1
|
Kim J, Behzadi ES, Nehring M, Carver S, Cowan SR, Conry MK, Rawlinson JE, VandeWoude S, Miller CA. Combination Antiretroviral Therapy and Immunophenotype of Feline Immunodeficiency Virus. Viruses 2023; 15:822. [PMID: 37112803 PMCID: PMC10146003 DOI: 10.3390/v15040822] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
Feline Immunodeficiency Virus (FIV) causes progressive immune dysfunction in cats similar to human immunodeficiency virus (HIV) in humans. Although combination antiretroviral therapy (cART) is effective against HIV, there is no definitive therapy to improve clinical outcomes in cats with FIV. This study therefore evaluated pharmacokinetics and clinical outcomes of cART (2.5 mg/kg Dolutegravir; 20 mg/kg Tenofovir; 40 mg/kg Emtricitabine) in FIV-infected domestic cats. Specific pathogen free cats were experimentally infected with FIV and administered either cART or placebo treatments (n = 6 each) for 18 weeks, while n = 6 naïve uninfected cats served as controls. Blood, saliva, and fine needle aspirates from mandibular lymph nodes were collected to quantify viral and proviral loads via digital droplet PCR and to assess lymphocyte immunophenotypes by flow cytometry. cART improved blood dyscrasias in FIV-infected cats, which normalized by week 16, while placebo cats remained neutropenic, although no significant difference in viremia was observed in the blood or saliva. cART-treated cats exhibited a Th2 immunophenotype with increasing proportions of CD4+CCR4+ cells compared to placebo cats, and cART restored Th17 cells compared to placebo-treated cats. Of the cART drugs, dolutegravir was the most stable and long-lasting. These findings provide a critical insight into novel cART formulations in FIV-infected cats and highlight their role as a potential animal model to evaluate the impact of cART on lentiviral infection and immune dysregulation.
Collapse
Affiliation(s)
- Jeffrey Kim
- Comparative Medicine Research Unit, School of Medicine, University of Louisville, Louisville, KY 40292, USA
| | - Elisa S. Behzadi
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Mary Nehring
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Scott Carver
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7001, Australia
| | - Shannon R. Cowan
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Megan K. Conry
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Jennifer E. Rawlinson
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Craig A. Miller
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
2
|
Scanlan A, Zhang Z, Koneru R, Reece M, Gavegnano C, Anderson AM, Tyor W. A Rationale and Approach to the Development of Specific Treatments for HIV Associated Neurocognitive Impairment. Microorganisms 2022; 10:2244. [PMID: 36422314 PMCID: PMC9699382 DOI: 10.3390/microorganisms10112244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 05/22/2024] Open
Abstract
Neurocognitive impairment (NCI) associated with HIV infection of the brain impacts a large proportion of people with HIV (PWH) regardless of antiretroviral therapy (ART). While the number of PWH and severe NCI has dropped considerably with the introduction of ART, the sole use of ART is not sufficient to prevent or arrest NCI in many PWH. As the HIV field continues to investigate cure strategies, adjunctive therapies are greatly needed. HIV imaging, cerebrospinal fluid, and pathological studies point to the presence of continual inflammation, and the presence of HIV RNA, DNA, and proteins in the brain despite ART. Clinical trials exploring potential adjunctive therapeutics for the treatment of HIV NCI over the last few decades have had limited success. Ideally, future research and development of novel compounds need to address both the HIV replication and neuroinflammation associated with HIV infection in the brain. Brain mononuclear phagocytes (MPs) are the primary instigators of inflammation and HIV protein expression; therefore, adjunctive treatments that act on MPs, such as immunomodulating agents, look promising. In this review, we will highlight recent developments of innovative therapies and discuss future approaches for HIV NCI treatment.
