1
|
Vlasov M, Sindryakova I, Kudryashov D, Morgunov S, Kolbasova O, Lyska V, Zhivoderov S, Pivova E, Balyshev V, Namsrayn S, Sevskikh T, Sereda A, Kolbasov D. Administration Routes and Doses of the Attenuated African Swine Fever Virus Strain PSA-1NH Influence Cross-Protection of Pigs against Heterologous Challenge. Animals (Basel) 2024; 14:1277. [PMID: 38731281 PMCID: PMC11083577 DOI: 10.3390/ani14091277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
African swine fever (ASF) is a lethal hemorrhagic disease of Suidae, i.e., domestic pigs and wild boars, caused by African swine fever virus (ASFV). The development of cross-protective vaccines against ASF is imperative for effective disease control, particularly in regions where ASF is endemic, potentially featuring multiple circulating ASFV isolates. The investigation of non-hemadsorbing naturally attenuated isolates and laboratory recombinant strains with a deletion in the EP402R gene has attracted interest. Our study aimed to assess the impacts of various administration routes and doses of the naturally attenuated ASFV-PSA-1NH (immunotype IV, genotype I) isolate on the manifestation of clinical signs of ASF and the level of protection against the heterologous ASFV-Stavropol 01/08 strain (seroimmunotype VIII, genotype II). The results demonstrated that the intranasal administration of a low dose of ASFV-PSA-1NH to pigs minimized the clinical signs of ASF and established a high level of protection against the heterologous strain ASFV-Stavropol 01/08. Despite the challenges in standardizing the dosage for intranasal administration, this approach appears as a viable alternative in ASF vaccination.
Collapse
Affiliation(s)
| | - Irina Sindryakova
- Federal Research Center for Virology and Microbiology (FRCVM), Academician Bakoulov Street, Bldg. 1, 601125 Volginsky, Russia; (M.V.); (D.K.); (S.M.); (O.K.); (V.L.); (S.Z.); (E.P.); (V.B.); (S.N.); (T.S.); (D.K.)
| | | | | | | | | | | | | | | | | | | | - Alexey Sereda
- Federal Research Center for Virology and Microbiology (FRCVM), Academician Bakoulov Street, Bldg. 1, 601125 Volginsky, Russia; (M.V.); (D.K.); (S.M.); (O.K.); (V.L.); (S.Z.); (E.P.); (V.B.); (S.N.); (T.S.); (D.K.)
| | | |
Collapse
|
2
|
Bisimwa PN, Ongus JR, Tonui R, Bisimwa EB, Steinaa L. Resistance to African swine fever virus among African domestic pigs appears to be associated with a distinct polymorphic signature in the RelA gene and upregulation of RelA transcription. Virol J 2024; 21:93. [PMID: 38658979 PMCID: PMC11041040 DOI: 10.1186/s12985-024-02351-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/24/2024] [Indexed: 04/26/2024] Open
Abstract
African swine fever virus (ASFV) is a highly contagious and fatal hemorrhagic disease of domestic pigs, which poses a major threat to the swine industry worldwide. Studies have shown that indigenous African pigs tolerate ASFV infection better than European pigs. The porcine v-rel avian reticuloendotheliosis viral oncogene homolog A (RelA) encoding a p65 kD protein, a major subunit of the NF-kB transcription factor, plays important roles in controlling both innate and adaptive immunity during infection with ASFV. In the present study, RelA genes from ASFV-surviving and symptomatic pigs were sequenced and found to contain polymorphisms revealing two discrete RelA amino acid sequences. One was found in the surviving pigs, and the other in symptomatic pigs. In total, 16 nonsynonymous SNPs (nsSNPs) resulting in codon changes were identified using bioinformatics software (SIFT and Polyphen v2) and web-based tools (MutPre and PredictSNP). Seven nsSNPs (P374-S, T448-S, P462-R, V464-P, Q478-H, L495-E, and P499-Q) were predicted to alter RelA protein function and stability, while 5 of these (P374-S, T448-S, P462-R, L495-E, and Q499-P) were predicted as disease-related SNPs.Additionally, the inflammatory cytokine levels of IFN-α, IL-10, and TNF-α at both the protein and the mRNA transcript levels were measured using ELISA and Real-Time PCR, respectively. The resulting data was used in correlation analysis to assess the association between cytokine levels and the RelA gene expression. Higher levels of IFN-α and detectable levels of IL-10 protein and RelA mRNA were observed in surviving pigs compared to healthy (non-infected). A positive correlation of IFN-α cytokine levels with RelA mRNA expression was also obtained. In conclusion, 7 polymorphic events in the coding region of the RelA gene may contribute to the tolerance of ASFV in pigs.
