduChina
| | - Cai He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduChina
| | - Li Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduChina
| | - Wenyan Ren
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduChina
| | - Hong Lei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduChina
| | - Jingyun Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduChina
| | - Aqu Alu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduChina
| | - Yanghong Ni
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduChina
| | - Jian Liu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduChina
| | - Jiong Li
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduChina
| | - Wei Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduChina
| | - Guobo Shen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduChina
| | - Zhiwei Zhao
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduChina
| | - Li Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduChina
| | - Jinliang Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduChina
| | - Zhenling Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduChina
| | | | - Guangwen Lu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduChina
| | - Xiangrong Song
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduChina
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
7
|
Shesternya PA, Savchenko AA, Gritsenko OD, Vasileva AO, Kudryavtsev IV, Masterova AA, Isakov DV, Borisov AG. Features of Peripheral Blood Th-Cell Subset Composition and Serum Cytokine Level in Patients with Activity-Driven Ankylosing Spondylitis. Pharmaceuticals (Basel) 2022; 15:ph15111370. [PMID: 36355542 PMCID: PMC9695783 DOI: 10.3390/ph15111370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Th cells may exhibit pathological activity depending on the regulatory and functional signals sensed under a wide range of immunopathological conditions, including ankylosing spondylitis (AS). The relationship between Th cells and cytokines is important for diagnoses and for determining treatment. Accordingly, the aim of this study was to investigate the relationship between Th-cell subset composition and serum cytokine profile for patients with activity-driven AS. In our study, patients were divided into two groups according to disease activity: low-activity AS (ASDAS-CRP < 2.1) and high-activity AS (ASDAS-CRP > 2.1). The peripheral blood Th cell subset composition was studied by flow cytometry. Using multiplex analysis, serum cytokine levels were quantified and investigated. It was found that only patients with high-activity AS had reduced central memory (CM) Th1 cells (p = 0.035) but elevated numbers of CM (p = 0.014) and effector memory (EM) Th2 cells (p < 0.001). However, no activity-driven change in the Th17 cell subset composition was observed in AS patients. Moreover, low-AS activity patients had increased numbers of Tfh17 EM cells (p < 0.001), whereas high-AS activity was associated with elevated Tfh2 EM level (p = 0.031). The serum cytokine profiles in AS patients demonstrated that cues stimulating cellular immunity were increased, but patients with high-AS activity reveled increased IL-5 level (p = 0.017). Analyzing the data obtained from AS patients allowed us to conclude that Th cell subset differentiation was mainly affected during the CM stage and characterized the IL-23/IL-17 regulatory axis, whereas increased humoral immunity was observed in the high-AS activity group.
Collapse
Affiliation(s)
- Pavel A. Shesternya
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Ministry of Healthcare, 660022 Krasnoyarsk, Russia
- Correspondence:
| | - Andrei A. Savchenko
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Ministry of Healthcare, 660022 Krasnoyarsk, Russia
- Federal Research Center “Krasnoyarsk Science Center”, Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia
| | - Olga D. Gritsenko
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Ministry of Healthcare, 660022 Krasnoyarsk, Russia
| | - Alexandra O. Vasileva
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Ministry of Healthcare, 660022 Krasnoyarsk, Russia
| | | | - Alena A. Masterova
- Federal Research Center “Krasnoyarsk Science Center”, Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia
