1
|
Sellamuthu G, Chakraborty A, Vetukuri RR, Sarath S, Roy A. RNAi-biofungicides: a quantum leap for tree fungal pathogen management. Crit Rev Biotechnol 2024:1-28. [PMID: 39647992 DOI: 10.1080/07388551.2024.2430478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/03/2024] [Accepted: 10/27/2024] [Indexed: 12/10/2024]
Abstract
Fungal diseases threaten the forest ecosystem, impacting tree health, productivity, and biodiversity. Conventional approaches to combating diseases, such as biological control or fungicides, often reach limits regarding efficacy, resistance, non-target organisms, and environmental impact, enforcing alternative approaches. From an environmental and ecological standpoint, an RNA interference (RNAi) mediated double-stranded RNA (dsRNA)-based strategy can effectively manage forest fungal pathogens. The RNAi approach explicitly targets and suppresses gene expression through a conserved regulatory mechanism. Recently, it has evolved to be an effective tool in combating fungal diseases and promoting sustainable forest management approaches. RNAi bio-fungicides provide efficient and eco-friendly disease control alternatives using species-specific gene targeting, minimizing the off-target effects. With accessible data on fungal disease outbreaks, genomic resources, and effective delivery systems, RNAi-based biofungicides can be a promising tool for managing fungal pathogens in forests. However, concerns regarding the environmental fate of RNAi molecules and their potential impact on non-target organisms require an extensive investigation on a case-to-case basis. The current review critically evaluates the feasibility of RNAi bio-fungicides against forest pathogens by delving into the accessible delivery methods, environmental persistence, regulatory aspects, cost-effectiveness, community acceptance, and plausible future of RNAi-based forest protection products.
Collapse
Affiliation(s)
- Gothandapani Sellamuthu
- Faculty of Forestry & Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Amrita Chakraborty
- Faculty of Forestry & Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Ramesh R Vetukuri
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Saravanasakthi Sarath
- Faculty of Forestry & Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Amit Roy
- Faculty of Forestry & Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| |
Collapse
|
2
|
Hough B, Wingfield B, Read D. Identification and characterization of mycoviruses in transcriptomes from the fungal family ceratocystidaceae. Virus Genes 2024; 60:696-710. [PMID: 39378002 PMCID: PMC11568016 DOI: 10.1007/s11262-024-02112-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024]
Abstract
Mycoviruses pervade the fungal kingdom, yet their diversity within various fungal families and genera remains largely unexplored. In this study, 10 publicly available fungal transcriptomes from Ceratocystidaceae were analyzed for the presence of mycoviruses. Despite mycovirus associations being known in only four members of this family, our investigation unveiled the discovery of six novel mycoviruses. The majority of these mycoviruses are composed of positive sense single stranded RNA and are putatively assigned to the viral family Mitoviridae (with tentative classification into the genera Unuamitovirus and Duamitovirus). The double stranded RNA viruses, however, were associated with the family Totiviridae (with tentative classification into the genus Victorivirus). This study also revealed the discovery of an identical unuamitovirus in the fungal species Thielaviopsis ethacetica and Thielaviopsis paradoxa. This discovery was notable as these fungal isolates originated from distinct geographical locations, highlighting potential implications for the transmission of this mitovirus. Moreover, this investigation significantly expands the known host range for mycoviruses in this family, marking the initial identification of mycoviruses within Ceratocystis platani, Thielaviopsis paradoxa, Thielaviopsis ethacetica, and Huntiella omanensis. Future research should focus on determining the effects that these mycoviruses might have on their fungal hosts.
Collapse
Affiliation(s)
- Bianca Hough
- Forestry & Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics & Microbiology, University of Pretoria, Pretoria, South Africa.
| | - Brenda Wingfield
- Forestry & Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics & Microbiology, University of Pretoria, Pretoria, South Africa
| | - David Read
- Forestry & Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics & Microbiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
3
|
Roininen E, Vainio EJ, Sutela S, Poimala A, Kashif M, Piri T, Hantula J. Virus transmission frequencies in the pine root rot pathogen Heterobasidion annosum. Virus Res 2024; 350:199467. [PMID: 39299454 DOI: 10.1016/j.virusres.2024.199467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
The combined use of Heterobasidion partitiviruses 13 and 15 (HetPV13-an1 and HetPV15-pa1) is considered a promising biocontrol approach against Heterobasidion root and butt rot. In a previous study, the transmission frequency of HetPV15-pa1 was found to be higher from a double partitivirus-infected donor than from a single partitivirus-infected donor. In this study, we included a wider array of recipient isolates to assess whether the phenomenon is widespread across different host strains and conducted transmission experiments on artificial media (in vitro) using a total of 45 different H. annosum donor-recipient pairs. In addition to investigating whether double partitivirus infection improves the transmission of HetPV13-an1 and HetPV15-pa1, we examined for the first time how efficiently co-infecting ssRNA viruses are concomitantly transmitted with the partitiviruses, and whether pre-existing ssRNA viruses in the recipients affect virus transmission. Generally, the transmission rates of HetPV13-an1 and HetPV15-pa1 were high from both single partitivirus-infected and double partitivirus-infected donors to most of the H. annosum recipient strains, with few exceptions. However, in contrast to previous experiments, the transmission frequency was not higher from the double partitivirus-infected donors. Also, ourmiavirus was transmitted between H. annosum strains, but the presence of another ourmiavirus in the recipient might affect the efficacy.
Collapse
Affiliation(s)
- Elina Roininen
- University of Helsinki, Viikinkaari 1, Helsinki FI-00790, Finland; Natural Resources Institute Finland (Luke), Latokartanonkaari 9, Helsinki FI-00790, Finland.
| | - Eeva Johanna Vainio
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, Helsinki FI-00790, Finland
| | - Suvi Sutela
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, Helsinki FI-00790, Finland
| | - Anna Poimala
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, Helsinki FI-00790, Finland
| | - Muhammad Kashif
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, Helsinki FI-00790, Finland
| | - Tuula Piri
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, Helsinki FI-00790, Finland
| | - Jarkko Hantula
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, Helsinki FI-00790, Finland
| |
Collapse
|
4
|
Kashif M, Poimala A, Vainio EJ, Sutela S, Piri T, Dálya LB, Hantula J. Complex transmission of partiti-, ambi- and ourmiaviruses in the forest pathogen Heterobasidion parviporum. Virus Res 2024; 350:199466. [PMID: 39384434 DOI: 10.1016/j.virusres.2024.199466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/11/2024]
Abstract
Utilizing Heterobasidion partitivirus 13 strain an1 (HetPV13-an1) and 15 strain pa1 (HetPV15-pa1) in co-infection is considered a potential biocontrol approach against Heterobasidion root and butt rot. Both partitiviruses mediate debilitating effects in most Heterobasidion host isolates and are generally transmitted efficiently between host strains. In this investigation, we conducted transmission experiments in the laboratory (in vitro) using several H. parviporum isolates to test whether using dual partitivirus infections is a more efficient way of transmitting viruses to new hosts compared to using single partitivirus infections, and whether co-occurring single-stranded RNA (ssRNA) viruses are co-transmitted during the process. The results showed that H. parviporum donors carrying both partitiviruses, HetPV13-an1 and HetPV15-pa1, transmitted HetPV15-pa1 more efficiently to recipients than the same donors infected with only HetPV15-pa1. In contrast, the transmission of HetPV13-an1 did not differ significantly between donors infected with both or only one partitivirus. Altogether, the transmission rates of HetPV13-an1 and HetPV15-pa1 were high on artificial media. Moreover, the transmission of the ssRNA viruses Heterobasidion ourmia-like virus 1(HetOlV1-pa7) and 4 (HetOlV4-an1) as well as Heterobasidion ambi-like virus 3 (HetAlV3-pa4) across different recipients were found to be variable. This study demonstrated for the first time the transmission of ambi- and ourmiaviruses between H. parviporum isolates in dual cultures and showed that H. parviporum mycelia can be cured of these ssRNA viruses using heat treatment.
Collapse
Affiliation(s)
- Muhammad Kashif
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland
| | - Anna Poimala
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland.
| | - Eeva J Vainio
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland
| | - Suvi Sutela
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland
| | - Tuula Piri
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland
| | | | - Jarkko Hantula
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland
| |
Collapse
|
5
|
Trifković M, Hejna O, Kuznetsova A, Mullett M, Jankovský L, Botella L. Dothistroma septosporum and Dothistroma pini, the causal agents of Dothistroma needle blight, are infected by multiple viruses. Virus Res 2024; 350:199476. [PMID: 39353468 PMCID: PMC11490729 DOI: 10.1016/j.virusres.2024.199476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/22/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Dothistroma septosporum and Dothistroma pini are severe foliar pathogens of conifers. They infect a broad spectrum of hosts (mainly Pinus spp.), causing chlorosis, defoliation of needles, and eventually the death of pine trees in extreme cases. Mycoviruses represent a novel and innovative avenue for controlling pathogens. To search for possible viruses hosted by Dothistroma spp. we screened a subset of isolates (20 strains of D. septosporum and one D. pini) originating from the Czech Republic, Slovenia, Italy, Austria and Ireland for viral dsRNA segments. Only five of them showed the presence of dsRNA segments. A total of 21 fungal isolates were prepared for total RNA extractions. RNA samples were pooled, and two separate RNA libraries were constructed for stranded total RNA sequencing. RNA-Seq data processing, pairwise sequence comparisons (PASC) and phylogenetic analyses revealed the presence of thirteen novel putative viruses with varying genome types: seven negative-sense single-stranded RNA viruses, including six bunya-like viruses and one new member of the order Mononegavirales; three positive-sense single-stranded RNA viruses, two of which are similar to those of the family Narnaviridae, while the genome of the third correspond to those of the family Gammaflexiviridae; and three double-stranded RNA viruses, comprising two novel members of the family Chrysoviridae and a potentially new species of gammapartitivirus. The results were confirmed with RT-PCR screening that the fungal pathogens hosted all the viruses and showed that particular fungal strains harbour multiple virus infections and that they are transmitted vertically. In this study, we described the narnavirus infecting D. pini. To our knowledge, this is the first virus discovered in D. pini.