Collapse
Affiliation(s)
- Aaron Scanlan
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zhan Zhang
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rajeth Koneru
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Monica Reece
- Department of Pathology, Division of Experimental Pathology, Emory University, Atlanta, GA 30322, USA
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA 30322, USA
| | - Christina Gavegnano
- Department of Pathology, Division of Experimental Pathology, Emory University, Atlanta, GA 30322, USA
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA 30322, USA
| | - Albert M. Anderson
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - William Tyor
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
3
|
Santos CRGR, Ferreira IT, Beranger R, Santi JP, Jardim MPDB, de Souza HJM. Undetectable proviral DNA and viral RNA levels after raltegravir administration in two cats with natural feline leukemia virus infection. BRAZILIAN JOURNAL OF VETERINARY MEDICINE 2022; 44:e003522. [PMID: 36324639 PMCID: PMC9622269 DOI: 10.29374/2527-2179.bjvm003522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/22/2022] [Indexed: 01/24/2023] Open
Abstract
Feline leukemia virus (FeLV) infection was discovered over 50 years ago; however, the serious clinical changes associated with FeLV infection still have great importance in the diagnosis, prevention, and clinical management of symptomatic patients. Progressive infection with FeLV leads to a reduction in the patient's life expectancy and quality of life. This report describes the use of an antiretroviral integrase inhibitor, raltegravir, in two cats with natural FeLV infection. Raltegravir was administered orally at a dose of 40 mg/cat every 12 h in both cases. In case one, 13 weeks after starting raltegravir, RNA loads were undetectable, while proviral DNA loads were still detectable. In case two, proviral DNA loads were undetectable after 32 weeks of medication, while RNA loads were undetectable throughout the treatment. No adverse effects or laboratory test abnormalities were detected with the use of raltegravir in either patient. The patients are currently clinically healthy, still receiving the drug, and are under close observation. To our knowledge, this is the first report describing the use of raltegravir in naturally infected FeLV-positive cats and its effects on circulating viral load. Moreover, the patients described here were followed-up for a longer period than those in previously reported cases.
Collapse
Affiliation(s)
- Carla Regina Gomes Rodrigues Santos
- Veterinarian, MSc. Programa de Pós-Graduação em Medicina Veterinária (PPGMV), Departamento de Clínica e Cirurgia Veterinária (DMCV), Instituto de Veterinária (IV), Universidade Federal Rural do Rio de Janeiro (UFRRJ). Seropédica, Seropédica, RJ, Brazil.,Correspondence Carla Regina Gomes Rodrigues Santos Departamento de Clínica e Cirurgia Veterinária (DMCV), Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro – UFRRJ Rodovia BR 465, Km 7, Campus Universitário, Bairro Zona Rural CEP 23897-000 - Seropédica (RJ), Brasil E-mail: Tel: +55 (21) 96469-2559
| | | | | | - Julia Possebon Santi
- Veterinarian, Resident. Programa de Residência em Medicina Veterinária – Clínica Médica dos Gatos Domésticos, DMCV, IV, UFRRJ. Seropédica, Seropédica, RJ, Brazil.
| | - Mariana Palha de Brito Jardim
- Veterinarian, MSc. Programa de Pós-Graduação em Medicina Veterinária (PPGMV), Departamento de Clínica e Cirurgia Veterinária (DMCV), Instituto de Veterinária (IV), Universidade Federal Rural do Rio de Janeiro (UFRRJ). Seropédica, Seropédica, RJ, Brazil.
| | | |
Collapse
|
4
|
Sathler MF, Doolittle MJ, Cockrell JA, Nadalin IR, Hofmann F, VandeWoude S, Kim S. HIV and FIV glycoproteins increase cellular tau pathology via cGMP-dependent kinase II activation. J Cell Sci 2022; 135:jcs259764. [PMID: 35638570 PMCID: PMC9270957 DOI: 10.1242/jcs.259764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/19/2022] [Indexed: 11/20/2022] Open
Abstract
As the development of combination antiretroviral therapy (cART) against human immunodeficiency virus (HIV) drastically improves the lifespan of individuals with HIV, many are now entering the prime age when Alzheimer's disease (AD)-like symptoms begin to manifest. It has been shown that hyperphosphorylated tau, a known AD pathological characteristic, is prematurely increased in the brains of HIV-infected individuals as early as in their 30s and that its levels increase with age. This suggests that HIV infection might lead to accelerated AD phenotypes. However, whether HIV infection causes AD to develop more quickly in the brain is not yet fully determined. Interestingly, we have previously revealed that the viral glycoproteins HIV gp120 and feline immunodeficiency virus (FIV) gp95 induce neuronal hyperexcitation via cGMP-dependent kinase II (cGKII; also known as PRKG2) activation in cultured hippocampal neurons. Here, we use cultured mouse cortical neurons to demonstrate that the presence of HIV gp120 and FIV gp95 are sufficient to increase cellular tau pathology, including intracellular tau hyperphosphorylation and tau release to the extracellular space. We further reveal that viral glycoprotein-induced cellular tau pathology requires cGKII activation. Taken together, HIV infection likely accelerates AD-related tau pathology via cGKII activation.