| | - Dmitry V. Isakov
- Academician I.P. Pavlov First St. Petersburg State Medical University, Ministry of Healthcare, 197022 St. Peterburg, Russia
| | - Alexandr G. Borisov
- Federal Research Center “Krasnoyarsk Science Center”, Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia
| |
Collapse
|
8
|
Kudryavtsev I, Matyushenko V, Stepanova E, Vasilyev K, Rudenko L, Isakova-Sivak I. In Vitro Stimulation with Live SARS-CoV-2 Suggests Th17 Dominance In Virus-Specific CD4+ T Cell Response after COVID-19. Vaccines (Basel) 2022; 10:1544. [PMID: 36146622 PMCID: PMC9502469 DOI: 10.3390/vaccines10091544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
The SARS-CoV-2 and influenza viruses are the main causes of human respiratory tract infections with similar disease manifestation but distinct mechanisms of immunopathology and host response to the infection. In this study, we investigated the SARS-CoV-2-specific CD4+ T cell phenotype in comparison with H1N1 influenza-specific CD4+ T cells. We determined the levels of SARS-CoV-2- and H1N1-specific CD4+ T cell responses in subjects recovered from COVID-19 one to 15 months ago by stimulating PBMCs with live SARS-CoV-2 or H1N1 influenza viruses. We investigated phenotypes and frequencies of main CD4+ T cell subsets specific for SARS-CoV-2 using an activation induced cell marker assay and multicolor flow cytometry, and compared the magnitude of SARS-CoV-2- and H1N1-specific CD4+ T cells. SARS-CoV-2-specific CD4+ T cells were detected 1-15 months post infection and the frequency of SARS-CoV-2-specific central memory CD4+ T cells was increased with the time post-symptom onset. Next, SARS-CoV-2-specific CD4+ T cells predominantly expressed the Th17 phenotype, but the level of Th17 cells in this group was lower than in H1N1-specific CD4+ T cells. Finally, we found that the lower level of total Th17 subset within total SARS-CoV-2-specific CD4+ T cells was linked with the low level of CCR4+CXCR3- 'classical' Th17 cells if compared with H1N1-specific Th17 cells. Taken together, our data suggest the involvement of Th17 cells and their separate subsets in the pathogenesis of SARS-CoV-2- and influenza-induced pneumonia; and a better understanding of Th17 mediated antiviral immune responses may lead to the development of new therapeutic strategies.
Collapse
|
9
|
Cross-Reactivity of SARS-CoV-2 Nucleocapsid-Binding Antibodies and Its Implication for COVID-19 Serology Tests. Viruses 2022; 14:v14092041. [PMID: 36146847 PMCID: PMC9502088 DOI: 10.3390/v14092041] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
The emergence of the new coronavirus SARS-CoV-2 in late 2019 led to the global pandemic COVID-19, causing a profound socioeconomic crisis. Adequate diagnostic tools need to be developed to control the ongoing spread of infection. Virus-specific humoral immunity in COVID-19 patients and those vaccinated with specific vaccines has been characterized in numerous studies, mainly using Spike protein-based serology tests. However, Spike protein and specifically its receptor-binding domain (RBD) are mutation-prone, suggesting the reduced sensitivity of the validated serology tests in detecting antibodies raised to variants of concern (VOC). The viral nucleocapsid (N) protein is more conserved compared to Spike, but little is known about cross-reactivity of the N-specific antibodies between the ancestral B.1 virus and different VOCs. Here, we generated recombinant N phosphoproteins from different SARS-CoV-2 strains and analyzed the magnitude of N-specific antibodies in COVID-19 convalescent sera using an in-house N-based ELISA test system. We found a strong positive correlation in the magnitude of anti-N (B.1) antibodies and antibodies specific to various VOCs in COVID-19-recovered patients, suggesting that the N-binding antibodies are highly cross-reactive, and the most immunogenic epitopes within this protein are not under selective pressure. Overall, our study suggests that the RBD-based serology tests should be timely updated to reflect the constantly evolving nature of the SARS-CoV-2 Spike protein, whereas the validated N-based test systems can be used for the analysis of sera from COVID-19 patients regardless of the strain that caused the infection.