Collapse
Affiliation(s)
- Miloš Trifković
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Czech Republic.
| | - Ondřej Hejna
- Department of Genetics and Agricultural Biotechnology. Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Czech Republic
| | - Anna Kuznetsova
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Czech Republic
| | - Martin Mullett
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Czech Republic
| | - Libor Jankovský
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Czech Republic
| | - Leticia Botella
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Czech Republic
| |
Collapse
|
6
|
Kang Q, Zhang J, Chen F, Dong C, Qin Q, Li X, Wang H, Zhang H, Meng Q. Unveiling mycoviral diversity in Ophiocordyceps sinensis through transcriptome analyses. Front Microbiol 2024; 15:1493365. [PMID: 39654673 PMCID: PMC11625762 DOI: 10.3389/fmicb.2024.1493365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/05/2024] [Indexed: 12/12/2024] Open
Abstract
Ophiocordyceps sinensis, an entomopathogenic fungus, infects larvae from the Lepidoptera: Hepialidae family, forming the valuable Chinese cordyceps. Mycoviruses are widespread across major lineages of filamentous fungi, oomycetes, and yeasts and have the potential to influence fungal biology and ecology. This study aimed to detect mycovirus within O. sinensis by isolating double-stranded RNA from six stains for transcriptomic sequencing and analyzing publicly available transcriptome data from 13 O. sinensis representative samples. Our analysis revealed 13 mycoviruses, with nine reported for the first time in O. sinensis. These mycoviruses are distributed across five families-Partitiviridae, Mitoviridae, Narnaviridae, Botourmiaviridae, Deltaflexiviridae-and two unclassified lineages, Ormycovirus and Vivivirus. This study also revealed frequent coinfections within individual O. sinensis strains and dynamic shifts in viral composition during fungal development. These findings enhance our knowledge of mycovirus diversity within O. sinensis and provide new insights into their taxonomy.
Collapse
Affiliation(s)
- Qin Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jihong Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Yun’an Bio-tech Co. Ltd., Beijing, China
| | - Fangzhou Chen
- China Pharmaceutical University, School of Pharmacy, Nanjing, China
| | - Caihong Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Qilian Qin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Yun’an Bio-tech Co. Ltd., Beijing, China
| | - Xuan Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Yun’an Bio-tech Co. Ltd., Beijing, China
| | - Hongtuo Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Yun’an Bio-tech Co. Ltd., Beijing, China
| | - Huan Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Yun’an Bio-tech Co. Ltd., Beijing, China
| | - Qian Meng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Yun’an Bio-tech Co. Ltd., Beijing, China
| |
Collapse
|
7
|
Zhang L, Li P, Wang Y, Wang S, Guo L. p18 encoded by FgGMTV1 is responsible for asymptomatic infection in Fusarium graminearum. mBio 2024:e0306624. [PMID: 39584833 DOI: 10.1128/mbio.03066-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 10/28/2024] [Indexed: 11/26/2024] Open
Abstract
The intricate interplay between mycoviruses and their fungal hosts frequently culminates in asymptomatic infections, but the virus-derived factors underlying these infections remain poorly understood. Our study introduces p18, a novel protein encoded by the DNA-C segment of the genomovirus FgGMTV1, which facilitates the transition from virus-induced hypovirulence to asymptomatic infection within Fusarium graminearum upon its expression. We have confirmed the expression of p18 during FgGMTV1 infection and observed its presence in both the nucleus and cytoplasm. Remarkably, strains with a p18 null mutation show a significant reduction in colony expansion, conidial production, and virulence, leading to a hypovirulent phenotype. Our results also indicate that p18 hinders the accumulation of FgGMTV1, thus determining asymptomatic infection and enabling vertical transmission through conidia. Furthermore, the p18 null mutant virus converts F. graminearum from virulent to hypovirulent strains on wheat leaves after horizontal transmission. This work not only expands our knowledge of the genomovirus proteome but also provides insights into the strategies of viral evolution and adaptation. Moreover, we propose an innovative approach for creating hypovirulent strains utilizing engineered mycoviruses for the biocontrol of plant pathogenic fungi. IMPORTANCE Mycovirus-fungus interplay often leads to asymptomatic infections. Our study identifies p18, a novel protein from the genomovirus FgGMTV1, as a key determinant of asymptomatic infection in Fusarium graminearum. A p18-null mutant exhibits a pronounced hypovirulent phenotype. By modulating viral accumulation, p18 promotes asymptomatic infection and facilitates vertical transmission via conidia. This insight deepens our understanding of mycovirus-fungus interactions and introduces a novel strategy for biocontrol using engineered mycoviruses.
Collapse
Affiliation(s)
- Lihang Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pengfei Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yanfei Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuangchao Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lihua Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
8
|
Wang YR, Zhong J, Liu TB, Xiao YS. Genomic characteristics of a novel non-segmented double-stranded RNA mycovirus from the fungus Nigrospora oryzae. Arch Virol 2024; 169:249. [PMID: 39560795 DOI: 10.1007/s00705-024-06178-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/30/2024] [Indexed: 11/20/2024]
Abstract
In this study, a novel virus isolated from Nigrospora oryzae, tentatively named "Nigrospora oryzae mycovirus 1" (NoMyV1), was identified. NoMyV1 has a non-segmented dsRNA genome that is 2891 bp in length and contains two non-overlapping open reading frames (ORF1 and 2). ORF1 encodes a protein with sequence similarity to the putative capsid proteins or hypothetical proteins of other unclassified viruses, while ORF2 encodes an RNA-dependent RNA polymerase (RdRp). Sequence comparisons showed that NoMyV1 was most similar to Penicillium janczewskii Beauveria bassiana-like virus 1 (PjBblV1), with 76.12% amino acid sequence identity in the RdRp. In a phylogenetic analysis based on RdRp sequences, NoMyV1 was found to cluster with several other unclassified viruses for which a new genus, "Unirnavirus", which is distinct from the family Partitiviridae, has been proposed. Thus, we conclude that NoMyV1 is a novel member of the proposed genus "Unirnavirus".
Collapse
Affiliation(s)
- Ya Rong Wang
- Key Laboratory of Grassland Ecosystem of Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Colleage of Pratacultural Science, Sino-U.S. Centers for Grazingland Ecosystem Sustainability, Gansu Agricultural University, Lanzhou, 730070, PR China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha City, Hunan Province, 410128, P.R. China
| | - Jie Zhong
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha City, Hunan Province, 410128, P.R. China
| | - Tian Bo Liu
- Tobacco Research Institute of Hunan Province, Changsha City, Hunan Province, 410004, P.R. China.
| | - Yan Song Xiao
- Chenzhou Tobacco Company of Hunan Province, Chenzhou City, Hunan Province, 423000, P.R. China.
| |
Collapse
|
9
|
Dálya LB, Černý M, de la Peña M, Poimala A, Vainio EJ, Hantula J, Botella L. Diversity and impact of single-stranded RNA viruses in Czech Heterobasidion populations. mSystems 2024; 9:e0050624. [PMID: 39287383 PMCID: PMC11494978 DOI: 10.1128/msystems.00506-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 08/04/2024] [Indexed: 09/19/2024] Open
Abstract
Heterobasidion annosum sensu lato comprises some of the most devastating pathogens of conifers. Exploring virocontrol as a potential strategy to mitigate economic losses caused by these fungi holds promise for the future. In this study, we conducted a comprehensive screening for viruses in 98 H. annosum s.l. specimens from different regions of Czechia aiming to identify viruses inducing hypovirulence. Initial examination for dsRNA presence was followed by RNA-seq analyses using pooled RNA libraries constructed from H. annosum and Heterobasidion parviporum, with diverse bioinformatic pipelines employed for virus discovery. Our study uncovered 25 distinct ssRNA viruses, including two ourmia-like viruses, one mitovirus, one fusarivirus, one tobamo-like virus, one cogu-like virus, one bisegmented narna-like virus and one segment of another narna-like virus, and 17 ambi-like viruses, for which hairpin and hammerhead ribozymes were detected. Coinfections of up to 10 viruses were observed in six Heterobasidion isolates, whereas another six harbored a single virus. Seventy-three percent of the isolates analyzed by RNA-seq were virus-free. These findings show that the virome of Heterobasidion populations in Czechia is highly diverse and differs from that in the boreal region. We further investigated the host effects of certain identified viruses through comparisons of the mycelial growth rate and proteomic analyses and found that certain tested viruses caused growth reductions of up to 22% and significant alterations in the host proteome profile. Their intraspecific transmission rates ranged from 0% to 33%. Further studies are needed to fully understand the biocontrol potential of these viruses in planta.IMPORTANCEHeterobasidion annosum sensu lato is a major pathogen causing significant damage to conifer forests, resulting in substantial economic losses. This study is significant as it explores the potential of using viruses (virocontrol) to combat these fungal pathogens. By identifying and characterizing a diverse array of viruses in H. annosum populations from Czechia, the research opens new avenues for biocontrol strategies. The discovery of 25 distinct ssRNA viruses, some of which reduce fungal growth and alter proteome profiles, suggests that these viruses could be harnessed to mitigate the impact of Heterobasidion. Understanding the interactions between these viruses and their fungal hosts is crucial for developing effective, environmentally friendly methods to protect conifer forests and maintain ecosystem health. This study lays the groundwork for future research on the application of mycoviruses in forest disease management.
