1
|
Maes A, Botzki A, Mathys J, Impens F, Saelens X. Systematic review and meta-analysis of genome-wide pooled CRISPR screens to identify host factors involved in influenza A virus infection. J Virol 2024; 98:e0185723. [PMID: 38567969 PMCID: PMC11257101 DOI: 10.1128/jvi.01857-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/14/2024] [Indexed: 05/15/2024] Open
Abstract
The host-virus interactome is increasingly recognized as an important research field to discover new therapeutic targets to treat influenza. Multiple pooled genome-wide CRISPR-Cas screens have been reported to identify new pro- and antiviral host factors of the influenza A virus. However, at present, a comprehensive summary of the results is lacking. We performed a systematic review of all reported CRISPR studies in this field in combination with a meta-analysis using the algorithm of meta-analysis by information content (MAIC). Two ranked gene lists were generated based on evidence in 15 proviral and 4 antiviral screens. Enriched pathways in the proviral MAIC results were compared to those of a prior array-based RNA interference (RNAi) meta-analysis. The top 50 proviral MAIC list contained genes whose role requires further elucidation, such as the endosomal ion channel TPCN1 and the kinase WEE1. Moreover, MAIC indicated that ALYREF, a component of the transcription export complex, has antiviral properties, whereas former knockdown experiments attributed a proviral role to this host factor. CRISPR-Cas-pooled screens displayed a bias toward early-replication events, whereas the prior RNAi meta-analysis covered early and late-stage events. RNAi screens led to the identification of a larger fraction of essential genes than CRISPR screens. In summary, the MAIC algorithm points toward the importance of several less well-known pathways in host-influenza virus interactions that merit further investigation. The results from this meta-analysis of CRISPR screens in influenza A virus infection may help guide future research efforts to develop host-directed anti-influenza drugs. IMPORTANCE Viruses rely on host factors for their replication, whereas the host cell has evolved virus restriction factors. These factors represent potential targets for host-oriented antiviral therapies. Multiple pooled genome-wide CRISPR-Cas screens have been reported to identify pro- and antiviral host factors in the context of influenza virus infection. We performed a comprehensive analysis of the outcome of these screens based on the publicly available gene lists, using the recently developed algorithm meta-analysis by information content (MAIC). MAIC allows the systematic integration of ranked and unranked gene lists into a final ranked gene list. This approach highlighted poorly characterized host factors and pathways with evidence from multiple screens, such as the vesicle docking and lipid metabolism pathways, which merit further exploration.
Collapse
Affiliation(s)
- Annabel Maes
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- Janssen Pharmaceutica NV, Beerse, Belgium
| | | | | | - Francis Impens
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Proteomics Core, VIB, Ghent, Belgium
| | - Xavier Saelens
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
2
|
Rubey KM, Brenner JS. Nanomedicine to fight infectious disease. Adv Drug Deliv Rev 2021; 179:113996. [PMID: 34634395 PMCID: PMC8665093 DOI: 10.1016/j.addr.2021.113996] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/09/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022]
Abstract
The ubiquity and potency of antibiotics may give the false impression that infection is a solved problem. Unfortunately, even bacterial infections, the target of antibiotics, remain a major cause of illness and death. Several major unmet needs persist: biofilms, such as those on implanted hardware, largely resist antibiotics; the inflammatory host response to infection often produces more damage than the infection itself; and systemic antibiotics often decimate the gut microbiome, which can predispose to additional infections and even predispose to non-infectious diseases. Additionally, there is an increasing threat from multi-drug resistant microorganisms, though market forces may continue to inhibit innovation in this realm. These numerous unmet infection-related needs provide attractive goals for innovation of targeted drug delivery technologies, especially those of nanomedicine. Here we review several of those innovations in pre-clinical development, the two such therapies which have made it to clinical use, and the opportunities for further technology development for treating infections.
Collapse
Affiliation(s)
- Kathryn M Rubey
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jacob S Brenner
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
3
|
Identification of One Critical Amino Acid Residue of the Nucleoprotein as a Determinant for In Vitro Replication Fitness of Influenza D Virus. J Virol 2021; 95:e0097121. [PMID: 34190601 DOI: 10.1128/jvi.00971-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The newly identified influenza D virus (IDV) of the Orthomyxoviridae family has a wide host range with a broad geographical distribution. Despite the first appearance in U.S. pig herds in 2011, subsequent studies demonstrated that IDV is widespread in global cattle populations, supporting a theory that IDV utilizes bovines as a primary reservoir. Our investigation of the two reference influenza D viruses, D/swine/Oklahoma/1334/2011 (OK/11), isolated from swine, and D/Bovine/Oklahoma/660/2013 (660/13), isolated from cattle, revealed that 660/13 replicated to titers approximately 100-fold higher than those for OK/11 in multiple cell lines. By using a recently developed IDV reverse-genetics system derived from low-titer OK/11, we generated recombinant chimeric OK/11 viruses in which one of the seven genome segments was replaced with its counterpart from high-titer 660/13 virus. Further characterization demonstrated that the replication level of the chimeric OK/11 virus was significantly increased only when harboring the 660/13 nucleoprotein (NP) segment. Finally, through both gain-of-function and loss-of-function experiments, we identified that one amino acid residue at position 381, located in the body domain of NP protein, was a key determinant for the replication difference between the low-titer OK/11 virus and the high-titer 660/13 virus. Taken together, our findings provide important insight into IDV replication fitness mediated by the NP protein, which should facilitate future study of the infectious virus particle production mechanism of IDV. IMPORTANCE Little is known about the virus infection and production mechanism for newly discovered influenza D virus (IDV), which utilizes bovines as a primary reservoir, with frequent spillover to new hosts, including swine. In this study, we showed that of two well-characterized IDVs, 660/13 replicated more efficiently (approximately 100-fold higher) than OK/11. Using a recently developed IDV reverse-genetics system, we identified viral nucleoprotein (NP) as a primary determinant of the different replication capacities observed between these two nearly identical viruses. Mechanistic investigation further revealed that a mutation at NP position 381 evidently modulated virus fitness. Taken together, these observations indicate that IDV NP protein performs a critical role in infectious virus particle production. Our study thus illustrates an NP-based mechanism for efficient IDV infection and production in vitro.
