1
|
Tafere C, Demsie DG, Tefera BB, Yehualaw A, Feyisa K, Yismaw MB, Yayehrad AT. Vaccine skepticism and vaccine development stages; inoculation from "cowpox" lesion to the current mRNA vaccine of COVID-19: review. Ther Adv Vaccines Immunother 2024; 12:25151355241288135. [PMID: 39399302 PMCID: PMC11471007 DOI: 10.1177/25151355241288135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 09/12/2024] [Indexed: 10/15/2024] Open
Abstract
Global pandemics can be tackled by two means: lockdowns and vaccinations. As vaccination has a low impact on economic outcomes and better acceptance by people, it is the preferred method by most governments as a medium- to long-term solution. Vaccines have played a significant role in reducing the global burden of infectious diseases. They are designed to teach the immune system how to fight a particular infection before it causes a disease in subsequent exposures by creating a memory. Although vaccines effectiveness is well known, anti-vaccination movements pose significant challenges, even in high-income settings, leading to outbreaks of life-threatening infectious diseases. Hesitancy to take vaccines is not new and began with the first vaccination of smallpox. At that time, the problem was solved by a regulatory obligation to take vaccines, declared in England and Wales in 1853, which eventually led to its eradication in 1980. Different studies show that there is a decline in awareness of vaccines, hesitancy to take them, and concerns and trust issues regarding healthcare professionals. These problems have been rising over the past few decades for several reasons, notably, because of misinformation spread by social media. Therefore, the objective of this review is to provide a brief overview about vaccine hesitancy and attributable factors, illustrate the different types of vaccines, show the major challenges of vaccine development, and illustrate the pros and cons of each type.
Collapse
Affiliation(s)
- Chernet Tafere
- Department of Pharmacy, College of Medicine and Health Sciences, Bahir Dar University, P. O. Box. 79, Bahir Dar, Ethiopia
| | - Desalegn Getnet Demsie
- Department of Pharmacy, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Bereket Bahiru Tefera
- Department of Pharmacy, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Adane Yehualaw
- Department of Pharmacy, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Kebede Feyisa
- Department of Pharmacy, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Malede Berihun Yismaw
- Department of Pharmacy, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | | |
Collapse
|
2
|
Sun Y, Huang W, Xiang H, Nie J. SARS-CoV-2 Neutralization Assays Used in Clinical Trials: A Narrative Review. Vaccines (Basel) 2024; 12:554. [PMID: 38793805 PMCID: PMC11125816 DOI: 10.3390/vaccines12050554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Since the emergence of COVID-19, extensive research efforts have been undertaken to accelerate the development of multiple types of vaccines to combat the pandemic. These include inactivated, recombinant subunit, viral vector, and nucleic acid vaccines. In the development of these diverse vaccines, appropriate methods to assess vaccine immunogenicity are essential in both preclinical and clinical studies. Among the biomarkers used in vaccine evaluation, the neutralizing antibody level serves as a pivotal indicator for assessing vaccine efficacy. Neutralizing antibody detection methods can mainly be classified into three types: the conventional virus neutralization test, pseudovirus neutralization test, and surrogate virus neutralization test. Importantly, standardization of these assays is critical for their application to yield results that are comparable across different laboratories. The development and use of international or regional standards would facilitate assay standardization and facilitate comparisons of the immune responses induced by different vaccines. In this comprehensive review, we discuss the principles, advantages, limitations, and application of different SARS-CoV-2 neutralization assays in vaccine clinical trials. This will provide guidance for the development and evaluation of COVID-19 vaccines.
Collapse
Affiliation(s)
- Yeqing Sun
- School of Life Sciences, Jilin University, Changchun 130012, China;
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing 102629, China;
| | - Weijin Huang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing 102629, China;
| | - Hongyu Xiang
- School of Life Sciences, Jilin University, Changchun 130012, China;
| | - Jianhui Nie
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing 102629, China;
| |
Collapse
|
3
|
Apostolopoulos V, Feehan J, Chavda VP. How do we change our approach to COVID with the changing face of disease? Expert Rev Anti Infect Ther 2024; 22:279-287. [PMID: 38642067 DOI: 10.1080/14787210.2024.2345881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
INTRODUCTION The emergence of SARS-CoV-2 triggered a global health emergency, causing > 7 million deaths thus far. Limited early knowledge spurred swift research, treatment, and vaccine developments. Implementation of public health measures such as, lockdowns and social distancing, disrupted economies and strained healthcare. Viral mutations highlighted the need for flexible strategies and strong public health infrastructure, with global collaboration crucial for pandemic control. AREAS COVERED (i) Revisiting diagnostic strategies, (ii) adapting to the evolving challenge of the virus, (iii) vaccines against new variants, (iv) vaccine hesitancy in the light of the evolving disease, (v) treatment strategies, (vi) hospital preparedness for changing clinical needs, (vii) global cooperation and data sharing, (viii) economic implications, and (ix) education and awareness- keeping communities informed. EXPERT OPINION The COVID-19 crisis forced unprecedented adaptation, emphasizing public health readiness, global unity, and scientific advancement. Key lessons highlight the importance of adaptability and resilience against uncertainties. As the pandemic evolves into a 'new normal,' ongoing vigilance, improved understanding, and available vaccines and treatments equip us for future challenges. Priorities now include proactive pandemic strategies, early warnings, supported healthcare, public education, and addressing societal disparities for better health resilience and sustainability.
Collapse
Affiliation(s)
- Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Immunology Program, St Albans, Australia
| | - Jack Feehan
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Immunology Program, St Albans, Australia
| | - Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, Gujarat, India
| |
Collapse
|
4
|
Todesco HM, Gafuik C, John CM, Roberts EL, Borys BS, Pawluk A, Kallos MS, Potts KG, Mahoney DJ. High-titer manufacturing of SARS-CoV-2 Spike-pseudotyped VSV in stirred-tank bioreactors. Mol Ther Methods Clin Dev 2024; 32:101189. [PMID: 38327804 PMCID: PMC10847022 DOI: 10.1016/j.omtm.2024.101189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024]
Abstract
The severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) pandemic highlighted the importance of vaccine innovation in public health. Hundreds of vaccines built on numerous technology platforms have been rapidly developed against SARS-CoV-2 since 2020. Like all vaccine platforms, an important bottleneck to viral-vectored vaccine development is manufacturing. Here, we describe a scalable manufacturing protocol for replication-competent SARS-CoV-2 Spike-pseudotyped vesicular stomatitis virus (S-VSV)-vectored vaccines using Vero cells grown on microcarriers in a stirred-tank bioreactor. Using Cytodex 1 microcarriers over 6 days of fed-batch culture, Vero cells grew to a density of 3.95 ± 0.42 ×106 cells/mL in 1-L stirred-tank bioreactors. Ancestral strain S-VSV reached a peak titer of 2.05 ± 0.58 ×108 plaque-forming units (PFUs)/mL at 3 days postinfection. When compared to growth in plate-based cultures, this was a 29-fold increase in virus production, meaning a 1-L bioreactor produces the same amount of virus as 1,284 plates of 15 cm. In addition, the omicron BA.1 S-VSV reached a peak titer of 5.58 ± 0.35 × 106 PFU/mL. Quality control testing showed plate- and bioreactor-produced S-VSV had similar particle-to-PFU ratios and elicited comparable levels of neutralizing antibodies in immunized hamsters. This method should enhance preclinical and clinical development of pseudotyped VSV-vectored vaccines in future pandemics.