Collapse
Affiliation(s)
- László Benedek Dálya
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czechia
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Marcos de la Peña
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC, Valencia, Spain
| | - Anna Poimala
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Eeva J. Vainio
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Jarkko Hantula
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Leticia Botella
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czechia
| |
Collapse
|
10
|
Khalifa ME, Ayllón MA, Rodriguez Coy L, Plummer KM, Gendall AR, Chooi KM, van Kan JAL, MacDiarmid RM. Mycologists and Virologists Align: Proposing Botrytis cinerea for Global Mycovirus Studies. Viruses 2024; 16:1483. [PMID: 39339959 PMCID: PMC11437445 DOI: 10.3390/v16091483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Mycoviruses are highly genetically diverse and can significantly change their fungal host's phenotype, yet they are generally under-described in genotypic and biological studies. We propose Botrytis cinerea as a model mycovirus system in which to develop a deeper understanding of mycovirus epidemiology including diversity, impact, and the associated cellular biology of the host and virus interaction. Over 100 mycoviruses have been described in this fungal host. B. cinerea is an ideal model fungus for mycovirology as it has highly tractable characteristics-it is easy to culture, has a worldwide distribution, infects a wide range of host plants, can be transformed and gene-edited, and has an existing depth of biological resources including annotated genomes, transcriptomes, and isolates with gene knockouts. Focusing on a model system for mycoviruses will enable the research community to address deep research questions that cannot be answered in a non-systematic manner. Since B. cinerea is a major plant pathogen, new insights may have immediate utility as well as creating new knowledge that complements and extends the knowledge of mycovirus interactions in other fungi, alone or with their respective plant hosts. In this review, we set out some of the critical steps required to develop B. cinerea as a model mycovirus system and how this may be used in the future.
Collapse
Affiliation(s)
- Mahmoud E Khalifa
- Botany and Microbiology Department, Faculty of Science, Damietta University, Damietta 34517, Egypt
| | - María A Ayllón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)/Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Pozuelo de Alarcón, 28223 Madrid, Spain
- Departamento de Biotecnología Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - Lorena Rodriguez Coy
- La Trobe Institute for Sustainable Agriculture and Food (LISAF), Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- Australian Research Council Research Hub for Sustainable Crop Protection, La Trobe University, Bundoora, VIC 3086, Australia
| | - Kim M Plummer
- La Trobe Institute for Sustainable Agriculture and Food (LISAF), Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- Australian Research Council Research Hub for Sustainable Crop Protection, La Trobe University, Bundoora, VIC 3086, Australia
| | - Anthony R Gendall
- La Trobe Institute for Sustainable Agriculture and Food (LISAF), Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- Australian Research Council Research Hub for Sustainable Crop Protection, La Trobe University, Bundoora, VIC 3086, Australia
| | - Kar Mun Chooi
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1025, New Zealand
| | - Jan A L van Kan
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Robin M MacDiarmid
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1025, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
11
|
Yin Y, Wang P, He L, Yang G, Huang B. Discovery and genomic characterization of three double-stranded RNA viruses coinfecting Conidiobolus taihushanensis. Arch Virol 2024; 169:195. [PMID: 39249129 DOI: 10.1007/s00705-024-06129-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/05/2024] [Indexed: 09/10/2024]
Abstract
Conidiobolus sensu lato, a genus within the family Ancylistaceae, encompasses a diverse range of fungal species that are widely distributed in plant debris and soil. In this study, we identified three double-stranded RNA (dsRNA) viruses coinfecting a strain of Conidiobolus taihushanensis. These viruses were identified as Conidiobolus taihushanensis totivirus 1 (CtTV1), Conidiobolus nonsegmented RNA virus 1-2 (CNRV1-2), and Conidiobolus taihushanensis virus 1 (CtV1). Through high-throughput sequencing and RNA-ligase-mediated rapid amplification of cDNA ends (RLM-RACE), we determined their complete genome sequences. The genome of CtTV1 is 6,921 nucleotides in length, containing two open reading frames (ORFs). ORF1 encodes a 1,124-amino-acid capsid protein (CP) with a molecular weight of 125.07 kDa, and ORF2 encodes a 780-amino-acid RNA-dependent RNA polymerase (RdRp) with a molecular weight of 88.05 kDa. CNRV1-2, approximately 3.0 kb in length, also contains two ORFs, which are predicted to encode a 186-amino-acid hypothetical protein (HP) and a 758-amino-acid RdRp. CtV1 has a smaller genome consisting of 3,081 base pairs (bp) with two ORFs: one encoding a 244-amino-acid HP (26.85 kDa) and the other encoding a 707-amino-acid RdRp (80.64 kDa). Phylogenetic analysis based on RdRp sequences revealed that CtTV1 shows the highest similarity to Phytophthora pluvialis RNA virus 1, with 38.79% sequence identity, and clusters with members of the family Orthototiviridae, and it is most closely related to Utsjoki toti-like virus. In contrast, CtV1 formed a unique branch and might represent a new genus. The genome sequence of CNRV1-2 is 99.74% identical to that of the previously described Conidiobolus non-segmented RNA virus 1 (CNRV1). Our findings indicate that CtTV1 and CtV1 are distinct novel viruses, while CNRV1-2 appears to be a variant of CNRV1. This study enhances our understanding of the genetic diversity and evolutionary relationships among mycoviruses associated with C. taihushanensis.
Collapse
Affiliation(s)
- Ying Yin
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Ping Wang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Lili He
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Guogen Yang
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Bo Huang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
12
|
Hays M. Genetic conflicts in budding yeast: The 2μ plasmid as a model selfish element. Semin Cell Dev Biol 2024; 161-162:31-41. [PMID: 38598944 DOI: 10.1016/j.semcdb.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024]
Abstract
Antagonistic coevolution, arising from genetic conflict, can drive rapid evolution and biological innovation. Conflict can arise both between organisms and within genomes. This review focuses on budding yeasts as a model system for exploring intra- and inter-genomic genetic conflict, highlighting in particular the 2-micron (2μ) plasmid as a model selfish element. The 2μ is found widely in laboratory strains and industrial isolates of Saccharomyces cerevisiae and has long been known to cause host fitness defects. Nevertheless, the plasmid is frequently ignored in the context of genetic, fitness, and evolution studies. Here, I make a case for further exploring the evolutionary impact of the 2μ plasmid as well as other selfish elements of budding yeasts, discuss recent advances, and, finally, future directions for the field.
Collapse
Affiliation(s)
- Michelle Hays
- Department of Genetics, Stanford University, Stanford, CA, United States.
| |
Collapse
|
13
|
Akata I, Edis G, Kumru E, Sahin E. Identification and full-length genome characterization of a novel mitovirus hosted by the truffle species Tuber rufum. Virusdisease 2024; 35:531-536. [PMID: 39464734 PMCID: PMC11502633 DOI: 10.1007/s13337-024-00887-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/21/2024] [Indexed: 10/29/2024] Open
Abstract
Studying the diversity of viruses found in uncultivated fungi, including those forming mycorrhizal relationships, is essential. It's equally important to explore viral communities in fungi that cause plant diseases or are economically significant. This dual approach helps us grasp the full scope of mycovirus diversity and evolution. Mycorrhizal fungi, in particular, host a wide range of viruses, shedding light on viral diversity and evolution. In this study, we present the discovery and complete genome characterization of a novel mitovirus infecting the hypogeous mycorrhizal fungus Tuber rufum. This virus, denominated "Tuber rufum mitovirus 1" (TrMV1) has a genome size of 2864 nucleotides with a G + C content of 37.53%. It contains a single open reading frame (ORF) responsible for encoding RNA dependent RNA polymerase (RdRp). Comparative analysis using BLASTp reveals that the protein encoded by TrMV1 shares significant sequence similarities with those found in the Triamitovirus genus. Specifically, TrMV1 shows the closest resemblance (43.35% identity) to Sopawar virus, a mitovirus previously detected in soil environments through metatranscriptomic analyses. Phylogenetic examination categorizes TrMV1 as a member of the Triamitovirus genus within the Mitoviridae family. This finding marks the first identification of a mitovirus within the hypogeous mycorrhizal fungus Tuber rufum. The discovery of TrMV1 expands our knowledge of Mitoviridae family diversity and evolution, contributing to the growing repository of mycovirus sequences. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-024-00887-6.