Collapse
Affiliation(s)
- Matheus F. Sathler
- Department of Biomedical Sciences, 1617 Campus Delivery, Colorado State University, Fort Collins, CO 80523, USA
| | - Michael J. Doolittle
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, CO 80523, USA
| | - James A. Cockrell
- Department of Human Development and Family Studies, Colorado State University, Fort Collins, CO 80523, USA
| | - India R. Nadalin
- Department of Biomedical Sciences, 1617 Campus Delivery, Colorado State University, Fort Collins, CO 80523, USA
| | - Franz Hofmann
- Technical University of Munich, Arcisstraße 21, D-80333 Munich, Germany
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Seonil Kim
- Department of Biomedical Sciences, 1617 Campus Delivery, Colorado State University, Fort Collins, CO 80523, USA
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
5
|
Gomez-Lucia E, Collado VM, Miró G, Martín S, Benítez L, Doménech A. Follow-Up of Viral Parameters in FeLV- or FIV-Naturally Infected Cats Treated Orally with Low Doses of Human Interferon Alpha. Viruses 2019; 11:E845. [PMID: 31514435 PMCID: PMC6783854 DOI: 10.3390/v11090845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/23/2019] [Accepted: 09/08/2019] [Indexed: 01/05/2023] Open
Abstract
Specific treatments for the long-life infections by feline leukemia virus (FeLV) and feline immunodeficiency virus (FIV) are either toxic, expensive or not too effective. Interferon α (IFN-α) is an immunomodulatory molecule which has been shown in vitro to decrease the release of infective particles. The aim of this study was to follow the progress of the clinical score and viral parameters of FeLV- and FIV-naturally infected privately owned cats treated with recombinant human IFN-α (rHuIFN-α, Roferon-A). Twenty-seven FeLV-infected cats (FeLV+) and 31 FIV-infected cats (FIV+) were enrolled in the study. Owners were instructed to orally administer 1 mL/day of 60 IU rHuIFN-α/mL in alternating weeks for four months. Blood samples were taken at the beginning of the study (M0), mid-treatment (M2), end of treatment (M4), and 6-10 months later (M10). Clinical status at these time points improved notably with rHuIFN-α treatment, regardless of the initial severity of the disease, an effect which lasted throughout the study in most animals (15 of the 16 FeLV+ symptomatic cats; 20 of the 22 FIV+ symptomatic cats) improved markedly their clinical situation. In FeLV+ cats plasma antigenemia (p27CA), reverse transcriptase (RT) activity, and proviral load decreased at M2 and M4 but increased again at M10 ("rebound effect"). The level of antigenemia or RT activity was below the detection limits in FIV+ cats, and the effect on proviral load was less marked than in FeLV+ cats. Taken together, these results indicate that rHuIFN-α is a good candidate for treating FeLV+ cats, but the "rebound effect" seen when treatment was discontinued suggests that additional studies should be conducted to clarify its effect on progression of the infection in cats.
Collapse
Affiliation(s)
- Esperanza Gomez-Lucia
- Department of Animal Health, Veterinary Faculty, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Victorio M Collado
- Department of Animal Health, Veterinary Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| | - Guadalupe Miró
- Department of Animal Health, Veterinary Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| | - Sonsoles Martín
- Department of Animal Medicine and Surgery, Veterinary Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| | - Laura Benítez
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, José Antonio Novais, 12, 28040 Madrid, Spain
| | - Ana Doménech
- Department of Animal Health, Veterinary Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
6
|
Miller C, Powers J, Musselman E, Mackie R, Elder J, VandeWoude S. Immunopathologic Effects of Prednisolone and Cyclosporine A on Feline Immunodeficiency Virus Replication and Persistence. Viruses 2019; 11:v11090805. [PMID: 31480322 PMCID: PMC6783960 DOI: 10.3390/v11090805] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/22/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
Feline immunodeficiency virus (FIV) induces opportunistic disease in chronically infected cats, and both prednisolone and cyclosporine A (CsA) are clinically used to treat complications such as lymphoma and stomatitis. However, the impact of these compounds on FIV infection are still unknown and understanding immunomodulatory effects on FIV replication and persistence is critical to guide safe and effective therapies. To determine the immunologic and virologic effects of prednisolone and CsA during FIV infection, FIV-positive cats were administered immunosuppressive doses of prednisolone (2 mg/kg) or CsA (5 mg/kg). Both prednisolone and CsA induced acute and transient increases in FIV DNA and RNA loads as detected by quantitative PCR. Changes in the proportion of lymphocyte immunophenotypes were also observed between FIV-infected and naïve cats treated with CsA and prednisolone, and both treatments caused acute increases in CD4+ lymphocytes that correlated with increased FIV RNA. CsA and prednisolone also produced alterations in cytokine expression that favored a shift toward a Th2 response. Pre-treatment with CsA slightly enhanced the efficacy of antiretroviral therapy but did not enhance clearance of FIV. Results highlight the potential for drug-induced perturbation of FIV infection and underscore the need for more information regarding immunopathologic consequences of therapeutic agents on concurrent viral infections.