Collapse
|
4
|
Beckman MF, Mougeot FB, Mougeot JLC. Comorbidities and Susceptibility to COVID-19: A Generalized Gene Set Data Mining Approach. J Clin Med 2021; 10:1666. [PMID: 33924631 PMCID: PMC8070572 DOI: 10.3390/jcm10081666] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/29/2021] [Accepted: 04/07/2021] [Indexed: 12/20/2022] Open
Abstract
The COVID-19 pandemic has led to over 2.26 million deaths for almost 104 million confirmed cases worldwide, as of 4 February 2021 (WHO). Risk factors include pre-existing conditions such as cancer, cardiovascular disease, diabetes, and obesity. Although several vaccines have been deployed, there are few alternative anti-viral treatments available in the case of reduced or non-existent vaccine protection. Adopting a long-term holistic approach to cope with the COVID-19 pandemic appears critical with the emergence of novel and more infectious SARS-CoV-2 variants. Our objective was to identify comorbidity-associated single nucleotide polymorphisms (SNPs), potentially conferring increased susceptibility to SARS-CoV-2 infection using a computational meta-analysis approach. SNP datasets were downloaded from a publicly available genome-wide association studies (GWAS) catalog for 141 of 258 candidate COVID-19 comorbidities. Gene-level SNP analysis was performed to identify significant pathways by using the program MAGMA. An SNP annotation program was used to analyze MAGMA-identified genes. Differential gene expression was determined for significant genes across 30 general tissue types using the Functional and Annotation Mapping of GWAS online tool GENE2FUNC. COVID-19 comorbidities (n = 22) from six disease categories were found to have significant associated pathways, validated by Q-Q plots (p < 0.05). Protein-protein interactions of significant (p < 0.05) differentially expressed genes were visualized with the STRING program. Gene interaction networks were found to be relevant to SARS and influenza pathogenesis. In conclusion, we were able to identify the pathways potentially affected by or affecting SARS-CoV-2 infection in underlying medical conditions likely to confer susceptibility and/or the severity of COVID-19. Our findings have implications in future COVID-19 experimental research and treatment development.
Collapse
Affiliation(s)
| | - Farah Bahrani Mougeot
- Department of Oral Medicine, Carolinas Medical Center, Atrium Health, Charlotte, NC 28203, USA;
| | - Jean-Luc C. Mougeot
- Department of Oral Medicine, Carolinas Medical Center, Atrium Health, Charlotte, NC 28203, USA;
| |
Collapse
|
5
|
ÇaĞlayan E, Turan K. Expression profiles of interferon-related genes in cells infected with influenza A viruses or transiently transfected with plasmids encoding viral RNA polymerase. ACTA ACUST UNITED AC 2021; 45:88-103. [PMID: 33597825 PMCID: PMC7877717 DOI: 10.3906/biy-2005-73] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/01/2020] [Indexed: 11/30/2022]
Abstract
Influenza A viruses frequently change their genetic characteristics, which leads to the emergence of new viruses. Consequently, elucidation of the relationship between influenza A virus and host cells has a great importance to cope with viral infections. In this study, it was aimed to determine expression profiles of interferon response genes in human embryonic kidney 293 (HEK293) cells infected with human (A/WSN-H1N1) and avian influenza A viruses (duck/Pennsylvania/10218/84/H5N2) or transfected with plasmids encoding viral RdRP subunits and, to obtain clues about the genes that may be important for the viral pathogenesis. The HEK293 cells cultured in a 12-well plate were infected with influenza A viruses or transfected with plasmids encoding viral polymerase. Total RNA extraction and cDNA preparation were carried out with commercial kits. Qiagen 96-well-RT2 Profiler PCR Array plates designated for interferons response genes were used for quantitation of the transcripts. The relative quantities of transcripts were normalized with STAT3 gen, and the results were evaluated. Quantitative RT-PCR results showed that there are substantial differences of the interferon response gene transcription in cells infected with viruses or transfected with plasmids. A higher number of interferon-related genes were found to be downregulated in the cells infected with DkPen compared to WSN. On the other hand, significant differences in the expression profiles of interferon response genes were observed in the cells expressing viral PA protein. In particular, avian influenza PA protein was found to cause more aggressive changes on the transcript levels. Human and avian influenza A viruses cause a substantial change in interferon response gene expression in HEK293 cells. However, a higher number of genes were downregulated in the cells infected with avian influenza DkPen compared to WSN. It has been also concluded that the viral PA protein is one of the important viral factors affecting the transcript level of host genes.