Collapse
Affiliation(s)
- Hayley M. Todesco
- Arnie Charbonneau Cancer Institute, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Disease, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - Chris Gafuik
- Arnie Charbonneau Cancer Institute, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Disease, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - Cini M. John
- Arnie Charbonneau Cancer Institute, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Disease, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - Erin L. Roberts
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - Breanna S. Borys
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - Alexis Pawluk
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - Michael S. Kallos
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - Kyle G. Potts
- Arnie Charbonneau Cancer Institute, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Disease, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - Douglas J. Mahoney
- Arnie Charbonneau Cancer Institute, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Disease, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Microbiology, Immunology and Infectious Disease, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
5
|
Chavda VP, Ghali ENHK, Balar PC, Chauhan SC, Tiwari N, Shukla S, Athalye M, Patravale V, Apostolopoulos V, Yallapu MM. Protein subunit vaccines: Promising frontiers against COVID-19. J Control Release 2024; 366:761-782. [PMID: 38219913 DOI: 10.1016/j.jconrel.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
The emergence of COVID-19 has posed an unprecedented global health crisis, challenging the healthcare systems worldwide. Amidst the rapid development of several vaccine formulations, protein subunit vaccines have emerged as a promising approach. This article provides an in-depth evaluation of the role of protein subunit vaccines in the management of COVID-19. Leveraging viral protein fragments, particularly the spike protein from SARS-CoV-2, these vaccines elicit a targeted immune response without the risk of inducing disease. Notably, the robust safety profile of protein subunit vaccines makes them a compelling candidate in the management of COVID-19. Various innovative approaches, including reverse vaccinology, virus like particles, and recombinant modifications are incorporated to develop protein subunit vaccines. In addition, the utilization of advanced manufacturing techniques facilitates large-scale production, ensuring widespread distribution. Despite these advancements, challenges persist, such as the requirement for cold-chain storage and the necessity for booster doses. This article evaluates the formulation and applications of protein subunit vaccines, providing a comprehensive overview of their clinical development and approvals in the context of COVID-19. By addressing the current status and challenges, this review aims to contribute to the ongoing discourse on optimizing protein subunit vaccines for effective pandemic control.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India.
| | - Eswara Naga Hanuma Kumar Ghali
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA.
| | - Pankti C Balar
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA.
| | - Nikita Tiwari
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Somanshi Shukla
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Mansi Athalye
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Immunology and Translational Research, Victoria University, Melbourne, VIC 3030, Australia; Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia.
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA.
| |
Collapse
|
6
|
Boulton S, Poutou J, Gill R, Alluqmani N, He X, Singaravelu R, Crupi MJ, Petryk J, Austin B, Angka L, Taha Z, Teo I, Singh S, Jamil R, Marius R, Martin N, Jamieson T, Azad T, Diallo JS, Ilkow CS, Bell JC. A T cell-targeted multi-antigen vaccine generates robust cellular and humoral immunity against SARS-CoV-2 infection. Mol Ther Methods Clin Dev 2023; 31:101110. [PMID: 37822719 PMCID: PMC10562195 DOI: 10.1016/j.omtm.2023.101110] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023]
Abstract
SARS-CoV-2, the etiological agent behind the coronavirus disease 2019 (COVID-19) pandemic, has continued to mutate and create new variants with increased resistance against the WHO-approved spike-based vaccines. With a significant portion of the worldwide population still unvaccinated and with waning immunity against newly emerging variants, there is a pressing need to develop novel vaccines that provide broader and longer-lasting protection. To generate broader protective immunity against COVID-19, we developed our second-generation vaccinia virus-based COVID-19 vaccine, TOH-VAC-2, encoded with modified versions of the spike (S) and nucleocapsid (N) proteins as well as a unique poly-epitope antigen that contains immunodominant T cell epitopes from seven different SARS-CoV-2 proteins. We show that the poly-epitope antigen restimulates T cells from the PBMCs of individuals formerly infected with SARS-CoV-2. In mice, TOH-VAC-2 vaccination produces high titers of S- and N-specific antibodies and generates robust T cell immunity against S, N, and poly-epitope antigens. The immunity generated from TOH-VAC-2 is also capable of protecting mice from heterologous challenge with recombinant VSV viruses that express the same SARS-CoV-2 antigens. Altogether, these findings demonstrate the effectiveness of our versatile vaccine platform as an alternative or complementary approach to current vaccines.
Collapse
Affiliation(s)
- Stephen Boulton
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Joanna Poutou
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Rida Gill
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Nouf Alluqmani
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Xiaohong He
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Ragunath Singaravelu
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Mathieu J.F. Crupi
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Julia Petryk
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Bradley Austin
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Leonard Angka
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Zaid Taha
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Iris Teo
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Siddarth Singh
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Rameen Jamil
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Ricardo Marius
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Nikolas Martin
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Taylor Jamieson
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Taha Azad
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Faculty of Medicine and Health Sciences, Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
- Centre de Recherche du CHUS, Sherbrooke, QC J1H 5N4, Canada
| | - Jean-Simon Diallo
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Carolina S. Ilkow
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - John C. Bell
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
7
|
Mathew M, John SB, Sebastian J, Ravi MD. COVID-19 vaccine triggered autoimmune hepatitis: case report. Eur J Hosp Pharm 2023; 30:e27. [PMID: 36207131 PMCID: PMC10447947 DOI: 10.1136/ejhpharm-2022-003485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/12/2022] [Indexed: 11/07/2022] Open
Abstract
Autoimmune hepatitis (AIH) is a non-contagious, chronic, inflammatory autoimmune disease in which one's own immune system attacks healthy, normal hepatic cells. The exact cause of AIH is unknown; however, the combination of genetic, environmental (eg, drugs and natural infection) and immunological factors may lead to AIH. AIH may also be potentiated with the use of vaccines: this case reports one such event following immunisation, along with 1 year of follow-up. A female patient in her late 20s presented to the hospital with yellowish discolouration of eyes, urine and stools. Her medical history revealed that she had been vaccinated with the first dose of a COVID-19 vaccine 10 days earlier. She had a history of asymptomatic COVID-19 infection 3 months ago and a history of chronic analgesic consumption for migraine. She was diagnosed as having AIH through extensive clinical and laboratory workup. This case may be an immediate enhancement of a hidden autoimmune disorder triggered by the vaccination. This adverse event following immunisation has an adequate temporal relationship with her COVID-19 vaccine. The causality can be categorised as 'indeterminate' and may be considered as a potential signal following COVID-19 vaccination.
Collapse
Affiliation(s)
- Merrin Mathew
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Sheba Baby John
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Juny Sebastian
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
- Department of Pharmacy Practice, College of Pharmacy, Gulf Medical University, Ajman, UAE
| | - Mandyam Dhati Ravi
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
- Department of Pediatrics, JSS Medical College & Hospital, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| |
Collapse
|
8
|
Zasada AA, Darlińska A, Wiatrzyk A, Woźnica K, Formińska K, Czajka U, Główka M, Lis K, Górska P. COVID-19 Vaccines over Three Years after the Outbreak of the COVID-19 Epidemic. Viruses 2023; 15:1786. [PMID: 37766194 PMCID: PMC10536649 DOI: 10.3390/v15091786] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
The outbreak of COVID-19 started in December 2019 and spread rapidly all over the world. It became clear that the development of an effective vaccine was the only way to stop the pandemic. It was the first time in the history of infectious diseases that the process of the development of a new vaccine was conducted on such a large scale and accelerated so rapidly. At the end of 2020, the first COVID-19 vaccines were approved for marketing. At the end of March 2023, over three years after the outbreak of the COVID-19 pandemic, 199 vaccines were in pre-clinical development and 183 in clinical development. The candidate vaccines in the clinical phase are based on the following platforms: protein subunit, DNA, RNA, non-replication viral vector, replicating viral vector, inactivated virus, virus-like particles, live attenuated virus, replicating viral vector combined with an antigen-presenting cell, non-replication viral vector combined with an antigen-presenting cell, and bacterial antigen-spore expression vector. Some of the new vaccine platforms have been approved for the first time for human application. This review presents COVID-19 vaccines currently available in the world, procedures for assurance of the quality and safety of the vaccines, the vaccinated population, as well as future perspectives for the new vaccine platforms in drug and therapy development for infectious and non-infectious diseases.
Collapse
Affiliation(s)
- Aleksandra Anna Zasada
- Department of Sera and Vaccines Evaluation, National Institute of Public Health NIH—National Research Institute, 00-791 Warsaw, Poland; (A.D.); (A.W.); (K.W.); (K.F.); (U.C.); (M.G.); (K.L.); (P.G.)
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Chattopadhyay A, Jailani AAK, Mandal B. Exigency of Plant-Based Vaccine against COVID-19 Emergence as Pandemic Preparedness. Vaccines (Basel) 2023; 11:1347. [PMID: 37631915 PMCID: PMC10458178 DOI: 10.3390/vaccines11081347] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023] Open
Abstract
After two years since the declaration of COVID-19 as a pandemic by the World Health Organization (WHO), more than six million deaths have occurred due to SARS-CoV-2, leading to an unprecedented disruption of the global economy. Fortunately, within a year, a wide range of vaccines, including pathogen-based inactivated and live-attenuated vaccines, replicating and non-replicating vector-based vaccines, nucleic acid (DNA and mRNA)-based vaccines, and protein-based subunit and virus-like particle (VLP)-based vaccines, have been developed to mitigate the severe impacts of the COVID-19 pandemic. These vaccines have proven highly effective in reducing the severity of illness and preventing deaths. However, the availability and supply of COVID-19 vaccines have become an issue due to the prioritization of vaccine distribution in most countries. Additionally, as the virus continues to mutate and spread, questions have arisen regarding the effectiveness of vaccines against new strains of SARS-CoV-2 that can evade host immunity. The urgent need for booster doses to enhance immunity has been recognized. The scarcity of "safe and effective" vaccines has exacerbated global inequalities in terms of vaccine coverage. The development of COVID-19 vaccines has fallen short of the expectations set forth in 2020 and 2021. Furthermore, the equitable distribution of vaccines at the global and national levels remains a challenge, particularly in developing countries. In such circumstances, the exigency of plant virus-based vaccines has become apparent as a means to overcome supply shortages through fast manufacturing processes and to enable quick and convenient distribution to millions of people without the reliance on a cold chain system. Moreover, plant virus-based vaccines have demonstrated both safety and efficacy in eliciting robust cellular immunogenicity against COVID-19 pathogens. This review aims to shed light on the advantages and disadvantages of different types of vaccines developed against SARS-CoV-2 and provide an update on the current status of plant-based vaccines in the fight against the COVID-19 pandemic.
