1
|
Westrich JA, McNulty EE, Stoltz M, Sherman TJ, Carpenter M, Burton M, Nalls A, Rubio HS, Sandoval A, Mayo C, Mathiason CK. Immunological and Pathogenic Differences of Two Experimental Bluetongue Virus Serotype Infections Evaluated in Two Disparate Host Species. Viruses 2024; 16:1593. [PMID: 39459926 PMCID: PMC11512378 DOI: 10.3390/v16101593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/23/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Bluetongue virus (BTV) is a prevalent midge-borne pathogen that infects ruminant species worldwide. BTV infections range from asymptomatic to lethal, with mechanisms that determine the severity of infection remaining largely undefined. Although it is relatively poorly understood, the immune response to BTV infection is thought to be critical for both the propagation of disease as well as the resolution of infection. To bridge this gap in knowledge, we infected cohorts of sheep and muntjac deer with two serotypes of BTV (BTV10 and BTV17) for longitudinal analysis (30 days). Interestingly, species-specific differences were observed. Circulating virus was detected early and remained detectable for the duration of the sheep study, while infections in muntjac showed faltering detection of BTV10 at 3 weeks post infection. The magnitude of the immune response was subdued in the muntjac when compared to the sheep cohorts, though similar responses were observed. We also assessed midge viral uptake and the ability to replicate BTV. Midges successfully fed on both species, yet those that fed on sheep resulted in more efficient BTV transmission. Our findings demonstrate that differences in BTV infections, immune responses, and vector competence across host species and serotypes will impact global BTV emergence and strategies for mitigation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Candace K. Mathiason
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (J.A.W.); (T.J.S.); (A.N.)
| |
Collapse
|
2
|
Luo S, Chen Y, Ma X, Miao H, Jia H, Yi H. Whole-transcriptome analyses of ovine lung microvascular endothelial cells infected with bluetongue virus. Vet Res 2024; 55:122. [PMID: 39334220 PMCID: PMC11438077 DOI: 10.1186/s13567-024-01372-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/15/2024] [Indexed: 09/30/2024] Open
Abstract
Bluetongue virus (BTV) infection induces profound and intricate changes in the transcriptional profile of the host to facilitate its survival and replication. However, there have been no whole-transcriptome studies on ovine lung microvascular endothelial cells (OLMECs) infected with BTV. In this study, we comprehensively analysed the whole-transcriptome sequences of BTV-1 serotype-infected and mock-infected OLMECs and subsequently performed bioinformatics differential analysis. Our analysis revealed 1215 differentially expressed mRNA transcripts, 82 differentially expressed long noncoding RNAs (lncRNAs) transcripts, 63 differentially expressed microRNAs (miRNAs) transcripts, and 42 differentially expressed circular RNAs (circRNAs) transcripts. Annotation from Gene Ontology, enrichment from the Kyoto Encyclopedia of Genes and Genomes, and construction of endogenous competing RNA network analysis revealed that the differentially expressed RNAs primarily participated in viral sensing and signal transduction pathways, antiviral and immune responses, inflammation, and extracellular matrix (ECM)-related pathways. Furthermore, protein‒protein interaction network analysis revealed that BTV may regulate the conformation of ECM receptor proteins and change their biological activity through a series of complex mechanisms. Finally, on the basis of real-time fluorescence quantitative polymerase chain reaction results, the expression trends of the differentially expressed RNA were consistent with the whole-transcriptome sequencing data, such as downregulation of the expression of COL4A1, ITGA8, ITGB5, and TNC and upregulation of the expression of CXCL10, RNASEL, IRF3, IRF7, and IFIHI. This study provides a novel perspective for further investigations of the mechanism of the ECM in the BTV-host interactome and the pathogenesis of lung microvascular endothelial cells.
Collapse
Affiliation(s)
- Shimei Luo
- College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, China
| | - Yunyi Chen
- College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, China
| | - Xianping Ma
- College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, China.
- Chongqing Veterinary Science Engineering Research Center, Rongchang, Chongqing, 402460, China.
| | - Haisheng Miao
- Yunnan Tropical and Subtropical Animal Virus Disease Laboratory, Yunnan Veterinary and Animal Science Institute, Kunming, 650224, China
| | - Huaijie Jia
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Huashan Yi
- College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, China.
- Chongqing Veterinary Science Engineering Research Center, Rongchang, Chongqing, 402460, China.