Collapse
Affiliation(s)
- Elif ÇaĞlayan
- Enstitute of Health Sciences, Marmara University, İstanbul Turkey
| | - Kadir Turan
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Marmara University, İstanbul Turkey
| |
Collapse
|
6
|
Bagheri HS, Karimipour M, Heidarzadeh M, Rajabi H, Sokullu E, Rahbarghazi R. Does the Global Outbreak of COVID-19 or Other Viral Diseases Threaten the Stem Cell Reservoir Inside the Body? Stem Cell Rev Rep 2021; 17:214-230. [PMID: 33403490 PMCID: PMC7785129 DOI: 10.1007/s12015-020-10108-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2020] [Indexed: 12/20/2022]
Abstract
The COVID-19 pandemic has profoundly influenced public health and contributed to global economic divergences of unprecedented dimensions. Due to the high prevalence and mortality rates, it is then expected that the consequence and public health challenges will last for long periods. The rapid global spread of COVID-19 and lack of enough data regarding the virus pathogenicity multiplies the complexity and forced governments to react quickly against this pandemic. Stem cells represent a small fraction of cells located in different tissues. These cells play a critical role in the regeneration and restoration of injured sites. Because of their specific niche and a limited number of stem cells, the key question is whether there are different anti-viral mechanisms against viral infection notably COVID-19. Here, we aimed to highlight the intrinsic antiviral resistance in different stem cells against viral infection. These data could help us to understand the possible viral infections in different stem cells and the activation of specific molecular mechanisms upon viral entrance.
Collapse
Affiliation(s)
| | - Mohammad Karimipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Heidarzadeh
- Koç University Translational Medicine Research Center (KUTTAM) Rumeli Feneri, Sarıyer, Istanbul, Turkey
| | - Hadi Rajabi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Emel Sokullu
- Koç University Translational Medicine Research Center (KUTTAM) Rumeli Feneri, Sarıyer, Istanbul, Turkey. .,School of Medicine, Biophysics Department, Koç University, Rumeli Fener, Sarıyer, Istanbul, Turkey.
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Schaack GA, Mehle A. Experimental Approaches to Identify Host Factors Important for Influenza Virus. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a038521. [PMID: 31871241 DOI: 10.1101/cshperspect.a038521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An ever-expanding toolkit of experimental methods provides the means to discover and characterize host factors important for influenza virus. Here, we describe common methods for investigating genetic relationships and physical interactions between virus and host. A comprehensive knowledge of host:virus interactions is key to understanding how influenza virus exploits the host cell and to potentially identify vulnerabilities that may be manipulated to prevent or treat disease.
Collapse
Affiliation(s)
- Grace A Schaack
- Department of Medical Microbiology and Immunology, University of Wisconsin Madison, Madison, Wisconsin 53706, USA
| | - Andrew Mehle
- Department of Medical Microbiology and Immunology, University of Wisconsin Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
8
|
Abstract
Antiviral drugs have traditionally been developed by directly targeting essential viral components. However, this strategy often fails due to the rapid generation of drug-resistant viruses. Recent genome-wide approaches, such as those employing small interfering RNA (siRNA) or clustered regularly interspaced short palindromic repeats (CRISPR) or those using small molecule chemical inhibitors targeting the cellular "kinome," have been used successfully to identify cellular factors that can support virus replication. Since some of these cellular factors are critical for virus replication, but are dispensable for the host, they can serve as novel targets for antiviral drug development. In addition, potentiation of immune responses, regulation of cytokine storms, and modulation of epigenetic changes upon virus infections are also feasible approaches to control infections. Because it is less likely that viruses will mutate to replace missing cellular functions, the chance of generating drug-resistant mutants with host-targeted inhibitor approaches is minimized. However, drug resistance against some host-directed agents can, in fact, occur under certain circumstances, such as long-term selection pressure of a host-directed antiviral agent that can allow the virus the opportunity to adapt to use an alternate host factor or to alter its affinity toward the target that confers resistance. This review describes novel approaches for antiviral drug development with a focus on host-directed therapies and the potential mechanisms that may account for the acquisition of antiviral drug resistance against host-directed agents.
Collapse
|
9
|
Han J, Perez JT, Chen C, Li Y, Benitez A, Kandasamy M, Lee Y, Andrade J, tenOever B, Manicassamy B. Genome-wide CRISPR/Cas9 Screen Identifies Host Factors Essential for Influenza Virus Replication. Cell Rep 2019; 23:596-607. [PMID: 29642015 PMCID: PMC5939577 DOI: 10.1016/j.celrep.2018.03.045] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/24/2018] [Accepted: 03/10/2018] [Indexed: 11/13/2022] Open
Abstract
The emergence of influenza A viruses (IAVs) from zoonotic reservoirs poses a great threat to human health. As seasonal vaccines are ineffective against zoonotic strains, and newly transmitted viruses can quickly acquire drug resistance, there remains a need for host-directed therapeutics against IAVs. Here, we performed a genome-scale CRISPR/Cas9 knockout screen in human lung epithelial cells with a human isolate of an avian H5N1 strain. Several genes involved in sialic acid biosynthesis and related glycosylation pathways were highly enriched post-H5N1 selection, including SLC35A1, a sialic acid transporter essential for IAV receptor expression and thus viral entry. Importantly, we have identified capicua (CIC) as a negative regulator of cell-intrinsic immunity, as loss of CIC resulted in heightened antiviral responses and restricted replication of multiple viruses. Therefore, our study demonstrates that the CRISPR/Cas9 system can be utilized for the discovery of host factors critical for the replication of intracellular pathogens.