Collapse
Affiliation(s)
- Anirudha Chattopadhyay
- Pulses Research Station, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar 385506, India;
| | - A. Abdul Kader Jailani
- Department of Plant Pathology, North Florida Research and Education Center, University of Florida, Quincy, FL 32351, USA
| | - Bikash Mandal
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110012, India
| |
Collapse
|
10
|
Han S, Lee P, Choi HJ. Non-Invasive Vaccines: Challenges in Formulation and Vaccine Adjuvants. Pharmaceutics 2023; 15:2114. [PMID: 37631328 PMCID: PMC10458847 DOI: 10.3390/pharmaceutics15082114] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Given the limitations of conventional invasive vaccines, such as the requirement for a cold chain system and trained personnel, needle-based injuries, and limited immunogenicity, non-invasive vaccines have gained significant attention. Although numerous approaches for formulating and administrating non-invasive vaccines have emerged, each of them faces its own challenges associated with vaccine bioavailability, toxicity, and other issues. To overcome such limitations, researchers have created novel supplementary materials and delivery systems. The goal of this review article is to provide vaccine formulation researchers with the most up-to-date information on vaccine formulation and the immunological mechanisms available, to identify the technical challenges associated with the commercialization of non-invasive vaccines, and to guide future research and development efforts.
Collapse
Affiliation(s)
| | | | - Hyo-Jick Choi
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada; (S.H.); (P.L.)
| |
Collapse
|
11
|
Chavda VP, Jogi G, Dave S, Patel BM, Vineela Nalla L, Koradia K. mRNA-Based Vaccine for COVID-19: They Are New but Not Unknown! Vaccines (Basel) 2023; 11:507. [PMID: 36992091 PMCID: PMC10052021 DOI: 10.3390/vaccines11030507] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
mRNA vaccines take advantage of the mechanism that our cells use to produce proteins. Our cells produce proteins based on the knowledge contained in our DNA; each gene encodes a unique protein. The genetic information is essential, but cells cannot use it until mRNA molecules convert it into instructions for producing specific proteins. mRNA vaccinations provide ready-to-use mRNA instructions for constructing a specific protein. BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) both are newly approved mRNA-based COVID-19 vaccines that have shown excellent protection and efficacy. In total, there are five more mRNA-based vaccine candidates for COVID-19 under different phases of clinical development. This review is specifically focused on mRNA-based vaccines for COVID-19 covering its development, mechanism, and clinical aspects.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad 380009, India
| | - Gargi Jogi
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad 380009, India
| | - Srusti Dave
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India
| | - Bhoomika M. Patel
- School of Medico-legal Studies, National Forensic Sciences University, Gandhinagar 382007, India
| | - Lakshmi Vineela Nalla
- Department of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522302, India
| | - Krishna Koradia
- Department of Pharmaceutics, Saurashtra University, Rajkot 360005, India
| |
Collapse
|
12
|
Chavda VP, Bezbaruah R, Valu D, Patel B, Kumar A, Prasad S, Kakoti BB, Kaushik A, Jesawadawala M. Adenoviral Vector-Based Vaccine Platform for COVID-19: Current Status. Vaccines (Basel) 2023; 11:432. [PMID: 36851309 PMCID: PMC9965371 DOI: 10.3390/vaccines11020432] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/16/2023] Open
Abstract
The coronavirus disease (COVID-19) breakout had an unimaginable worldwide effect in the 21st century, claiming millions of lives and putting a huge burden on the global economy. The potential developments in vaccine technologies following the determination of the genetic sequence of SARS-CoV-2 and the increasing global efforts to bring potential vaccines and therapeutics into the market for emergency use have provided a small bright spot to this tragic event. Several intriguing vaccine candidates have been developed using recombinant technology, genetic engineering, and other vaccine development technologies. In the last decade, a vast amount of the vaccine development process has diversified towards the usage of viral vector-based vaccines. The immune response elicited by such vaccines is comparatively higher than other approved vaccine candidates that require a booster dose to provide sufficient immune protection. The non-replicating adenoviral vectors are promising vaccine carriers for infectious diseases due to better yield, cGMP-friendly manufacturing processes, safety, better efficacy, manageable shipping, and storage procedures. As of April 2022, the WHO has approved a total of 10 vaccines around the world for COVID-19 (33 vaccines approved by at least one country), among which three candidates are adenoviral vector-based vaccines. This review sheds light on the developmental summary of all the adenoviral vector-based vaccines that are under emergency use authorization (EUA) or in the different stages of development for COVID-19 management.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Rajashri Bezbaruah
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Disha Valu
- Drug Product Development Laboratory, Biopharma Division, Intas Pharmaceutical Ltd., Moraiya, Ahmedabad 382213, Gujarat, India
| | - Bindra Patel
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Anup Kumar
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Sanjay Prasad
- Cell and Gene Therapy Drug Product Development Laboratory, Biopharma Division, Intas Pharmaceutical Ltd., Moraiya, Ahmedabad 382213, Gujarat, India
| | - Bibhuti Bhusan Kakoti
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health Systems Engineering, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805-8531, USA
| | - Mariya Jesawadawala
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| |
Collapse
|
13
|
Chavda VP, Valu DD, Parikh PK, Tiwari N, Chhipa AS, Shukla S, Patel SS, Balar PC, Paiva-Santos AC, Patravale V. Conventional and Novel Diagnostic Tools for the Diagnosis of Emerging SARS-CoV-2 Variants. Vaccines (Basel) 2023; 11:374. [PMID: 36851252 PMCID: PMC9960989 DOI: 10.3390/vaccines11020374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Accurate identification at an early stage of infection is critical for effective care of any infectious disease. The "coronavirus disease 2019 (COVID-19)" outbreak, caused by the virus "Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)", corresponds to the current and global pandemic, characterized by several developing variants, many of which are classified as variants of concern (VOCs) by the "World Health Organization (WHO, Geneva, Switzerland)". The primary diagnosis of infection is made using either the molecular technique of RT-PCR, which detects parts of the viral genome's RNA, or immunodiagnostic procedures, which identify viral proteins or antibodies generated by the host. As the demand for the RT-PCR test grew fast, several inexperienced producers joined the market with innovative kits, and an increasing number of laboratories joined the diagnostic field, rendering the test results increasingly prone to mistakes. It is difficult to determine how the outcomes of one unnoticed result could influence decisions about patient quarantine and social isolation, particularly when the patients themselves are health care providers. The development of point-of-care testing helps in the rapid in-field diagnosis of the disease, and such testing can also be used as a bedside monitor for mapping the progression of the disease in critical patients. In this review, we have provided the readers with available molecular diagnostic techniques and their pitfalls in detecting emerging VOCs of SARS-CoV-2, and lastly, we have discussed AI-ML- and nanotechnology-based smart diagnostic techniques for SARS-CoV-2 detection.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Disha D. Valu
- Formulation and Drug Product Development, Biopharma Division, Intas Pharmaceutical Ltd., 3000-548 Moraiya, Ahmedabad 380054, Gujarat, India
| | - Palak K. Parikh
- Department of Pharmaceutical Chemistry and Quality Assurance, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Nikita Tiwari
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, Maharashtra, India
| | - Abu Sufiyan Chhipa
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Somanshi Shukla
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, Maharashtra, India
| | - Snehal S. Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Pankti C. Balar
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, Maharashtra, India
| |
Collapse
|
14
|
Chen S, Pounraj S, Sivakumaran N, Kakkanat A, Sam G, Kabir MT, Rehm BHA. Precision-engineering of subunit vaccine particles for prevention of infectious diseases. Front Immunol 2023; 14:1131057. [PMID: 36817419 PMCID: PMC9935699 DOI: 10.3389/fimmu.2023.1131057] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Vaccines remain the best approach for the prevention of infectious diseases. Protein subunit vaccines are safe compared to live-attenuated whole cell vaccines but often show reduced immunogenicity. Subunit vaccines in particulate format show improved vaccine efficacy by inducing strong immune responses leading to protective immunity against the respective pathogens. Antigens with proper conformation and function are often required to induce functional immune responses. Production of such antigens requiring post-translational modifications and/or composed of multiple complex domains in bacterial hosts remains challenging. Here, we discuss strategies to overcome these limitations toward the development of particulate vaccines eliciting desired humoral and cellular immune responses. We also describe innovative concepts of assembling particulate vaccine candidates with complex antigens bearing multiple post-translational modifications. The approaches include non-covalent attachments (e.g. biotin-avidin affinity) and covalent attachments (e.g. SpyCatcher-SpyTag) to attach post-translationally modified antigens to particles.