- Immunology Research Center, Medical Research Institute, Southwest University, Rongchang, Chongqing, 402460, China.
| |
Collapse
|
3
|
Drolet BS, Reister-Hendricks L, Mayo C, Rodgers C, Molik DC, McVey DS. Increased Virulence of Culicoides Midge Cell-Derived Bluetongue Virus in IFNAR Mice. Viruses 2024; 16:1474. [PMID: 39339950 PMCID: PMC11437402 DOI: 10.3390/v16091474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Bluetongue (BT) is a Culicoides midge-borne hemorrhagic disease affecting cervids and ruminant livestock species, resulting in significant economic losses from animal production and trade restrictions. Experimental animal infections using the α/β interferon receptor knockout IFNAR mouse model and susceptible target species are critical for understanding viral pathogenesis, virulence, and evaluating vaccines. However, conducting experimental vector-borne transmission studies with the vector itself are logistically difficult and experimentally problematic. Therefore, experimental infections are induced by hypodermic injection with virus typically derived from baby hamster kidney (BHK) cells. Unfortunately, for many U.S. BTV serotypes, it is difficult to replicate the severity of the disease seen in natural, midge-transmitted infections by injecting BHK-derived virus into target host animals. Using the IFNAR BTV murine model, we compared the virulence of traditional BHK cell-derived BTV-17 with C. sonorensis midge (W8) cell-derived BTV-17 to determine whether using cells of the transmission vector would provide an in vitro virulence aspect of vector-transmitted virus. At both low and high doses, mice inoculated with W8-BTV-17 had an earlier onset of viremia, earlier onset and peak of clinical signs, and significantly higher mortality compared to mice inoculated with BHK-BTV-17. Our results suggest using a Culicoides W8 cell-derived inoculum may provide an in vitro vector-enhanced infection to more closely represent disease levels seen in natural midge-transmitted infections while avoiding the logistical and experimental complexity of working with live midges.
Collapse
Affiliation(s)
- Barbara S. Drolet
- Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (L.R.-H.); (D.C.M.)
| | - Lindsey Reister-Hendricks
- Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (L.R.-H.); (D.C.M.)
| | - Christie Mayo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA; (C.M.); (C.R.)
| | - Case Rodgers
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA; (C.M.); (C.R.)
| | - David C. Molik
- Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (L.R.-H.); (D.C.M.)
| | - David Scott McVey
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, P.O. Box 830905, Lincoln, NE 68583, USA;
| |
Collapse
|
4
|
Herder V, Caporale M, MacLean OA, Pintus D, Huang X, Nomikou K, Palmalux N, Nichols J, Scivoli R, Boutell C, Taggart A, Allan J, Malik H, Ilia G, Gu Q, Ronchi GF, Furnon W, Zientara S, Bréard E, Antonucci D, Capista S, Giansante D, Cocco A, Mercante MT, Di Ventura M, Da Silva Filipe A, Puggioni G, Sevilla N, Stewart ME, Ligios C, Palmarini M. Correlates of disease severity in bluetongue as a model of acute arbovirus infection. PLoS Pathog 2024; 20:e1012466. [PMID: 39150989 DOI: 10.1371/journal.ppat.1012466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/28/2024] [Accepted: 07/31/2024] [Indexed: 08/18/2024] Open
Abstract
Most viral diseases display a variable clinical outcome due to differences in virus strain virulence and/or individual host susceptibility to infection. Understanding the biological mechanisms differentiating a viral infection displaying severe clinical manifestations from its milder forms can provide the intellectual framework toward therapies and early prognostic markers. This is especially true in arbovirus infections, where most clinical cases are present as mild febrile illness. Here, we used a naturally occurring vector-borne viral disease of ruminants, bluetongue, as an experimental system to uncover the fundamental mechanisms of virus-host interactions resulting in distinct clinical outcomes. As with most viral diseases, clinical symptoms in bluetongue can vary dramatically. We reproduced experimentally distinct clinical forms of bluetongue infection in sheep using three bluetongue virus (BTV) strains (BTV-1IT2006, BTV-1IT2013 and BTV-8FRA2017). Infected animals displayed clinical signs varying from clinically unapparent, to mild and severe disease. We collected and integrated clinical, haematological, virological, and histopathological data resulting in the analyses of 332 individual parameters from each infected and uninfected control animal. We subsequently used machine learning to select the key viral and host processes associated with disease pathogenesis. We identified and experimentally validated five different fundamental processes affecting the severity of bluetongue: (i) virus load and replication in target organs, (ii) modulation of the host type-I IFN response, (iii) pro-inflammatory responses, (iv) vascular damage, and (v) immunosuppression. Overall, we showed that an agnostic machine learning approach can be used to prioritise the different pathogenetic mechanisms affecting the disease outcome of an arbovirus infection.