Collapse
Affiliation(s)
- Patrick N Bisimwa
- Molecular Biology Laboratory, Department of Animal Sciences and Production, Université Evangélique en Afrique, Bukavu, Democratic Republic of Congo.
- Institut Supérieur de Dévelopement Rural de Kaziba, Kaziba, Democratic Republic of Congo.
| | - Juliette R Ongus
- Department of Medical Laboratory Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
- Biotechnology Laboratory, Departement of Molecular Biology and Biotechnology, Pan African University Institute of Basic Sciences, Technology and Innovation, Nairobi, Kenya
| | - Ronald Tonui
- Department of Medical Laboratory Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Espoir B Bisimwa
- Molecular Biology Laboratory, Department of Animal Sciences and Production, Université Evangélique en Afrique, Bukavu, Democratic Republic of Congo
| | - Lucilla Steinaa
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, Kenya
| |
Collapse
|
3
|
Okwasiimire R, Flint JF, Kayaga EB, Lakin S, Pierce J, Barrette RW, Faburay B, Ndoboli D, Ekakoro JE, Wampande EM, Havas KA. Whole Genome Sequencing Shows that African Swine Fever Virus Genotype IX Is Still Circulating in Domestic Pigs in All Regions of Uganda. Pathogens 2023; 12:912. [PMID: 37513759 PMCID: PMC10386283 DOI: 10.3390/pathogens12070912] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Blood samples were collected from pigs at six abattoirs in the Kampala, Uganda metropolitan area from May 2021 through June 2022, and tested for African swine fever virus. Thirty-one samples with cycle threshold values < 26 from pigs with different geographic origins, clinical and pathologic signs, and Ornithodoros moubata exposure underwent whole genome sequencing. The p72 gene was used to genotype the isolates, and all were found to be genotype IX; whole genome sequences to previous genotype IX isolates confirmed their similarity. Six of the isolates had enough coverage to evaluate single nucleotide polymorphisms (SNPs). Five of the isolates differed from historic regional isolates, but had similar SNPs to one another, and the sixth isolate also differed from historic regional isolates, but also differed from the other five isolates, even though they are all genotype IX. Whole genome sequencing data provide additional detail on viral evolution that can be useful for molecular epidemiology, and understanding the impact of changes in genes to disease phenotypes, and may be needed for vaccine targeting should a commercial vaccine become available. More sequencing of African swine fever virus isolates is needed in Uganda to understand how and when the virus is changing.
Collapse
Affiliation(s)
- Rodney Okwasiimire
- Central Diagnostic Laboratory, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala P.O. Box 7062, Uganda
| | - Joseph F Flint
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Edrine B Kayaga
- Central Diagnostic Laboratory, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala P.O. Box 7062, Uganda
| | - Steven Lakin
- Foreign Animal Disease Diagnostic Laboratory, National Veterinary Services Laboratories, Veterinary Services, Animal and Plant Health Inspection Services, United States Department of Agriculture, Greenport, NY 11957, USA
| | - Jim Pierce
- Foreign Animal Disease Diagnostic Laboratory, National Veterinary Services Laboratories, Veterinary Services, Animal and Plant Health Inspection Services, United States Department of Agriculture, Greenport, NY 11957, USA
| | - Roger W Barrette
- Foreign Animal Disease Diagnostic Laboratory, National Veterinary Services Laboratories, Veterinary Services, Animal and Plant Health Inspection Services, United States Department of Agriculture, Greenport, NY 11957, USA
| | - Bonto Faburay
- Foreign Animal Disease Diagnostic Laboratory, National Veterinary Services Laboratories, Veterinary Services, Animal and Plant Health Inspection Services, United States Department of Agriculture, Greenport, NY 11957, USA
| | - Dickson Ndoboli
- Central Diagnostic Laboratory, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala P.O. Box 7062, Uganda
| | - John E Ekakoro
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Eddie M Wampande
- Central Diagnostic Laboratory, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala P.O. Box 7062, Uganda
| | - Karyn A Havas
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
4
|
Hakizimana JN, Yona C, Makange MR, Kasisi EA, Netherton CL, Nauwynck H, Misinzo G. Complete genome analysis of African swine fever virus genotypes II, IX and XV from domestic pigs in Tanzania. Sci Rep 2023; 13:5318. [PMID: 37002287 PMCID: PMC10066019 DOI: 10.1038/s41598-023-32625-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
African swine fever (ASF) caused by ASF virus (ASFV) is an infectious transboundary animal disease notifiable to the World Organization for Animal Health causing high mortality in domestic pigs and wild boars threatening the global domestic pig industry. To date, twenty-four ASFV genotypes have been described and currently genotypes II, IX, X, XV and XVI are known to be circulating in Tanzania. Despite the endemic status of ASF in Tanzania, only one complete genome of ASFV from the country has been described. This study describes the first complete genome sequence of ASFV genotype XV. In addition, the first Tanzanian complete genome of ASFV genotype IX and three ASFV strains belonging to genotype II collected during ASF outbreaks in domestic pigs in Tanzania were determined in this study using Illumina sequencing and comparative genomics analysis. The generated ASFV complete genome sequences ranged from 171,004 to 184,521 base pairs in length with an average GC content of 38.53% and encoded 152 to 187 open reading frames. The results of this study provide insights into the genomic structure of ASFV and can be used to monitor changes within the ASFV genome and improve our understanding of ASF transmission dynamics.