Collapse
Affiliation(s)
- Craig Miller
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Jordan Powers
- Department of Microbiology, Immunology, Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Esther Musselman
- Department of Microbiology, Immunology, Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Ryan Mackie
- Department of Microbiology, Immunology, Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - John Elder
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sue VandeWoude
- Department of Microbiology, Immunology, Pathology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
7
|
Smith LK, Kuhn TB, Chen J, Bamburg JR. HIV Associated Neurodegenerative Disorders: A New Perspective on the Role of Lipid Rafts in Gp120-Mediated Neurotoxicity. Curr HIV Res 2019; 16:258-269. [PMID: 30280668 PMCID: PMC6398609 DOI: 10.2174/1570162x16666181003144740] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/17/2018] [Accepted: 09/26/2018] [Indexed: 02/07/2023]
Abstract
The implementation of combination antiretroviral therapy (cART) as the primary means of treatment for HIV infection has achieved a dramatic decline in deaths attributed to AIDS and the reduced incidence of severe forms of HIV-associated neurocognitive disorders (HAND) in infected individuals. Despite these advances, milder forms of HAND persist and prevalence of these forms of neurocognitive impairment are rising with the aging population of HIV infected individuals. HIV enters the CNS early in the pathophysiology establishing persistent infection in resident macrophages and glial cells. These infected cells, in turn, secrete neurotoxic viral proteins, inflammatory cytokines, and small metabolites thought to contribute to neurodegenerative processes. The viral envelope protein gp120 has been identified as a potent neurotoxin affecting neurodegeneration via indirect and direct mechanisms involving interactions with chemokine co-receptors CCR5 and CXCR4. This short review focuses on gp120 neurotropism and associated mechanisms of neurotoxicity linked to chemokine receptors CCR5 and CXCR4 with a new perspective on plasma membrane lipid rafts as an active participant in gp120-mediated neurodegeneration underlying HIV induced CNS pathology.
Collapse
Affiliation(s)
- Lisa K Smith
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Thomas B Kuhn
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Jack Chen
- Department of Biology and Wildlife, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - James R Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
8
|
Sztukowski K, Nip K, Ostwald PN, Sathler MF, Sun JL, Shou J, Jorgensen ET, Brown TE, Elder JH, Miller C, Hofmann F, VandeWoude S, Kim S. HIV induces synaptic hyperexcitation via cGMP-dependent protein kinase II activation in the FIV infection model. PLoS Biol 2018; 16:e2005315. [PMID: 30052626 PMCID: PMC6082575 DOI: 10.1371/journal.pbio.2005315] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 08/08/2018] [Accepted: 07/13/2018] [Indexed: 11/19/2022] Open
Abstract
Over half of individuals infected with human immunodeficiency virus (HIV) suffer from HIV-associated neurocognitive disorders (HANDs), yet the molecular mechanisms leading to neuronal dysfunction are poorly understood. Feline immunodeficiency virus (FIV) naturally infects cats and shares its structure, cell tropism, and pathology with HIV, including wide-ranging neurological deficits. We employ FIV as a model to elucidate the molecular pathways underlying HIV-induced neuronal dysfunction, in particular, synaptic alteration. Among HIV-induced neuron-damaging products, HIV envelope glycoprotein gp120 triggers elevation of intracellular Ca2+ activity in neurons, stimulating various pathways to damage synaptic functions. We quantify neuronal Ca2+ activity using intracellular Ca2+ imaging in cultured hippocampal neurons and confirm that FIV envelope glycoprotein gp95 also elevates neuronal Ca2+ activity. In addition, we reveal that gp95 interacts with the chemokine receptor, CXCR4, and facilitates the release of intracellular Ca2+ by the activation of the endoplasmic reticulum (ER)-associated Ca2+ channels, inositol triphosphate receptors (IP3Rs), and synaptic NMDA receptors (NMDARs), similar to HIV gp120. This suggests that HIV gp120 and FIV gp95 share a core pathological process in neurons. Significantly, gp95's stimulation of NMDARs activates cGMP-dependent protein kinase II (cGKII) through the activation of the neuronal nitric oxide synthase (nNOS)-cGMP pathway, which increases Ca2+ release from the ER and promotes surface expression of AMPA receptors, leading to an increase in synaptic activity. Moreover, we culture feline hippocampal neurons and confirm that gp95-induced neuronal Ca2+ overactivation is mediated by CXCR4 and cGKII. Finally, cGKII activation is also required for HIV gp120-induced Ca2+ hyperactivation. These results thus provide a novel neurobiological mechanism of cGKII-mediated synaptic hyperexcitation in HAND.