Collapse
Affiliation(s)
- Shuxiong Chen
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia,*Correspondence: Bernd H. A. Rehm, ; Shuxiong Chen,
| | - Saranya Pounraj
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Nivethika Sivakumaran
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Anjali Kakkanat
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Gayathri Sam
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Md. Tanvir Kabir
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Bernd H. A. Rehm
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia,Menzies Health Institute Queensland (MHIQ), Griffith University, Gold Coast, QLD, Australia,*Correspondence: Bernd H. A. Rehm, ; Shuxiong Chen,
| |
Collapse
|
15
|
Han TY, Shim DH, Lee YJ, Lee YB, Koo HYR, Shin MK, Kim TE, Jang YH, Bang JS, Kook HD, Ahn J, Jung HJ, Na CH. Effect of COVID-19 (SARS-CoV-2) Vaccination on Patients with Atopic Dermatitis Treated with Dupilumab: A Multicenter, Observational Study. Ann Dermatol 2023; 35:38-45. [PMID: 36750457 PMCID: PMC9905853 DOI: 10.5021/ad.22.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/26/2022] [Accepted: 10/12/2022] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Atopic dermatitis (AD) patients usually wonder if their condition will worsen after vaccination or if they should continue with the treatment they are receiving. Considering that many patients treated with dupilumab had previously experienced severe AD symptoms and flares, the concerns are more understandable. OBJECTIVE This study aimed to investigate the safety of the coronavirus disease 2019 (COVID-19) vaccination in patients with AD treated with dupilumab. METHODS We enrolled 133 patients (101 dupilumab-treated and 32 systemic oral agents-treated as control group) with AD from six hospitals. Patients were asked about worsening pruritus and AD (5-point Likert scale) after vaccination. AD variables (eczema area and severity index [EASI], investigator's global assessment [IGA], itch numerical rating scale [NRS], sleep NRS, and patient-oriented eczema measure [POEM]) were compared pre- and post-vaccination. Adverse reactions to the COVID-19 vaccination were observed. RESULTS The incidence of adverse reactions to COVID-19 vaccines and worsening AD symptoms in dupilumab-treated patients were not significantly different compared with that in the control group. The itch NRS score increased significantly after vaccination (p<0.001). However, there were no statistically significant differences between the pre-and post-EASI, IGA, and POEM scores. Eight patients (7.9%) had worse EASI scores and required rescue therapy; however, most were easily managed with low-dose steroids or topical agents. None of the patients discontinued dupilumab treatment. CONCLUSION No serious adverse reactions were observed in patients with AD after COVID-19 vaccination. Exacerbation of pruritus and AD symptoms was observed but was mostly mild and transient.
Collapse
Affiliation(s)
- Tae Young Han
- Department of Dermatology, College of Medicine, Eulji University, Daejeon, Korea
| | - Dong Hyun Shim
- Department of Dermatology, College of Medicine, Chosun University, Gwangju, Korea
| | - Yu Jin Lee
- Department of Dermatology, College of Medicine, Eulji University, Daejeon, Korea
| | - Young Bok Lee
- Department of Dermatology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ha Yeh Rin Koo
- Department of Dermatology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Min Kyung Shin
- Department of Dermatology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Tae Eun Kim
- Department of Dermatology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Yong Hyun Jang
- Department of Dermatology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jin Seon Bang
- Department of Dermatology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Hyung Don Kook
- Department of Dermatology, National Medical Center, Seoul, Korea
| | - Jiyoung Ahn
- Department of Dermatology, National Medical Center, Seoul, Korea
| | - Hye Jung Jung
- Department of Dermatology, National Medical Center, Seoul, Korea
| | - Chan Ho Na
- Department of Dermatology, College of Medicine, Chosun University, Gwangju, Korea.
| |
Collapse
|
16
|
Dofuor AK, Quartey NKA, Osabutey AF, Boateng BO, Lutuf H, Osei JHN, Ayivi-Tosuh SM, Aiduenu AF, Ekloh W, Loh SK, Opoku MJ, Aidoo OF. The Global Impact of COVID-19: Historical Development, Molecular Characterization, Drug Discovery and Future Directions. CLINICAL PATHOLOGY (THOUSAND OAKS, VENTURA COUNTY, CALIF.) 2023; 16:2632010X231218075. [PMID: 38144436 PMCID: PMC10748929 DOI: 10.1177/2632010x231218075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/16/2023] [Indexed: 12/26/2023]
Abstract
In December 2019, an outbreak of a respiratory disease called the coronavirus disease 2019 (COVID-19) caused by a new coronavirus known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began in Wuhan, China. The SARS-CoV-2, an encapsulated positive-stranded RNA virus, spread worldwide with disastrous consequences for people's health, economies, and quality of life. The disease has had far-reaching impacts on society, including economic disruption, school closures, and increased stress and anxiety. It has also highlighted disparities in healthcare access and outcomes, with marginalized communities disproportionately affected by the SARS-CoV-2. The symptoms of COVID-19 range from mild to severe. There is presently no effective cure. Nevertheless, significant progress has been made in developing COVID-19 vaccine for different therapeutic targets. For instance, scientists developed multifold vaccine candidates shortly after the COVID-19 outbreak after Pfizer and AstraZeneca discovered the initial COVID-19 vaccines. These vaccines reduce disease spread, severity, and mortality. The addition of rapid diagnostics to microscopy for COVID-19 diagnosis has proven crucial. Our review provides a thorough overview of the historical development of COVID-19 and molecular and biochemical characterization of the SARS-CoV-2. We highlight the potential contributions from insect and plant sources as anti-SARS-CoV-2 and present directions for future research.
Collapse
Affiliation(s)
- Aboagye Kwarteng Dofuor
- Department of Biological Sciences, School of Natural and Environmental Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Naa Kwarley-Aba Quartey
- Department of Food Science and Technology, Faculty of Biosciences, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Belinda Obenewa Boateng
- Coconut Research Program, Oil Palm Research Institute, Council for Scientific and Industrial Research, Sekondi-Takoradi, Ghana
| | - Hanif Lutuf
- Crop Protection Division, Oil Palm Research Institute, Council for Scientific and Industrial Research, Kade, Ghana
| | - Joseph Harold Nyarko Osei
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Selina Mawunyo Ayivi-Tosuh
- Department of Biochemistry, School of Life Sciences, Northeast Normal University, Changchun, Jilin Province, China
| | - Albert Fynn Aiduenu
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Accra, Ghana
| | - William Ekloh
- Department of Biochemistry, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Seyram Kofi Loh
- Department of Built Environment, School of Sustainable Development, University of Environment and Sustainable Development, Somanya, Ghana
| | - Maxwell Jnr Opoku
- Department of Biological Sciences, School of Natural and Environmental Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Owusu Fordjour Aidoo
- Department of Biological Sciences, School of Natural and Environmental Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| |
Collapse
|
17
|
Chavda VP, Soni S, Vora LK, Soni S, Khadela A, Ajabiya J. mRNA-Based Vaccines and Therapeutics for COVID-19 and Future Pandemics. Vaccines (Basel) 2022; 10:2150. [PMID: 36560560 PMCID: PMC9785933 DOI: 10.3390/vaccines10122150] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
An unheard mobilization of resources to find SARS-CoV-2 vaccines and therapies has been sparked by the COVID-19 pandemic. Two years ago, COVID-19's launch propelled mRNA-based technologies into the public eye. Knowledge gained from mRNA technology used to combat COVID-19 is assisting in the creation of treatments and vaccines to treat existing illnesses and may avert pandemics in the future. Exploiting the capacity of mRNA to create therapeutic proteins to impede or treat a variety of illnesses, including cancer, is the main goal of the quickly developing, highly multidisciplinary field of biomedicine. In this review, we explore the potential of mRNA as a vaccine and therapeutic using current research findings.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, LM College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Shailvi Soni
- Massachussets College of Pharmacy and Health Science, 19 Foster Street, Worcester, MA 01608, USA
| | - Lalitkumar K. Vora
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Shruti Soni
- PharmD Section, LM College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Avinash Khadela
- Department of Pharmacology, LM College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Jinal Ajabiya
- Department of Pharmaceutics Analysis and Quality Assurance, LM College of Pharmacy, Ahmedabad 380009, Gujarat, India
| |
Collapse
|
18
|
Wang L, Li Z. Smart Nanostructured Materials for SARS-CoV-2 and Variants Prevention, Biosensing and Vaccination. BIOSENSORS 2022; 12:1129. [PMID: 36551096 PMCID: PMC9775677 DOI: 10.3390/bios12121129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has raised great concerns about human health globally. At the current stage, prevention and vaccination are still the most efficient ways to slow down the pandemic and to treat SARS-CoV-2 in various aspects. In this review, we summarize current progress and research activities in developing smart nanostructured materials for COVID-19 prevention, sensing, and vaccination. A few established concepts to prevent the spreading of SARS-CoV-2 and the variants of concerns (VOCs) are firstly reviewed, which emphasizes the importance of smart nanostructures in cutting the virus spreading chains. In the second part, we focus our discussion on the development of stimuli-responsive nanostructures for high-performance biosensing and detection of SARS-CoV-2 and VOCs. The use of nanostructures in developing effective and reliable vaccines for SARS-CoV-2 and VOCs will be introduced in the following section. In the conclusion, we summarize the current research focus on smart nanostructured materials for SARS-CoV-2 treatment. Some existing challenges are also provided, which need continuous efforts in creating smart nanostructured materials for coronavirus biosensing, treatment, and vaccination.
