1
|
Lu D, Hu J, Qian J, Cheng F. Temporal variations in QTc interval during and after COVID-19 infection: a retrospective study. BMC Cardiovasc Disord 2024; 24:738. [PMID: 39710654 DOI: 10.1186/s12872-024-04405-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/06/2024] [Indexed: 12/24/2024] Open
Abstract
OBJECTIVE The aim of this study was to investigate the dynamic changes in QTc interval duration among patients with COVID-19 infection before, during, and after infection, in order to assess the short- and potential long-term impact of COVID-19 on cardiac electrophysiology. METHODS A retrospective analysis was conducted on 303 inpatients diagnosed with COVID-19 who visited a tertiary Grade A hospital in China between August 2022 and December 2023. Inclusion criteria required patients to have at least two electrocardiogram (ECG) recordings at three specific time points: before COVID-19 infection, during acute infection, and after recovery (more than one month post-infection). RESULTS The mean age of participants was 72.8 ± 14.7 years, with a male preponderance (62%, n = 188). A significant prolongation of QTc interval was observed during COVID-19 infection compared to pre-infection levels (438.3 ± 26.7 ms vs. 433.9 ± 26.6 ms, p = 0.025). QTc interval was positively correlated with age both before (r = 0.23, p = 0.001) and during infection (r = 0.19, p = 0.001). In short-term follow-up (≤ 6 months), QTc interval remained unchanged from the infectious period (p > 0.05), whereas it significantly decreased during long-term follow-up (> 6 months; 429.6 ± 32.5 ms vs. 437.5 ± 28.2 ms, p = 0.002). Additionally, P-wave duration significantly decreased from the infectious period to long-term follow-up (99.5 ± 14.8 ms to 96.4 ± 15.2 ms, p = 0.024). CONCLUSIONS COVID-19 infection demonstrated a significant correlation with prolonged QTc interval, persisting in the short term but gradually returning to normal in the long term. Similarly, P-wave duration shortened over time, suggesting potential cardiac electrophysiological recovery. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Dasheng Lu
- Department of Cardiology, The Second Affiliated Hospital of Wannan Medical College, 10# Kangfu road, Wuhu, Anhui Province, 241000, China.
- Vascular Diseases research center of Wannan Medical College, Wuhu, 241000, China.
| | - Jiancheng Hu
- Department of Cardiology, The Second Affiliated Hospital of Wannan Medical College, 10# Kangfu road, Wuhu, Anhui Province, 241000, China
| | - Jiahui Qian
- Department of Cardiology, The Second Affiliated Hospital of Wannan Medical College, 10# Kangfu road, Wuhu, Anhui Province, 241000, China
| | - Fangfang Cheng
- Department of Cardiology, The Second Affiliated Hospital of Wannan Medical College, 10# Kangfu road, Wuhu, Anhui Province, 241000, China
| |
Collapse
|
2
|
Guerrerio AL, Mateja A, MacCarrick G, Fintzi J, Brittain E, Frischmeyer-Guerrerio PA, Dietz HC. Cardiovascular complications in vascular connective tissue disorders after COVID-19 infection and vaccination. PLoS One 2024; 19:e0315499. [PMID: 39705273 DOI: 10.1371/journal.pone.0315499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 11/26/2024] [Indexed: 12/22/2024] Open
Abstract
BACKGROUND COVID-19 infection and vaccination have been reported to confer an elevated risk for cardiovascular events (CVE). We sought to determine whether individuals with an underlying vascular connective tissue disorder including Marfan syndrome (MFS), Loeys-Dietz syndrome (LDS), or vascular Ehlers Danlos syndrome (vEDS) are at increased risk for cardiac events after COVID-19 infection or vaccination. METHODS 325 respondents self-reported data through a cross-sectional, web-based survey available from 22 November 2021, through 15 March 2022 regarding COVID-19 illness and vaccinations, the occurrence of any CVE, and adverse events following vaccination. The data were analyzed using a Cox proportional hazards model with time varying indicators for COVID-19 illness/vaccination in the preceding 30 days. RESULTS COVID-19 illness was significantly associated with an increased rate of a new abnormal heart rhythm 30 days following infection. No other CVEs were reported in the 90 days after COVID-19 illness. We did not find evidence of an increased rate of any CVE in the 30 days following any COVID-19 vaccination dose. CONCLUSION In respondents with MFS, LDS, or vEDS, we uncovered no evidence of an increase in CVEs in the 30 days following COVID-19 illness, with the possible exception of dysrhythmia. In light of the absence of a substantial increase in self-reported CVEs in the 30 days following COVID-19 vaccination, these data are in keeping with the recommendation from the Marfan Foundation Professional Advisory Board that all eligible persons be vaccinated for COVID-19.
Collapse
Affiliation(s)
- Anthony L Guerrerio
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Allyson Mateja
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research. Frederick, Maryland, United States of America
| | - Gretchen MacCarrick
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jonathan Fintzi
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Erica Brittain
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Pamela A Frischmeyer-Guerrerio
- The Laboratory of Allergic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Harry C Dietz
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| |
Collapse
|
3
|
Scharf RE. Special Issue: "Post-COVID-19 Syndrome". Viruses 2024; 16:1901. [PMID: 39772208 PMCID: PMC11680402 DOI: 10.3390/v16121901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
On 30 January 2020, the World Health Organization declared COVID-19 a Public Health Emergency of International Concern (PHEIC)-the highest WHO warning level [...].