Collapse
|
10
|
Chen L, Yue J, Zhang S, Bai W, Qin L, Zhang C, Wu B, Li M, Xu S, Jiang Q, Yang L, Xu Q, Zhu R, Xie M, Gong R. SARS-CoV-2-Specific Adaptive Immunity in COVID-19 Survivors With Asthma. Front Immunol 2022; 13:947724. [PMID: 35924252 PMCID: PMC9339657 DOI: 10.3389/fimmu.2022.947724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/17/2022] [Indexed: 11/30/2022] Open
Abstract
Background Asthma patients potentially have impaired adaptive immunity to virus infection. The levels of SARS-CoV-2-specific adaptive immunity between COVID-19 survivors with and without asthma are presently unclear. Methods COVID-19 survivors (patients with asthma n=11, with allergies n=8, and COVID-19 only n=17) and non-COVID-19 individuals (asthmatic patients n=10 and healthy controls n=9) were included. The COVID-19 patients were followed up at about 8 months and 16 months after discharge. The clinical characteristics, lymphocyte subsets, memory T cells, and humoral immunity including SARS-CoV-2 specific antibodies, SARS-CoV-2 pseudotyped virus neutralization assay, and memory B cells were analyzed in these subjects. Results The strength of virus-specific T cell response in COVID-19 survivors was positively correlated with the percentage of blood eosinophils and Treg cells (r=0.4007, p=0.0188; and r=0.4435, p=0.0086 respectively) at 8-month follow-up. There were no statistical differences in the levels of SARS-CoV-2-specific T cell response between the COVID-19 survivors with, and without, asthma. Compared to those without asthma, the COVID-19 with asthma survivors had higher levels of SARS-CoV-2-specific neutralizing antibodies (NAbs) at the 8-month follow-up (p<0.05). Moreover, the level of NAbs in COVID-19 survivors was positively correlated with the percentage of Treg and cTfh2 cells (r=0.5037, p=0.002; and r=0.4846, p=0.0141), and negatively correlated with the percentage of Th1 and Th17 cells (r=-0.5701, p=0.0003; and r=-0.3656, p=0.0308), the ratio of Th1/Th2, Th17/Treg, and cTfh1/cTfh2 cell (r=-0.5356, r=-0.5947, r=-0.4485; all p<0.05). The decay rate of NAbs in the COVID-19 survivors with asthma was not significantly different from that of those without asthma at 16-month follow-up. Conclusion The level of SARS-CoV-2-specific NAbs in COVID-19 survivors with asthma was higher than that of those without asthma at 8-month follow-up. The SARS-CoV-2-specific T cell immunity was associated with blood eosinophils and Treg percentages. The SARS-CoV-2-specific humoral immunity was closely associated with cTfh2/cTfh1 imbalance and Treg/Th17 ratio. According to the findings, asthmatic patients in COVID-19 convalescent period may benefit from an enhanced specific humoral immunity, which associates with skewed Th2/Th1 and Treg/Th17 immune.
Collapse
Affiliation(s)
- Li Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Junqing Yue
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Ministry of Health of the People’s Republic of China and National Clinical Research Center for Respiratory Disease, Wuhan, China
| | - Shengding Zhang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Ministry of Health of the People’s Republic of China and National Clinical Research Center for Respiratory Disease, Wuhan, China
| | - Wenxue Bai
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Ministry of Health of the People’s Republic of China and National Clinical Research Center for Respiratory Disease, Wuhan, China
| | - Lu Qin
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Ministry of Health of the People’s Republic of China and National Clinical Research Center for Respiratory Disease, Wuhan, China
| | - Cong Zhang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Ministry of Health of the People’s Republic of China and National Clinical Research Center for Respiratory Disease, Wuhan, China
| | - Bihao Wu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Moxuan Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuyun Xu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Ministry of Health of the People’s Republic of China and National Clinical Research Center for Respiratory Disease, Wuhan, China
