1
|
Alqahtani SAM. Mucosal immunity in COVID-19: a comprehensive review. Front Immunol 2024; 15:1433452. [PMID: 39206184 PMCID: PMC11349522 DOI: 10.3389/fimmu.2024.1433452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024] Open
Abstract
Mucosal immunity plays a crucial role in defending against coronaviruses, particularly at respiratory sites, serving as the first line of defense against viral invasion and replication. Coronaviruses have developed various immune evasion strategies at the mucosal immune system, hindering the recognition of infected cells and evading antibody responses. Understanding the immune mechanisms and responses is crucial for developing effective vaccines and therapeutics against coronaviruses. The role of mucosal immunity in COVID-19 is significant, influencing both local and systemic immune responses to the virus. Although most clinical studies focus on antibodies and cellular immunity in peripheral blood, mucosal immune responses in the respiratory tract play a key role in the early restriction of viral replication and the clearance of SARS-CoV-2. Identification of mucosal biomarkers associated with viral clearance will allow monitoring of infection-induced immunity. Mucosally delivered vaccines and those under clinical trials are being compared and contrasted to understand their effectiveness in inducing mucosal immunity against coronaviruses. A greater understanding of lung tissue-based immunity may lead to improved diagnostic and prognostic procedures and novel treatment strategies aimed at reducing the disease burden of community-acquired pneumonia, avoiding the systemic manifestations of infection and excess morbidity and mortality. This comprehensive review article outlines the current evidence about the role of mucosal immune responses in the clearance of SARS-CoV-2 infection, as well as potential mucosal mechanisms of protection against (re-)infection. It also proposes that there is a significant role for mucosal immunity and for secretory as well as circulating IgA antibodies in COVID-19, and that it is important to elucidate this in order to comprehend especially the asymptomatic and mild states of the infection, which appear to account for the majority of cases. Moreover, it is possible that mucosal immunity can be exploited for beneficial diagnostic, therapeutic, or prophylactic purposes. The findings from recent studies on mucosal immunity in COVID-19 can be used to develop effective vaccines and treatments that can effectively target both mucosal and systemic immune responses.
Collapse
|
2
|
Martin J, Hollowood Z, Chorlton J, Dyer C, Marelli-Berg F. Modulating regulatory T cell migration in the treatment of autoimmunity and autoinflammation. Curr Opin Pharmacol 2024; 77:102466. [PMID: 38906084 DOI: 10.1016/j.coph.2024.102466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/23/2024]
Abstract
Treatment of autoimmunity and autoinflammation with regulatory T cells has received much attention in the last twenty years. Despite the well-documented clinical benefit of Treg therapy, a large-scale application has proven elusive, mainly due to the extensive culture facilities required and associated costs. A possible way to overcome these hurdles in part is to target Treg migration to inflammatory sites using a small molecule. Here we review recent advances in this strategy and introduce the new concept of pharmacologically enhanced delivery of endogenous Tregs to control inflammation, which has been recently validated in humans.
Collapse
Affiliation(s)
- John Martin
- Division of Medicine, University College London, London, WC1E 6JF, UK; St George Street Capital, London, EC4R 1BE, UK.
| | | | | | - Carlene Dyer
- William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Federica Marelli-Berg
- William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK.
| |
Collapse
|
3
|
Roche R, Odeh NH, Andar AU, Tulapurkar ME, Roche JA. Protection against Severe Illness versus Immunity-Redefining Vaccine Effectiveness in the Aftermath of COVID-19. Microorganisms 2023; 11:1963. [PMID: 37630523 PMCID: PMC10459411 DOI: 10.3390/microorganisms11081963] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/03/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Anti-SARS-CoV-2 vaccines have played a pivotal role in reducing the risk of developing severe illness from COVID-19, thus helping end the COVID-19 global public health emergency after more than three years. Intriguingly, as SARS-CoV-2 variants emerged, individuals who were fully vaccinated did get infected in high numbers, and viral loads in vaccinated individuals were as high as those in the unvaccinated. However, even with high viral loads, vaccinated individuals were significantly less likely to develop severe illness; this begs the question as to whether the main effect of anti-SARS-CoV-2 vaccines is to confer protection against severe illness or immunity against infection. The answer to this question is consequential, not only to the understanding of how anti-SARS-CoV-2 vaccines work, but also to public health efforts against existing and novel pathogens. In this review, we argue that immune system sensitization-desensitization rather than sterilizing immunity may explain vaccine-mediated protection against severe COVID-19 illness even when the SARS-CoV-2 viral load is high. Through the lessons learned from COVID-19, we make the case that in the disease's aftermath, public health agencies must revisit healthcare policies, including redefining the term "vaccine effectiveness."