Collapse
Affiliation(s)
- Lifeng Wang
- Suzhou Ninth People’s Hospital, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou 215000, China
| | - Zhiwei Li
- Department of Chemistry, International Institute of Nanotechnology, Northwestern University, Evanston, IL 60208-3113, USA
| |
Collapse
|
19
|
Chavda VP, Ping FF, Chen ZS. An Impact of COVID-19 on Cancer Care: An Update. Vaccines (Basel) 2022; 10:2072. [PMID: 36560482 PMCID: PMC9780966 DOI: 10.3390/vaccines10122072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/09/2022] Open
Abstract
The world has been affected socioeconomically for the last two years due to the emergence of different variants of the COVID-19 virus. Vaccination is the major and most efficient way to prevent the widening of this pandemic. Those who are having comorbidities are more vulnerable to serious infections due to their immunocompromised state. Additionally, cancer patients could be at significant risk for COVID-19. In this pandemic era, the diagnosis and treatment of cancer were significantly affected. Clinical trials at the initial stage were performed on healthy or COVID-19 infected patients. This produces a greater level of hesitancy in cancer patients. This review article provide an update regarding the vaccination and treatment for COVID-19 in patients with cancer and future directions.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad 380009, India
| | - Feng-Feng Ping
- Department of Reproductive Medicine, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi 214023, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York, NY 11439, USA
| |
Collapse
|
20
|
Chavda VP, Patel AB, Vora LK, Singla RK, Shah P, Uversky VN, Apostolopoulos V. Nitric Oxide and its Derivatives Containing Nasal Spray and Inhalation Therapy for the Treatment of COVID-19. Curr Pharm Des 2022; 28:3658-3670. [PMID: 36284382 DOI: 10.2174/1381612829666221024124848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/11/2022] [Accepted: 09/26/2022] [Indexed: 01/28/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a major health concern worldwide and has evolved into different variants. SARS-CoV-2 possesses a spike glycoprotein on its envelope that binds to the angiotensin-converting enzyme 2 (ACE-2) receptor of the host cell via the receptor-binding domain (RBD) in the upper respiratory tract. Since the SARS-CoV-2 virus variants change the severity of the diesease and treatment scenarios, repurposing current medicines may provide a quick and appealing method with established safety features. The efficacy and safety of antiviral medicines against the coronavirus disease 2019 (COVID-19) have been investigated, and several of them are now undergoing clinical studies. Recently, it has been found that nitric oxide (NO) shows antiviral properties against SARS-CoV-2 and prevents the virus from binding to a host cell. In addition, NO is a well-known vasodilator and acts as an important coagulation mediator. With the fast-track development of COVID-19 treatments and vaccines, one avenue of research aimed at improving therapeutics is exploring different forms of drug delivery, including intranasal sprays and inhalation therapy. The nasal mucosa is more prone to be the site of infection as it is in more direct contact with the physical environment via air during inhalation and exhalation. Thus, the use of exogenous nasal NO therapy via the intranasal route displays a distinct advantage. Therefore, the objective of this review is to summarize the relevant actions of NO via the intranasal spray and inhalation delivery, its mechanism of action, and its use in the treatment of COVID-19.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, LM College of Pharmacy, Ahmedabad - 380009, India
| | - Aayushi B Patel
- Department of Pharmaceutics and Pharmaceutical Technology, LM College of Pharmacy, Ahmedabad - 380009, India
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, U.K
| | - Rajeev K Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road 2222, Chengdu, Sichuan, China.,School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab-144411, India
| | - Priyal Shah
- Department of Pharmaceutics and Pharmaceutical Technology, LM College of Pharmacy, Ahmedabad - 380009, India
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne VIC 3030, Australia
| |
Collapse
|
21
|
Chavda V, Bezbaruah R, Kalita T, Sarma A, Devi JR, Bania R, Apostolopoulos V. Variant influenza: connecting the missing dots. Expert Rev Anti Infect Ther 2022; 20:1567-1585. [PMID: 36346383 DOI: 10.1080/14787210.2022.2144231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND In June 2009, the World Health Organization declared a new pandemic, the 2009 swine influenza pandemic (swine flu). The symptoms of the swine flu pandemic causing strain were comparable to most of the symptoms noted by seasonal influenza. AREA COVERED Zoonotic viruses that caused the swine flu pandemic and its preventive measures. EXPERT OPINION As per Centers for Disease Control and Prevention (CDC), the clinical manifestations in humans produced by the 2009 H1N1 'swine flu' virus were equivalent to the manifestations caused by related flu strains. The H1N1 vaccination was the most successful prophylactic measure since it prevented the virus from spreading and reduced the intensity and consequences of the pandemic. Despite the availability of therapeutics, the ongoing evolution and appearance of new strains have made it difficult to develop effective vaccines and therapies. Currently, the CDC recommends yearly flu immunization for those aged 6 months and above. The lessons learned from the A/2009/H1N1 pandemic in 2009 indicated that readiness of mankind toward new illnesses caused by mutant viral subtypes that leap from animals to people must be maintained.
Collapse
Affiliation(s)
- Vivek Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad, India
| | - Rajashri Bezbaruah
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, India
| | - Tutumoni Kalita
- Department of Pharmaceutical Chemistry, Regional College of Pharmaceutical Sciences, RIPT Group of Institution, Sonapur, Guwahati, India
| | - Anupam Sarma
- Department of Pharmaceutics, Girijananda Chowdhury Institute of Pharmaceutical Science, Hatkhowapara, Azara, Guwahati, Assam, India
| | - Juti Rani Devi
- NETES Institute of Pharmaceutical Science, Mirza, Guwahati, India
| | - Ratnali Bania
- Pratiksha Institute of Pharmaceutical Sciences, India
| | | |
Collapse
|
22
|
Chavda VP, Vuppu S, Mishra T, Kamaraj S, Patel AB, Sharma N, Chen ZS. Recent review of COVID-19 management: diagnosis, treatment and vaccination. Pharmacol Rep 2022; 74:1120-1148. [PMID: 36214969 PMCID: PMC9549062 DOI: 10.1007/s43440-022-00425-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/21/2022] [Accepted: 09/25/2022] [Indexed: 02/06/2023]
Abstract
The idiopathic Coronavirus disease 2019 (COVID-19) pandemic outbreak caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has reached global proportions; the World Health Organization (WHO) declared it as a public health emergency during the month of January 30, 2020. The major causes of the rise of new variants of SARS-CoV-2 are genetic mutations and recombination. Some of the variants with high infection and transmission rates are termed as variants of concern (VOCs) like currently Omicron variants. Pregnant women, aged people, and immunosuppressed and compromised patients constitute the most susceptible human population to the SARS-CoV-2 infection, especially to the new evolving VOCs. To effectively manage the pathological condition of infection, the focus should be directed towards prevention and prophylactic approach. In this narrative review, we aimed to analyze the current scenario of COVID-19 management and discuss the treatment and prevention strategies. We also focused on the complications prevalent during the COVID-19 and post-COVID period and to discuss the novel approaches developed for mitigation of the global pandemic. We have also emphasized on the COVID-19 management approaches for the special population including children, pregnant women, aged groups, and immunocompromised patients. We conclude that the advancements in therapeutic and pharmacological domains have provided opportunities to develop and design novel diagnosis, treatment, and prevention strategies. New advanced techniques such as RT-LAMP, RT-qPCR, High-Resolution Computed Tomography, etc., efficiently diagnose patients with SARS-CoV-2 infection. In the case of treatment options, new drugs like paxlovid, combinations of β-lactum drugs and molnupiravir are found to be effective against even the new emerging variants. In addition, vaccination is an essential approach to prevent the infection or to reduce its severity. Vaccines for against COVID-19 from Comirnaty by Pfizer-BioNTech, SpikeVax by Moderna, and Vaxzevria by Oxford-AstraZeneca are approved and used widely. Similarly, numerous vaccines have been developed with different percentages of effectiveness against VOCs. New developments like nanotechnology and AI can be beneficial in providing an efficient and reliable solution for the suppression of SARS-CoV-2. Public health concerns can be efficiently treated by a unified scientific approach, public engagement, and better diagnosis.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Navrangpura, Ahmedabad, 380009, Gujarat, India.