Collapse
Affiliation(s)
- Keira Sztukowski
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Kaila Nip
- Cellular and Molecular Biology Graduate Program, Colorado State University, Fort Collins, Colorado, United States of America
| | - Paige N. Ostwald
- Cellular and Molecular Biology Graduate Program, Colorado State University, Fort Collins, Colorado, United States of America
| | - Matheus F. Sathler
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Julianna L. Sun
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jiayi Shou
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Emily T. Jorgensen
- Pharmaceutical Science and Neuroscience, University of Wyoming, Laramie, Wyoming, United States of America
| | - Travis E. Brown
- Pharmaceutical Science and Neuroscience, University of Wyoming, Laramie, Wyoming, United States of America
| | - John H. Elder
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Craig Miller
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | | | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Seonil Kim
- Cellular and Molecular Biology Graduate Program, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
9
|
Power C. Neurologic disease in feline immunodeficiency virus infection: disease mechanisms and therapeutic interventions for NeuroAIDS. J Neurovirol 2017; 24:220-228. [PMID: 29247305 DOI: 10.1007/s13365-017-0593-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/19/2017] [Indexed: 12/26/2022]
Abstract
Feline immunodeficiency virus (FIV) is a lentivirus that causes immunosuppression through virus-mediated CD4+ T cell depletion in feline species. FIV infection is complicated by virus-induced disease in the nervous system. FIV enters the brain soon after primary infection and is detected as FIV-encoded RNA, DNA, and proteins in microglia, macrophages, and astrocytes. FIV infection activates neuroinflammatory pathways including cytokines, chemokines, proteases, and ROS with accompanying neuronal injury and loss. Neurobehavioral deficits during FIV infection are manifested as impaired motor and cognitive functions. Several treatment strategies have emerged from studies of FIV neuropathogenesis including the therapeutic benefits of antiretroviral therapies, other protease inhibitors, anti-inflammatory, and neurotrophic compounds. Recently, insulin's antiviral, anti-inflammatory, and neuroprotective effects were investigated in models of lentivirus brain infection. Insulin suppressed HIV-1 replication in human microglia as well as FIV replication of lymphocytes. Insulin treatment diminished cytokine and chemokine activation in HIV-infected microglia while also protecting neurons from HIV-1 Vpr protein-mediated neurotoxicity. Intranasal (IN) insulin delivery for 6 weeks suppressed FIV expression in the brains of treated cats. IN insulin also reduced neuroinflammation and protected neurons in the hippocampus, striatum, and neocortex of FIV-infected animals. These morphological and molecular effects of IN insulin were confirmed by neurobehavioral studies that showed IN insulin-treated FIV-infected animals displayed improved motor and cognitive performance compared to sham-treated FIV-infected animals. Thus, FIV infection of the nervous system provides a valuable comparative in vivo model for discovering and evaluating disease mechanisms as well as developing therapeutic strategies for NeuroAIDS in humans.