Collapse
Affiliation(s)
- Ilgaz Akata
- Faculty of Science Department of Biology, Ankara University, Tandogan, Ankara, 06100 Turkey
| | - Gulce Edis
- Graduate School of Natural and Applied Sciences, Ankara University, Diskapi, Ankara, 06110 Turkey
| | - Eda Kumru
- Graduate School of Natural and Applied Sciences, Ankara University, Diskapi, Ankara, 06110 Turkey
| | - Ergin Sahin
- Faculty of Science, Department of Biology, Dokuz Eylul University, Buca, Izmir, 35390 Turkey
- Fauna and Flora Research and Application Center, Dokuz Eylul University, Buca, Izmir, 35390 Turkey
| |
Collapse
|
14
|
Wang YR, Su JE, Yang ZJ, Zhong J, Li XG, Chen Y, Zhu JZ. A pooled mycoviral resource in a strain of Rhizoctonia solani are regulators of fungal virulence. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106042. [PMID: 39277369 DOI: 10.1016/j.pestbp.2024.106042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/08/2024] [Accepted: 07/21/2024] [Indexed: 09/17/2024]
Abstract
Rhizoctonia solani is a widespread and devastating soil-borne plant fungal pathogen that causes diseases, including rice sheath blight, which are difficult to control. Some mycoviruses are potential biocontrol agents for the control of fungal diseases. In order to investigate the factors that influence the virulence of R. solani and search for mycoviruses with the potential for biocontrol of R. solani, a rice-infecting R. solani strain, ZJXD1-1, was isolated and confirmed to contain eight mycoviruses via dsRNA extraction and high-throughput sequencing. The identified mycoviruses belong to families of Endornaviridae (RsEV11 and RsEV12) and Mitoviridae (RsMV125 to RsMV129), and an unclassified Toti-like clade (RsTLV1). The C39 domain in RsEV12, which shares a close evolutionary relationship with bacteria, is observed for the first time in a mycovirus. Strains with different virus combinations were obtained through viral horizontal transfer, and pathogenicity test deduced that the Endornaviruses RsEV11 and RsEV12, and Mitovirus RsMV129 might potentially enhance the pathogenicity of R. solani, while RsMV125 might reduce the virulence or interfere with the function of other Mitoviruses. Furthermore, virus curing via protoplast regeneration and viral horizontal transfer demonstrated that RsMV129 is the causal agent of R. solani hypervirulence. Overall, our study provided the resource pool of viruses that may contribute to the discovery of new biocontrol agents against R. solani and enhance our understanding of the pathogenesis of R. solani regulated by mycoviruses.
Collapse
Affiliation(s)
- Ya Rong Wang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha City, Hunan Province 410128, PR China; Key Laboratory of Grassland Ecosystem of Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Centers for Grazingland Ecosystem Sustainability, College of Pratacultural Science, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Jia En Su
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan Province 650021, PR China
| | - Zhi Juan Yang
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan Province 650021, PR China
| | - Jie Zhong
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha City, Hunan Province 410128, PR China
| | - Xiao Gang Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha City, Hunan Province 410128, PR China
| | - Yi Chen
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan Province 650021, PR China.
| | - Jun Zi Zhu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha City, Hunan Province 410128, PR China.
| |
Collapse
|
15
|
Battersby JL, Stevens DA, Coutts RHA, Havlíček V, Hsu JL, Sass G, Kotta-Loizou I. The Expanding Mycovirome of Aspergilli. J Fungi (Basel) 2024; 10:585. [PMID: 39194910 DOI: 10.3390/jof10080585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
Mycoviruses are viruses that infect fungi and are widespread across all major fungal taxa, exhibiting great biological diversity. Since their discovery in the 1960s, researchers have observed a myriad of fungal phenotypes altered due to mycoviral infection. In this review, we examine the nuanced world of mycoviruses in the context of the medically and agriculturally important fungal genus, Aspergillus. The advent of RNA sequencing has revealed a previous underestimate of viral prevalence in fungi, in particular linear single-stranded RNA viruses, and here we outline the diverse viral families known to date that contain mycoviruses infecting Aspergillus. Furthermore, we describe these novel mycoviruses, highlighting those with peculiar genome structures, such as a split RNA dependent RNA polymerase gene. Next, we delineate notable mycovirus-mediated phenotypes in Aspergillus, in particular reporting on observations of mycoviruses that affect their fungal host's virulence and explore how this may relate to virus-mediated decreased stress tolerance. Furthermore, mycovirus effects on microbial competition and antifungal resistance are discussed. The factors that influence the manifestation of these phenotypes, such as temperature, fungal life stage, and infection with multiple viruses, among others, are also evaluated. In addition, we attempt to elucidate the molecular mechanisms that underpin these phenotypes, examining how mycoviruses can be targets, triggers, and even suppressors of RNA silencing and how this can affect fungal gene expression and phenotypes. Finally, we highlight the potential therapeutic applications of mycoviruses and how, in an approach analogous to bacteriophage therapy, their ability to produce hypovirulence in Aspergillus might be used to attenuate invasive aspergillosis infections in humans.
Collapse
Affiliation(s)
- Josephine L Battersby
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
- Department of Clinical, Pharmaceutical and Biological Science, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - David A Stevens
- California Institute for Medical Research, San Jose, CA 95128, USA
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Robert H A Coutts
- Department of Clinical, Pharmaceutical and Biological Science, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Vladimír Havlíček
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic
- Department of Analytical Chemistry, Palacky University, 17. Listopadu 2, 779 00 Olomouc, Czech Republic
| | - Joe L Hsu
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gabriele Sass
- California Institute for Medical Research, San Jose, CA 95128, USA
| | - Ioly Kotta-Loizou
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
- Department of Clinical, Pharmaceutical and Biological Science, University of Hertfordshire, Hatfield AL10 9AB, UK
| |
Collapse
|
16
|
Efremenko E, Stepanov N, Senko O, Maslova O, Lyagin I, Domnin M, Aslanli A. "Stop, Little Pot" as the Motto of Suppressive Management of Various Microbial Consortia. Microorganisms 2024; 12:1650. [PMID: 39203492 PMCID: PMC11356704 DOI: 10.3390/microorganisms12081650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 09/03/2024] Open
Abstract
The unresolved challenges in the development of highly efficient, stable and controlled synthetic microbial consortia, as well as the use of natural consortia, are very attractive for science and technology. However, the consortia management should be done with the knowledge of how not only to accelerate but also stop the action of such "little pots". Moreover, there are a lot of microbial consortia, the activity of which should be suppressively controlled. The processes, catalyzed by various microorganisms being in complex consortia which should be slowed down or completely cancelled, are typical for the environment (biocorrosion, landfill gas accumulation, biodegradation of building materials, water sources deterioration etc.), industry (food and biotechnological production), medical practice (vaginitis, cystitis, intestinal dysbiosis, etc.). The search for ways to suppress the functioning of heterogeneous consortia in each of these areas is relevant. The purpose of this review is to summarize the general trends in these studies regarding the targets and new means of influence used. The analysis of the features of the applied approaches to solving the main problem confirms the possibility of obtaining a combined effect, as well as selective influence on individual components of the consortia. Of particular interest is the role of viruses in suppressing the functioning of microbial consortia of different compositions.
Collapse
Affiliation(s)
- Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, Moscow 119991, Russia (O.S.)
| | | | | | | | | | | | | |
Collapse
|
17
|
Nobre SVA, de Andrade GAK, Metz GF, Lucini F, de Albuquerque MP, Victória FDC. Antarctica's hidden mycoviral treasures in fungi isolated from mosses: A first genomic approach. J Basic Microbiol 2024; 64:e2300671. [PMID: 38736205 DOI: 10.1002/jobm.202300671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/15/2024] [Accepted: 04/27/2024] [Indexed: 05/14/2024]
Abstract
This study investigates the presence of mycoviruses in Antarctic fungi and elucidates their evolutionary relationships. To achieve this, we aligned mycoviral gene sequences with genomes of previously sequenced Antarctic endophytic fungi, made available by our research group and accessible via Joint Genome Institute. Our findings reveal that the most prevalent genetic regions in all endophytic fungi are homologous to Partitiviruses, Baculoviridae, and Phycodnaviridae. These regions display evidence of positive selection pressure, suggesting genetic diversity and the accumulation of nonsynonymous mutations. This phenomenon implies a crucial role for these regions in the adaptation and survival of these fungi in the challenging Antarctic ecosystems. The presence of mycoviruses in Antarctic endophytic fungi may indicate shared survival strategies between the virus and its host, shedding light on their evolutionary dynamics. This study underscores the significance of exploring mycoviruses within endophytic fungi and their contributions to genetic diversity. Future research avenues could delve into the functional implications of these conserved mycoviral genetic regions in Antarctic endophytic fungi, providing a comprehensive understanding of this intriguing association and genomic retention of viral region in fungi.