| | - Suneetha Vuppu
- Department of Biotechnology, Science, Innovation, and Society Research Lab 115, Hexagon (SMV), Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| | - Toshika Mishra
- Department of Biotechnology, Science, Innovation, and Society Research Lab 115, Hexagon (SMV), Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Sathvika Kamaraj
- Department of Biotechnology, Science, Innovation, and Society Research Lab 115, Hexagon (SMV), Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Aayushi B Patel
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Nikita Sharma
- Department of Biotechnology, Science, Innovation, and Society Research Lab 115, Hexagon (SMV), Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, St. John's University, New York, NY, 11439, USA.
| |
Collapse
|
23
|
Host Protective Immunity against Severe Acute Respiratory Coronavirus 2 (SARS-CoV-2) and the COVID-19 Vaccine-Induced Immunity against SARS-CoV-2 and Its Variants. Viruses 2022; 14:v14112541. [PMID: 36423150 PMCID: PMC9697230 DOI: 10.3390/v14112541] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
The world is now apparently at the last/recovery stage of the COVID-19 pandemic, starting from 29 December 2019, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). With the progression of time, several mutations have taken place in the original SARS-CoV-2 Wuhan strain, which have generated variants of concern (VOC). Therefore, combatting COVID-19 has required the development of COVID-19 vaccines using several platforms. The immunity induced by those vaccines is vital to study in order to assure total protection against SARS-CoV-2 and its emerging variants. Indeed, understanding and identifying COVID-19 protection mechanisms or the host immune responses are of significance in terms of designing both new and repurposed drugs as well as the development of novel vaccines with few to no side effects. Detecting the immune mechanisms for host protection against SARS-CoV-2 and its variants is crucial for the development of novel COVID-19 vaccines as well as to monitor the effectiveness of the currently used vaccines worldwide. Immune memory in terms of the production of neutralizing antibodies (NAbs) during reinfection is also very crucial to formulate the vaccine administration schedule/vaccine doses. The response of antigen-specific antibodies and NAbs as well as T cell responses, along with the protective cytokine production and the innate immunity generated upon COVID-19 vaccination, are discussed in the current review in comparison to the features of naturally induced protective immunity.
Collapse
|
24
|
Chavda VP, Bezbaruah R, Deka K, Nongrang L, Kalita T. The Delta and Omicron Variants of SARS-CoV-2: What We Know So Far. Vaccines (Basel) 2022; 10:1926. [PMID: 36423021 PMCID: PMC9698608 DOI: 10.3390/vaccines10111926] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 07/30/2023] Open
Abstract
The world has not yet completely overcome the fear of the havoc brought by SARS-CoV-2. The virus has undergone several mutations since its initial appearance in China in December 2019. Several variations (i.e., B.1.616.1 (Kappa variant), B.1.617.2 (Delta variant), B.1.617.3, and BA.2.75 (Omicron variant)) have emerged throughout the pandemic, altering the virus's capacity to spread, risk profile, and even symptoms. Humanity faces a serious threat as long as the virus keeps adapting and changing its fundamental function to evade the immune system. The Delta variant has two escape alterations, E484Q and L452R, as well as other mutations; the most notable of these is P681R, which is expected to boost infectivity, whereas the Omicron has about 60 mutations with certain deletions and insertions. The Delta variant is 40-60% more contagious in comparison to the Alpha variant. Additionally, the AY.1 lineage, also known as the "Delta plus" variant, surfaced as a result of a mutation in the Delta variant, which was one of the causes of the life-threatening second wave of coronavirus disease 2019 (COVID-19). Nevertheless, the recent Omicron variants represent a reminder that the COVID-19 epidemic is far from ending. The wave has sparked a fervor of investigation on why the variant initially appeared to propagate so much more rapidly than the other three variants of concerns (VOCs), whether it is more threatening in those other ways, and how its type of mutations, which induce minor changes in its proteins, can wreck trouble. This review sheds light on the pathogenicity, mutations, treatments, and impact on the vaccine efficacy of the Delta and Omicron variants of SARS-CoV-2.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad 380008, Gujarat, India
| | - Rajashri Bezbaruah
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Kangkan Deka
- NETES Institute of Pharmaceutical Science, Mirza, Guwahati 781125, Assam, India
| | - Lawandashisha Nongrang
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Tutumoni Kalita
- Girijananda Chowdhury Institute of Pharmaceutical Science, Azara, Guwahati 781017, Assam, India
| |
Collapse
|
25
|
Chavda VP, Yao Q, Vora LK, Apostolopoulos V, Patel CA, Bezbaruah R, Patel AB, Chen ZS. Fast-track development of vaccines for SARS-CoV-2: The shots that saved the world. Front Immunol 2022; 13:961198. [PMID: 36263030 PMCID: PMC9574046 DOI: 10.3389/fimmu.2022.961198] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
In December 2019, an outbreak emerged of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which leads to coronavirus disease 2019 (COVID-19). The World Health Organisation announced the outbreak a global health emergency on 30 January 2020 and by 11 March 2020 it was declared a pandemic. The spread and severity of the outbreak took a heavy toll and overburdening of the global health system, particularly since there were no available drugs against SARS-CoV-2. With an immediate worldwide effort, communication, and sharing of data, large amounts of funding, researchers and pharmaceutical companies immediately fast-tracked vaccine development in order to prevent severe disease, hospitalizations and death. A number of vaccines were quickly approved for emergency use, and worldwide vaccination rollouts were immediately put in place. However, due to several individuals being hesitant to vaccinations and many poorer countries not having access to vaccines, multiple SARS-CoV-2 variants quickly emerged that were distinct from the original variant. Uncertainties related to the effectiveness of the various vaccines against the new variants as well as vaccine specific-side effects have remained a concern. Despite these uncertainties, fast-track vaccine approval, manufacturing at large scale, and the effective distribution of COVID-19 vaccines remain the topmost priorities around the world. Unprecedented efforts made by vaccine developers/researchers as well as healthcare staff, played a major role in distributing vaccine shots that provided protection and/or reduced disease severity, and deaths, even with the delta and omicron variants. Fortunately, even for those who become infected, vaccination appears to protect against major disease, hospitalisation, and fatality from COVID-19. Herein, we analyse ongoing vaccination studies and vaccine platforms that have saved many deaths from the pandemic.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, LM College of Pharmacy, Ahmedabad, Gujarat, India
| | - Qian Yao
- Graduate School, University of St. La Salle, Bacolod City, Philippines
| | | | | | - Chirag A. Patel
- Department of Pharmacology, LM College of Pharmacy, Ahmedabad, Gujarat, India
| | - Rajashri Bezbaruah
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, India
| | - Aayushi B. Patel
- Pharmacy Section, LM. College of Pharmacy, Ahmedabad, Gujarat, India
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| |
Collapse
|
26
|
Chavda VP, Patel AB, Pandya A, Vora LK, Patravale V, Tambuwala ZM, Aljabali AAA, Serrano-Aroca Á, Mishra V, Tambuwala MM. Co-infection associated with SARS-CoV-2 and their management. Future Sci OA 2022; 8:FSO819. [PMID: 36788985 PMCID: PMC9912272 DOI: 10.2144/fsoa-2022-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 10/18/2022] [Indexed: 02/05/2023] Open
Abstract