Collapse
Affiliation(s)
- Rüdiger E. Scharf
- Institute of Transplantation Diagnostics and Cell Therapy, Division of Hemostasis, Hemotherapy, and Transfusion Medicine, Blood and Hemophilia Comprehensive Care Center, Heinrich Heine University Medical Center, D-40225 Düsseldorf, Germany;
- Harvard Medical School, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Karp Family Research Laboratories, Boston, MA 02115, USA
| |
Collapse
|
4
|
Meirman TD, Shapira B, Balicer RD, Rokach L, Dagan N. Trends of common laboratory biomarkers after SARS-CoV-2 infection. J Infect 2024; 89:106318. [PMID: 39423876 DOI: 10.1016/j.jinf.2024.106318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Most studies that explore the long-term effects of COVID-19 are based on subjectively reported symptoms, while laboratory-measured biomarkers are mainly examined in studies of relatively small cohorts. This study investigates the long-term effects of SARS-CoV-2 infection on common laboratory biomarkers. METHODS We utilized a retrospective cohort of SARS-CoV-2 infected individuals and rigorously matched controls based on demographic and clinical characteristics, examining 63 common laboratory biomarkers. Additional lab-specific cohorts were matched with an additional criterion of baseline biomarker values. Differences in biomarkers over a 12-month follow-up were analyzed using standardized mean difference-in-differences. RESULTS The general cohort included 361,061 matched pairs, with 26M laboratory results. The effects on most biomarkers lasted 1-4 months and were consistent with anticipated changes after acute viral infections. Some biomarkers presented prolonged effects, consistent across the general and lab-specific cohorts. One group of such findings included a 7-8 month decrease in WBC counts, mainly driven by decreased counts of neutrophils, monocytes, and basophils. Potassium levels were decreased for 3-5 months. Vaccinated individuals' data suggested potentially smaller effects on WBCs, but cohort sizes limited this analysis. CONCLUSIONS This study explores SARS-CoV-2 infection effects on common laboratory biomarkers, characterizing the direction and duration of these effects on the largest infected cohort to date. The effects of most biomarkers resolve in the first months following infection. The most notable longer-lasting effects involved the immune system. Further research is required to characterize the magnitude of these effects among specific individuals.
Collapse
Affiliation(s)
| | | | - Ran D Balicer
- Ben-Gurion University of the Negev, Israel; Clalit Research Institute, Israel; The Ivan and Francesca Berkowitz Family Living Laboratory Collaboration at Harvard Medical School and Clalit Research Institute.
| | | | - Noa Dagan
- Ben-Gurion University of the Negev, Israel; Clalit Research Institute, Israel; The Ivan and Francesca Berkowitz Family Living Laboratory Collaboration at Harvard Medical School and Clalit Research Institute.
| |
Collapse
|
5
|
Gomes Tinoco M, Castro M, Pinheiro L, Pereira T, Oliveira M, Ribeiro S, Ferreira N, Azevedo O, Lourenço A. "Hot phase" clinical presentation of biventricular arrhythmogenic cardiomyopathy: when the perfect electrical storm spontaneously stops. Monaldi Arch Chest Dis 2024. [PMID: 39429136 DOI: 10.4081/monaldi.2024.3086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/08/2024] [Indexed: 10/22/2024] Open
Abstract
An 18-year-old male presented with syncope during a training break. Post-syncope, he developed effort dyspnea, which he associated with the Pfizer-BioNTech COVID-19 vaccine received a week earlier. Electrocardiogram showed T inversion in V1-V3, III, and aVF, while 24-hour Holter monitoring revealed frequent ventricular premature beats. A transthoracic echocardiogram showed severe biventricular dilation and mild left ventricular (LV) dysfunction. Cardiac magnetic resonance (CMR) imaging confirmed these findings, showing moderate right ventricular (RV) systolic dysfunction with akinesia of the inferior and inferolateral walls. T2 hypersignal in the middle segment of the inferior inferior interventricular septum suggested myocardial edema. Extensive transmural late gadolinium enhancement was noted in the RV and LV walls. An implantable loop recorder was implanted. Three months later, the patient was admitted with palpitations, fever, and a positive SARS-CoV-2 test. Sustained ventricular tachycardia (VT) episodes were documented and managed with amiodarone and β-blockers. Follow-up CMR showed a slight improvement in LV ejection fraction and resolution of edema. A single-chamber implantable cardioverter-defibrillator (ICD) was implanted. Genetic testing for arrhythmogenic RV cardiomyopathy (ARVC) was negative, and family screening was normal. Two years later, pre-syncope episodes occurred, and ICD interrogation revealed nonsustained VT. The patient is awaiting VT ablation. This case highlights the diagnostic and therapeutic challenges of ARVC, particularly in differentiating it from myocarditis. The "hot-phase" presentation, vaccine association, and subsequent SARS-CoV-2 infection added complexity. CMR was crucial for diagnosis, and VT management required a combination of medical therapy and invasive procedures.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nuno Ferreira
- Local Health Unit of Gaia/Espinho, Vila Nova de Gaia.
| | - Olga Azevedo
- Local Health Unit of Alto Ave, Vila Nova de Famalicão.
| | | |
Collapse
|
6
|
Wiedmann F, Boondej E, Stanifer M, Paasche A, Kraft M, Prüser M, Seeger T, Uhrig U, Boulant S, Schmidt C. SARS-CoV-2 ORF 3a-mediated currents are inhibited by antiarrhythmic drugs. Europace 2024; 26:euae252. [PMID: 39412366 PMCID: PMC11481279 DOI: 10.1093/europace/euae252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/01/2024] [Indexed: 10/19/2024] Open
Abstract
AIMS Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been linked to cardiovascular complications, notably cardiac arrhythmias. The open reading frame (ORF) 3a of the coronavirus genome encodes for a transmembrane protein that can function as an ion channel. The aim of this study was to investigate the role of the SARS-CoV-2 ORF 3a protein in COVID-19-associated arrhythmias and its potential as a pharmacological target. METHODS AND RESULTS Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) and cultured human fibroblasts were infected with SARS-CoV-2. Subsequent immunoblotting assays revealed the expression of ORF 3a protein in hiPSC-CM but not in fibroblasts. After intracytoplasmic injection of RNA encoding ORF 3a proteins into Xenopus laevis oocytes, macroscopic outward currents could be measured. While class I, II, and IV antiarrhythmic drugs showed minor effects on ORF 3a-mediated currents, a robust inhibition was detected after application of class III antiarrhythmics. The strongest effects were observed with dofetilide and amiodarone. Finally, molecular docking simulations and mutagenesis studies identified key amino acid residues involved in drug binding. CONCLUSION Class III antiarrhythmic drugs are potential inhibitors of ORF 3a-mediated currents, offering new options for the treatment of COVID-19-related cardiac complications.