Collapse
Affiliation(s)
- Steffany V A Nobre
- Curso de Biotecnologia, Universidade Federal do Pampa, São Gabriel, Brazil
- Núcleo de Estudos da Vegetação Antártica, São Gabriel, Brazil
| | - Guilherme A K de Andrade
- Núcleo de Estudos da Vegetação Antártica, São Gabriel, Brazil
- PPGCB-UNIPAMPA, Programa de Pós-Graduação em Ciências Biológicas, São Gabriel, Brazil
| | - Geferson F Metz
- Núcleo de Estudos da Vegetação Antártica, São Gabriel, Brazil
- PPGCB-UNIPAMPA, Programa de Pós-Graduação em Ciências Biológicas, São Gabriel, Brazil
| | - Fabíola Lucini
- Programa Antártico Brasileiro, Brasilia-DF, Brazil
- Faculdade de Ciências da Saúde-FCS, Federal University of Grande Dourados (UFGD), Dourados, Brazil
| | - Margéli P de Albuquerque
- Núcleo de Estudos da Vegetação Antártica, São Gabriel, Brazil
- Programa Antártico Brasileiro, Brasilia-DF, Brazil
| | - Filipe de C Victória
- Núcleo de Estudos da Vegetação Antártica, São Gabriel, Brazil
- PPGCB-UNIPAMPA, Programa de Pós-Graduação em Ciências Biológicas, São Gabriel, Brazil
- Faculdade de Ciências da Saúde-FCS, Federal University of Grande Dourados (UFGD), Dourados, Brazil
| |
Collapse
|
18
|
Buivydaitė Ž, Winding A, Sapkota R. Transmission of mycoviruses: new possibilities. Front Microbiol 2024; 15:1432840. [PMID: 38993496 PMCID: PMC11236713 DOI: 10.3389/fmicb.2024.1432840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
Mycoviruses are viruses that infect fungi. In recent years, an increasing number of mycoviruses have been reported in a wide array of fungi. With the growing interest of scientists and society in reducing the use of agrochemicals, the debate about mycoviruses as an effective next-generation biocontrol has regained momentum. Mycoviruses can have profound effects on the host phenotype, although most viruses have neutral or no effect. We speculate that understanding multiple transmission modes of mycoviruses is central to unraveling the viral ecology and their function in regulating fungal populations. Unlike plant virus transmission via vegetative plant parts, seeds, pollen, or vectors, a widely held view is that mycoviruses are transmitted via vertical routes and only under special circumstances horizontally via hyphal contact depending on the vegetative compatibility groups (i.e., the ability of different fungal strains to undergo hyphal fusion). However, this view has been challenged over the past decades, as new possible transmission routes of mycoviruses are beginning to unravel. In this perspective, we discuss emerging studies with evidence suggesting that such novel routes of mycovirus transmission exist and are pertinent to understanding the full picture of mycovirus ecology and evolution.
Collapse
Affiliation(s)
| | | | - Rumakanta Sapkota
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| |
Collapse
|
19
|
Xin P, Chaoqun X, Chaojie L, Shuwei Y, Tiantian L, Junli D, Xiaoting Z, Honglian L, Jianhua L, Fei G. Molecular characterization of a new botybirnavirus that infects Alternaria sp. from tobacco. Arch Virol 2024; 169:149. [PMID: 38888750 DOI: 10.1007/s00705-024-06072-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/07/2024] [Indexed: 06/20/2024]
Abstract
The genus Alternaria comprises many important fungal pathogens that infect a wide variety of organisms. In this report, we present the discovery of a new double-stranded RNA (dsRNA) mycovirus called Alternaria botybirnavirus 2 (ABRV2) from a phytopathogenic strain, XC21-21C, of Alternaria sp. isolated from diseased tobacco leaves in China. The ABRV2 genome consists of two dsRNA components, namely dsRNA1 and dsRNA2, with lengths of 6,162 and 5,865 base pairs (bp), respectively. Each of these genomic dsRNAs is monocistronic, encoding hypothetical proteins of 201.6 kDa (P1) and 2193.3 kDa (P2). ABRV2 P1 and P2 share 50.54% and 63.13% amino acid sequence identity with the corresponding proteins encoded by dsRNA1 of Alternaria botybirnavirus 1 (ABRV1). Analysis of its genome organization and phylogenetic analysis revealed that ABRV2 is a new member of the genus Botybirnavirus.
Collapse
Affiliation(s)
- Pan Xin
- College of Plant Protection, Henan Agricultural University, 450002, Zhengzhou, China
| | - Xue Chaoqun
- Zhengzhou Tobacco Research Institute of CNTC, 450001, Zhengzhou, China
| | - Liu Chaojie
- College of Plant Protection, Henan Agricultural University, 450002, Zhengzhou, China
| | - Yan Shuwei
- College of Plant Protection, Henan Agricultural University, 450002, Zhengzhou, China
| | - Lv Tiantian
- College of Plant Protection, Henan Agricultural University, 450002, Zhengzhou, China
| | - Dai Junli
- College of Plant Protection, Henan Agricultural University, 450002, Zhengzhou, China
| | - Zhang Xiaoting
- College of Plant Protection, Henan Agricultural University, 450002, Zhengzhou, China
| | - Li Honglian
- College of Plant Protection, Henan Agricultural University, 450002, Zhengzhou, China
| | - Li Jianhua
- Xuchang Tobacco Company of Henan Province, 461000, Xuchang, China.
| | - Gao Fei
- College of Plant Protection, Henan Agricultural University, 450002, Zhengzhou, China.
| |
Collapse
|
20
|
Akata I, Edis G, Ozbey BG, Keskin E, Sahin E. Complete Genome Analyses of a Novel Flexivirus with Unique Genome Organization and Three Endornaviruses Hosted by the Mycorrhizal Fungus Terfezia claveryi. Curr Microbiol 2024; 81:210. [PMID: 38837067 DOI: 10.1007/s00284-024-03745-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/19/2024] [Indexed: 06/06/2024]
Abstract
The extensive use of high-throughput sequencing (HTS) has significantly advanced and transformed our comprehension of virus diversity, especially in intricate settings like soil and biological specimens. In this study, we delved into mycovirus sequence surveys within mycorrhizal fungus species Terfezia claveryi, through employing HTS with total double-stranded RNA (dsRNA) extracts. Our findings revealed the presence of four distinct members from the Alsuviricetes class, one flexivirus designated as Terfezia claveryi flexivirus 1 (TcFV1) and three endornaviruses (TcEV1, TcEV2, and TcEV3) in two different T. claveryi isolates. TcFV1, a member of the order Tymovirales, exhibits a unique genome structure and sequence features. Through in-depth analyses, we found that it shares sequence similarities with other deltaflexiviruses and challenges existing Deltaflexiviridae classification. The discovery of TcFV1 adds to the genomic plasticity of mycoviruses within the Tymovirales order, shedding light on their evolutionary adaptations. Additionally, the three newly discovered endornaviruses (TcEV1, TcEV2, and TcEV3) in T. claveryi exhibited limited sequence similarities with other endornaviruses and distinctive features, including conserved domains like DEAD-like helicase, ATPases Associated with Diverse Cellular Activities (AAA ATPase), and RNA dependent RNA polymerase (RdRp), indicating their classification as members of new species within the Alphaendornavirus genus. In conclusion, this research emphasizes the importance of exploring viral diversity in uncultivated fungi, bridging knowledge gaps in mycovirus ecology. The discoveries of a novel flexivirus with unique genome organization and endornaviruses in T. claveryi broaden our comprehension of mycovirus diversity and evolution, highlighting the need for continued investigations into viral populations in wild fungi.
Collapse
Affiliation(s)
- Ilgaz Akata
- Faculty of Science Department of Biology, Ankara University, Tandogan, 06100, Ankara, Turkey
| | - Gulce Edis
- Graduate School of Natural and Applied Sciences, Ankara University, Dışkapı, 06110, Ankara, Turkey
| | - Beste Gizem Ozbey
- Faculty of Science Department of Biology, Ankara University, Tandogan, 06100, Ankara, Turkey
| | - Emre Keskin
- Evolutionary Genetics Laboratory (eGL), Faculty of Agriculture Department of Fisheries and Aquaculture, Ankara University, Dışkapı, 06110, Ankara, Turkey
| | - Ergin Sahin
- Faculty of Science, Department of Biology, Dokuz Eylul University, Buca, 35390, Izmir, Turkey.
- Fauna and Flora Research and Application Center, Dokuz Eylul University, Buca, 35390, Izmir, Turkey.
| |
Collapse
|
21
|
Grybchuk D, Galan A, Klocek D, Macedo DH, Wolf YI, Votýpka J, Butenko A, Lukeš J, Neri U, Záhonová K, Kostygov AY, Koonin EV, Yurchenko V. Identification of diverse RNA viruses in Obscuromonas flagellates (Euglenozoa: Trypanosomatidae: Blastocrithidiinae). Virus Evol 2024; 10:veae037. [PMID: 38774311 PMCID: PMC11108086 DOI: 10.1093/ve/veae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/03/2024] [Accepted: 04/29/2024] [Indexed: 05/24/2024] Open
Abstract
Trypanosomatids (Euglenozoa) are a diverse group of unicellular flagellates predominately infecting insects (monoxenous species) or circulating between insects and vertebrates or plants (dixenous species). Monoxenous trypanosomatids harbor a wide range of RNA viruses belonging to the families Narnaviridae, Totiviridae, Qinviridae, Leishbuviridae, and a putative group of tombus-like viruses. Here, we focus on the subfamily Blastocrithidiinae, a previously unexplored divergent group of monoxenous trypanosomatids comprising two related genera: Obscuromonas and Blastocrithidia. Members of the genus Blastocrithidia employ a unique genetic code, in which all three stop codons are repurposed to encode amino acids, with TAA also used to terminate translation. Obscuromonas isolates studied here bear viruses of three families: Narnaviridae, Qinviridae, and Mitoviridae. The latter viral group is documented in trypanosomatid flagellates for the first time. While other known mitoviruses replicate in the mitochondria, those of trypanosomatids appear to reside in the cytoplasm. Although no RNA viruses were detected in Blastocrithidia spp., we identified an endogenous viral element in the genome of B. triatomae indicating its past encounter(s) with tombus-like viruses.