Collapse
Affiliation(s)
- Christopher Power
- Department of Medicine (Neurology) and the Neuroscience and Mental Health Institute, University of Alberta, HMRC 6-11, Edmonton, AB, Canada.
| |
Collapse
|
10
|
Medeiros SDO, Abreu CM, Delvecchio R, Ribeiro AP, Vasconcelos Z, Brindeiro RDM, Tanuri A. Follow-up on long-term antiretroviral therapy for cats infected with feline immunodeficiency virus. J Feline Med Surg 2016; 18:264-72. [PMID: 25855689 PMCID: PMC11112254 DOI: 10.1177/1098612x15580144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Feline immunodeficiency virus (FIV) is a lentivirus that induces AIDS-like disease in cats. Some of the antiretroviral drugs available to treat patients with HIV type 1 are used to treat FIV-infected cats; however, antiretroviral therapy (ART) is not used in cats as a long-term treatment. In this study, the effects of long-term ART were evaluated in domestic cats treated initially with the nucleoside transcriptase reverse inhibitor (NTRI) zidovudine (AZT) over a period ranging from 5-6 years, followed by a regimen of the NTRI lamivudine (3TC) plus AZT over 3 years. METHODS Viral load, sequencing of pol (reverse transcriptase [RT]) region and CD4:CD8 lymphocyte ratio were evaluated during and after treatment. Untreated cats were evaluated as a control group. RESULTS CD4:CD8 ratios were lower, and uncharacterized resistance mutations were found in the RT region in the group of treated cats. A slight increase in viral load was observed in some cats after discontinuing treatment. CONCLUSIONS AND RELEVANCE The data strongly suggest that treated cats were resistant to therapy, and uncharacterized resistance mutations in the RT gene of FIV were selected for by AZT. Few studies have been conducted to evaluate the effect of long-term antiretroviral therapy in cats. To date, resistance mutations have not been described in vivo.
Collapse
Affiliation(s)
- Sheila de Oliveira Medeiros
- Laboratory of Molecular Virology, Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Celina Monteiro Abreu
- Laboratory of Molecular Virology, Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo Delvecchio
- Laboratory of Molecular Virology, Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Rodrigo de Moraes Brindeiro
- Laboratory of Molecular Virology, Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Amilcar Tanuri
- Laboratory of Molecular Virology, Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Wilkes RP, Hartmann K. Update on Antiviral Therapies. AUGUST'S CONSULTATIONS IN FELINE INTERNAL MEDICINE, VOLUME 7 2016. [PMCID: PMC7152142 DOI: 10.1016/b978-0-323-22652-3.00007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
12
|
Taffin E, Paepe D, Goris N, Auwerx J, Debille M, Neyts J, Van de Maele I, Daminet S. Antiviral treatment of feline immunodeficiency virus-infected cats with (R)-9-(2-phosphonylmethoxypropyl)-2,6-diaminopurine. J Feline Med Surg 2015; 17:79-86. [PMID: 24782459 PMCID: PMC10816418 DOI: 10.1177/1098612x14532089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Feline immunodeficiency virus (FIV), the causative agent of an acquired immunodeficiency syndrome in cats (feline AIDS), is a ubiquitous health threat to the domestic and feral cat population, also triggering disease in wild animals. No registered antiviral compounds are currently available to treat FIV-infected cats. Several human antiviral drugs have been used experimentally in cats, but not without the development of serious adverse effects. Here we report on the treatment of six naturally FIV-infected cats, suffering from moderate to severe disease, with the antiretroviral compound (R)-9-(2-phosphonylmethoxypropyl)-2,6-diaminopurine ([R]-PMPDAP), a close analogue of tenofovir, a widely prescribed anti-HIV drug in human medicine. An improvement in the average Karnofsky score (pretreatment 33.2 ± 9.4%, post-treatment 65±12.3%), some laboratory parameters (ie, serum amyloid A and gammaglobulins) and a decrease of FIV viral load in plasma were noted in most cats. The role of concurrent medication in ameliorating the Karnofsky score, as well as the possible development of haematological side effects, are discussed. Side effects, when noted, appeared mild and reversible upon cessation of treatment. Although strong conclusions cannot be drawn owing to the small number of patients and lack of a placebo-treated control group, the activity of (R)-PMPDAP, as observed here, warrants further investigation.
Collapse
Affiliation(s)
- Elien Taffin
- Department of Small Animal Medicine and Clinical Biology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Dominique Paepe
- Department of Small Animal Medicine and Clinical Biology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | | | - Mariella Debille
- Department of Small Animal Medicine and Clinical Biology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | - Isabel Van de Maele
- Department of Small Animal Medicine and Clinical Biology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Sylvie Daminet
- Department of Small Animal Medicine and Clinical Biology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|