| | - Qing Jiang
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Yang
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingxiu Xu
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rongfei Zhu
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Xie
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Ministry of Health of the People’s Republic of China and National Clinical Research Center for Respiratory Disease, Wuhan, China
- *Correspondence: Min Xie, ; Rui Gong,
| | - Rui Gong
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Min Xie, ; Rui Gong,
| |
Collapse
|
11
|
Development of a T Cell-Based COVID-19 Vaccine Using a Live Attenuated Influenza Vaccine Viral Vector. Vaccines (Basel) 2022; 10:vaccines10071142. [PMID: 35891306 PMCID: PMC9318028 DOI: 10.3390/vaccines10071142] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/06/2022] [Accepted: 07/14/2022] [Indexed: 12/12/2022] Open
Abstract
The COVID-19 pandemic emerged in 2020 and has caused an unprecedented burden to all countries in the world. SARS-CoV-2 continues to circulate and antigenically evolve, enabling multiple reinfections. To address the issue of the virus antigenic variability, T cell-based vaccines are being developed, which are directed to more conserved viral epitopes. We used live attenuated influenza vaccine (LAIV) virus vector to generate recombinant influenza viruses expressing various T-cell epitopes of SARS-CoV-2 from either neuraminidase (NA) or non-structural (NS1) genes, via the P2A self-cleavage site. Intranasal immunization of human leukocyte antigen-A*0201 (HLA-A2.1) transgenic mice with these recombinant viruses did not result in significant SARS-CoV-2-specific T-cell responses, due to the immunodominance of NP366 influenza T-cell epitope. However, side-by-side stimulation of peripheral blood mononuclear cells (PBMCs) of COVID-19 convalescents with recombinant viruses and LAIV vector demonstrated activation of memory T cells in samples stimulated with LAIV/SARS-CoV-2, but not LAIV alone. Hamsters immunized with a selected LAIV/SARS-CoV-2 prototype were protected against challenge with influenza virus and a high dose of SARS-CoV-2 of Wuhan and Delta lineages, which was confirmed by reduced weight loss, milder clinical symptoms and less pronounced histopathological signs of SARS-CoV-2 infection in the lungs, compared to LAIV- and mock-immunized animals. Overall, LAIV is a promising platform for the development of a bivalent vaccine against influenza and SARS-CoV-2.
Collapse
|
12
|
Rivera EG, Patnaik A, Salvemini J, Jain S, Lee K, Lozeau D, Yao Q. SARS-CoV-2/COVID-19 and its relationship with NOD2 and ubiquitination. Clin Immunol 2022; 238:109027. [PMID: 35513305 PMCID: PMC9059341 DOI: 10.1016/j.clim.2022.109027] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/24/2022] [Accepted: 04/22/2022] [Indexed: 01/25/2023]
Abstract
COVID-19 infection activates the immune system to cause autoimmune and autoinflammatory diseases. We provide a comprehensive review of the relationship between SARS-CoV-2, NOD2 and ubiquitination. COVID-19 infection partly results from host inborn errors and genetic factors and can lead to autoinflammatory disease. The interaction between defective NOD2 and viral infection may trigger NOD2-associated disease. SARS-CoV-2 can alter UBA1 and abnormal ubiquitination leading to VEXAS syndrome. Both NOD2 and ubiquitination play important roles in controlling inflammatory process. Receptor interacting protein kinase 2 is a key component of the NOD2 activation pathway and becomes ubiquitinated to recruit downstream effector proteins. NOD2 mutations result in loss of ubiquitin binding and increase ligand-stimulated NOD2 signaling. During viral infection, mutations of either NOD2 or UBA1 genes or in combination can facilitate autoinflammatory disease. COVID-19 infection can cause autoinflammatory disease. There are reciprocal interactions between SARS-CoV-2, NOD2 and ubiquitination.