Collapse
Affiliation(s)
- Vanessa Herder
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Marco Caporale
- Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise "G. Caporale", Teramo, Italy
| | - Oscar A MacLean
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Davide Pintus
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
| | - Xinyi Huang
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Kyriaki Nomikou
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Natasha Palmalux
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Jenna Nichols
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Rosario Scivoli
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
| | - Chris Boutell
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Aislynn Taggart
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Jay Allan
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Haris Malik
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Georgios Ilia
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Quan Gu
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | | | - Wilhelm Furnon
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Stephan Zientara
- Laboratory for Animal Health, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, Maisons-Alfort, France
| | - Emmanuel Bréard
- Laboratory for Animal Health, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, Maisons-Alfort, France
| | - Daniela Antonucci
- Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise "G. Caporale", Teramo, Italy
| | - Sara Capista
- Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise "G. Caporale", Teramo, Italy
| | - Daniele Giansante
- Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise "G. Caporale", Teramo, Italy
| | - Antonio Cocco
- Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise "G. Caporale", Teramo, Italy
| | - Maria Teresa Mercante
- Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise "G. Caporale", Teramo, Italy
| | - Mauro Di Ventura
- Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise "G. Caporale", Teramo, Italy
| | - Ana Da Silva Filipe
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | | | - Noemi Sevilla
- Centro de Investigación en Sanidad Animal. Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria. Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC). Valdeolmos, Madrid, Spain
| | - Meredith E Stewart
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Ciriaco Ligios
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
| | - Massimo Palmarini
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| |
Collapse
|
5
|
Kolla HB, Dutt M, Kumar A, Hebbandi Nanjunadappa R, Karakach T, Singh KP, Kelvin D, Clement Mertens PP, Umeshappa CS. Immuno-informatics study identifies conserved T cell epitopes in non-structural proteins of Bluetongue virus serotypes: formulation of a computationally optimized next-generation broad-spectrum multi-epitope vaccine. Front Immunol 2024; 15:1424307. [PMID: 39011043 PMCID: PMC11246920 DOI: 10.3389/fimmu.2024.1424307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/13/2024] [Indexed: 07/17/2024] Open
Abstract
Introduction Bluetongue (BT) poses a significant threat to the livestock industry, affecting various animal species and resulting in substantial economic losses. The existence of numerous BT virus (BTV) serotypes has hindered control efforts, highlighting the need for broad-spectrum vaccines. Methodology In this study, we evaluated the conserved amino acid sequences within key non-structural (NS) proteins of BTV and identified numerous highly conserved murine- and bovine-specific MHC class I-restricted (MHC-I) CD8+ and MHC-II-restricted CD4+ epitopes. We then screened these conserved epitopes for antigenicity, allergenicity, toxicity, and solubility. Using these epitopes, we developed in silico-based broad-spectrum multiepitope vaccines with Toll-like receptor (TLR-4) agonists. The predicted proinflammatory cytokine response was assessed in silico using the C-IMMSIM server. Structural modeling and refinement were achieved using Robetta and GalaxyWEB servers. Finally, we assessed the stability of the docking complexes through extensive 100-nanosecond molecular dynamics simulations before considering the vaccines for codon optimization and in silico cloning. Results We found many epitopes that meet these criteria within NS1 and NS2 proteins and developed in silico broad-spectrum vaccines. The immune simulation studies revealed that these vaccines induce high levels of IFN-γ and IL-2 in the vaccinated groups. Protein-protein docking analysis demonstrated promising epitopes with strong binding affinities to TLR-4. The docked complexes were stable, with minimal Root Mean Square Deviation and Root Mean Square Fluctuation values. Finally, the in silico-cloned plasmids have high % of GC content with > 0.8 codon adaptation index, suggesting they are suitable for expressing the protein vaccines in prokaryotic system. Discussion These next-generation vaccine designs are promising and warrant further investigation in wet lab experiments to assess their immunogenicity, safety, and efficacy for practical application in livestock. Our findings offer a robust framework for developing a comprehensive, broad-spectrum vaccine, potentially revolutionizing BT control and prevention strategies in the livestock industry.