SARS-CoV-2 was discovered in Wuhan, China and quickly spread throughout the world. This deadly virus moved from person to person, resulting in severe pneumonia, fever, chills and hypoxia. Patients are still experiencing problems after recovering from COVID-19. This review covers COVID-19 and associated issues following recovery from COVID-19, as well as multiorgan damage risk factors and treatment techniques. Several unusual illnesses, including mucormycosis, white fungus infection, happy hypoxia and other systemic abnormalities, have been reported in recovered individuals. In children, multisystem inflammatory syndrome with COVID-19 (MIS-C) is identified. The reasons for this might include uncontrollable steroid usage, reduced immunity, uncontrollable diabetes mellitus and inadequate care following COVID-19 recovery.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics & Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad, Gujarat, 380009, India
| | - Aayushi B Patel
- Pharmacy Section, LM College of Pharmacy, Ahmedabad, Gujarat, 380058, India
| | - Anjali Pandya
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Mumbai, 400 019, India
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, UK
| | - Vandana Patravale
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Mumbai, 400 019, India
| | - Zara M Tambuwala
- College of Science, University of Lincoln, Brayford Campus, Lincoln, LN6 7TS, UK
| | - Alaa AA Aljabali
- Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Faculty of Pharmacy, Irbid, 566, Jordan
| | - Ángel Serrano-Aroca
- Biomaterials & Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, Valencia, 46001, Spain
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Murtaza M Tambuwala
- Lincoln Medical School University of Lincoln, Brayford Campus, Lincoln, LN6 7TS, UK
| |
Collapse
|
27
|
Sakamoto A, Osawa H, Hashimoto H, Mizuno T, Hasyim AA, Abe YI, Okahashi Y, Ogawa R, Iyori M, Shida H, Yoshida S. A replication-competent smallpox vaccine LC16m8Δ-based COVID-19 vaccine. Emerg Microbes Infect 2022; 11:2359-2370. [PMID: 36069348 PMCID: PMC9527789 DOI: 10.1080/22221751.2022.2122580] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Viral vectors are a potent vaccine platform for inducing humoral and T-cell immune responses. Among the various viral vectors, replication-competent ones are less commonly used for coronavirus disease 2019 (COVID-19) vaccine development compared with replication-deficient ones. Here, we show the availability of a smallpox vaccine LC16m8Δ (m8Δ) as a replication-competent viral vector for a COVID-19 vaccine. M8Δ is a genetically stable variant of the licensed and highly effective Japanese smallpox vaccine LC16m8. Here, we generated two m8Δ recombinants: one harbouring a gene cassette encoding the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) glycoprotein, named m8Δ-SARS2(P7.5-S)-HA; and one encoding the S protein with a highly polybasic motif at the S1/S2 cleavage site, named m8Δ-SARS2(P7.5-SHN)-HA. M8Δ-SARS2(P7.5-S)-HA induced S-specific antibodies in mice that persisted for at least six weeks after a homologous boost immunization. All eight analysed serum samples displayed neutralizing activity against an S-pseudotyped virus at a level similar to that of serum samples from patients with COVID-19, and more than half (5/8) also had neutralizing activity against the Delta/B.1.617.2 variant of concern. Importantly, most serum samples also neutralized the infectious SARS-CoV-2 Wuhan and Delta/B.1.617.2 strains. In contrast, immunization with m8Δ-SARS2(P7.5-SHN)-HA elicited significantly lower antibody titres, and the induced antibodies had less neutralizing activity. Regarding T-cell immunity, both m8Δ recombinants elicited S-specific multifunctional CD8+ and CD4+ T-cell responses even after just a primary immunization. Thus, m8Δ provides an alternative method for developing a novel COVID-19 vaccine.
Collapse
Affiliation(s)
- Akihiko Sakamoto
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Ishikawa, Japan
| | - Hiroaki Osawa
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Ishikawa, Japan
| | - Hinata Hashimoto
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Ishikawa, Japan
| | - Tetsushi Mizuno
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Ishikawa, Japan.,Department of Global Infectious Diseases, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Ammar A Hasyim
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Ishikawa, Japan
| | - Yu-Ichi Abe
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Ishikawa, Japan
| | - Yuto Okahashi
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Ishikawa, Japan
| | - Ryohei Ogawa
- Department of Radiology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Mitsuhiro Iyori
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Ishikawa, Japan
| | - Hisatoshi Shida
- Division of Molecular Virology, Institute of Immunological Science, Hokkaido University, Sapporo, Japan
| | - Shigeto Yoshida
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Ishikawa, Japan
| |
Collapse
|
28
|
Chavda VP, Sonak SS, Munshi NK, Dhamade PN. Pseudoscience and fraudulent products for COVID-19 management. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62887-62912. [PMID: 35836045 PMCID: PMC9282830 DOI: 10.1007/s11356-022-21967-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/07/2022] [Indexed: 05/13/2023]
Abstract
As of now, the COVID-19 pandemic has become uncontrolled and is spreading widely throughout the world. Additionally, new variants of the mutated viral variants have been found in some countries that are more dangerous than the original strain. Even vaccines cannot produce complete protective immunity against the newer strains of SARS-CoV-2. Due to such a dreadful situation, lots of fear and depression have been created among the public. People are looking for the treatment of the disease at any cost and there is a race in the market to provide treatment and make money, whether it is effective or not! In such a condition, many fraud products, remedies, and myths have come into the market, which is falsely claimed to be effective for the disease and can harm the patients. Hence, FDA has banned such products and remedies. In this review, we have compiled all such fraudulent and pseudosciences identified for COVID-19. Currently, in the pandemic time, health agencies are approving the repurposed medicines based on the small-scale clinical data for emergency uses that become ineffective (most of the cases) after large randomized clinical studies. Proper vigilance strategies need to be defined by the regulatory agencies of the nation and routine awareness programs shall be arranged for educating the people and healthcare workers on routine updates.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Navrangpura, Ahmedabad, 380009, Gujarat, India.
| | - Shreya S Sonak
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's Poona College of Pharmacy, Pune, 411038, Maharashtra, India
| | - Nafesa K Munshi
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's Poona College of Pharmacy, Pune, 411038, Maharashtra, India
| | - Pooja N Dhamade
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's Poona College of Pharmacy, Pune, 411038, Maharashtra, India
| |
Collapse
|
29
|
Khoshnood S, Ghanavati R, Shirani M, Ghahramanpour H, Sholeh M, Shariati A, Sadeghifard N, Heidary M. Viral vector and nucleic acid vaccines against COVID-19: A narrative review. Front Microbiol 2022; 13:984536. [PMID: 36118203 PMCID: PMC9470835 DOI: 10.3389/fmicb.2022.984536] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/12/2022] [Indexed: 12/14/2022] Open
Abstract
After about 2 years since the first detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in Wuhan, China, in December 2019 that resulted in a worldwide pandemic, 6.2 million deaths have been recorded. As a result, there is an urgent need for the development of a safe and effective vaccine for coronavirus disease 2019 (COVID-19). Endeavors for the production of effective vaccines inexhaustibly are continuing. At present according to the World Health Organization (WHO) COVID-19 vaccine tracker and landscape, 153 vaccine candidates are developing in the clinical phase all over the world. Some new and exciting platforms are nucleic acid-based vaccines such as Pfizer Biontech and Moderna vaccines consisting of a messenger RNA (mRNA) encoding a viral spike protein in host cells. Another novel vaccine platform is viral vector vaccine candidates that could be replicating or nonreplicating. These types of vaccines that have a harmless viral vector like adenovirus contain a genome encoding the spike protein of SARS-CoV-2, which induces significant immune responses. This technology of vaccine manufacturing has previously been used in many human clinical trials conducted for adenoviral vector-based vaccines against different infectious agents, including Ebola virus, Zika virus, HIV, and malaria. In this paper, we have a review of nucleic acid-based vaccines that are passing their phase 3 and 4 clinical trials and discuss their efficiency and adverse effects.