Collapse
Affiliation(s)
- Felix Wiedmann
- Department of Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Heidelberg, Germany
| | - Emika Boondej
- Department of Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany
| | - Megan Stanifer
- Department of Molecular Genetics and Microbiology, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Amelie Paasche
- Department of Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Manuel Kraft
- Department of Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Heidelberg, Germany
| | - Merten Prüser
- Department of Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Timon Seeger
- Department of Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Ulrike Uhrig
- Chemical Biology Core Facility, EMBL, Heidelberg, Germany
| | - Steeve Boulant
- Department of Molecular Genetics and Microbiology, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Constanze Schmidt
- Department of Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
7
|
Zuin M, Ojeda-Fernández L, Torrigiani G, Bertini M. Risk of incident atrial fibrillation after COVID-19 infection: A systematic review and meta-analysis. Heart Rhythm 2024; 21:1613-1620. [PMID: 38636931 DOI: 10.1016/j.hrthm.2024.04.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Data regarding the risk of atrial fibrillation (AF) during the post-acute phase of COVID-19 are lacking. OBJECTIVE We assessed the risk of incident AF in COVID-19 recovered patients by performing a systematic review and meta-analysis of the available data. METHODS Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, we searched Medline and Scopus to locate all articles published up to December 1, 2023, reporting the risk of AF in patients recovered from COVID-19 infection compared with noninfected patients in whom the arrhythmia developed during the same follow-up period. AF risk was evaluated by the Mantel-Haenszel random effects model with hazard ratio as the effect measure with 95% confidence interval (CI); heterogeneity was assessed by Higgins I2 statistic. RESULTS Overall, 19,478,173 patients (mean age, 56.5 years; 63.0% male) enrolled in 5 observational studies were included in the analysis. Of these, 5,692,510 recovered from severe acute respiratory syndrome coronavirus 2 infection. During a mean follow-up of 14.5 ± 3.2 months, a random effects model revealed a pooled incidence of new-onset AF in 2.6% of cases (95% CI, 1.8%-6.18%). Recovered COVID-19 patients presented with a higher risk of incident AF (hazard ratio, 1.57; 95% CI, 1.24-1.99; P < .0001; I2 = 77.9%) compared with noninfected patients during the same follow-up period. Sensitivity analyses confirmed the yielded results. A multivariable metaregression including age, male sex, history of hypertension, coronary artery disease, and length of follow-up was able to explain a significant part of the heterogeneity (R2 = 54.3%; P = .01). CONCLUSION Recovered COVID-19 patients have a higher risk of AF events compared with individuals from the general population.
Collapse
Affiliation(s)
- Marco Zuin
- Division of Cardiology, University of Ferrara, Ferrara, Italy
| | - Luisa Ojeda-Fernández
- Laboratory of Cardiovascular Prevention, Department of Health Policy, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ginevra Torrigiani
- Laboratory of Cardiovascular Prevention, Department of Health Policy, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Matteo Bertini
- Division of Cardiology, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
8
|
Yılmaz M, Mirzaoğlu Ç. Recovery from Severe COVID-19 Is an Independent Predictor of Electrocardiographic Abnormal P-Wave Axis. Diagnostics (Basel) 2024; 14:1326. [PMID: 39001217 PMCID: PMC11240735 DOI: 10.3390/diagnostics14131326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 07/16/2024] Open
Abstract
AIM Abnormal P-wave axis (aPwa) have been correlated with an increased risk of supraventricular arrhythmias. The aim of this study was to analyze whether infection with COVID-19 may cause a predisposition for supraventricular arrhythmia in the long term, following recovery. MATERIALS AND METHODS In this study, a total of 252 subjects with a confirmed history of COVID-19 (recovered COVID-19) and 251 healthy subjects without a history of COVID-19 were included. The recovered COVID-19 group was divided into three subgroups designated as mild, moderate, and severe according to the severity score of their chest CT. The aPwa data were obtained using 12-lead electrocardiography (ECG) and compared between the healthy subjects and the recovered COVID-19 subgroups. RESULTS This study showed that in the recovered severe COVID-19 subgroup the prevalence of aPwa was significantly increased compared to the controls and the other COVID-19 subgroups. No correlation could be detected in Spearman's Rho correlation between the existence of aPwa and the number of positive PCR tests for COVID-19 and the time elapsed after infection with COVID-19. The binary logistic regression analysis showed that recovery from severe COVID-19, the severity score of the chest CT in the recovered from COVID-19 subjects, and the existence of hypertension (HT) were all independent predictors of aPwa (hazard ratio: 3.542, 95% confidence interval: 1.398-8.969, p: 0.01; hazard ratio: 0.896, 95% confidence interval: 0.840-0.955, p < 0.001; hazard ratio: 2.710, 95% confidence interval: 1.079-6.804, p: 0.03, respectively). CONCLUSIONS Individuals who have recovered from severe COVID-19 have shown an increased prevalence of aPwa. The existence of aPwa was not associated with the number of positive PCR tests for COVID-19 or the time elapsed after infection with COVID-19. Therefore, recovery from severe COVID-19 is an independent predictor of electrocardiographic abnormal P-wave axis.
Collapse
Affiliation(s)
- Mücahid Yılmaz
- Department of Cardiology, University of Health Sciences, Elazığ Fethi Sekin City Hospital, 23280 Elazığ, Turkey
| | - Çetin Mirzaoğlu
- Department of Cardiology, University of Health Sciences, Elazığ Fethi Sekin City Hospital, 23280 Elazığ, Turkey
| |
Collapse
|
9
|
Srivastava A, Nalroad Sundararaj S, Bhatia J, Singh Arya D. Understanding long COVID myocarditis: A comprehensive review. Cytokine 2024; 178:156584. [PMID: 38508059 DOI: 10.1016/j.cyto.2024.156584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/21/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
Infectious diseases are a cause of major concern in this twenty-first century. There have been reports of various outbreaks like severe acute respiratory syndrome (SARS) in 2003, swine flu in 2009, Zika virus disease in 2015, and Middle East Respiratory Syndrome (MERS) in 2012, since the start of this millennium. In addition to these outbreaks, the latest infectious disease to result in an outbreak is the SARS-CoV-2 infection. A viral infection recognized as a respiratory illness at the time of emergence, SARS-CoV-2 has wreaked havoc worldwide because of its long-lasting implications like heart failure, sepsis, organ failure, etc., and its significant impact on the global economy. Besides the acute illness, it also leads to symptoms months later which is called long COVID or post-COVID-19 condition. Due to its ever-increasing prevalence, it has been a significant challenge to treat the affected individuals and manage the complications as well. Myocarditis, a long-term complication of coronavirus disease 2019 (COVID-19) is an inflammatory condition involving the myocardium of the heart, which could even be fatal in the long term in cases of progression to ventricular dysfunction and heart failure. Thus, it is imperative to diagnose early and treat this condition in the affected individuals. At present, there are numerous studies which are in progress, investigating patients with COVID-19-related myocarditis and the treatment strategies. This review focuses primarily on myocarditis, a life-threatening complication of COVID-19 illness, and endeavors to elucidate the pathogenesis, biomarkers, and management of long COVID myocarditis along with pipeline drugs in detail.