Collapse
Affiliation(s)
- Harish Babu Kolla
- Department of Microbiology, Immunology and Pediatrics, Dalhousie University, Halifax, NS, Canada
- Immunology Division, IWK Health Centre, Halifax, NS, Canada
| | - Mansi Dutt
- Department of Microbiology, Immunology and Pediatrics, Dalhousie University, Halifax, NS, Canada
- Immunology Division, IWK Health Centre, Halifax, NS, Canada
| | - Anuj Kumar
- Department of Microbiology, Immunology and Pediatrics, Dalhousie University, Halifax, NS, Canada
- Immunology Division, IWK Health Centre, Halifax, NS, Canada
| | - Roopa Hebbandi Nanjunadappa
- Department of Microbiology, Immunology and Pediatrics, Dalhousie University, Halifax, NS, Canada
- Immunology Division, IWK Health Centre, Halifax, NS, Canada
| | - Tobias Karakach
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Karam Pal Singh
- Center for Animal Disease Research and Diagnosis, Indian Veterinary Research Institute, Bareilly, India
| | - David Kelvin
- Department of Microbiology, Immunology and Pediatrics, Dalhousie University, Halifax, NS, Canada
- Immunology Division, IWK Health Centre, Halifax, NS, Canada
| | | | - Channakeshava Sokke Umeshappa
- Department of Microbiology, Immunology and Pediatrics, Dalhousie University, Halifax, NS, Canada
- Immunology Division, IWK Health Centre, Halifax, NS, Canada
| |
Collapse
|
6
|
Newbrook K, Khan N, Fisher A, Chong K, Gubbins S, Davies WC, Sanders C, Busquets MG, Cooke L, Corla A, Ashby M, Flannery J, Batten C, Stokes JE, Sanz-Bernardo B, Carpenter S, Moffat K, Darpel KE. Specific T-cell subsets have a role in anti-viral immunity and pathogenesis but not viral dynamics or onwards vector transmission of an important livestock arbovirus. Front Immunol 2024; 15:1328820. [PMID: 38357545 PMCID: PMC10864546 DOI: 10.3389/fimmu.2024.1328820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction Bluetongue virus (BTV) is an arthropod-borne Orbivirus that is almost solely transmitted by Culicoides biting midges and causes a globally important haemorrhagic disease, bluetongue (BT), in susceptible ruminants. Infection with BTV is characterised by immunosuppression and substantial lymphopenia at peak viraemia in the host. Methods In this study, the role of cell-mediated immunity and specific T-cell subsets in BTV pathogenesis, clinical outcome, viral dynamics, immune protection, and onwards transmission to a susceptible Culicoides vector is defined in unprecedented detail for the first time, using an in vivo arboviral infection model system that closely mirrors natural infection and transmission of BTV. Individual circulating CD4+, CD8+, or WC1+ γδ T-cell subsets in sheep were depleted through the administration of specific monoclonal antibodies. Results The absence of cytotoxic CD8+ T cells was consistently associated with less severe clinical signs of BT, whilst the absence of CD4+ and WC1+ γδ T cells both resulted in an increased clinical severity. The absence of CD4+ T cells also impaired both a timely protective neutralising antibody response and the production of IgG antibodies targeting BTV non-structural protein, NS2, highlighting that the CD4+ T-cell subset is important for a timely protective immune response. T cells did not influence viral replication characteristics, including onset/dynamics of viraemia, shedding, or onwards transmission of BTV to Culicoides. We also highlight differences in T-cell dependency for the generation of immunoglobulin subclasses targeting BTV NS2 and the structural protein, VP7. Discussion This study identifies a diverse repertoire of T-cell functions during BTV infection in sheep, particularly in inducing specific anti-viral immune responses and disease manifestation, and will support more effective vaccination strategies.
Collapse
Affiliation(s)
- Kerry Newbrook
- Orbivirus Research, The Pirbright Institute, Woking, United Kingdom
| | - Nakibul Khan
- Orbivirus Research, The Pirbright Institute, Woking, United Kingdom
- Department of Biology, University of York, York, United Kingdom
| | - Aimee Fisher
- Orbivirus Research, The Pirbright Institute, Woking, United Kingdom
- School of Biosciences AND School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| | - Karen Chong
- Orbivirus Research, The Pirbright Institute, Woking, United Kingdom
- School of Biosciences AND School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| | - Simon Gubbins
- Transmission Biology, The Pirbright Institute, Woking, United Kingdom
| | - William C. Davies
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | | | | | - Lyndsay Cooke
- Orbivirus Research, The Pirbright Institute, Woking, United Kingdom
| | - Amanda Corla
- Non Vesicular Reference Laboratory, The Pirbright Institute, Woking, United Kingdom
| | - Martin Ashby
- Non Vesicular Reference Laboratory, The Pirbright Institute, Woking, United Kingdom
| | - John Flannery
- Non Vesicular Reference Laboratory, The Pirbright Institute, Woking, United Kingdom
| | - Carrie Batten
- Non Vesicular Reference Laboratory, The Pirbright Institute, Woking, United Kingdom
| | | | - Beatriz Sanz-Bernardo
- Large Deoxyribonucleic Acid (DNA), Viruses, The Pirbright Institute, Woking, United Kingdom
| | | | - Katy Moffat
- Flow Cytometry, The Pirbright Institute, Woking, United Kingdom