Collapse
Affiliation(s)
- Danyil Grybchuk
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava 710 00, Czechia
- Central European Institute of Technology, Masaryk University, Brno 625 00, Czechia
| | - Arnau Galan
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava 710 00, Czechia
| | - Donnamae Klocek
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava 710 00, Czechia
| | - Diego H Macedo
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava 710 00, Czechia
| | - Yuri I Wolf
- National Center for Biotechnology Information, NLM, National Institutes of Health, Bethesda 20894, USA
| | - Jan Votýpka
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice 370 05, Czechia
- Department of Parasitology, Faculty of Science, Charles University, Prague 128 00, Czechia
| | - Anzhelika Butenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava 710 00, Czechia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice 370 05, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice 370 05, Czechia
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice 370 05, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice 370 05, Czechia
| | - Uri Neri
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 39040, Israel
| | - Kristína Záhonová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava 710 00, Czechia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice 370 05, Czechia
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec 252 50, Czechia
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Alexei Yu Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava 710 00, Czechia
- Zoological Institute of the Ruian Academy of Sciences, St. Petersburg 199034, Russia
| | - Eugene V Koonin
- National Center for Biotechnology Information, NLM, National Institutes of Health, Bethesda 20894, USA
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava 710 00, Czechia
| |
Collapse
|
22
|
Sahin E, Edis G, Keskin E, Akata I. Molecular characterization of the complete genome of a novel ormycovirus infecting the ectomycorrhizal fungus Hortiboletus rubellus. Arch Virol 2024; 169:110. [PMID: 38664287 DOI: 10.1007/s00705-024-06027-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/11/2024] [Indexed: 05/24/2024]
Abstract
Advancements in high-throughput sequencing and the development of new bioinformatics tools for large-scale data analysis play a crucial role in uncovering virus diversity and enhancing our understanding of virus evolution. The discovery of the ormycovirus clades, a group of RNA viruses that are phylogenetically distinct from all known Riboviria members and are found in fungi, highlights the value of these tools for the discovery of novel viruses. The aim of this study was to examine viral populations in fungal hosts to gain insights into the diversity, evolution, and classification of these viruses. Here, we report the molecular characterization of a newly discovered ormycovirus, which we have named "Hortiboletus rubellus ormycovirus 1" (HrOMV1), that was found in the ectomycorrhizal fungus Hortiboletus rubellus. The bipartite genome of HrOMV1, whose nucleotide sequence was determined by HTS and RLM-RACE, consists of two RNA segments (RNA1 and RNA2) that exhibit similarity to those of previously studied ormycoviruses in their organization and the proteins they encode. The presence of upstream, in-frame AUG triplets in the 5' termini of both RNA segments suggests that HrOMV1, like certain other ormycoviruses, employs a non-canonical translation initiation strategy. Phylogenetic analysis showed that HrOMV1 is positioned within the gammaormycovirus clade. Its putative RNA-dependent RNA polymerase (RdRp) exhibits sequence similarity to those of other gammaormycovirus members, the most similarity to that of Termitomyces ormycovirus 1, with 33.05% sequence identity. This protein was found to contain conserved motifs that are crucial for RNA replication, including the distinctive GDQ catalytic triad observed in gammaormycovirus RdRps. The results of this study underscore the significance of investigating the ecological role of mycoviruses in mycorrhizal fungi. This is the first report of an ormycovirus infecting a member of the ectomycorrhizal genus Hortiboletus.
Collapse
Affiliation(s)
- Ergin Sahin
- Faculty of Science, Department of Biology, Dokuz Eylul University, Buca, Izmir, 35390, Turkey.
- Fauna and Flora Research and Application Center, Dokuz Eylul University, Buca, Izmir, 35390, Turkey.
| | - Gulce Edis
- Graduate School of Natural and Applied Sciences, Ankara University, Dışkapı, Ankara, 06110, Turkey
| | - Emre Keskin
- Evolutionary Genetics Laboratory (eGL), Faculty of Agriculture Department of Fisheries and Aquaculture, Ankara University, Dışkapı, Ankara, 06110, Turkey
| | - Ilgaz Akata
- Faculty of Science Department of Biology, Ankara University, Tandogan, Ankara, 06100, Turkey
| |
Collapse
|
23
|
Hough B, Steenkamp E, Wingfield B, Read D. Correction: Hough et al. Fungal Viruses Unveiled: A Comprehensive Review of Mycoviruses. Viruses 2023, 15, 1202. Viruses 2024; 16:632. [PMID: 38675997 PMCID: PMC11053809 DOI: 10.3390/v16040632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
In the original publication [...].
Collapse
Affiliation(s)
| | | | - Brenda Wingfield
- Forestry & Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics & Microbiology, University of Pretoria, Pretoria 0002, South Africa; (B.H.); (E.S.); (D.R.)
| | | |
Collapse
|
24
|
Moubset O, Filloux D, Fontes H, Julian C, Fernandez E, Galzi S, Blondin L, Chehida SB, Lett JM, Mesléard F, Kraberger S, Custer JM, Salywon A, Makings E, Marais A, Chiroleu F, Lefeuvre P, Martin DP, Candresse T, Varsani A, Ravigné V, Roumagnac P. Virome release of an invasive exotic plant species in southern France. Virus Evol 2024; 10:veae025. [PMID: 38566975 PMCID: PMC10986800 DOI: 10.1093/ve/veae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
The increase in human-mediated introduction of plant species to new regions has resulted in a rise of invasive exotic plant species (IEPS) that has had significant effects on biodiversity and ecosystem processes. One commonly accepted mechanism of invasions is that proposed by the enemy release hypothesis (ERH), which states that IEPS free from their native herbivores and natural enemies in new environments can outcompete indigenous species and become invasive. We here propose the virome release hypothesis (VRH) as a virus-centered variant of the conventional ERH that is only focused on enemies. The VRH predicts that vertically transmitted plant-associated viruses (PAV, encompassing phytoviruses and mycoviruses) should be co-introduced during the dissemination of the IEPS, while horizontally transmitted PAV of IEPS should be left behind or should not be locally transmitted in the introduced area due to a maladaptation of local vectors. To document the VRH, virome richness and composition as well as PAV prevalence, co-infection, host range, and transmission modes were compared between indigenous plant species and an invasive grass, cane bluestem (Bothriochloa barbinodis), in both its introduced range (southern France) and one area of its native range (Sonoran Desert, Arizona, USA). Contrary to the VRH, we show that invasive populations of B. barbinodis in France were not associated with a lower PAV prevalence or richness than native populations of B. barbinodis from the USA. However, comparison of virome compositions and network analyses further revealed more diverse and complex plant-virus interactions in the French ecosystem, with a significant richness of mycoviruses. Setting mycoviruses apart, only one putatively vertically transmitted phytovirus (belonging to the Amalgaviridae family) and one putatively horizontally transmitted phytovirus (belonging to the Geminiviridae family) were identified from B. barbinodis plants in the introduced area. Collectively, these characteristics of the B. barbinodis-associated PAV community in southern France suggest that a virome release phase may have immediately followed the introduction of B. barbinodis to France in the 1960s or 1970s, and that, since then, the invasive populations of this IEPS have already transitioned out of this virome release phase, and have started interacting with several local mycoviruses and a few local plant viruses.