Collapse
Affiliation(s)
- Saeed Khoshnood
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
- Student Research Committee, Ilam University of Medical Sciences, Ilam, Iran
| | - Roya Ghanavati
- School of Paramedical Sciences, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Maryam Shirani
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Ghahramanpour
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Sholeh
- Department of Microbiology, Pasteur Institute of Iran, Tehran, Iran
| | - Aref Shariati
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
| | - Nourkhoda Sadeghifard
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Mohsen Heidary
- Department of Laboratory Sciences, School of Paramedical Sciences, Sabzevar University of Medical Sciences, Sabzevar, Iran
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
- *Correspondence: Mohsen Heidary,
| |
Collapse
|
30
|
Chavda VP, Chen Y, Dave J, Chen ZS, Chauhan SC, Yallapu MM, Uversky VN, Bezbaruah R, Patel S, Apostolopoulos V. COVID-19 and vaccination: myths vs science. Expert Rev Vaccines 2022; 21:1603-1620. [PMID: 35980281 DOI: 10.1080/14760584.2022.2114900] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Several vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been developed since the inception of the coronavirus disease 2019 (COVID-19) in December 2019, at unprecedented speed. However, these rapidly developed vaccines raised many questions related to the efficacy and safety of vaccines in different communities across the globe. Various hypotheses regarding COVID-19 and its vaccines were generated, and many of them have also been answered with scientific evidence. Still, there are many myths/misinformation related to COVID-19 and its vaccines, which create hesitancy for COVID-19 vaccination, and must be addressed critically to achieve success in the battle against the pandemic. AREA COVERED The development of anti-SARS-CoV-2 vaccines against COVID-19, their safety and efficacy, and myths/misinformation relating to COVID-19 and vaccines are presented. EXPERT OPINION In this pandemic we have seen a global collaborative effort of researchers, governments, and industry, supported by billions of dollars in funding, have allowed the development of vaccines far more quickly than in the past. Vaccines go through rigorous testing, analysis, and evaluations in clinical settings prior to their approval, even if they are approved for emergency use. Despite the myths, vaccination represents an important strategy to get back to normality.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad
| | - Yangmin Chen
- Peter J. Tobin College of Business, St. John's University, Queens, NY 11439, USA
| | - Jayant Dave
- Department of Pharmaceutical Quality Assurance, L.M. College of Pharmacy, Ahmedabad
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institure, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Rajashri Bezbaruah
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh -786004, Assam, India
| | - Sandip Patel
- Department of Pharmacology, L.M. College of Pharmacy, Ahmedabad
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Immunology and Translational Research Group, Victoria University, Melbourne, VIC, 3030, Australia.,Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC, 3021, Australia
| |
Collapse
|
31
|
Chavda VP, Haritopoulou-Sinanidou M, Bezbaruah R, Apostolopoulos V. Vaccination efforts for Buruli Ulcer. Expert Rev Vaccines 2022; 21:1419-1428. [PMID: 35962475 DOI: 10.1080/14760584.2022.2113514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Buruli ulcer is one of the most common mycobacterial diseases usually affecting poorer populations in tropical and subtropical environments. This disease, caused by M. ulcerans infection, has devastating effects for patients, with significant health and economic burden. Antibiotics are often used to treat affected individuals, but in most cases, surgery is necessary. AREA COVERED We present progress on Buruli ulcer vaccines and identify knowledge gaps in this neglected tropical disease. EXPERT OPINION The lack of appropriate infrastructure in endemic areas, as well as the severity of symptoms and lack of non-invasive treatment options, highlights the need for an effective vaccine to combat this disease. In terms of humoral immunity, it is vital to consider its significance and the magnitude to which it inhibits or slowdowns the progression of the disease. Only by answering these key questions will it be possible to tailor more appropriate vaccination and preventative provisions.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad, India
| | | | - Rajashri Bezbaruah
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, India
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Immunology and Translational Research Group, Victoria University, Melbourne VIC, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), Immunology Program, Melbourne VIC, Australia
| |
Collapse
|
32
|
Chavda VP, Patel AB, Vora LK, Apostolopoulos V, Uhal BD. Dendritic cell-based vaccine: the state-of-the-art vaccine platform for COVID-19 management. Expert Rev Vaccines 2022; 21:1395-1403. [PMID: 35929957 DOI: 10.1080/14760584.2022.2110076] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION A correlation between new coronaviruses and host immunity, as well as the role of defective immune function in host response, would be extremely helpful in understanding coronavirus disease (COVID-19) pathogenicity, and a coherent structure of treatments and vaccines. As existing vaccines may be inadequate for new viral variants emerging in various regions of the world, it is a vital requirement for fresh and effective therapeutic alternatives. AREA COVERED Immunotherapy may give a viable protective option for COVID-19, a disease that is currently a big burden on global health and economic systems. Herein, we have outlined three dendritic cell (DC)-based vaccines for COVID-19 which are in human clinical trials and have shown encouraging outcomes. EXPERT OPINION With existing knowledge of the virus, and the nature of DC, DC-based vaccines may be proven to be effective in inducing long-lasting protective immunity, especially T cell responses.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad - 380009, Gujarat, India
| | - Aayushi B Patel
- Pharmacy Section, LM College of Pharmacy, Ahmedabad - 380058, Gujarat, India
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, UK
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC, 3030, Australia
| | - Bruce D Uhal
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
33
|
Chavda VP, Hanuma Kumar Ghali EN, Yallapu MM, Apostolopoulos V. Therapeutics to tackle Omicron outbreak. Immunotherapy 2022; 14:833-838. [PMID: 35678049 PMCID: PMC9180252 DOI: 10.2217/imt-2022-0064] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/04/2022] [Indexed: 02/08/2023] Open
Abstract
Tweetable abstract In this commentary, the authors have focused on the mutational impact of the Omicron variant on the current therapeutics to manage #COVID19.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics & Pharmaceutical Technology, LM College of Pharmacy, Ahmedabad, Gujarat, 380008, India
| | - Eswara Naga Hanuma Kumar Ghali
- Department of Immunology & Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Murali M Yallapu
- Department of Immunology & Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Vasso Apostolopoulos
- Institute for Health & Sport, Victoria University, Melbourne, Victoria, 3030, Australia
- Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, Victoria, 3021, Australia
| |
Collapse
|
34
|
Aged Population and Immunocompromised Patients: Impact on SARS-CoV-2 Variants and Treatment Outcomes. Biologics 2022. [DOI: 10.3390/biologics2030013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Patients with an immunocompromised state are at risk of developing a long-term infection from the coronavirus 2 that causes severe acute respiratory syndrome (SARS-CoV-2) [...]
Collapse
|
35
|
Chavda VP, Soni S, Prajapati R, Yallapu MM, Apostolopoulos V. Reply to the letter ' Effectiveness of COVID-19 vaccines against Omicron variant'. Immunotherapy 2022; 14:905-908. [PMID: 35787091 DOI: 10.2217/imt-2022-0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics & Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India.,Department of Pharmaceutics, K B Institute of Pharmaceutical Education & Research, Kadi Sarva Vishwavidhyalaya, Gandhinagar, Gujarat, 382023, India
| | - Shailvi Soni
- Department of Pharmaceutics & Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India
| | - Riddhi Prajapati
- Department of Pharmaceutics & Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India
| | - Murali M Yallapu
- Department of Immunology & Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Vasso Apostolopoulos
- Institute for Health & Sport, Victoria University, Melbourne, VIC, 3030, Australia
| |
Collapse
|
36
|
Chavda VP, Prajapati R, Lathigara D, Nagar B, Kukadiya J, Redwan EM, Uversky VN, Kher MN, Rajvi P. Therapeutic monoclonal antibodies for COVID-19 management: an update. Expert Opin Biol Ther 2022; 22:763-780. [PMID: 35604379 DOI: 10.1080/14712598.2022.2078160] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND The first case of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral disease in the world was announced on 31st December 2019 in Wuhan, China. Since then, this virus has affected more than 440 million people, and today the world is facing different mutant strains of the virus, leading to increased morbidity rates, fatality rates, and surfacing re-infections. Various therapies, such as prophylactic treatments, repurposed drug treatments, convalescent plasma, and polyclonal antibody therapy have been developed to help combat the coronavirus disease 2019 (COVID-19). AREA COVERED This review article provides insights into the basic aspects of monoclonal antibodies (mAbs) for the therapy of COVID-19, as well as its advancement in terms of clinical trial and current approval status. EXPERT OPINION Monoclonal antibodies represents the most effective and viable therapy and/or prophylaxis option against COVID-19, and have shown a reduction of the viral load, as well as lowering hospitalizations and death rates. In different countries, various mAbs are undergoing different phases of clinical trials, with a few of them having entered phases III and IV. Due to the soaring number of cases worldwide, the FDA has given emergency approval for the mAb combinations bamlanivimab with etesevimab and casirivimab with imdevimab.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad, India
| | - Riddhi Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad, India
| | - Disha Lathigara
- Biocharecterization Lab, Intas Pharmaceutical Ltd. (Biopharma Division), Ahmedabad, India
| | - Bhumi Nagar
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad, India
| | - Jay Kukadiya
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad, India
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, New Borg EL-Arab, Alexandria, Egypt
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, USA
| | - Mukesh N Kher
- Department of Quality Assurance, L. M. College of Pharmacy, Ahmedabad, India
| | - Patel Rajvi
- Drug Product Development Lab, Intas Pharmaceutical Ltd. (Biopharma Division), Ahmedabad, India
| |
Collapse
|