| | - Karin E. Darpel
- Orbivirus Research, The Pirbright Institute, Woking, United Kingdom
- Department of Diagnostics and Development, Institute of Virology and Immunology, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
7
|
Yang J, Zhao Y, Fu Y, Lv Y, Zhu Y, Zhu M, Zhao J, Wang Y, Wu C, Zhao W. Recombinant antigen P29 of Echinococcus granulosus induces Th1, Tc1, and Th17 cell immune responses in sheep. Front Immunol 2023; 14:1243204. [PMID: 38187382 PMCID: PMC10768560 DOI: 10.3389/fimmu.2023.1243204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/22/2023] [Indexed: 01/09/2024] Open
Abstract
Echinococcosis is a common human and animal parasitic disease that seriously endangers human health and animal husbandry. Although studies have been conducted on vaccines for echinococcosis, to date, there is no human vaccine available for use. One of the main reasons for this is the lack of in-depth research on basic immunization with vaccines. Our previous results confirmed that recombinant antigen P29 (rEg.P29) induced more than 90% immune protection in both mice and sheep, but data on its induction of sheep-associated cellular immune responses are lacking. In this study, we investigated the changes in CD4+ T cells, CD8+ T cells, and antigen-specific cytokines IFN-γ, IL-4, and IL-17A after rEg.P29 immunization using enzyme-linked immunospot assay (ELISPOT), enzyme-linked immunosorbent assay (ELISA), and flow cytometry to investigate the cellular immune response induced by rEg.P29 in sheep. It was found that rEg.P29 immunization did not affect the percentage of CD4+ and CD8+ T cells in peripheral blood mononuclear cells (PBMCs), and was able to stimulate the proliferation of CD4+ and CD8+ T cells after immunization in vitro. Importantly, the results of both ELISPOT and ELISA showed that rEg.P29 can induce the production of the specific cytokines IFN-γ and IL-17A, and flow cytometry verified that rEg.P29 can induce the expression of IFN-γ in CD4+ and CD8+ T cells and IL-17A in CD4+ T cells; however, no IL-4 expression was observed. These results indicate that rEg.P29 can induce Th1, Th17, and Tc1 cellular immune responses in sheep against echinococcosis infection, providing theoretical support for the translation of rEg.P29 vaccine applications.
Collapse
Affiliation(s)
- Jihui Yang
- Center of Scientific Technology of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Prevention and Treatment of Common Infectious Diseases of Ningxia Medical University, Yinchuan, China
| | - Yinqi Zhao
- Center of Scientific Technology of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Prevention and Treatment of Common Infectious Diseases of Ningxia Medical University, Yinchuan, China
| | - Yong Fu
- Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, China
| | - Yongxue Lv
- Ningxia Key Laboratory of Prevention and Treatment of Common Infectious Diseases of Ningxia Medical University, Yinchuan, China
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Yazhou Zhu
- Ningxia Key Laboratory of Prevention and Treatment of Common Infectious Diseases of Ningxia Medical University, Yinchuan, China
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Mingxing Zhu
- Center of Scientific Technology of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Prevention and Treatment of Common Infectious Diseases of Ningxia Medical University, Yinchuan, China
| | - Jiaqing Zhao
- Center of Scientific Technology of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Prevention and Treatment of Common Infectious Diseases of Ningxia Medical University, Yinchuan, China
| | - Yana Wang
- Ningxia Key Laboratory of Prevention and Treatment of Common Infectious Diseases of Ningxia Medical University, Yinchuan, China
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Changyou Wu
- Institute of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wei Zhao
- Center of Scientific Technology of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Prevention and Treatment of Common Infectious Diseases of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
8
|
Sahoo PR, Singh P, Biswas S. Development and evaluation of gold nanoprobe based lateral flow device for rapid and sensitive serodetection of Bluetongue in sheep. Anim Biotechnol 2023; 34:4968-4977. [PMID: 37222605 DOI: 10.1080/10495398.2023.2214604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Bluetongue (BT) disease is a viral, insect borne, noncontagious illness of small ruminants caused by Orbivirus, impacting huge economic loss worldwide. The existing BT diagnostic techniques are costly, time-consuming and require both specialized equipment and also skilled personnel. So there is need to develop a rapid, sensitive, on site detection assay for diagnosis of BT. This study utilized secondary antibody derivatized Gold nanoprobes for rapid and sensitive detection of BT over lateral flow device (LFD). The detection limit for this assay was found 1.875 µg of BT IgG/ml and a comparison between LFD and indirect ELISA was performed and the sensitivity and specificity was found at 96% and 99.23%, respectively, with observed kappa value of 0.952. This developed LFD may therefore offer a quick, affordable and accurate diagnosis of BT disease at the field level.