Collapse
Affiliation(s)
- Renuka Roche
- Occupational Therapy Program, School of Health Sciences, College of Health and Human Services, Eastern Michigan University, Ypsilanti, MI 48197, USA;
| | - Nouha H. Odeh
- Ph.D. Program in Immunology and Microbiology, Department of Biochemistry, Microbiology & Immunology, School of Medicine, Wayne State University, Detroit, MI 48201, USA;
| | - Abhay U. Andar
- Baltimore County, Translational Life Science Technology, University of Maryland, Rockville, MD 20850, USA;
| | - Mohan E. Tulapurkar
- Division of Pulmonary and Critical Care Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Joseph A. Roche
- Physical Therapy Program, Department of Health Care Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
4
|
Behura A, Naik L, Patel S, Das M, Kumar A, Mishra A, Nayak DK, Manna D, Mishra A, Dhiman R. Involvement of epigenetics in affecting host immunity during SARS-CoV-2 infection. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166634. [PMID: 36577469 PMCID: PMC9790847 DOI: 10.1016/j.bbadis.2022.166634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/26/2022] [Accepted: 12/13/2022] [Indexed: 12/27/2022]
Abstract
Coronavirus disease 19 (COVID-19) is caused by a highly contagious RNA virus Severe Acute Respiratory Syndrome coronavirus-2 (SARS-CoV-2), originated in December 2019 in Wuhan, China. Since then, it has become a global public health concern and leads the disease table with the highest mortality rate, highlighting the necessity for a thorough understanding of its biological properties. The intricate interaction between the virus and the host immune system gives rise to diverse implications of COVID-19. RNA viruses are known to hijack the host epigenetic mechanisms of immune cells to regulate antiviral defence. Epigenetics involves processes that alter gene expression without changing the DNA sequence, leading to heritable phenotypic changes. The epigenetic landscape consists of reversible modifications like chromatin remodelling, DNA/RNA methylation, and histone methylation/acetylation that regulates gene expression. The epigenetic machinery contributes to many aspects of SARS-CoV-2 pathogenesis, like global DNA methylation and receptor angiotensin-converting enzyme 2 (ACE2) methylation determines the viral entry inside the host, viral replication, and infection efficiency. Further, it is also reported to epigenetically regulate the expression of different host cytokines affecting antiviral response. The viral proteins of SARS-CoV-2 interact with various host epigenetic enzymes like histone deacetylases (HDACs) and bromodomain-containing proteins to antagonize cellular signalling. The central role of epigenetic factors in SARS-CoV-2 pathogenesis is now exploited as promising biomarkers and therapeutic targets against COVID-19. This review article highlights the ability of SARS-CoV-2 in regulating the host epigenetic landscape during infection leading to immune evasion. It also discusses the ongoing therapeutic approaches to curtail and control the viral outbreak.