Collapse
Affiliation(s)
- Edgardo Guzman Rivera
- Division of Rheumatology, Allergy and Immunology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States of America
| | - Asha Patnaik
- Division of Rheumatology, Allergy and Immunology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States of America
| | - Joann Salvemini
- Department of Dermatology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States of America
| | - Sanjeev Jain
- New York Cancer and Blood Specialists, Patchogue, NY, United States of America
| | - Katherine Lee
- Department of Dermatology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States of America
| | - Daniel Lozeau
- Department of Dermatology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States of America
| | - Qingping Yao
- Division of Rheumatology, Allergy and Immunology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States of America.
| |
Collapse
|
13
|
Jing L, Wu X, Krist MP, Hsiang TY, Campbell VL, McClurkan CL, Favors SM, Hemingway LA, Godornes C, Tong DQ, Selke S, LeClair AC, Pyo CW, Geraghty DE, Laing KJ, Wald A, Gale M, Koelle DM. T cell response to intact SARS-CoV-2 includes coronavirus cross-reactive and variant-specific components. JCI Insight 2022; 7:e158126. [PMID: 35133988 PMCID: PMC8986086 DOI: 10.1172/jci.insight.158126] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/02/2022] [Indexed: 12/03/2022] Open
Abstract
SARS-CoV-2 provokes a robust T cell response. Peptide-based studies exclude antigen processing and presentation biology, which may influence T cell detection studies. To focus on responses to whole virus and complex antigens, we used intact SARS-CoV-2 and full-length proteins with DCs to activate CD8 and CD4 T cells from convalescent people. T cell receptor (TCR) sequencing showed partial repertoire preservation after expansion. Resultant CD8 T cells recognize SARS-CoV-2-infected respiratory tract cells, and CD4 T cells detect inactivated whole viral antigen. Specificity scans with proteome-covering protein/peptide arrays show that CD8 T cells are oligospecific per subject and that CD4 T cell breadth is higher. Some CD4 T cell lines enriched using SARS-CoV-2 cross-recognize whole seasonal coronavirus (sCoV) antigens, with protein, peptide, and HLA restriction validation. Conversely, recognition of some epitopes is eliminated for SARS-CoV-2 variants, including spike (S) epitopes in the Alpha, Beta, Gamma, and Delta variant lineages.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Stacy Selke
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | | | - Chu-Woo Pyo
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Daniel E. Geraghty
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Anna Wald
- Department of Medicine
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Michael Gale
- Department of Immunology, and
- Center for Innate Immunity of Immune Disease, Department of Immunology, and
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - David M. Koelle
- Department of Medicine
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Benaroya Research Institute, Seattle, Washington, USA
| |
Collapse
|
14
|
Kumar S, Saxena SK, Maurya VK, Tripathi AK. Progress and Challenges Toward Generation and Maintenance of Long-Lived Memory T Lymphocyte Responses During COVID-19. Front Immunol 2022; 12:804808. [PMID: 35250966 PMCID: PMC8891701 DOI: 10.3389/fimmu.2021.804808] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/13/2021] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing the coronavirus disease 2019 (COVID-19) pandemic is a serious global threat until we identify the effective preventive and therapeutic strategies. SARS-CoV-2 infection is characterized by various immunopathological consequences including lymphocyte activation and dysfunction, lymphopenia, cytokine storm, increased level of neutrophils, and depletion and exhaustion of lymphocytes. Considering the low level of antibody-mediated protection during coronavirus infection, understanding the role of T cell for long-term protection is decisive. Both CD4+ and CD8+ T cell response is imperative for cell-mediated immune response during COVID-19. However, the level of CD8+ T cell response reduced to almost half as compared to CD4+ after 6 months of infection. The long-term protection is mediated via generation of immunological memory response during COVID-19. The presence of memory CD4+ T cells in all the severely infected and recovered individuals shows that the memory response is predominated by CD4+ T cells. Prominently, the antigen-specific CD4+ and CD8+ T cells are specifically observed during day 0 to day 28 in COVID-19-vaccinated individuals. However, level of antigen-specific T memory cells in COVID-19-vaccinated individuals defines the long-term protection against forthcoming outbreaks of SARS-CoV-2.