Collapse
Affiliation(s)
- Julianna Han
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Jasmine T Perez
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Cindy Chen
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Yan Li
- Center for Research Informatics, The University of Chicago, Chicago, IL 60637, USA
| | - Asiel Benitez
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Yoontae Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea
| | - Jorge Andrade
- Center for Research Informatics, The University of Chicago, Chicago, IL 60637, USA
| | - Benjamin tenOever
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Balaji Manicassamy
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
10
|
Tarakhovsky A, Prinjha RK. Drawing on disorder: How viruses use histone mimicry to their advantage. J Exp Med 2018; 215:1777-1787. [PMID: 29934321 PMCID: PMC6028506 DOI: 10.1084/jem.20180099] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/24/2018] [Accepted: 06/07/2018] [Indexed: 12/16/2022] Open
Abstract
Humans carry trillions of viruses that thrive because of their ability to exploit the host. In this exploitation, viruses promote their own replication by suppressing the host antiviral response and by inducing changes in host biosynthetic processes, often with extremely small genomes of their own. In the review, we discuss the phenomenon of histone mimicry by viral proteins and how this mimicry allows the virus to dial in to the cell's transcriptional processes and establish a cell state that promotes infection. We suggest that histone mimicry is part of a broader viral strategy to use intrinsic protein disorder as a means to overcome the size limitations of its own genome and to maximize its impact on host protein networks. In particular, we discuss how intrinsic protein disorder may enable viral proteins to interfere with phase-separated host protein condensates, including those that contribute to chromatin-mediated control of gene expression.
Collapse
Affiliation(s)
- Alexander Tarakhovsky
- Laboratory of the Immune Cell Epigenetics and Signaling, The Rockefeller University, New York, NY
| | - Rab K Prinjha
- Epigenetics DPU, Oncology and Immuno-inflammation TA Units, GlaxoSmithKline Medicines Research Centre, Stevenage, England, UK
| |
Collapse
|
11
|
Chin AWH, Leong NKC, Nicholls JM, Poon LLM. Characterization of influenza A viruses with polymorphism in PB2 residues 701 and 702. Sci Rep 2017; 7:11361. [PMID: 28900145 PMCID: PMC5595998 DOI: 10.1038/s41598-017-11625-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/25/2017] [Indexed: 12/04/2022] Open
Abstract
The 701 and 702 positions of influenza PB2 polymerase subunit are previously shown to have roles on host range. Limited polymorphisms at these two residues are identified in natural isolates, thereby limiting the study of their role in the polymerase. In this study, we generated 31 viable viruses by random mutagenesis at this region, indicating that these positions can tolerate a wide range of amino acids. These mutants demonstrated varying polymerase activities and viral replication rates in mammalian and avian cells. Notably, some mutants displayed enhanced polymerase activity, yet their replication kinetics were comparable to the wild-type virus. Surface electrostatic charge predication on the PB2 structural model revealed that the viral polymerase activity in mammalian cells generally increases as this region becomes more positively charged. One of the mutants (701A/702E) showed much reduced pathogenicity in mice while others had a pathogenicity similar to the wild-type level. Distinct tissue tropisms of the PB2-701/702 mutants were observed in infected chicken embryos. Overall, this study demonstrates that the PB2-701/702 region has a high degree of sequence plasticity and sequence changes in this region can alter virus phenotypes in vitro and in vivo.
Collapse
Affiliation(s)
- Alex W H Chin
- Centre of Influenza Research & School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Nathaniel K C Leong
- Centre of Influenza Research & School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - John M Nicholls
- Department of Pathology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Leo L M Poon
- Centre of Influenza Research & School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
12
|
Gagné B, Tremblay N, Park AY, Baril M, Lamarre D. Importin β1 targeting by hepatitis C virus NS3/4A protein restricts IRF3 and NF-κB signaling of IFNB1 antiviral response. Traffic 2017; 18:362-377. [PMID: 28295920 PMCID: PMC7169781 DOI: 10.1111/tra.12480] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 12/26/2022]
Abstract
In this study, newly identified host interactors of hepatitis C virus (HCV) proteins were assessed for a role in modulating the innate immune response. The analysis revealed enrichment for components of the nuclear transport machinery and the crucial interaction with NS3/4A protein in suppression of interferon‐β (IFNB1) induction. Using a comprehensive microscopy‐based high‐content screening approach combined to the gene silencing of nuclear transport factors, we showed that NS3/4A‐interacting proteins control the nucleocytoplasmic trafficking of IFN regulatory factor 3 (IRF3) and NF‐κB p65 upon Sendai virus (SeV) infection. Notably, importin β1 (IMPβ1) knockdown—a hub protein highly targeted by several viruses—decreases the nuclear translocation of both transcription factors and prevents IFNB1 and IFIT1 induction, correlating with a rapid increased of viral proteins and virus‐mediated apoptosis. Here we show that NS3/4A triggers the cleavage of IMPβ1 and inhibits nuclear transport to disrupt IFNB1 production. Importantly, mutated IMPβ1 resistant to cleavage completely restores signaling, similar to the treatment with BILN 2061 protease inhibitor, correlating with the disappearance of cleavage products. Overall, the data indicate that HCV NS3/4A targeting of IMPβ1 and related modulators of IRF3 and NF‐κB nuclear transport constitute an important innate immune subversion strategy and inspire new avenues for broad‐spectrum antiviral therapies.