Collapse
Affiliation(s)
- Pravas Ranjan Sahoo
- Biochemistry Division, Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Praveen Singh
- Biochemistry Division, Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
- Biophysics and Electron Microscopy Section, Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Sanchay Biswas
- Centre for Animal Disease Research and Diagnosis, Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| |
Collapse
|
9
|
Westrich JA, McNulty EE, Carpenter M, Burton M, Reed K, Nalls A, Sandoval A, Mayo C, Mathiason CK. Monitoring longitudinal immunological responses to bluetongue virus 17 in experimentally infected sheep. Virus Res 2023; 338:199246. [PMID: 37858729 PMCID: PMC10594635 DOI: 10.1016/j.virusres.2023.199246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Bluetongue virus (BTV) is an economically important pathogen of ruminant species with worldwide prevalence. While many BTV infections are asymptomatic, animals with symptomatic presentation deteriorate quickly with the sickest succumbing to disease within one week. Animals that survive the infection often require months to recover. The immune response to BTV infection is thought to play a central role in controlling the disease. Key to understanding BTV disease is profiling vertebrate host immunological cellular and cytokine responses. Studies to characterize immune responses in ruminants have been limited by a lack of species-specific reagents and assay technology. Here we assess the longitudinal immunological response to experimental BTV-17-California (CA) infection in sheep using the most up to date assays. We infected a cohort of sheep with BTV-17-CA and longitudinally monitored each animal for clinical disease, viremia and specific immunological parameters (B cells, T cells, monocytes) by RT-qPCR, traditional flow cytometry and/or fluorescent based antibody arrays. BTV-inoculated sheep exhibited clinical signs characteristic of bluetongue virus disease. Circulating virus was demonstrated after 8 days post inoculation (DPI) and remained detectable for the remainder of the time course (24 DPI). A distinct lymphopenia was observed between 7 and 14 DPI that rebounded to mock-inoculated control levels at 17 DPI. In addition, we observed increased expression of pro-inflammatory cytokines after 8 DPI. Taken together, we have established a model of BTV infection in sheep and have successfully monitored the longitudinal vertebrate host immunological response and viral infection progression using a combination of traditional methods and cutting-edge technology.
Collapse
Affiliation(s)
- Joseph A Westrich
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Erin E McNulty
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Molly Carpenter
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Mollie Burton
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Kirsten Reed
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Amy Nalls
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Audrey Sandoval
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Christie Mayo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Candace K Mathiason
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
10
|
Louloudes-Lázaro A, Rojas JM, García-García I, Rodríguez-Martín D, Morel E, Martín V, Sevilla N. Comprehensive immune profiling reveals that Orbivirus infection activates immune checkpoints during acute T cell immunosuppression. Front Immunol 2023; 14:1255803. [PMID: 37920474 PMCID: PMC10619675 DOI: 10.3389/fimmu.2023.1255803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023] Open
Abstract
Bluetongue virus (BTV) is an arbovirus transmitted by the bite of infected Culicoides midges that affects domestic and wild ruminants producing great economic losses. The infection induces an IFN response, followed by an adaptive immune response that is essential in disease clearance. BTV can nonetheless impair IFN and humoral responses. The main goal of this study was to gain a more detailed understanding of BTV pathogenesis and its effects on immune cell populations. To this end, we combined flow cytometry and transcriptomic analyses of several immune cells at different times post-infection (pi). Four sheep were infected with BTV serotype 8 and blood samples collected at days 0, 3, 7 and 15pi to perform transcriptomic analysis of B-cell marker+, CD4+, CD8+, and CD14+ sorted peripheral mononuclear cells. The maximum number of differentially expressed genes occurred at day 7pi, which coincided with the peak of infection. KEGG pathway enrichment analysis indicated that genes belonging to virus sensing and immune response initiation pathways were enriched at day 3 and 7 pi in all 4 cell population analyzed. Transcriptomic analysis also showed that at day 7pi T cell exhaustion pathway was enriched in CD4+ cells, while CD8+ cells downregulated immune response initiation pathways. T cell functional studies demonstrated that BTV produced an acute inhibition of CD4+ and CD8+ T cell activation at the peak of replication. This coincided with PD-L1 upregulation on the surface of CD4+ and CD8+ T cells as well as monocytes. Taken together, these data indicate that BTV could exploit the PD1/PD-L1 immune checkpoint to impair T cell responses. These findings identify several mechanisms in the interaction between host and BTV, which could help develop better tools to combat the disease.