Collapse
Affiliation(s)
- Oumaima Moubset
- UMR PHIM, CIRAD, Baillarguet TA A-54/K, Montpellier 34090, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Baillarguet TA A-54/K, Montpellier 34090, France
| | - Denis Filloux
- UMR PHIM, CIRAD, Baillarguet TA A-54/K, Montpellier 34090, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Baillarguet TA A-54/K, Montpellier 34090, France
| | - Hugo Fontes
- Tour du Valat, Institut de recherche pour la conservation des zones humides méditerranéennes, Le Sambuc, Arles 13200, France
- Institut Méditerranéen de Biodiversité et Ecologie, UMR CNRS-IRD, Avignon Université, Aix-Marseille Université, IUT d’Avignon, Avignon 84911, France
| | - Charlotte Julian
- UMR PHIM, CIRAD, Baillarguet TA A-54/K, Montpellier 34090, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Baillarguet TA A-54/K, Montpellier 34090, France
| | - Emmanuel Fernandez
- UMR PHIM, CIRAD, Baillarguet TA A-54/K, Montpellier 34090, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Baillarguet TA A-54/K, Montpellier 34090, France
| | - Serge Galzi
- UMR PHIM, CIRAD, Baillarguet TA A-54/K, Montpellier 34090, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Baillarguet TA A-54/K, Montpellier 34090, France
| | - Laurence Blondin
- UMR PHIM, CIRAD, Baillarguet TA A-54/K, Montpellier 34090, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Baillarguet TA A-54/K, Montpellier 34090, France
| | | | | | - François Mesléard
- Tour du Valat, Institut de recherche pour la conservation des zones humides méditerranéennes, Le Sambuc, Arles 13200, France
- Institut Méditerranéen de Biodiversité et Ecologie, UMR CNRS-IRD, Avignon Université, Aix-Marseille Université, IUT d’Avignon, Avignon 84911, France
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Joy M Custer
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Andrew Salywon
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ 85008, USA
| | - Elizabeth Makings
- Vascular Plant Herbarium, School of Life Sciences, Arizona State University, 734 West Alameda Drive, Tempe Tempe, AZ 85282, USA
| | - Armelle Marais
- UMR BFP, University Bordeaux, INRAE, Villenave d’Ornon 33140, France
| | | | | | - Darren P Martin
- Division of Computational Biology, Department of Integrative Biomedical Sciences, Institute of infectious Diseases and Molecular Medicine, University of Cape Town, Anzio Rd, Cape Town 7925, South Africa
| | - Thierry Candresse
- UMR BFP, University Bordeaux, INRAE, Villenave d’Ornon 33140, France
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town 7700, South Africa
| | - Virginie Ravigné
- UMR PHIM, CIRAD, Baillarguet TA A-54/K, Montpellier 34090, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Baillarguet TA A-54/K, Montpellier 34090, France
| | - Philippe Roumagnac
- UMR PHIM, CIRAD, Baillarguet TA A-54/K, Montpellier 34090, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Baillarguet TA A-54/K, Montpellier 34090, France
| |
Collapse
|
25
|
Comont G, Faure C, Candresse T, Laurens M, Valière S, Lluch J, Lefebvre M, Gambier S, Jolivet J, Corio-Costet MF, Marais A. Characterization of the RNA Mycovirome Associated with Grapevine Fungal Pathogens: Analysis of Mycovirus Distribution and Their Genetic Variability within a Collection of Botryosphaeriaceae Isolates. Viruses 2024; 16:392. [PMID: 38543758 PMCID: PMC10975779 DOI: 10.3390/v16030392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 05/23/2024] Open
Abstract
Botryosphaeriaceae are fungi involved in the decay of various woody species, including the grapevine, leading to significant production losses. This fungal family is largely ubiquitous, and seven species of Botryosphaeriaceae have been identified in French vineyards, with variable levels of aggressiveness, both in vitro and in planta. Mycoviruses can impact the life traits of their fungal hosts, including aggressiveness, and are one of the factors influencing fungal pathogenicity. In this study, the RNA mycovirome of fifteen Botryosphaeriaceae isolates was characterized through the high-throughput sequencing of double-stranded RNA preparations from the respective samples. Eight mycoviruses were detected, including three potential novel species in the Narnaviridae family, as well as in the proposed Mycobunyaviridae and Fusagraviridae families. A large collection of Botryosphaeriaceae isolates was screened using RT-PCR assays specific for 20 Botryosphaeriaceae-infecting mycoviruses. Among the mycoviruses detected, some appeared to be specialists within a single host species, while others infected isolates belonging to multiple Botryosphaeriaceae species. This screening allowed us to conclude that one-third of the Botryosphaeriaceae isolates were infected by at least one mycovirus, and a significant proportion of isolates (43.5%) were found to be coinfected by several viruses, with very complex RNA mycoviromes for some N. parvum isolates.
Collapse
Affiliation(s)
- Gwenaëlle Comont
- UMR Santé et Agroécologie du Vignoble (1065), ISVV, Labex Cote, Plant Health Department, INRAE, 33140 Villenave d’Ornon, France; (G.C.); (M.L.); (S.G.); (J.J.)
| | - Chantal Faure
- UMR BFP, INRAE, University of Bordeaux, 33140 Villenave d’Ornon, France; (C.F.); (T.C.); (M.L.)
| | - Thierry Candresse
- UMR BFP, INRAE, University of Bordeaux, 33140 Villenave d’Ornon, France; (C.F.); (T.C.); (M.L.)
| | - Marie Laurens
- UMR Santé et Agroécologie du Vignoble (1065), ISVV, Labex Cote, Plant Health Department, INRAE, 33140 Villenave d’Ornon, France; (G.C.); (M.L.); (S.G.); (J.J.)
| | - Sophie Valière
- INRAE, US 1426, GeT-PlaGe, GenoToul, 31320 Castanet-Tolosan, France; (S.V.); (J.L.)
| | - Jérôme Lluch
- INRAE, US 1426, GeT-PlaGe, GenoToul, 31320 Castanet-Tolosan, France; (S.V.); (J.L.)
| | - Marie Lefebvre
- UMR BFP, INRAE, University of Bordeaux, 33140 Villenave d’Ornon, France; (C.F.); (T.C.); (M.L.)
| | - Sébastien Gambier
- UMR Santé et Agroécologie du Vignoble (1065), ISVV, Labex Cote, Plant Health Department, INRAE, 33140 Villenave d’Ornon, France; (G.C.); (M.L.); (S.G.); (J.J.)
| | - Jérôme Jolivet
- UMR Santé et Agroécologie du Vignoble (1065), ISVV, Labex Cote, Plant Health Department, INRAE, 33140 Villenave d’Ornon, France; (G.C.); (M.L.); (S.G.); (J.J.)
| | - Marie-France Corio-Costet
- UMR Santé et Agroécologie du Vignoble (1065), ISVV, Labex Cote, Plant Health Department, INRAE, 33140 Villenave d’Ornon, France; (G.C.); (M.L.); (S.G.); (J.J.)
| | - Armelle Marais
- UMR BFP, INRAE, University of Bordeaux, 33140 Villenave d’Ornon, France; (C.F.); (T.C.); (M.L.)
| |
Collapse
|
26
|
Domènech-Eres R, Jaeckel M, Hadeler B, Lienemann T, Lutz T, Heinze C. A GFP-expressing minigenome of a chrysovirus replicating in fungi. Virology 2024; 591:109987. [PMID: 38219372 DOI: 10.1016/j.virol.2024.109987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/11/2023] [Accepted: 01/05/2024] [Indexed: 01/16/2024]
Abstract
The Fusarium graminearum virus China 9 (FgV-ch9) is a member of the genus Betachrysovirus in the Chrysoviridae family and causes hypovirulence in its host, Fusarium graminearum, the causal agent of Fusarium head blight. Although insights into viral biology of FgV-ch9 have expanded in recent years, questions regarding the function of virus-encoded proteins, cis-acting elements, and virus transmission are yet to be answered. Therefore, we developed a tool for the establishment of an artificial 6th segment of FgV-ch9, which encodes a GFP gene flanked by the non-translated regions of FgV-ch9 segment 1. Subsequently, we have proved successful encapsidation of this artificial segment into virus particles as well as its horizontal transmission. Expression of GFP was further verified via immunoassay and life cell imaging. Thus far, we were able to establish for the first time a mini-replicon system for segmented dsRNA viruses replicating in fungi.
Collapse
Affiliation(s)
- Robert Domènech-Eres
- University of Hamburg, Institute of Plant Science and Microbiology, Molecular Phytopathology, Ohnhorststr. 18, 22609, Hamburg, Germany.
| | - Mareike Jaeckel
- University of Hamburg, Institute of Plant Science and Microbiology, Molecular Phytopathology, Ohnhorststr. 18, 22609, Hamburg, Germany.
| | - Birgit Hadeler
- University of Hamburg, Institute of Plant Science and Microbiology, Molecular Phytopathology, Ohnhorststr. 18, 22609, Hamburg, Germany.
| | - Tim Lienemann
- University of Hamburg, Institute of Plant Science and Microbiology, Molecular Phytopathology, Ohnhorststr. 18, 22609, Hamburg, Germany.
| | - Tobias Lutz
- University of Hamburg, Institute of Plant Science and Microbiology, Molecular Phytopathology, Ohnhorststr. 18, 22609, Hamburg, Germany.
| | - Cornelia Heinze
- University of Hamburg, Institute of Plant Science and Microbiology, Molecular Phytopathology, Ohnhorststr. 18, 22609, Hamburg, Germany.
| |
Collapse
|
27
|
Erkmen S, Sahin E, Akata I. Full-length genome characterization of a novel mitovirus isolated from the root rot fungus Armillaria mellea. Virus Genes 2024; 60:65-70. [PMID: 38103104 DOI: 10.1007/s11262-023-02041-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023]
Abstract
Members of the genus Armillaria belong to the group of pathogenic and facultative saprotrophic fungi that are generally known as one of the causative agents of white root rot in infected plants including deciduous and evergreen trees and shrubs. Although several single-stranded RNA mycoviruses were previously described in different Armillaria species, there is no report on mitoviruses (one of the simplest RNA viruses of fungal hosts) known to infect Armillaria taxa. In this study, a new mitovirus denominated "Armillaria mellea mitovirus 1" (AmMV1) was identified in the sporophore samples of Armillaria mellea, commonly known as honey mushroom. AmMV1 has a genome length of 4440 nucleotides and a G + C content of 48%. It encompasses a single open reading frame (ORF) that encodes an RNA-dependent RNA polymerase (RdRp). Comparison through BLASTp analysis revealed that the RdRp domain of AmMV1 shares a sequence identity ranging from 33.43% to 43.27% with RdRp domains of Duamitovirus genus members, having the highest similarity (43.27%) to Rhizoctonia solani mitovirus 94. According to phylogenetic analysis, AmMV1 is classified as a member of the genus Duamitovirus belonging to the Mitoviridae family. This marks the initial instance of a mitovirus identified in Armillaria spp..
Collapse
Affiliation(s)
- Sıla Erkmen
- Faculty of Science, Department of Biology, Dokuz Eylul University, 35390, Buca, Izmir, Turkey
| | - Ergin Sahin
- Faculty of Science, Department of Biology, Dokuz Eylul University, 35390, Buca, Izmir, Turkey.