Collapse
Affiliation(s)
- Arti Srivastava
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India
| | | | - Jagriti Bhatia
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Dharamvir Singh Arya
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
10
|
Yagüe Sebastián MM, Sánchez Quintanilla S. [Exercise prescription in post-COVID syndrome: A challenge for primary healthcare]. Semergen 2024; 50:102190. [PMID: 38309202 DOI: 10.1016/j.semerg.2023.102190] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 02/05/2024]
Abstract
After the SARS-CoV-2 pandemic we face a new global epidemic: the Post-COVID Syndrome. This novel condition has fluctuating progression and a wide range of symptoms, such as fatigue, headaches, muscle pain or breathlessness. Although its pathophysiology is not clear, a multiorganic affection is suspected, altering the immune, cardiorespitatory and nervous systems. Whereas there is no consensus over its treatment, most of the researches conclude the effectiveness of therapeutic exercise and a multicomponent rehabilitation, coordinating and cooperating between different health professionals. A functional, respiratory and strength evaluation prior to treatment prescription is highly recommended, since it will help professionals to precisely prescribe and objectively measure the evolution of our patients. In this article we suggest a few tests, adequate to primary health requirements, to evaluate our patients' initial condition, as well as the most secure way to initiate a therapeutic exercise programme, together with other healthcare providers.
Collapse
Affiliation(s)
- M M Yagüe Sebastián
- Médico de Familia. Fisioterapeuta. Unidad Docente Multiprofesional de Atención Familiar y Comunitaria, Sector II Zaragoza, SALUD. Miembro Grupo de Investigación GIIS101-Cuidados en Salud en Atención Primaria, Sector Zaragoza II, Zaragoza, España.
| | | |
Collapse
|
11
|
Hou Q, Jiang J, Na K, Zhang X, Liu D, Jing Q, Yan C, Han Y. Potential therapeutic targets for COVID-19 complicated with pulmonary hypertension: a bioinformatics and early validation study. Sci Rep 2024; 14:9294. [PMID: 38653779 DOI: 10.1038/s41598-024-60113-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/18/2024] [Indexed: 04/25/2024] Open
Abstract
Coronavirus disease (COVID-19) and pulmonary hypertension (PH) are closely correlated. However, the mechanism is still poorly understood. In this article, we analyzed the molecular action network driving the emergence of this event. Two datasets (GSE113439 and GSE147507) from the GEO database were used for the identification of differentially expressed genes (DEGs).Common DEGs were selected by VennDiagram and their enrichment in biological pathways was analyzed. Candidate gene biomarkers were selected using three different machine-learning algorithms (SVM-RFE, LASSO, RF).The diagnostic efficacy of these foundational genes was validated using independent datasets. Eventually, we validated molecular docking and medication prediction. We found 62 common DEGs, including several ones that could be enriched for Immune Response and Inflammation. Two DEGs (SELE and CCL20) could be identified by machine-learning algorithms. They performed well in diagnostic tests on independent datasets. In particular, we observed an upregulation of functions associated with the adaptive immune response, the leukocyte-lymphocyte-driven immunological response, and the proinflammatory response. Moreover, by ssGSEA, natural killer T cells, activated dendritic cells, activated CD4 T cells, neutrophils, and plasmacytoid dendritic cells were correlated with COVID-19 and PH, with SELE and CCL20 showing the strongest correlation with dendritic cells. Potential therapeutic compounds like FENRETI-NIDE, AFLATOXIN B1 and 1-nitropyrene were predicted. Further molecular docking and molecular dynamics simulations showed that 1-nitropyrene had the most stable binding with SELE and CCL20.The findings indicated that SELE and CCL20 were identified as novel diagnostic biomarkers for COVID-19 complicated with PH, and the target of these two key genes, FENRETI-NIDE and 1-nitropyrene, was predicted to be a potential therapeutic target, thus providing new insights into the prediction and treatment of COVID-19 complicated with PH in clinical practice.
Collapse
Affiliation(s)
- Qingbin Hou
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Jinping Jiang
- Department of Cardiology, Shengjing Hospital Affiliated to China Medical University, Shenyang, China
| | - Kun Na
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Xiaolin Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Dan Liu
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Quanmin Jing
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Chenghui Yan
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China.
| | - Yaling Han
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China.