Collapse
Affiliation(s)
- Andrés Louloudes-Lázaro
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Madrid, Spain
| | - José M. Rojas
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Madrid, Spain
| | - Isabel García-García
- Departamento de Genética, Fisiología y Microbiología, Unidad de Genética, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Daniel Rodríguez-Martín
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Madrid, Spain
| | - Esther Morel
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Madrid, Spain
| | - Verónica Martín
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Madrid, Spain
| | - Noemí Sevilla
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Madrid, Spain
| |
Collapse
|
11
|
Jiménez-Cabello L, Utrilla-Trigo S, Barreiro-Piñeiro N, Pose-Boirazian T, Martínez-Costas J, Marín-López A, Ortego J. Nanoparticle- and Microparticle-Based Vaccines against Orbiviruses of Veterinary Importance. Vaccines (Basel) 2022; 10:vaccines10071124. [PMID: 35891288 PMCID: PMC9319458 DOI: 10.3390/vaccines10071124] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
Bluetongue virus (BTV) and African horse sickness virus (AHSV) are widespread arboviruses that cause important economic losses in the livestock and equine industries, respectively. In addition to these, another arthropod-transmitted orbivirus known as epizootic hemorrhagic disease virus (EHDV) entails a major threat as there is a conducive landscape that nurtures its emergence in non-endemic countries. To date, only vaccinations with live attenuated or inactivated vaccines permit the control of these three viral diseases, although important drawbacks, e.g., low safety profile and effectiveness, and lack of DIVA (differentiation of infected from vaccinated animals) properties, constrain their usage as prophylactic measures. Moreover, a substantial number of serotypes of BTV, AHSV and EHDV have been described, with poor induction of cross-protective immune responses among serotypes. In the context of next-generation vaccine development, antigen delivery systems based on nano- or microparticles have gathered significant attention during the last few decades. A diversity of technologies, such as virus-like particles or self-assembled protein complexes, have been implemented for vaccine design against these viruses. In this work, we offer a comprehensive review of the nano- and microparticulated vaccine candidates against these three relevant orbiviruses. Additionally, we also review an innovative technology for antigen delivery based on the avian reovirus nonstructural protein muNS and we explore the prospective functionality of the nonstructural protein NS1 nanotubules as a BTV-based delivery platform.
Collapse
Affiliation(s)
- Luis Jiménez-Cabello
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), 28130 Madrid, Spain; (L.J.-C.); (S.U.-T.)
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.B.-P.); (T.P.-B.); (J.M.-C.)
| | - Sergio Utrilla-Trigo
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), 28130 Madrid, Spain; (L.J.-C.); (S.U.-T.)
| | - Natalia Barreiro-Piñeiro
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.B.-P.); (T.P.-B.); (J.M.-C.)
| | - Tomás Pose-Boirazian
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.B.-P.); (T.P.-B.); (J.M.-C.)
| | - José Martínez-Costas
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.B.-P.); (T.P.-B.); (J.M.-C.)
| | - Alejandro Marín-López
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06519, USA;
| | - Javier Ortego
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), 28130 Madrid, Spain; (L.J.-C.); (S.U.-T.)
- Correspondence:
| |
Collapse
|
12
|
Yang J, Lv Y, Zhu Y, Li S, Tao J, Chang L, Zhu M, Zhao J, Wang Y, Wu C, Zhao W. Baseline T-lymphocyte and cytokine indices in sheep peripheral blood. BMC Vet Res 2022; 18:165. [PMID: 35513847 PMCID: PMC9074339 DOI: 10.1186/s12917-022-03268-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/25/2022] [Indexed: 11/18/2022] Open
Abstract
Background Sheep are an important livestock species worldwide and an essential large-animal model for animal husbandry and veterinary research. Understanding fundamental immune indicators, especially T-lymphocyte parameters, is necessary for research on sheep diseases and vaccines, to better understand the immune response to bacteria and viruses for reducing the use of antibiotics and improving the welfare of sheep. We randomly selected 36 sheep of similar ages to analyze cell-related immune indicators in peripheral blood mononuclear cells (PBMCs). The proportions of CD4+ and CD8+ T cells in PBMCs were detected by flow cytometry. We used Concanavalin A (Con A) and Phorbol-12-myristate-13-acetate (PMA)/Ionomycin to stimulate PBMCs, and measured the expression of IFN-γ, IL-4, and IL-17A using enzyme-linked immunosorbent assay (ELISA) and enzyme-linked immunospot assay (ELISpot). Simultaneously, PMA/Ionomycin/brefeldin