Collapse
Affiliation(s)
- Assirbad Behura
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Lincoln Naik
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Salina Patel
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Mousumi Das
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Ashish Kumar
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Abtar Mishra
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Dev Kiran Nayak
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Debraj Manna
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan 342011, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
5
|
Mocanu A, Lazureanu VE, Laza R, Marinescu AR, Cut TG, Sincaru SV, Marza AM, Popescu IM, Herlo LF, Nelson-Twakor A, Rivis M, Bratosinand F, Porosnicu TM, Mederle AO. Laboratory Findings and Clinical Outcomes of ICU-admitted COVID-19 Patients: A Retrospective Assessment of Particularities Identified among Romanian Minorities. J Pers Med 2023; 13:jpm13020195. [PMID: 36836429 PMCID: PMC9967597 DOI: 10.3390/jpm13020195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
The Roma population accounts for over 3% (approximately 10 to 15 million) of Romania's permanent population, and it represents one of Europe's most impoverished populations. Due to poverty and unemployment, Romania's Roma minority may have diminished access to healthcare and preventive medicine. The limited existing evidence suggests that the European Roma group has been at a higher risk of becoming ill and dying during the pandemic owing to their lifestyle choices, socioeconomic circumstances, and genetic pathophysiological traits. As a result, the purpose of the present research was to investigate the link between the inflammatory markers implicated and the clinical progression of COVID-19 in Roma patients who were brought to the intensive care unit. We considered 71 Roma patients admitted to the ICU with SARS-CoV-2 infection and 213 controls from the general population with the same inclusion criteria. The body mass index of patients was statistically significantly higher among Roma patients, with more than 57% being overweight, compared with 40.7% in the control group. Frequent smoking was more prevalent in patients of Roma ethnicity admitted to the ICU and the number of comorbidities. We observed a significantly higher proportion of severe imaging features at admission in the group of cases, although this difference may have been associated with the higher prevalence of smoking in this group. The mean duration of hospitalization was longer by 1.8 days than the control group. Elevated ESR levels were observed in 54.0% of Roma patients at admission, compared with 38.9% in the control group. Similarly, 47.6% of them had elevated CRP levels. IL-6 increased significantly at the time of ICU admission, similarly to the significant rise in the CRP levels, compared with the general population. However, the proportion of intubated patients and mortality did not differ significantly. On multivariate analysis, the Roma ethnicity significantly influenced the CRP (β = 1.93, p-value = 0.020) and IL-6 (β = 1.85, p-value = 0.044). It is necessary to plan different healthcare strategies aimed at special populations, such as the Roma ethnicity, to prevent the reduced disparities presented in in this study.
Collapse
Affiliation(s)
- Alexandra Mocanu
- Department XIII, Discipline of Infectious Diseases, “Victor Babes” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Voichita Elena Lazureanu
- Department XIII, Discipline of Infectious Diseases, “Victor Babes” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Ruxandra Laza
- Department XIII, Discipline of Infectious Diseases, “Victor Babes” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Adelina Raluca Marinescu
- Department XIII, Discipline of Infectious Diseases, “Victor Babes” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Talida Georgiana Cut
- Department XIII, Discipline of Infectious Diseases, “Victor Babes” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Suzana-Vasilica Sincaru
- Emergency Institute for Cardiovascular Diseases and Transplantation, Strada Gheorghe Maricescu, 540327 Targu Mures, Romania
| | - Adina Maria Marza
- Department of Surgery, Multidisciplinary Center for Research, Evaluation, Diagnosis and Therapies in Oral Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Irina-Maria Popescu
- Department XIII, Discipline of Epidemiology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Lucian-Flavius Herlo
- Department of Surgery, Ineu City Hospital, Republicii Street 2, 315300 Arad, Romania
| | - Andreea Nelson-Twakor
- Faculty of Medicine and Pharmacy, “Ovidius” University of Constanta, 900527 Constanta, Romania
| | - Mircea Rivis
- Department of Anesthesiology and Oral Surgery, Multidisciplinary Center for Research, Evaluation, Diagnosis and Therapies in Oral Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Felix Bratosinand
- Department XIII, Discipline of Infectious Diseases, “Victor Babes” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Tamara Mirela Porosnicu
- Intensive Care Unit, “Victor Babes” Hospital for Infectious Disease and Pneumology, Strada Gheorghe Adam 13, 300041 Timisoara, Romania
- Correspondence:
| | - Alexandru Ovidiu Mederle
- Department of Surgery, Multidisciplinary Center for Research, Evaluation, Diagnosis and Therapies in Oral Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| |
Collapse
|
6
|
Meseguer S, Rubio MP, Lainez B, Pérez-Benavente B, Pérez-Moraga R, Romera-Giner S, García-García F, Martinez-Macias O, Cremades A, Iborra FJ, Candelas-Rivera O, Almazan F, Esplugues E. SARS-CoV-2-encoded small RNAs are able to repress the host expression of SERINC5 to facilitate viral replication. Front Microbiol 2023; 14:1066493. [PMID: 36876111 PMCID: PMC9978209 DOI: 10.3389/fmicb.2023.1066493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/26/2023] [Indexed: 02/18/2023] Open
Abstract
Serine incorporator protein 5 (SERINC5) is a key innate immunity factor that operates in the cell to restrict the infectivity of certain viruses. Different viruses have developed strategies to antagonize SERINC5 function but, how SERINC5 is controlled during viral infection is poorly understood. Here, we report that SERINC5 levels are reduced in COVID-19 patients during the infection by SARS-CoV-2 and, since no viral protein capable of repressing the expression of SERINC5 has been identified, we hypothesized that SARS-CoV-2 non-coding small viral RNAs (svRNAs) could be responsible for this repression. Two newly identified svRNAs with predicted binding sites in the 3'-untranslated region (3'-UTR) of the SERINC5 gene were characterized and we found that the expression of both svRNAs during the infection was not dependent on the miRNA pathway proteins Dicer and Argonaute-2. By using svRNAs mimic oligonucleotides, we demonstrated that both viral svRNAs can bind the 3'UTR of SERINC5 mRNA, reducing SERINC5 expression in vitro. Moreover, we found that an anti-svRNA treatment to Vero E6 cells before SARS-CoV-2 infection recovered the levels of SERINC5 and reduced the levels of N and S viral proteins. Finally, we showed that SERINC5 positively controls the levels of Mitochondrial Antiviral Signalling (MAVS) protein in Vero E6. These results highlight the therapeutic potential of targeting svRNAs based on their action on key proteins of the innate immune response during SARS-CoV-2 viral infection.