| |
Collapse
|
12
|
Kell DB, Lip GYH, Pretorius E. Fibrinaloid Microclots and Atrial Fibrillation. Biomedicines 2024; 12:891. [PMID: 38672245 PMCID: PMC11048249 DOI: 10.3390/biomedicines12040891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Atrial fibrillation (AF) is a comorbidity of a variety of other chronic, inflammatory diseases for which fibrinaloid microclots are a known accompaniment (and in some cases, a cause, with a mechanistic basis). Clots are, of course, a well-known consequence of atrial fibrillation. We here ask the question whether the fibrinaloid microclots seen in plasma or serum may in fact also be a cause of (or contributor to) the development of AF. We consider known 'risk factors' for AF, and in particular, exogenous stimuli such as infection and air pollution by particulates, both of which are known to cause AF. The external accompaniments of both bacterial (lipopolysaccharide and lipoteichoic acids) and viral (SARS-CoV-2 spike protein) infections are known to stimulate fibrinaloid microclots when added in vitro, and fibrinaloid microclots, as with other amyloid proteins, can be cytotoxic, both by inducing hypoxia/reperfusion and by other means. Strokes and thromboembolisms are also common consequences of AF. Consequently, taking a systems approach, we review the considerable evidence in detail, which leads us to suggest that it is likely that microclots may well have an aetiological role in the development of AF. This has significant mechanistic and therapeutic implications.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Building 220, 2800 Kongens Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| | - Gregory Y. H. Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart and Chest Hospital, Liverpool L7 8TX, UK;
- Danish Center for Health Services Research, Department of Clinical Medicine, Aalborg University, 9220 Aalborg, Denmark
| | - Etheresia Pretorius
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| |
Collapse
|
13
|
Trimarco V, Izzo R, Pacella D, Trama U, Manzi MV, Lombardi A, Piccinocchi R, Gallo P, Esposito G, Piccinocchi G, Lembo M, Morisco C, Rozza F, Santulli G, Trimarco B. Incidence of new-onset hypertension before, during, and after the COVID-19 pandemic: a 7-year longitudinal cohort study in a large population. BMC Med 2024; 22:127. [PMID: 38500180 PMCID: PMC10949764 DOI: 10.1186/s12916-024-03328-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/28/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND While the augmented incidence of diabetes after COVID-19 has been widely confirmed, controversial results are available on the risk of developing hypertension during the COVID-19 pandemic. METHODS We designed a longitudinal cohort study to analyze a closed cohort followed up over a 7-year period, i.e., 3 years before and 3 years during the COVID-19 pandemic, and during 2023, when the pandemic was declared to be over. We analyzed medical records of more than 200,000 adults obtained from a cooperative of primary physicians from January 1, 2017, to December 31, 2023. The main outcome was the new diagnosis of hypertension. RESULTS We evaluated 202,163 individuals in the pre-pandemic years and 190,743 in the pandemic years, totaling 206,857 when including 2023 data. The incidence rate of new hypertension was 2.11 (95% C.I. 2.08-2.15) per 100 person-years in the years 2017-2019, increasing to 5.20 (95% C.I. 5.14-5.26) in the period 2020-2022 (RR = 2.46), and to 6.76 (95% C.I. 6.64-6.88) in 2023. The marked difference in trends between the first and the two successive observation periods was substantiated by the fitted regression lines of two Poisson models conducted on the monthly log-incidence of hypertension. CONCLUSIONS We detected a significant increase in new-onset hypertension during the COVID-19 pandemic, which at the end of the observation period affected ~ 20% of the studied cohort, a percentage higher than the diagnosis of COVID-19 infection within the same time frame. This observation suggests that increased attention to hypertension screening should not be limited to individuals who are aware of having contracted the infection but should be extended to the entire population.
Collapse
Affiliation(s)
- Valentina Trimarco
- Department of Neuroscience, Reproductive Sciences, and Dentistry, "Federico II" University, Naples, Italy
| | - Raffaele Izzo
- Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy
| | - Daniela Pacella
- Department of Public Health, "Federico II" University, Naples, Italy
| | - Ugo Trama
- Pharmaceutical Department of Campania Region, Naples, Italy
| | - Maria Virginia Manzi
- Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy
| | - Angela Lombardi
- Department of Microbiology and Immunology, Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York City, NY, USA
| | | | - Paola Gallo
- Department of Neuroscience, Reproductive Sciences, and Dentistry, "Federico II" University, Naples, Italy
| | - Giovanni Esposito
- Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy
| | - Gaetano Piccinocchi
- COMEGEN Primary Care Physicians Cooperative, Italian Society of General Medicine (SIMG), Naples, Italy
| | - Maria Lembo
- Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy
| | - Carmine Morisco
- Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy
- International Translational Research and Medical Education (ITME) Consortium, Academic Research Unit, Naples, Italy
- Italian Society for Cardiovascular Prevention (SIPREC), Rome, Italy
| | - Francesco Rozza
- Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy
| | - Gaetano Santulli
- Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy.
- International Translational Research and Medical Education (ITME) Consortium, Academic Research Unit, Naples, Italy.
- Department of Medicine, Wilf Family Cardiovascular Research Institute, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, 1300 Morris Park Avenue, New York City, NY, 10461, USA.
| | - Bruno Trimarco
- Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy
- International Translational Research and Medical Education (ITME) Consortium, Academic Research Unit, Naples, Italy
- Italian Society for Cardiovascular Prevention (SIPREC), Rome, Italy
| |
Collapse
|
14
|
Liu S, Zhong M, Wu H, Su W, Wang Y, Li P. Potential Beneficial Effects of Naringin and Naringenin on Long COVID-A Review of the Literature. Microorganisms 2024; 12:332. [PMID: 38399736 PMCID: PMC10892048 DOI: 10.3390/microorganisms12020332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused a severe epidemic due to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Recent studies have found that patients do not completely recover from acute infections, but instead, suffer from a variety of post-acute sequelae of SARS-CoV-2 infection, known as long COVID. The effects of long COVID can be far-reaching, with a duration of up to six months and a range of symptoms such as cognitive dysfunction, immune dysregulation, microbiota dysbiosis, myalgic encephalomyelitis/chronic fatigue syndrome, myocarditis, pulmonary fibrosis, cough, diabetes, pain, reproductive dysfunction, and thrombus formation. However, recent studies have shown that naringenin and naringin have palliative effects on various COVID-19 sequelae. Flavonoids such as naringin and naringenin, commonly found in fruits and vegetables, have various positive effects, including reducing inflammation, preventing viral infections, and providing antioxidants. This article discusses the molecular mechanisms and clinical effects of naringin and naringenin on treating the above diseases. It proposes them as potential drugs for the treatment of long COVID, and it can be inferred that naringin and naringenin exhibit potential as extended long COVID medications, in the future likely serving as nutraceuticals or clinical supplements for the comprehensive alleviation of the various manifestations of COVID-19 complications.
Collapse
Affiliation(s)
- Siqi Liu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Market Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (S.L.); (M.Z.); (H.W.); (W.S.); (Y.W.)
| | - Mengli Zhong
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Market Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (S.L.); (M.Z.); (H.W.); (W.S.); (Y.W.)
| | - Hao Wu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Market Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (S.L.); (M.Z.); (H.W.); (W.S.); (Y.W.)
| | - Weiwei Su
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Market Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (S.L.); (M.Z.); (H.W.); (W.S.); (Y.W.)