A (BFA) was added to PBMCs, then the expression of IFN-γ, IL-4, and IL-17A was detected by flow cytometry after 4 h of culturing. In addition, we observed the proliferation of PBMCs stimulated with Con A for 3, 4, and 5 days. Results The proportions of CD4+ T lymphocytes (18.70 ± 4.21%) and CD8+ T lymphocytes (8.70 ± 3.65%) were generally consistent among individuals, with a CD4/CD8 ratio of 2.40 ± 0.79. PBMCs produced high levels of IFN-γ, IL-4, and IL-17A after stimulation with PMA/Ionomycin and Con A. Furthermore, PMA/Ionomycin stimulation of PBMC yielded significantly higher cytokine levels than Con A stimulation. Flow cytometry showed that the level of IFN-γ (51.49 ± 11.54%) in CD8+ T lymphocytes was significantly (p < 0.001) higher than that in CD4+ T lymphocytes (14.29 ± 3.26%); IL-4 (16.13 ± 6.81%) in CD4+ T lymphocytes was significantly (p < 0.001) higher than that in CD8+ T lymphocytes (1.84 ± 1.33%), There was no difference in IL-17A between CD4+ (2.83 ± 0.98%) and CD8+ T lymphocytes (1.34 ± 0.67%). The proliferation of total lymphocytes, CD4+ T lymphocytes, and CD8+ T lymphocytes continued to increase between days 3 and 5; however, there were no significant differences in proliferation between the cell types during the stimulation period. Conclusions Evaluating primary sheep immune indicators, especially T lymphocytes, is significant for studying cellular immunity. This study provided valuable data and theoretical support for assessing the immune response of sheep to pathogens and improving sheep welfare.
Collapse
Affiliation(s)
- Jihui Yang
- Center of Scientifc Technology of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Prevention and Treatment of Common Infectious Diseases, Yinchuan, China.,School of Basic Medical Science of Ningxia Medical University, Yinchuan, China
| | - Yongxue Lv
- Ningxia Key Laboratory of Prevention and Treatment of Common Infectious Diseases, Yinchuan, China.,School of Basic Medical Science of Ningxia Medical University, Yinchuan, China
| | - Yazhou Zhu
- Ningxia Key Laboratory of Prevention and Treatment of Common Infectious Diseases, Yinchuan, China.,School of Basic Medical Science of Ningxia Medical University, Yinchuan, China
| | - Shasha Li
- Ningxia Key Laboratory of Prevention and Treatment of Common Infectious Diseases, Yinchuan, China.,School of Basic Medical Science of Ningxia Medical University, Yinchuan, China
| | - Jia Tao
- Ningxia Key Laboratory of Prevention and Treatment of Common Infectious Diseases, Yinchuan, China.,School of Basic Medical Science of Ningxia Medical University, Yinchuan, China
| | - Liangliang Chang
- Ningxia Key Laboratory of Prevention and Treatment of Common Infectious Diseases, Yinchuan, China.,School of Basic Medical Science of Ningxia Medical University, Yinchuan, China
| | - Mingxing Zhu
- Ningxia Key Laboratory of Prevention and Treatment of Common Infectious Diseases, Yinchuan, China.,School of Basic Medical Science of Ningxia Medical University, Yinchuan, China
| | - Jiaqing Zhao
- Ningxia Key Laboratory of Prevention and Treatment of Common Infectious Diseases, Yinchuan, China.,School of Basic Medical Science of Ningxia Medical University, Yinchuan, China
| | - Yana Wang
- Ningxia Key Laboratory of Prevention and Treatment of Common Infectious Diseases, Yinchuan, China.,School of Basic Medical Science of Ningxia Medical University, Yinchuan, China
| | - Changyou Wu
- Institute of Immunology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Wei Zhao
- Ningxia Key Laboratory of Prevention and Treatment of Common Infectious Diseases, Yinchuan, China. .,School of Basic Medical Science of Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
13
|
Vaccination as a Strategy to Prevent Bluetongue Virus Vertical Transmission. Pathogens 2021; 10:pathogens10111528. [PMID: 34832683 PMCID: PMC8622840 DOI: 10.3390/pathogens10111528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/13/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
Bluetongue virus (BTV) produces an economically important disease in ruminants of compulsory notification to the OIE. BTV is typically transmitted by the bite of Culicoides spp., however, some BTV strains can be transmitted vertically, and this is associated with fetus malformations and abortions. The viral factors associated with the virus potency to cross the placental barrier are not well defined. The potency of vertical transmission is retained and sometimes even increased in live attenuated BTV vaccine strains. Because BTV possesses a segmented genome, the possibility of reassortment of vaccination strains with wild-type virus could even favor the transmission of this phenotype. In the present review, we will describe the non-vector-based BTV infection routes and discuss the experimental vaccination strategies that offer advantages over this drawback of some live attenuated BTV vaccines.
Collapse
|