Collapse
Affiliation(s)
- Bridget Gagné
- Centre de Recherche du CHUM (CRCHUM), Montréal, Canada.,Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, Canada
| | - Nicolas Tremblay
- Centre de Recherche du CHUM (CRCHUM), Montréal, Canada.,Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, Canada
| | - Alex Y Park
- Centre de Recherche du CHUM (CRCHUM), Montréal, Canada.,Département de Microbiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, Canada
| | - Martin Baril
- Centre de Recherche du CHUM (CRCHUM), Montréal, Canada
| | - Daniel Lamarre
- Centre de Recherche du CHUM (CRCHUM), Montréal, Canada.,Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, Canada
| |
Collapse
|
13
|
Hu J, Gao Z, Wang X, Gu M, Liang Y, Liu X, Hu S, Liu H, Liu W, Chen S, Peng D, Liu X. iTRAQ-based quantitative proteomics reveals important host factors involved in the high pathogenicity of the H5N1 avian influenza virus in mice. Med Microbiol Immunol 2016; 206:125-147. [PMID: 28000052 DOI: 10.1007/s00430-016-0489-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/03/2016] [Indexed: 02/07/2023]
Abstract
We previously reported a pair of H5N1 avian influenza viruses which are genetically similar but differ greatly in their virulence in mice. A/Chicken/Jiangsu/k0402/2010 (CK10) is highly lethal to mice, whereas A/Goose/Jiangsu/k0403/2010 (GS10) is avirulent. In this study, to investigate the host factors that account for their virulence discrepancy, we compared the pathology and host proteome of the CK10- or GS10-infected mouse lung. Moderate lung injury was observed from CK10-infected animals as early as the first day of infection, and the pathology steadily progressed at later time point. However, only mild lesions were observed in GS10-infected mouse lung at the late infection stage. Using the quantitative iTRAQ coupled LC-MS/MS method, we first found that more significantly differentially expressed (DE) proteins were stimulated by GS10 compared with CK10. However, bio-function analysis of the DE proteins suggested that CK10 induced much stronger inflammatory response-related functions than GS10. Canonical pathway analysis also demonstrated that CK10 highly activated the "Acute Phase Response Signaling," which results in a wide range of biological activities in response to viral infection, including many inflammatory processes. Further in-depth analysis showed that CK10 exacerbated acute lung injury-associated responses, including inflammatory response, cell death, reactive oxygen species production and complement response. In addition, some of these identified proteins that associated with the lung injury were further confirmed to be regulated in vitro. Therefore, our findings suggest that the early increased lung injury-associated host response induced by CK10 may contribute to the lung pathology and the high virulence of this virus in mice.
Collapse
Affiliation(s)
- Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Zhao Gao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Min Gu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Yanyan Liang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Huimou Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Wenbo Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Sujuan Chen
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Daxin Peng
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China. .,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
14
|
Zhang H, Zheng H, Qian P, Xu J, Yang X, Zhou R, Chen H, Li X. Induction of systemic IFITM3 expression does not effectively control foot-and-mouth disease viral infection in transgenic pigs. Vet Microbiol 2016; 191:20-6. [PMID: 27374903 PMCID: PMC7126902 DOI: 10.1016/j.vetmic.2016.05.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 05/29/2016] [Accepted: 05/30/2016] [Indexed: 12/17/2022]
Abstract
The sIFITM3 transgenic pigs were successfully generated by the handmade cloning. The sIFITM3 transgenic pigs as an animal model were evaluated the protection effect against FMDV. Induction of systemic sIFITM3 expression does not protect against FMDV infection in pigs.
Foot-and-mouth disease (FMD) is a highly contagious disease of cloven-hoofed animals, and can cause severe economic loss. Interferon-induced transmembrane (IFITM) proteins constitute a family of viral restriction factors that can inhibit the replication of several types of viruses. Our previous study showed that overexpression of swine IFITM3 (sIFITM3) impeded replication of the FMD virus (FMDV) in BHK-21 cells and mice. In this study, sIFITM3-transgenic (TG) pigs were produced by handmade cloning. Results showed that sIFITM3 was highly overexpressed in many organs of sIFITM3-TG pigs compared to wild-type pigs. After a virulent FMDV strain (O/ES/2001) was intramuscularly inoculated, the sIFITM3-TG pigs showed slightly higher susceptibility to FMDV infection than wild-type pigs. Both groups displayed comparable degrees of clinical symptoms throughout the 14-day observation period. Therefore, the induction of systemic sIFITM3 expression does not protect pigs against FMDV infection. Based on these observations, we propose that a combination of interferons and vaccines be used to control FMDV infections and subsequent FMD outbreaks.
Collapse
Affiliation(s)
- Huawei Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ping Qian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Jinfang Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xi Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xiangmin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| |
Collapse
|
15
|
Abstract
Deciphering the many interactions that occur between a virus and host cell over the course of infection is paramount to understanding mechanisms of pathogenesis and to the future development of antiviral therapies. Over the past decade, researchers have started to understand these complicated relationships through the development of methodologies, including advances in RNA interference, proteomics, and the development of genetic tools such as haploid cell lines, allowing high-throughput screening to identify critical contact points between virus and host. These advances have produced a wealth of data regarding host factors hijacked by viruses to promote infection, as well as antiviral factors responsible for subverting viral infection. This review highlights findings from virus-host screens and discusses our thoughts on the direction of screening strategies moving forward.
Collapse
Affiliation(s)
- Holly Ramage
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104; ,
| | - Sara Cherry
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104; ,
| |
Collapse
|
16
|
Nicholas B, Staples KJ, Moese S, Meldrum E, Ward J, Dennison P, Havelock T, Hinks TSC, Amer K, Woo E, Chamberlain M, Singh N, North M, Pink S, Wilkinson TMA, Djukanović R. A novel lung explant model for the ex vivo study of efficacy and mechanisms of anti-influenza drugs. THE JOURNAL OF IMMUNOLOGY 2015; 194:6144-54. [PMID: 25934861 PMCID: PMC4456633 DOI: 10.4049/jimmunol.1402283] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 04/06/2015] [Indexed: 11/19/2022]
Abstract
Influenza A virus causes considerable morbidity and mortality largely because of a lack of effective antiviral drugs. Viral neuraminidase inhibitors, which inhibit viral release from the infected cell, are currently the only approved drugs for influenza, but have recently been shown to be less effective than previously thought. Growing resistance to therapies that target viral proteins has led to increased urgency in the search for novel anti-influenza compounds. However, discovery and development of new drugs have been restricted because of differences in susceptibility to influenza between animal models and humans and a lack of translation between cell culture and in vivo measures of efficacy. To circumvent these limitations, we developed an experimental approach based on ex vivo infection of human bronchial tissue explants and optimized a method of flow cytometric analysis to directly quantify infection rates in bronchial epithelial tissues. This allowed testing of the effectiveness of TVB024, a vATPase inhibitor that inhibits viral replication rather than virus release, and to compare efficacy with the current frontline neuraminidase inhibitor, oseltamivir. The study showed that the vATPase inhibitor completely abrogated epithelial cell infection, virus shedding, and the associated induction of proinflammatory mediators, whereas oseltamivir was only partially effective at reducing these mediators and ineffective against innate responses. We propose, therefore, that this explant model could be used to predict the efficacy of novel anti-influenza compounds targeting diverse stages of the viral replication cycle, thereby complementing animal models and facilitating progression of new drugs into clinical trials.