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Yonggang Wang
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Market Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (S.L.); (M.Z.); (H.W.); (W.S.); (Y.W.)
| | - Peibo Li
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Market Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (S.L.); (M.Z.); (H.W.); (W.S.); (Y.W.)
| |
Collapse
|
15
|
Goerlich E, Chung TH, Hong GH, Metkus TS, Gilotra NA, Post WS, Hays AG. Cardiovascular effects of the post-COVID-19 condition. NATURE CARDIOVASCULAR RESEARCH 2024; 3:118-129. [PMID: 39196189 DOI: 10.1038/s44161-023-00414-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 12/13/2023] [Indexed: 08/29/2024]
Abstract
Throughout the COVID-19 pandemic, the new clinical entity of the post-COVID-19 condition, defined as a multisystemic condition of persistent symptoms following resolution of an acute severe acute respiratory syndrome coronavirus 2 infection, has emerged as an important area of clinical focus. While this syndrome spans multiple organ systems, cardiovascular complications are often the most prominent features. These include, but are not limited to, myocardial injury, heart failure, arrhythmias, vascular injury/thrombosis and dysautonomia. As the number of individuals with the post-COVID-19 condition continues to climb and overwhelm medical systems, summarizing existing information and knowledge gaps in the complex cardiovascular effects of the post-COVID-19 condition has become critical for patient care. In this Review, we explore the current state of knowledge of the post-COVID-19 condition and identify areas where additional research is warranted. This will provide a framework for better understanding the cardiovascular manifestations of the post-COVID-19 condition with a focus on pathophysiology, diagnosis and management.
Collapse
Affiliation(s)
- Erin Goerlich
- Division of Cardiology, Department of Medicine, The Johns Hopkins University, Baltimore, MD, USA
| | - Tae H Chung
- Department of Physical Medicine and Rehabilitation and Department of Neurology, The Johns Hopkins University, Baltimore, MD, USA
| | - Gloria H Hong
- Division of Cardiology, Department of Medicine, The Johns Hopkins University, Baltimore, MD, USA
| | - Thomas S Metkus
- Division of Cardiology, Department of Medicine, The Johns Hopkins University, Baltimore, MD, USA
| | - Nisha A Gilotra
- Division of Cardiology, Department of Medicine, The Johns Hopkins University, Baltimore, MD, USA
| | - Wendy S Post
- Division of Cardiology, Department of Medicine, The Johns Hopkins University, Baltimore, MD, USA
| | - Allison G Hays
- Division of Cardiology, Department of Medicine, The Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
16
|
Ho CYC, Al Sinan A, DeBoard Z, Swampillai J, Timmins K, Stiles MK. Hybrid surgical-catheter epicardial ablation of recurrent ventricular tachycardia in an arrhythmogenic cardiomyopathy patient with pericardial adhesions following COVID-19 infection. HeartRhythm Case Rep 2024; 10:15-20. [PMID: 38264109 PMCID: PMC10801010 DOI: 10.1016/j.hrcr.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024] Open
Affiliation(s)
| | - Ali Al Sinan
- Department of Cardiology, Waikato Hospital, Hamilton, New Zealand
| | - Zach DeBoard
- Department of Cardiothoracic Surgery, Waikato Hospital, Hamilton, New Zealand
| | - Janice Swampillai
- Department of Cardiology, Waikato Hospital, Hamilton, New Zealand
- University of Auckland, School of Medicine, Auckland, New Zealand
| | - Kellie Timmins
- Department of Cardiology, Waikato Hospital, Hamilton, New Zealand
| | - Martin K. Stiles
- Department of Cardiology, Waikato Hospital, Hamilton, New Zealand
- University of Auckland, School of Medicine, Auckland, New Zealand
| |
Collapse
|
17
|
Zaheer K, Goncalves B, Ramalingam A, Rabbani NUA, Sayyed R, Nawab A, Puri R, Williams CJ, Mansoor K. Association of New-Onset Atrial Fibrillation With All-Cause Mortality in COVID-19 Patients. Cureus 2023; 15:e49785. [PMID: 38058521 PMCID: PMC10697182 DOI: 10.7759/cureus.49785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2023] [Indexed: 12/08/2023] Open
Abstract
Background The COVID-19 pandemic has brought about unprecedented global health challenges, with its impact extending beyond respiratory manifestations to encompass cardiovascular complications, including arrhythmias. Dysrhythmias in COVID-19 are multifactorial, ranging from direct myocardial insult due to the cytokine storm to metabolic derangements. Objective In this study, we aim to examine the incidence of new-onset atrial fibrillation and to study its association with all-cause mortality of COVID-19. Methods A cross-sectional study was conducted at Cabell Huntington Hospital, West Virginia, utilizing electronic medical records of COVID-19 patients from 2020 to 2021. Inclusion criteria comprised patients aged >18 years with COVID-19 diagnosis and cardiac arrhythmias during hospitalization. Logistic regression analysis was employed to examine the relationship between demographic and clinical variables and in-hospital mortality. Results Of the 264 eligible patients, those aged >66 years had lower odds of in-hospital mortality (p < 0.001), while gender, ejection fraction, and diabetes mellitus did not significantly predict mortality. Atrial fibrillation (p = 0.011) and heart failure (p = 0.030) were associated with increased odds of mortality, while hypertension showed no significant predictive power (p = 0.791). Conclusion This study highlights the significance of atrial fibrillation and heart failure as predictors of in-hospital mortality in COVID-19 patients. Our findings underscore the importance of recognizing and managing arrhythmias in COVID-19 and call for further research on the mechanisms and long-term effects of these cardiac complications in the context of the pandemic. These insights can guide clinical practice and interventions to optimize patient outcomes.