Collapse
Affiliation(s)
- Salvador Meseguer
- Molecular and Cellular Immunology Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Mari-Paz Rubio
- Molecular and Cellular Immunology Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Begoña Lainez
- Molecular and Cellular Immunology Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Beatriz Pérez-Benavente
- Molecular and Cellular Immunology Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Raúl Pérez-Moraga
- Bioinformatics and Biostatistics Unit, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Sergio Romera-Giner
- Bioinformatics and Biostatistics Unit, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Francisco García-García
- Bioinformatics and Biostatistics Unit, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | | | | | - Francisco J Iborra
- Biological Noise and Cell Plasticity Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Associated Unit to Instituto de Biomedicina de Valencia-CSIC, Valencia, Spain
| | - Oscar Candelas-Rivera
- Molecular and Cellular Biology Department, Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain
| | - Fernando Almazan
- Molecular and Cellular Biology Department, Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain
| | - Enric Esplugues
- Molecular and Cellular Immunology Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.,Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
7
|
Rodríguez-Pulido M, Calvo-Pinilla E, Polo M, Saiz JC, Fernández-González R, Pericuesta E, Gutiérrez-Adán A, Sobrino F, Martín-Acebes MA, Sáiz M. Non-coding RNAs derived from the foot-and-mouth disease virus genome trigger broad antiviral activity against coronaviruses. Front Immunol 2023; 14:1166725. [PMID: 37063925 PMCID: PMC10090856 DOI: 10.3389/fimmu.2023.1166725] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/20/2023] [Indexed: 04/18/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of a potentially severe respiratory disease, the coronavirus disease 2019 (COVID-19), an ongoing pandemic with limited therapeutic options. Here, we assessed the anti-coronavirus activity of synthetic RNAs mimicking specific domains in the non-coding regions of the foot-and-mouth disease virus (FMDV) genome (ncRNAs). These molecules are known to exert broad-spectrum antiviral activity in cell culture, mice and pigs effectively triggering the host innate immune response. The ncRNAs showed potent antiviral activity against SARS-CoV-2 after transfection in human intestinal Caco-2 and lung epithelium Calu-3 2B4 cells. When the in vivo efficacy of the FMDV ncRNAs was assessed in K18-hACE2 mice, administration of naked ncRNA before intranasal SARS-CoV-2 infection significantly decreased the viral load and the levels of pro-inflammatory cytokines in the lungs compared with untreated infected mice. The ncRNAs were also highly efficacious when assayed against common human HCoV-229E and porcine transmissible gastroenteritis virus (TGEV) in hepatocyte-derived Huh-7 and swine testis ST cells, respectively. These results are a proof of concept of the pan-coronavirus antiviral activity of the FMDV ncRNAs including human and animal divergent coronaviruses and potentially enhance our ability to fight future emerging variants.