Collapse
Affiliation(s)
- Ben Nicholas
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Sir Henry Wellcome Laboratories, Southampton General Hospital, Southampton SO16 6YD, United Kingdom; Southampton National Institute for Health Research Respiratory Biomedical Research Unit, Southampton General Hospital, Southampton SO16 6YD, United Kingdom;
| | - Karl J Staples
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Sir Henry Wellcome Laboratories, Southampton General Hospital, Southampton SO16 6YD, United Kingdom; Southampton National Institute for Health Research Respiratory Biomedical Research Unit, Southampton General Hospital, Southampton SO16 6YD, United Kingdom
| | | | | | - Jon Ward
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Sir Henry Wellcome Laboratories, Southampton General Hospital, Southampton SO16 6YD, United Kingdom
| | - Patrick Dennison
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Sir Henry Wellcome Laboratories, Southampton General Hospital, Southampton SO16 6YD, United Kingdom; Southampton National Institute for Health Research Respiratory Biomedical Research Unit, Southampton General Hospital, Southampton SO16 6YD, United Kingdom
| | - Tom Havelock
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Sir Henry Wellcome Laboratories, Southampton General Hospital, Southampton SO16 6YD, United Kingdom; Southampton National Institute for Health Research Respiratory Biomedical Research Unit, Southampton General Hospital, Southampton SO16 6YD, United Kingdom
| | - Timothy S C Hinks
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Sir Henry Wellcome Laboratories, Southampton General Hospital, Southampton SO16 6YD, United Kingdom; Southampton National Institute for Health Research Respiratory Biomedical Research Unit, Southampton General Hospital, Southampton SO16 6YD, United Kingdom
| | - Khalid Amer
- Department of Cardiothoracic Surgery, Southampton General Hospital, Southampton SO16 6YD, United Kingdom; and
| | - Edwin Woo
- Department of Cardiothoracic Surgery, Southampton General Hospital, Southampton SO16 6YD, United Kingdom; and
| | - Martin Chamberlain
- Department of Cardiothoracic Surgery, Southampton General Hospital, Southampton SO16 6YD, United Kingdom; and
| | - Neeta Singh
- Department of Cellular Pathology, Southampton General Hospital, Southampton SO16 6YD, United Kingdom
| | - Malcolm North
- Southampton National Institute for Health Research Respiratory Biomedical Research Unit, Southampton General Hospital, Southampton SO16 6YD, United Kingdom
| | - Sandy Pink
- Southampton National Institute for Health Research Respiratory Biomedical Research Unit, Southampton General Hospital, Southampton SO16 6YD, United Kingdom
| | - Tom M A Wilkinson
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Sir Henry Wellcome Laboratories, Southampton General Hospital, Southampton SO16 6YD, United Kingdom; Southampton National Institute for Health Research Respiratory Biomedical Research Unit, Southampton General Hospital, Southampton SO16 6YD, United Kingdom
| | - Ratko Djukanović
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Sir Henry Wellcome Laboratories, Southampton General Hospital, Southampton SO16 6YD, United Kingdom; Southampton National Institute for Health Research Respiratory Biomedical Research Unit, Southampton General Hospital, Southampton SO16 6YD, United Kingdom
| |
Collapse
|
17
|
Watanabe T, Kawakami E, Shoemaker JE, Lopes TJS, Matsuoka Y, Tomita Y, Kozuka-Hata H, Gorai T, Kuwahara T, Takeda E, Nagata A, Takano R, Kiso M, Yamashita M, Sakai-Tagawa Y, Katsura H, Nonaka N, Fujii H, Fujii K, Sugita Y, Noda T, Goto H, Fukuyama S, Watanabe S, Neumann G, Oyama M, Kitano H, Kawaoka Y. Influenza virus-host interactome screen as a platform for antiviral drug development. Cell Host Microbe 2014; 16:795-805. [PMID: 25464832 DOI: 10.1016/j.chom.2014.11.002] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/01/2014] [Accepted: 10/20/2014] [Indexed: 12/30/2022]
Abstract
Host factors required for viral replication are ideal drug targets because they are less likely than viral proteins to mutate under drug-mediated selective pressure. Although genome-wide screens have identified host proteins involved in influenza virus replication, limited mechanistic understanding of how these factors affect influenza has hindered potential drug development. We conducted a systematic analysis to identify and validate host factors that associate with influenza virus proteins and affect viral replication. After identifying over 1,000 host factors that coimmunoprecipitate with specific viral proteins, we generated a network of virus-host protein interactions based on the stage of the viral life cycle affected upon host factor downregulation. Using compounds that inhibit these host factors, we validated several proteins, notably Golgi-specific brefeldin A-resistant guanine nucleotide exchange factor 1 (GBF1) and JAK1, as potential antiviral drug targets. Thus, virus-host interactome screens are powerful strategies to identify targetable host factors and guide antiviral drug development.