Collapse
Affiliation(s)
- Kamran Zaheer
- Department of Internal Medicine, St. Mary's Medical Center, Huntington, USA
| | - Bruno Goncalves
- Department of Surgery, Marshall University Joan C. Edwards School of Medicine, Huntington, USA
| | - Archana Ramalingam
- Department of Internal Medicine, Marshall University Joan C. Edwards School of Medicine, Huntington, USA
| | - Noor Ul Ann Rabbani
- Department of Cardiology, Marshall University Joan C. Edwards School of Medicine, Huntington, USA
| | - Rameez Sayyed
- Department of Cardiology, Marshall University Joan C. Edwards School of Medicine, Huntington, USA
| | - Athar Nawab
- Department of Cardiology, Marshall University Joan C. Edwards School of Medicine, Huntington, USA
| | - Raghav Puri
- Department of Cardiology, Marshall University Joan C. Edwards School of Medicine, Huntington, USA
| | - Charles J Williams
- Department of Cardiology, Marshall University Joan C. Edwards School of Medicine, Huntington, USA
| | - Kanaan Mansoor
- Department of Cardiology, Marshall University Joan C. Edwards School of Medicine, Huntington, USA
| |
Collapse
|
18
|
Luchian ML, Higny J, Benoit M, Robaye B, Berners Y, Henry JP, Colle B, Xhaët O, Blommaert D, Droogmans S, Motoc AI, Cosyns B, Gabriel L, Guedes A, Demeure F. Unmasking Pandemic Echoes: An In-Depth Review of Long COVID's Unabated Cardiovascular Consequences beyond 2020. Diagnostics (Basel) 2023; 13:3368. [PMID: 37958264 PMCID: PMC10647305 DOI: 10.3390/diagnostics13213368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
At the beginning of 2020, coronavirus disease 2019 (COVID-19) emerged as a new pandemic, leading to a worldwide health crisis and overwhelming healthcare systems due to high numbers of hospital admissions, insufficient resources, and a lack of standardized therapeutic protocols. Multiple genetic variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been detected since its first public declaration in 2020, some of them being considered variants of concern (VOCs) corresponding to several pandemic waves. Nevertheless, a growing number of COVID-19 patients are continuously discharged from hospitals, remaining symptomatic even months after their first episode of COVID-19 infection. Long COVID-19 or 'post-acute COVID-19 syndrome' emerged as the new pandemic, being characterized by a high variability of clinical manifestations ranging from cardiorespiratory and neurological symptoms such as chest pain, exertional dyspnoea or cognitive disturbance to psychological disturbances, e.g., depression, anxiety or sleep disturbance with a crucial impact on patients' quality of life. Moreover, Long COVID is viewed as a new cardiovascular risk factor capable of modifying the trajectory of current and future cardiovascular diseases, altering the patients' prognosis. Therefore, in this review we address the current definitions of Long COVID and its pathophysiology, with a focus on cardiovascular manifestations. Furthermore, we aim to review the mechanisms of acute and chronic cardiac injury and the variety of cardiovascular sequelae observed in recovered COVID-19 patients, in addition to the potential role of Long COVID clinics in the medical management of this new condition. We will further address the role of future research for a better understanding of the actual impact of Long COVID and future therapeutic directions.
Collapse
Affiliation(s)
- Maria-Luiza Luchian
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur Site Godinne, Av. Dr. G. Thérasse, 1, 5530 Yvoir, Belgium (A.G.); (F.D.)
| | - Julien Higny
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur Site Godinne, Av. Dr. G. Thérasse, 1, 5530 Yvoir, Belgium (A.G.); (F.D.)
| | - Martin Benoit
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur Site Godinne, Av. Dr. G. Thérasse, 1, 5530 Yvoir, Belgium (A.G.); (F.D.)
| | - Benoit Robaye
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur Site Godinne, Av. Dr. G. Thérasse, 1, 5530 Yvoir, Belgium (A.G.); (F.D.)
| | - Yannick Berners
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur Site Godinne, Av. Dr. G. Thérasse, 1, 5530 Yvoir, Belgium (A.G.); (F.D.)
| | - Jean-Philippe Henry
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur Site Godinne, Av. Dr. G. Thérasse, 1, 5530 Yvoir, Belgium (A.G.); (F.D.)
| | - Benjamin Colle
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur Site Godinne, Av. Dr. G. Thérasse, 1, 5530 Yvoir, Belgium (A.G.); (F.D.)
| | - Olivier Xhaët
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur Site Godinne, Av. Dr. G. Thérasse, 1, 5530 Yvoir, Belgium (A.G.); (F.D.)
| | - Dominique Blommaert
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur Site Godinne, Av. Dr. G. Thérasse, 1, 5530 Yvoir, Belgium (A.G.); (F.D.)
| | - Steven Droogmans
- Department of Cardiology, Centrum voor Hart-en Vaatziekten, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Andreea Iulia Motoc
- Department of Cardiology, Centrum voor Hart-en Vaatziekten, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Bernard Cosyns
- Department of Cardiology, Centrum voor Hart-en Vaatziekten, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Laurence Gabriel
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur Site Godinne, Av. Dr. G. Thérasse, 1, 5530 Yvoir, Belgium (A.G.); (F.D.)
| | - Antoine Guedes
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur Site Godinne, Av. Dr. G. Thérasse, 1, 5530 Yvoir, Belgium (A.G.); (F.D.)
| | - Fabian Demeure
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur Site Godinne, Av. Dr. G. Thérasse, 1, 5530 Yvoir, Belgium (A.G.); (F.D.)
| |
Collapse
|
19
|
Georgieva-Tsaneva G, Gospodinova E. Heart Rate Variability Analysis of Healthy Individuals and Patients with Ischemia and Arrhythmia. Diagnostics (Basel) 2023; 13:2549. [PMID: 37568912 PMCID: PMC10417764 DOI: 10.3390/diagnostics13152549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/29/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
This article presents the results of a study of the cardiac activity of patients diagnosed with arrhythmia and ischemic heart disease. The obtained results were compared with the results obtained from a healthy control group. The studies were conducted on long-term cardiac recordings (approximately 24 h) registered by means of Holter monitoring, and the observations were made in the daily activities of the individuals. All processing, analysis and evaluations on the registered signals were performed by means of an established information demonstration cardiology system. The mathematical analysis included linear, non-linear and graphical methods for estimating and analyzing heart rate variability (HRV). Re-examinations were carried out on some of the observed individuals after six months of treatment. The results show an increase in the main time domain parameters of the HRV, such as the SDNN (from 86.36 ms to 95.47 ms), SDANN (from 74.05 ms to 82.14 ms), RMSSD (from 5.1 ms to 6.92 ms), SDNN index (from 52.4 to 58.91) and HRVTi (from 12.8 to 16.83) in patients with ischemia. In patients with arrhythmia, there were increases in the SDNN (from 88.4 ms to 96.44 ms), SDANN (from 79.12 ms to 83.23 ms), RMSSD (from 6.74 ms to 7.31 ms), SDNN index (from 53.22 to 59.46) and HRVTi (from 16.2 to 19.42). An increase in the non-linear parameter α (from 0.83 to 0.85) was found in arrhythmia; and in α (from 0.80 to 0.83), α1 (from 0.88 to 0.91) and α2 (from 0.86 to 0.89) in ischemia. The presented information system can serve as an auxiliary tool in the diagnosis and treatment of cardiovascular diseases.