Collapse
Affiliation(s)
- Miguel Rodríguez-Pulido
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Eva Calvo-Pinilla
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid, Spain
| | - Miryam Polo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Juan-Carlos Saiz
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid, Spain
| | - Raúl Fernández-González
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid, Spain
| | - Eva Pericuesta
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid, Spain
| | - Alfonso Gutiérrez-Adán
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid, Spain
| | - Francisco Sobrino
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Miguel A. Martín-Acebes
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid, Spain
| | - Margarita Sáiz
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- *Correspondence: Margarita Sáiz,
| |
Collapse
|
8
|
Anti-cardiolipin IgG autoantibodies associate with circulating extracellular DNA in severe COVID-19. Sci Rep 2022; 12:12523. [PMID: 35869087 PMCID: PMC9305055 DOI: 10.1038/s41598-022-15969-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 07/01/2022] [Indexed: 12/12/2022] Open
Abstract
Whereas the detection of antiphospholipid autoantibodies (aPL) in COVID-19 is of increasing interest, their role is still unclear. We analyzed a large aPL panel in 157 patients with COVID-19 according to the disease severity. We also investigated a potential association between aPL and extracellular DNA (exDNA, n = 85) or circulating markers of neutrophil extracellular traps (NET) such as citrullinated histones H3 (CitH3, n = 49). A total of 157 sera of patients infected by SARS-CoV-2 were collected. A large aPL panel including lupus anticoagulant, anti-cardiolipin and anti-beta-2 glycoprotein I (IgG, IgM and IgA), anti-phosphatidylethanolamine IgA, anti-prothrombin (IgG and IgM) was retrospectively analyzed according to the disease severity. We found a total aPL prevalence of 54.8% with almost half of the cases having aCL IgG. Within an extended panel of aPL, only aCL IgG were associated with COVID-19 severity. Additionally, severe patients displayed higher CitH3 levels than mild patients. Interestingly, we highlighted a significant association between the levels of aCL IgG and exDNA only in aCL positive patients with severe disease. In conclusion, we showed a significant link between aPL, namely aCL IgG, and circulating exDNA in patients with severe form of COVID-19, that could exacerbate the thrombo-inflammatory state related to disease severity.
Collapse
|
9
|
Ravindran V, Wagoner J, Athanasiadis P, Den Hartigh AB, Sidorova JM, Ianevski A, Fink SL, Frigessi A, White J, Polyak SJ, Aittokallio T. Discovery of host-directed modulators of virus infection by probing the SARS-CoV-2-host protein-protein interaction network. Brief Bioinform 2022; 23:bbac456. [PMID: 36305426 PMCID: PMC9677461 DOI: 10.1093/bib/bbac456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/05/2022] [Accepted: 09/23/2022] [Indexed: 12/14/2022] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic has highlighted the need to better understand virus-host interactions. We developed a network-based method that expands the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-host protein interaction network and identifies host targets that modulate viral infection. To disrupt the SARS-CoV-2 interactome, we systematically probed for potent compounds that selectively target the identified host proteins with high expression in cells relevant to COVID-19. We experimentally tested seven chemical inhibitors of the identified host proteins for modulation of SARS-CoV-2 infection in human cells that express ACE2 and TMPRSS2. Inhibition of the epigenetic regulators bromodomain-containing protein 4 (BRD4) and histone deacetylase 2 (HDAC2), along with ubiquitin-specific peptidase (USP10), enhanced SARS-CoV-2 infection. Such proviral effect was observed upon treatment with compounds JQ1, vorinostat, romidepsin and spautin-1, when measured by cytopathic effect and validated by viral RNA assays, suggesting that the host proteins HDAC2, BRD4 and USP10 have antiviral functions. We observed marked differences in antiviral effects across cell lines, which may have consequences for identification of selective modulators of viral infection or potential antiviral therapeutics. While network-based approaches enable systematic identification of host targets and selective compounds that may modulate the SARS-CoV-2 interactome, further developments are warranted to increase their accuracy and cell-context specificity.