Collapse
Affiliation(s)
- Swatantra Kumar
- Centre for Advanced Research (CFAR), Faculty of Medicine, King George's Medical University (KGMU), Lucknow, India
| | - Shailendra K Saxena
- Centre for Advanced Research (CFAR), Faculty of Medicine, King George's Medical University (KGMU), Lucknow, India
| | - Vimal K Maurya
- Centre for Advanced Research (CFAR), Faculty of Medicine, King George's Medical University (KGMU), Lucknow, India
| | - Anil K Tripathi
- Centre for Advanced Research (CFAR), Faculty of Medicine, King George's Medical University (KGMU), Lucknow, India
| |
Collapse
|
15
|
Bonnet B, Chabrolles H, Archimbaud C, Brebion A, Cosme J, Dutheil F, Lambert C, Junda M, Mirand A, Ollier A, Pereira B, Regagnon C, Vidal M, Evrard B, Henquell C. Decline of Humoral and Cellular Immune Responses Against SARS-CoV-2 6 Months After Full BNT162b2 Vaccination in Hospital Healthcare Workers. Front Immunol 2022; 13:842912. [PMID: 35309363 PMCID: PMC8926062 DOI: 10.3389/fimmu.2022.842912] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/10/2022] [Indexed: 12/18/2022] Open
Abstract
Clinical trials and real-world evidence on COVID-19 vaccines have shown their effectiveness against severe disease and death but the durability of protection remains unknown. We analysed the humoral and T-cell immune responses in 110 healthcare workers (HCWs) vaccinated according to the manufacturer's recommended schedule of dose 2 three weeks after dose 1 from a prospective on-going cohort in early 2021, 3 and 6 months after full vaccination with the BNT162b2 mRNA vaccine. Anti-RBD IgG titres were lower in HCWs over 60 years old 3 months after the second dose (p=0.03) and declined in all the subjects between 3 and 6 months with a median percentage change of -58.5%, irrespective of age and baseline comorbidities. Specific T-cell response measured by IGRA declined over time by at least 42% (median) in 91 HCWs and increased by 33% (median) in 17 others. Six HCWs had a negative T-cell response at 6 months. Ongoing follow-up should provide correlates of long-term protection according to the different immune response profiles observed. COVIDIM study was registered under the number NCT04896788 on clinicaltrials.gov.
Collapse
Affiliation(s)
- Benjamin Bonnet
- Clermont-Ferrand University Hospital (CHU Clermont Ferrand), Immunology Department, Clermont-Ferrand, France
- Clermont Auvergne University, UMR UNH, ECREIN, Clermont-Ferrand, France
| | - Hélène Chabrolles
- Clermont-Ferrand University Hospital (CHU Clermont Ferrand), 3IHP, Virology Department, Clermont-Ferrand, France
- Clermont Auvergne University, CNRS UMR, LMGE, Clermont-Ferrand, France
| | - Christine Archimbaud
- Clermont-Ferrand University Hospital (CHU Clermont Ferrand), 3IHP, Virology Department, Clermont-Ferrand, France
- Clermont Auvergne University, CNRS UMR, LMGE, Clermont-Ferrand, France
| | - Amélie Brebion
- Clermont-Ferrand University Hospital (CHU Clermont Ferrand), 3IHP, Virology Department, Clermont-Ferrand, France
| | - Justine Cosme
- Clermont-Ferrand University Hospital (CHU Clermont Ferrand), Immunology Department, Clermont-Ferrand, France
| | - Frédéric Dutheil
- Clermont-Ferrand University Hospital (CHU Clermont Ferrand), Preventive and Occupational Medicine, Clermont-Ferrand, France
- Clermont Auvergne University, CNRS, LaPSCo Physiological and Psychosocial Stress, Clermont-Ferrand, France
| | - Céline Lambert
- Clermont-Ferrand University Hospital (CHU Clermont Ferrand), Clinical Research and Innovation Direction (DRCI), Biostatistics Unit, Clermont-Ferrand, France
| | - Maud Junda
- Clermont-Ferrand University Hospital (CHU Clermont Ferrand), Immunology Department, Clermont-Ferrand, France
| | - Audrey Mirand