Collapse
|
20
|
Massimino M, Iaquinta FS, Naty S, Andreozzi F, Grembiale RD. Persistent Pancytopenia as a Long-COVID Manifestation in a Patient with Adult-Onset Still's Disease: A Case Report. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1349. [PMID: 37512160 PMCID: PMC10384992 DOI: 10.3390/medicina59071349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/09/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Background: Adult-onset Still's disease (AOSD) is a rare rheumatic inflammatory condition with an extremely heterogeneous clinical presentation and systemic impairment. Uncommon manifestations may be challenging to manage, especially in patients with previous severe acute SARS-CoV-2 infection. For the first time, we report the case of a patient affected by refractory AOSD presenting with severe pancytopenia as a long-COVID manifestation. The purpose of this case report is to illustrate the clinical presentation, diagnostic and therapeutic management of this unusual manifestation. Moreover, we examine the mechanisms that are potentially responsible for the onset of the pancytopenia observed in our patient. Case presentation: We describe the case of a 40-year-old male who presented with a history of fever for 2 years, arthralgia, maculopapular salmon-pink rash and a previous SARS-CoV-2 infection which required admission to intensive care. The patient's laboratory results revealed elevated inflammatory markers levels (erythrocyte sedimentation rate and C-reactive protein), hyperferritinemia and severe pancytopenia that needed multiple transfusions. A diagnosis of AOSD was made based on clinical and laboratory presentation after excluding neoplastic, infectious and other rheumatic diseases. The previous empirical treatment was not adequate to control the condition; therefore, treatment with high-dose steroids, canakinumab and epoetin alfa was started and led to the resolution of the man's symptoms and a reduction in inflammatory marker levels, whereas blood cell count remained stable without a need for further blood transfusions. The patient is currently under rheumatologic and hematologic follow-up every month. Conclusions: Neither AOSD nor SARS-CoV-2 infection usually manifests with pancytopenia, except in hemophagocytic syndrome or immunodeficient patients, respectively. Identifying the underlying etiology of pancytopenia is mandatory to establish a prompt treatment that generally resolves the disorder. However, in our case, all common causes of pancytopenia were excluded, suggesting a potential manifestation of the long-COVID syndrome. Despite the resolution of the acute infection and the remarkable treatment of AOSD, pancytopenia persists. Herein, we propose for refractory AOSD patients with previous SARS-CoV-2 infection a novel approach to the diagnosis and treatment of pancytopenia.
Collapse
Affiliation(s)
- Mattia Massimino
- Department of Medical and Surgical Sciences, "Magna Græcia" University of Catanzaro, 88100 Catanzaro, Italy
| | | | - Saverio Naty
- Department of Health Sciences, "Magna Græcia" University of Catanzaro, 88100 Catanzaro, Italy
| | - Francesco Andreozzi
- Department of Medical and Surgical Sciences, "Magna Græcia" University of Catanzaro, 88100 Catanzaro, Italy
| | - Rosa Daniela Grembiale
- Department of Health Sciences, "Magna Græcia" University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
21
|
Glaß M, Hüttelmaier S. IGF2BP1-An Oncofetal RNA-Binding Protein Fuels Tumor Virus Propagation. Viruses 2023; 15:1431. [PMID: 37515119 PMCID: PMC10385356 DOI: 10.3390/v15071431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/13/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
The oncofetal RNA-binding protein IGF2BP1 has been reported to be a driver of tumor progression in a multitude of cancer entities. Its main function is the stabilization of target transcripts by shielding these from miRNA-mediated degradation. However, there is growing evidence that several virus species recruit IGF2BP1 to promote their propagation. In particular, tumor-promoting viruses, such as hepatitis B/C and human papillomaviruses, benefit from IGF2BP1. Moreover, recent evidence suggests that non-oncogenic viruses, such as SARS-CoV-2, also take advantage of IGF2BP1. The only virus inhibited by IGF2BP1 reported to date is HIV-1. This review summarizes the current knowledge about the interactions between IGF2BP1 and different virus species. It further recapitulates several findings by presenting analyses from publicly available high-throughput datasets.
Collapse
Affiliation(s)
- Markus Glaß
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle, Germany
| | - Stefan Hüttelmaier
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle, Germany
| |
Collapse
|
22
|
Scharf RE, Anaya JM. Post-COVID Syndrome in Adults-An Overview. Viruses 2023; 15:675. [PMID: 36992384 PMCID: PMC10056158 DOI: 10.3390/v15030675] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
This article provides an overview of various aspects related to post-COVID syndrome. Apart from its prevalence, symptoms and sequelae, risk determinants, and psychosocial implications, the pathogenesis of post-COVID condition is discussed in more detail. A focus on thrombo-inflammation in SARS-CoV-2 infection, the role of neutrophil extracellular traps, and the prevalence of venous thromboembolism is made. Moreover, COVID-19 and post-COVID syndrome in immunocompromising conditions, and the impact of vaccination on the prevention and treatment of post-COVID symptoms are reviewed. Autoimmunity is a hallmark of post-COVID syndrome, and, therefore, is another focus of this article. Thus, misdirected cellular and humoral immune responses can enhance the risk of latent autoimmunity in post-COVID syndrome. Facing the high prevalence of COVID-19 cases worldwide, it can be assumed that autoimmune disorders will increase globally over the next few years. Recent advances in identifying genetically determined variants may open the avenue for a better understanding of the susceptibility to and severity of SARS-CoV-2 infection and post-COVID syndrome.
Collapse
Affiliation(s)
- Rüdiger E. Scharf
- Current Address: Department of Medicine, Division of Cardiology, Angiology, Hemostasis and Internal Intensive Care Medicine, University Medical Center Mannheim, University of Heidelberg, D-68167 Mannheim, Germany
- Harvard Medical School, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Karp Family Research Laboratories, Boston, MA 02115, USA
- Institute of Transplantation Diagnostics and Cell Therapy, Division of Hemostasis, Hemotherapy and Transfusion Medicine, Heinrich Heine University Medical Center, D-40225 Düsseldorf, Germany
| | - Juan-Manuel Anaya
- Current Affiliation & Address: National Academy of Medicine of Colombia, Bogotá 110221, Colombia
- Health Research and Innovation Center at Coosalud, Cartagena 130001, Colombia
| |
Collapse
|