Collapse
Affiliation(s)
- Tokiko Watanabe
- ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan; Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Eiryo Kawakami
- ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Jason E Shoemaker
- ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan; Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Tiago J S Lopes
- ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Yukiko Matsuoka
- ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan; The Systems Biology Institute, Minato-ku, Tokyo 108-0071, Japan
| | - Yuriko Tomita
- ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Hiroko Kozuka-Hata
- Medical Proteomics Laboratory, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Takeo Gorai
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 575 Science Drive, Madison, WI 53711, USA
| | - Tomoko Kuwahara
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Eiji Takeda
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Atsushi Nagata
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Ryo Takano
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Maki Kiso
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Makoto Yamashita
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Yuko Sakai-Tagawa
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Hiroaki Katsura
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Naoki Nonaka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Hiroko Fujii
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Ken Fujii
- ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Yukihiko Sugita
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Takeshi Noda
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Hideo Goto
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Satoshi Fukuyama
- ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan; Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Shinji Watanabe
- ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan; Laboratory of Veterinary Microbiology, Department of Veterinary Sciences, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Gabriele Neumann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 575 Science Drive, Madison, WI 53711, USA
| | - Masaaki Oyama
- Medical Proteomics Laboratory, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Hiroaki Kitano
- ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan; The Systems Biology Institute, Minato-ku, Tokyo 108-0071, Japan; Laboratory for Disease Systems Modeling, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan; Okinawa Institute of Science and Technology, Onna-son, Okinawa 904-0495, Japan
| | - Yoshihiro Kawaoka
- ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan; Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 575 Science Drive, Madison, WI 53711, USA; Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
18
|
Josset L, Tisoncik-Go J, Katze MG. Moving H5N1 studies into the era of systems biology. Virus Res 2013; 178:151-67. [PMID: 23499671 PMCID: PMC3834220 DOI: 10.1016/j.virusres.2013.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 02/24/2013] [Indexed: 12/20/2022]
Abstract
The dynamics of H5N1 influenza virus pathogenesis are multifaceted and can be seen as an emergent property that cannot be comprehended without looking at the system as a whole. In past years, most of the high-throughput studies on H5N1-host interactions have focused on the host transcriptomic response, at the cellular or the lung tissue level. These studies pointed out that the dynamics and magnitude of the innate immune response and immune cell infiltration is critical to H5N1 pathogenesis. However, viral-host interactions are multidimensional and advances in technologies are creating new possibilities to systematically measure additional levels of 'omic data (e.g. proteomic, metabolomic, and RNA profiling) at each temporal and spatial scale (from the single cell to the organism) of the host response. Natural host genetic variation represents another dimension of the host response that determines pathogenesis. Systems biology models of H5N1 disease aim at understanding and predicting pathogenesis through integration of these different dimensions by using intensive computational modeling. In this review, we describe the importance of 'omic studies for providing a more comprehensive view of infection and mathematical models that are being developed to integrate these data. This review provides a roadmap for what needs to be done in the future and what computational strategies should be used to build a global model of H5N1 pathogenesis. It is time for systems biology of H5N1 pathogenesis to take center stage as the field moves toward a more comprehensive view of virus-host interactions.
Collapse
Affiliation(s)
- Laurence Josset
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA 98195, United States
| | | | | |
Collapse
|
19
|
Chen HW, Cheng JX, Liu MT, King K, Peng JY, Zhang XQ, Wang CH, Shresta S, Schooley RT, Liu YT. Inhibitory and combinatorial effect of diphyllin, a v-ATPase blocker, on influenza viruses. Antiviral Res 2013; 99:371-82. [PMID: 23820269 PMCID: PMC3787953 DOI: 10.1016/j.antiviral.2013.06.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 06/18/2013] [Accepted: 06/21/2013] [Indexed: 01/05/2023]
Abstract
Diphyllin inhibits endosomal acidification in MDCK cells and A549 cells. Treatment with diphyllin alters the cellular susceptibility to the influenza virus. Diphyllin demonstrated a broad-spectrum antiviral activity. The combination of diphyllin and other drugs showed an enhanced antiviral effect.
An influenza pandemic poses a serious threat to humans and animals. Conventional treatments against influenza include two classes of pathogen-targeting antivirals: M2 ion channel blockers (such as amantadine) and neuraminidase inhibitors (such as oseltamivir). Examination of the mechanism of influenza viral infection has shown that endosomal acidification plays a major role in facilitating the fusion between viral and endosomal membranes. This pathway has led to investigations on vacuolar ATPase (v-ATPase) activity, whose role as a regulating factor on influenza virus replication has been verified in extensive genome-wide screenings. Blocking v-ATPase activity thus presents the opportunity to interfere with influenza viral infection by preventing the pH-dependent membrane fusion between endosomes and virions. This study aims to apply diphyllin, a natural compound shown to be as a novel v-ATPase inhibitor, as a potential antiviral for various influenza virus strains using cell-based assays. The results show that diphyllin alters cellular susceptibility to influenza viruses through the inhibition of endosomal acidification, thus interfering with downstream virus replication, including that of known drug-resistant strains. In addition, combinatorial treatment of the host-targeting diphyllin with pathogen-targeting therapeutics (oseltamivir and amantadine) demonstrates enhanced antiviral effects and cell protection in vitro.
Collapse
Affiliation(s)
- Hui-Wen Chen
- Division of Infectious Disease, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United Sates; Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, United States; School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Chin CR, Brass AL. A genome wide RNA interference screening method to identify host factors that modulate influenza A virus replication. Methods 2012; 59:217-24. [PMID: 23036328 DOI: 10.1016/j.ymeth.2012.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 07/28/2012] [Accepted: 09/22/2012] [Indexed: 11/17/2022] Open
Abstract
The use of genome wide RNA interference (RNAi) screens to investigate host-virals interactions has revealed unexpected connections that have improved our understanding of viral pathogenesis and cell biology. This work describes the use of an RNAi screening method employing an immunofluorescence image-based strategy and influenza A virus. We find this approach to be readily implemented, scalable and amenable to the direct evaluation of a variety of viral lifecycles.