- Clermont-Ferrand University Hospital (CHU Clermont Ferrand), 3IHP, Virology Department, Clermont-Ferrand, France
- Clermont Auvergne University, CNRS UMR, LMGE, Clermont-Ferrand, France
| | - Amandine Ollier
- Clermont-Ferrand University Hospital (CHU Clermont Ferrand) 3 IHP, Clinical Research and Innovation Direction, Clermont-Ferrand, France
| | - Bruno Pereira
- Clermont-Ferrand University Hospital (CHU Clermont Ferrand), Clinical Research and Innovation Direction (DRCI), Biostatistics Unit, Clermont-Ferrand, France
| | - Christel Regagnon
- Clermont-Ferrand University Hospital (CHU Clermont Ferrand), 3IHP, Virology Department, Clermont-Ferrand, France
| | - Magali Vidal
- Clermont-Ferrand University Hospital (CHU Clermont Ferrand), 3 IHP, Infectious Diseases Department, Clermont-Ferrand, France
| | - Bertrand Evrard
- Clermont-Ferrand University Hospital (CHU Clermont Ferrand), Immunology Department, Clermont-Ferrand, France
- Clermont Auvergne University, UMR UNH, ECREIN, Clermont-Ferrand, France
| | - Cécile Henquell
- Clermont-Ferrand University Hospital (CHU Clermont Ferrand), 3IHP, Virology Department, Clermont-Ferrand, France
- Clermont Auvergne University, CNRS UMR, LMGE, Clermont-Ferrand, France
| |
Collapse
|
16
|
Jing L, Wu X, Krist MP, Hsiang TY, Campbell VL, McClurkan CL, Favors SM, Hemingway LA, Godornes C, Tong DQ, Selke S, LeClair AC, Pyo CW, Geraghty DE, Laing KJ, Wald A, Gale M, Koelle DM. T cell response to intact SARS-CoV-2 includes coronavirus cross-reactive and variant-specific components. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.01.23.22269497. [PMID: 35118477 PMCID: PMC8811910 DOI: 10.1101/2022.01.23.22269497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
SARS-CoV-2 provokes a brisk T cell response. Peptide-based studies exclude antigen processing and presentation biology and may influence T cell detection studies. To focus on responses to whole virus and complex antigens, we used intact SARS-CoV-2 and full-length proteins with DC to activate CD8 and CD4 T cells from convalescent persons. T cell receptor (TCR) sequencing showed partial repertoire preservation after expansion. Resultant CD8 T cells recognize SARS-CoV-2-infected respiratory cells, and CD4 T cells detect inactivated whole viral antigen. Specificity scans with proteome-covering protein/peptide arrays show that CD8 T cells are oligospecific per subject and that CD4 T cell breadth is higher. Some CD4 T cell lines enriched using SARS-CoV-2 cross-recognize whole seasonal coronavirus (sCoV) antigens, with protein, peptide, and HLA restriction validation. Conversely, recognition of some epitopes is eliminated for SARS-CoV-2 variants, including spike (S) epitopes in the alpha, beta, gamma, and delta variant lineages.
Collapse
|
17
|
Guest PC, Rahmoune H. Liquid Chromatography-Mass Spectrometry Analysis of Peripheral Blood Mononuclear Cells from SARS-CoV-2 Infected Patients. Methods Mol Biol 2022; 2511:201-211. [PMID: 35838962 DOI: 10.1007/978-1-0716-2395-4_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
COVID-19 disease is caused by infection with the SARS-CoV-2 virus and is associated with a cytokine storm effect in some patients. This can lead to decreased ability of the host to cope with the infection and result in severe disease outcomes. Here, we present a protocol for isolation of peripheral blood mononuclear cells (PBMCs) from COVID-19 patients followed by liquid chromatography-mass spectrometry (LC-MS) profiling to identify the affected molecules and molecular pathways. It is hoped that this will lead to the identification of potential biomarkers for monitoring the disease as well as treatment responses. This approach could also be used in the study of other respiratory viruses.