Collapse
Affiliation(s)
- Vandana Ravindran
- Oslo Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of Oslo, Oslo, Norway
- Institute for Cancer Research, Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway
| | - Jessica Wagoner
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA
| | - Paschalis Athanasiadis
- Oslo Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of Oslo, Oslo, Norway
- Institute for Cancer Research, Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway
| | - Andreas B Den Hartigh
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA
| | - Julia M Sidorova
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA
| | - Aleksandr Ianevski
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Susan L Fink
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA
| | - Arnoldo Frigessi
- Oslo Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Judith White
- Department of Cell Biology and Department of Microbiology, University of Virginia, Charlottesville, VA, USA
| | - Stephen J Polyak
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA
| | - Tero Aittokallio
- Oslo Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of Oslo, Oslo, Norway
- Institute for Cancer Research, Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
10
|
Noor R. How do the severe acute respiratory coronavirus 2 (SARS-CoV-2) and its variants escape the host protective immunity and mediate pathogenesis? BULLETIN OF THE NATIONAL RESEARCH CENTRE 2022; 46:255. [PMID: 36254244 PMCID: PMC9556142 DOI: 10.1186/s42269-022-00945-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/06/2022] [Indexed: 05/10/2023]
Abstract
Background To protect the global population from the ongoing COVID-19 pandemic caused by the severe acute respiratory β-coronavirus 2 (SARS-CoV-2), a number of vaccines are currently being used in three dosages (i.e., along with the booster dose) to induce the immunity required to combat the SARS-CoV-2 and its variants. So far, several antivirals and the commercial vaccines have been found to evoke the required humoral and cellular immunity within a huge population around world. However, an important aspect to consider is the avoidance mechanism of the host protective immunity by SARS-CoV-2 variants. Main body of the abstract Indeed, such an immune escape strategy has been noticed previously in case of SARS-CoV-1 and the Middle East Respiratory Syndrome coronavirus (MERS-CoV). Regarding the SARS-CoV-2 variants, the most important aspect on vaccine development is to determine whether the vaccine is actually capable to elicit the immune response or not, especially the viral spike (S) protein. Short conclusion Present review thus focused on such elicitation of immunity as well as pondered to the avoidance of host immunity by the SARS-CoV-2 Wuhan strain and its variants.
Collapse
Affiliation(s)
- Rashed Noor
- Department of Life Sciences (DLS), School of Environment and Life Sciences (SELS), Independent University, Bangladesh (IUB), Plot 16, Block B, Aftabuddin Ahmed Road, Bashundhara, Dhaka 1229 Bangladesh
| |
Collapse
|
11
|
Yi J, Miao J, Zuo Q, Owusu F, Dong Q, Lin P, Wang Q, Gao R, Kong X, Yang L. COVID-19 pandemic: A multidisciplinary perspective on the pathogenesis of a novel coronavirus from infection, immunity and pathological responses. Front Immunol 2022; 13:978619. [PMID: 36091053 PMCID: PMC9459044 DOI: 10.3389/fimmu.2022.978619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/04/2022] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus2 (SARS-CoV-2), has spread to more than 200 countries and regions, having a huge impact on human health, hygiene, and economic activities. The epidemiological and clinical phenotypes of COVID-19 have increased since the onset of the epidemic era, and studies into its pathogenic mechanisms have played an essential role in clinical treatment, drug development, and prognosis prevention. This paper reviews the research progress on the pathogenesis of the novel coronavirus (SARS-CoV-2), focusing on the pathogenic characteristics, loci of action, and pathogenic mechanisms leading to immune response malfunction of SARS-CoV-2, as well as summarizing the pathological damage and pathological manifestations it causes. This will update researchers on the latest SARS-CoV-2 research and provide directions for future therapeutic drug development.
Collapse
Affiliation(s)
- Jia Yi
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiameng Miao
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qingwei Zuo
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Felix Owusu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qiutong Dong
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Peizhe Lin
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qilong Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rui Gao
- Institute of Clinical Pharmacology of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xianbin Kong
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Long Yang
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
12
|
Sapir T, Averch Z, Lerman B, Bodzin A, Fishman Y, Maitra R. COVID-19 and the Immune Response: A Multi-Phasic Approach to the Treatment of COVID-19. Int J Mol Sci 2022; 23:ijms23158606. [PMID: 35955740 PMCID: PMC9369212 DOI: 10.3390/ijms23158606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 07/30/2022] [Accepted: 07/30/2022] [Indexed: 12/10/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a viral agent that causes Coronavirus disease 2019 (COVID-19), a disease that causes flu-like symptoms that, when exacerbated, can have life-threatening consequences. COVID-19 has been linked to persistent symptoms, sequelae, and medical complications that can last months after the initial infection. This systematic review aims to elucidate the innate and adaptive immune mechanisms involved and identify potential characteristics of COVID-19 pathology that may increase symptom duration. We also describe he three different stages of COVID-19—viral replication, immune hyperactivation, and post-acute sequelae—as well as each phase’s corresponding immune response. Finally, we use this multiphasic approach to describe different treatment approaches for each of the three stages—antivirals, immunosuppressants and monoclonal antibodies, and continued immunosuppressants—to fully curate the treatment to the stage of disease.
Collapse
|