Collapse
Affiliation(s)
- Christopher R Chin
- Microbiology and Physiological Systems Department, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | |
Collapse
|
21
|
Abstract
Intrinsic antiviral immunity refers to a form of innate immunity that directly restricts viral replication and assembly, thereby rendering a cell nonpermissive to a specific class or species of viruses. Intrinsic immunity is conferred by restriction factors that are mostly preexistent in certain cell types, although these factors can be further induced by viral infection. Intrinsic virus-restriction factors recognize specific viral components, but unlike other pattern-recognition receptors that inhibit viral infection indirectly by inducing interferons and other antiviral molecules, intrinsic antiviral factors block viral replication immediately and directly. This review focuses on recent advances in understanding of the roles of intrinsic antiviral factors that restrict infection by human immunodeficiency virus and influenza virus.
Collapse
|
22
|
Zhang W, Xue T, Wu X, Zhang P, Zhao G, Peng D, Hu S, Wang X, Liu X, Liu W, Liu X. Increase in viral yield in eggs and MDCK cells of reassortant H5N1 vaccine candidate viruses caused by insertion of 38 amino acids into the NA stalk. Vaccine 2011; 29:8032-41. [PMID: 21864614 DOI: 10.1016/j.vaccine.2011.08.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 08/10/2011] [Accepted: 08/10/2011] [Indexed: 10/17/2022]
Abstract
BACKGROUND The H5N1 subtype of highly pathogenic avian influenza viruses has spread to over 63 countries in Asia, Europe, and Africa and has become endemic in poultry. Since 2004, vaccination against H5N1 influenza has become common in domestic poultry operations in China. Most influenza vaccines have been produced in embryonated chicken eggs. High yield is the essential feature of a good vaccine candidate virus. OBJECTIVE Therefore, the large-scale manufacture of such a vaccine requires that the viral yield of H5N1 reassortant vaccine viruses in eggs and MDCK cells be increased. METHODS We generated two sets of reassortant H5N1 viruses based on backbone viruses A/Chicken/F/98 (H9N2) and A/Puerto Rico/8/34 (H1N1) using reverse genetics. The HAs and NAs of the reassortants were derived from the three epidemic H5N1 strains found in China. We compared the replication properties of these recombinant H5N1 viruses in embryonated chicken eggs and MDCK cells after inserting either 20 or 38 amino acids into their NA stalks. RESULTS In this study, we demonstrated that inserting 38 amino acids into the NA stalks can significantly increase the viral yield of H5N1 reassortant viruses in both embryonated chicken eggs and MDCK cells, while inserting only 20 amino acids into the same NA stalks does not. Hemagglutinin inhibition testing and protection assays indicated that recombinant H5N1 viruses with 38 aa inserted into their NA stalks had the same antigenicity as the viruses with wt-NA. CONCLUSION These results suggest that the generation of an H5N1 recombinant vaccine seed by the insertion of 38 aa into the NA stalk may be a suitable and more economical strategy for the increase in viral yield in both eggs and MDCK cells for the purposes of vaccine production.
Collapse
Affiliation(s)
- Wenjun Zhang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, Jiangsu 225009, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Stertz S, Shaw ML. Uncovering the global host cell requirements for influenza virus replication via RNAi screening. Microbes Infect 2011; 13:516-25. [PMID: 21276872 DOI: 10.1016/j.micinf.2011.01.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 01/18/2011] [Indexed: 12/13/2022]
Abstract
Influenza virus is reliant on numerous host cell functions during its replication cycle. RNA interference technology, applied on a genome-wide level, has identified human host factors that are necessary for efficient virus replication and provides new insight into how influenza virus interacts with its host at the molecular level.
Collapse
Affiliation(s)
- Silke Stertz
- Department of Microbiology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | | |
Collapse
|
24
|
Boivin S, Cusack S, Ruigrok RWH, Hart DJ. Influenza A virus polymerase: structural insights into replication and host adaptation mechanisms. J Biol Chem 2010; 285:28411-7. [PMID: 20538599 DOI: 10.1074/jbc.r110.117531] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The heterotrimeric RNA-dependent RNA polymerase of influenza viruses catalyzes RNA replication and transcription activities in infected cell nuclei. The nucleotide polymerization activity is common to both replication and transcription processes, with an additional cap-snatching function being employed during transcription to steal short 5'-capped RNA primers from host mRNAs. Cap-binding, endonuclease, and polymerase activities have long been studied biochemically, but structural studies on the polymerase and its subunits have been hindered by difficulties in producing sufficient quantities of material. Recently, because of heightened effort and advances in expression and crystallization technologies, a series of high resolution structures of individual domains have been determined. These shed light on intrinsic activities of the polymerase, including cap snatching, subunit association, and nucleocytoplasmic transport, and open up the possibility of structure-guided development of new polymerase inhibitors. Furthermore, the activity of influenza polymerase is highly host- and cell type-specific, being dependent on the identity of a few key amino acid positions in the different subunits, especially in the C-terminal region of PB2. New structures demonstrate the surface exposure of these residues, consistent with ideas that they might modulate interactions with host-specific factors that enhance or restrict activity. Recent proteomic and genome-wide interactome and RNA interference screens have suggested the identities of some of these potential regulators of polymerase function.
Collapse
Affiliation(s)
- Stéphane Boivin
- Unit of Virus Host-Cell Interactions, UMI3265, UJF-EMBL-CNRS, France
| | | | | | | |
Collapse
|