- Fauna and Flora Research and Application Center, Dokuz Eylul University, 35390, Buca, Izmir, Turkey.
| | - Ilgaz Akata
- Faculty of Science, Department of Biology, Ankara University, 06100, Tandogan, Ankara, Turkey
| |
Collapse
|
28
|
De Jesús Andino F, Davydenko A, Webb RJ, Robert J. The Binding, Infection, and Promoted Growth of Batrachochytrium dendrobatidis by the Ranavirus FV3. Viruses 2024; 16:154. [PMID: 38275964 PMCID: PMC10818972 DOI: 10.3390/v16010154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Increasing reports suggest the occurrence of co-infection between Ranaviruses such as Frog Virus 3 (FV3) and the chytrid fungus Batrachochytrium dendrobatidis (Bd) in various amphibian species. However, the potential direct interaction of these two pathogens has not been examined to date. In this study, we investigated whether FV3 can interact with Bd in vitro using qPCR, conventional microscopy, and immunofluorescent microscopy. Our results reveal the unexpected ability of FV3 to bind, promote aggregation, productively infect, and significantly increase Bd growth in vitro. To extend these results in vivo, we assessed the impact of FV3 on Xenopus tropicalis frogs previously infected with Bd. Consistent with in vitro results, FV3 exposure to previously Bd-infected X. tropicalis significantly increased Bd loads and decreased the host's survival.
Collapse
Affiliation(s)
- Francisco De Jesús Andino
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA; (F.D.J.A.); (A.D.)
| | - Anton Davydenko
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA; (F.D.J.A.); (A.D.)
| | - Rebecca J. Webb
- Veterinary Biosciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA; (F.D.J.A.); (A.D.)
| |
Collapse
|
29
|
Koonin EV, Kuhn JH, Dolja VV, Krupovic M. Megataxonomy and global ecology of the virosphere. THE ISME JOURNAL 2024; 18:wrad042. [PMID: 38365236 PMCID: PMC10848233 DOI: 10.1093/ismejo/wrad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 02/18/2024]
Abstract
Nearly all organisms are hosts to multiple viruses that collectively appear to be the most abundant biological entities in the biosphere. With recent advances in metagenomics and metatranscriptomics, the known diversity of viruses substantially expanded. Comparative analysis of these viruses using advanced computational methods culminated in the reconstruction of the evolution of major groups of viruses and enabled the construction of a virus megataxonomy, which has been formally adopted by the International Committee on Taxonomy of Viruses. This comprehensive taxonomy consists of six virus realms, which are aspired to be monophyletic and assembled based on the conservation of hallmark proteins involved in capsid structure formation or genome replication. The viruses in different major taxa substantially differ in host range and accordingly in ecological niches. In this review article, we outline the latest developments in virus megataxonomy and the recent discoveries that will likely lead to reassessment of some major taxa, in particular, split of three of the current six realms into two or more independent realms. We then discuss the correspondence between virus taxonomy and the distribution of viruses among hosts and ecological niches, as well as the abundance of viruses versus cells in different habitats. The distribution of viruses across environments appears to be primarily determined by the host ranges, i.e. the virome is shaped by the composition of the biome in a given habitat, which itself is affected by abiotic factors.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, United States
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, United States
| | - Valerian V Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, United States
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, 75015 Paris, France
| |
Collapse
|
30
|
Contreras-Soto MB, Tovar-Pedraza JM. Viruses of plant-pathogenic fungi: a promising biocontrol strategy for Sclerotinia sclerotiorum. Arch Microbiol 2023; 206:38. [PMID: 38142438 DOI: 10.1007/s00203-023-03774-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/17/2023] [Accepted: 11/26/2023] [Indexed: 12/26/2023]
Abstract
Plant pathogenic fungi pose a significant and ongoing threat to agriculture and food security, causing economic losses and significantly reducing crop yields. Effectively managing these fungal diseases is crucial for sustaining agricultural productivity, and in this context, mycoviruses have emerged as a promising biocontrol option. These viruses alter the physiology of their fungal hosts and their interactions with the host plants. This review encompasses the extensive diversity of reported mycoviruses, including their taxonomic classification and range of fungal hosts. We highlight representative examples of mycoviruses that affect economically significant plant-pathogenic fungi and their distinctive characteristics, with a particular emphasis on mycoviruses impacting Sclerotinia sclerotiorum. These mycoviruses exhibit significant potential for biocontrol, supported by their specificity, efficacy, and environmental safety. This positions mycoviruses as valuable tools in crop protection against diseases caused by this pathogen, maintaining their study and application as promising research areas in agricultural biotechnology. The remarkable diversity of mycoviruses, coupled with their ability to infect a broad range of plant-pathogenic fungi, inspires optimism, and suggests that these viruses have the potential to serve as an effective management strategy against major fungi-causing plant diseases worldwide.
Collapse
Affiliation(s)
- María Belia Contreras-Soto
- Laboratorio de Fitopatología, Centro de Investigación en Alimentación y Desarrollo, Coordinación Regional Culiacán, 80110, Culiacán, Sinaloa, Mexico
| | - Juan Manuel Tovar-Pedraza
- Laboratorio de Fitopatología, Centro de Investigación en Alimentación y Desarrollo, Coordinación Regional Culiacán, 80110, Culiacán, Sinaloa, Mexico.
| |
Collapse
|
31
|
Wang H, Luo J, Dai R, Shah KU, Andika IB, Sun L. Complete genome sequence of a novel double-stranded RNA virus infecting the phytopathogenic fungus Rhizopus stolonifer. Arch Virol 2023; 168:239. [PMID: 37661219 DOI: 10.1007/s00705-023-05869-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/26/2023] [Indexed: 09/05/2023]
Abstract
In this study, we report the complete genome sequence of a novel toti-like virus, tentatively named "Rhizopus stolonifer double-stranded RNA virus 1" (RsDSV1), identified from a phytopathogenic fungal agent of apple fruit rot disease, Rhizopus stolonifer strain A2-1. RsDSV1 has a double-stranded RNA genome. The complete RsDSV1 genome is 5178 nucleotides (nt) in length and contains two open reading frames (ORFs) encoding a putative coat protein (CP) and an RNA-dependent RNA polymerase (RdRp). Phylogenetic analysis based on RdRp and CP amino acid sequences revealed that RsDSV1 is closely related to unclassified members of the family Totiviridae. In stress-inducing Vogel's minimal and sodium dodecyl sulfate-containing media, hyphal growth of A2-1 was suppressed, but the accumulation of RsDSV1 RNA increased, indicating that stresses promote RsDSV1 replication. To our knowledge, this is the first report of a mycovirus found in R. stolonifer.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jingxian Luo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Ruoyin Dai
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Kaleem Ullah Shah
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Ida Bagus Andika
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Liying Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China.
| |
Collapse
|
32
|
Kelliher JM, Robinson AJ, Longley R, Johnson LYD, Hanson BT, Morales DP, Cailleau G, Junier P, Bonito G, Chain PSG. The endohyphal microbiome: current progress and challenges for scaling down integrative multi-omic microbiome research. MICROBIOME 2023; 11:192. [PMID: 37626434 PMCID: PMC10463477 DOI: 10.1186/s40168-023-01634-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023]
Abstract
As microbiome research has progressed, it has become clear that most, if not all, eukaryotic organisms are hosts to microbiomes composed of prokaryotes, other eukaryotes, and viruses. Fungi have only recently been considered holobionts with their own microbiomes, as filamentous fungi have been found to harbor bacteria (including cyanobacteria), mycoviruses, other fungi, and whole algal cells within their hyphae. Constituents of this complex endohyphal microbiome have been interrogated using multi-omic approaches. However, a lack of tools, techniques, and standardization for integrative multi-omics for small-scale microbiomes (e.g., intracellular microbiomes) has limited progress towards investigating and understanding the total diversity of the endohyphal microbiome and its functional impacts on fungal hosts. Understanding microbiome impacts on fungal hosts will advance explorations of how "microbiomes within microbiomes" affect broader microbial community dynamics and ecological functions. Progress to date as well as ongoing challenges of performing integrative multi-omics on the endohyphal microbiome is discussed herein. Addressing the challenges associated with the sample extraction, sample preparation, multi-omic data generation, and multi-omic data analysis and integration will help advance current knowledge of the endohyphal microbiome and provide a road map for shrinking microbiome investigations to smaller scales. Video Abstract.
Collapse
Affiliation(s)
| | | | - Reid Longley
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Seitz JM, Voegele RT, Link TI. Mycoviruses in the Rust Fungus Uromyces fabae. Viruses 2023; 15:1692. [PMID: 37632034 PMCID: PMC10459897 DOI: 10.3390/v15081692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Uromyces fabae, the causal agent of broad bean rust, is a major cause of yield losses in North and East Africa, China, and Australia. It has also served as an important model species for research on rust fungi. Early EST sequencing in U. fabae showed that viruses might be present in this species; however, no follow-up investigations were conducted. In order to identify these viruses, we performed purification of dsRNA followed by Illumina sequencing. We also used ultracentrifugation followed by negative staining electron microscopy to visualize virus particles. We identified 20 viral sequences, which we termed Ufvss. A phylogenetic analysis was performed that grouped Ufvss into totiviruses, polymycoviruses, and virgaviruse; three sequences could not be included in the phylogeny. We also found isometric particles. Our findings contribute to the knowledge of mycoviral diversity in rust fungi and point to the importance of further investigation of these viruses.
Collapse
Affiliation(s)
| | | | - Tobias I. Link
- Department of Phytopathology, Institute of Phytomedicine, Faculty of Agricultural Sciences, University of Hohenheim, Otto-Sander-Straße 5, 70599 Stuttgart, Germany; (J.M.S.); (R.T.V.)
| |
Collapse
|