Collapse
Affiliation(s)
- Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil.
| | - Hassan Rahmoune
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Cambridge, UK
| |
Collapse
|
18
|
Iwata K, Xie MJ, Guest PC, Hirai T, Matsuzazki H. Measurement of Mitochondrial Respiration in Cryopreserved Human Peripheral Blood Mononuclear Cells (PBMCs). Methods Mol Biol 2022; 2511:321-332. [PMID: 35838971 DOI: 10.1007/978-1-0716-2395-4_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Inflammatory diseases caused by infectious agents such as the SARS-CoV-2 virus can lead to impaired reductive-oxidative (REDOX) balance and disrupted mitochondrial function. Peripheral blood mononuclear cells (PBMCs) provide a useful model for studying the effects of inflammatory diseases on mitochondrial function but can be limited by the need to store these cells by cryopreservation prior to assay. Here, we describe a method for improving and determining PBMC viability with normalization of values to number of living cells. The approach can be applied not only to PBMC samples derived from patients with diseases marked by an altered inflammatory response such as viral infections.
Collapse
Affiliation(s)
- Keiko Iwata
- Division of Development of Mental Functions, Research Center for Child Mental Development, University of Fukui, Fukui, Japan.
- United Graduate School of Child Development, Osaka University, Osaka, Japan.
- Life Science Innovation Center, University of Fukui, Fukui, Japan.
| | - Min-Jue Xie
- Division of Development of Mental Functions, Research Center for Child Mental Development, University of Fukui, Fukui, Japan
- United Graduate School of Child Development, Osaka University, Osaka, Japan
- Life Science Innovation Center, University of Fukui, Fukui, Japan
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Takaharu Hirai
- Department of Psychiatric and Mental Health Nursing, School of Nursing, University of Fukui, Fukui, Japan
| | - Hideo Matsuzazki
- Division of Development of Mental Functions, Research Center for Child Mental Development, University of Fukui, Fukui, Japan
- United Graduate School of Child Development, Osaka University, Osaka, Japan
- Life Science Innovation Center, University of Fukui, Fukui, Japan
| |
Collapse
|
19
|
Fan B, Li XC, Huang YB, Li WL, Sun M, Duan X, Wang YT, Zhang LX, Xin ZH, Yun ZF. Impacts of androgen deprivation therapy on the risks and outcomes of SARS-CoV-2 infection in patients with prostate cancer. Asian J Androl 2022; 25:366-374. [PMID: 35915542 DOI: 10.4103/aja202246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Studies have investigated the effects of androgen deprivation therapy (ADT) use on the incidence and clinical outcomes of coronavirus disease 2019 (COVID-19); however, the results have been inconsistent. We searched the PubMed, Medline, Cochrane, Scopus, and Web of Science databases from inception to March 2022; 13 studies covering 84 003 prostate cancer (PCa) patients with or without ADT met the eligibility criteria and were included in the meta-analysis. We calculated the pooled risk ratios (RRs) with 95% confidence intervals (CIs) to explore the association between ADT use and the infection risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and severity of COVID-19. After synthesizing the evidence, the pooled RR in the SARS-CoV-2 positive group was equal to 1.17, and the SARS-CoV-2 positive risk in PCa patients using ADT was not significantly different from that in those not using ADT (P = 0.544). Moreover, no significant results concerning the beneficial effect of ADT on the rate of intensive care unit admission (RR = 1.04, P = 0.872) or death risk (RR = 1.23, P = 0.53) were found. However, PCa patients with a history of ADT use had a markedly higher COVID-19 hospitalization rate (RR = 1.31, P = 0.015) than those with no history of ADT use. These findings indicate that ADT use by PCa patients is associated with a high risk of hospitalization during infection with SARS-CoV-2. A large number of high quality studies are needed to confirm these results.
Collapse
|