Collapse
Affiliation(s)
- Jean N Hakizimana
- OR Tambo Africa Research Chair for Viral Epidemics, SACIDS Foundation for One Health, Sokoine University of Agriculture, PO Box 3297, Morogoro, Tanzania
| | - Clara Yona
- OR Tambo Africa Research Chair for Viral Epidemics, SACIDS Foundation for One Health, Sokoine University of Agriculture, PO Box 3297, Morogoro, Tanzania
- Department of Biosciences, Solomon Mahlangu College of Natural and Applied Sciences, Sokoine University of Agriculture, PO Box 3038, Morogoro, Tanzania
| | - Mariam R Makange
- OR Tambo Africa Research Chair for Viral Epidemics, SACIDS Foundation for One Health, Sokoine University of Agriculture, PO Box 3297, Morogoro, Tanzania
- SACIDS Africa Centre of Excellence for Infectious Diseases, SACIDS Foundation for One Health, Sokoine University of Agriculture, PO Box 3297, Morogoro, Tanzania
| | - Ester A Kasisi
- OR Tambo Africa Research Chair for Viral Epidemics, SACIDS Foundation for One Health, Sokoine University of Agriculture, PO Box 3297, Morogoro, Tanzania
| | - Christopher L Netherton
- African Swine Fever Vaccinology Group, The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, Surrey, UK
| | - Hans Nauwynck
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Gerald Misinzo
- OR Tambo Africa Research Chair for Viral Epidemics, SACIDS Foundation for One Health, Sokoine University of Agriculture, PO Box 3297, Morogoro, Tanzania.
- SACIDS Africa Centre of Excellence for Infectious Diseases, SACIDS Foundation for One Health, Sokoine University of Agriculture, PO Box 3297, Morogoro, Tanzania.
- Department of Veterinary Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, PO Box 3019, Morogoro, Tanzania.
| |
Collapse
|
5
|
Buragohain L, Barman NN, Sen S, Bharali A, Dutta B, Choudhury B, Suresh KP, Gaurav S, Kumar R, Ali S, Kumar S, Singh Malik Y. Transmission of African Swine Fever Virus to the Wild Boars of Northeast India. Vet Q 2023; 43:1-10. [PMID: 36786106 PMCID: PMC10124978 DOI: 10.1080/01652176.2023.2178689] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND India recorded the first outbreak of African swine fever (ASF) in North-eastern region (NER) in the year 2020. AIM The current study was undertaken to investigate the transmission of African swine fever virus (ASFV) in the wild boars of Northeast India, particularly of Assam. MATERIAL AND METHODS ASF suspected mortal tissue remains and blood samples of wild boars collected from different locations of Assam were screened for molecular detection of swine viruses which includes Classical swine fever virus, Porcine Circovirus 2, Porcine reproductive and respiratory syndrome virus and ASFV. RESULTS One sample each from Manas and Nameri National Parks were detected positive for ASFV. Besides this, one of the samples was positive for CSFV and one of the ASFV positive samples was also positive for PCV2. Several striking gross and microscopic alterations were noticed in different organs of ASFV infected animals. Sequencing and phylogenetic analysis of B646L gene confirmed the presence of ASFV genotype-II in wild boars. Circulation of similar genotype in domestic pigs of NER in the contemporary period as well as locations near to the aforementioned national parks indicates the transmission of ASFV from domestic to wild boars. CLINICAL RELEVANCE The detection of ASFV in the wild boars of Assam is alarming as it is an impending threat to pig population and other endangered species (particularly Pygmy hog), making it increasingly daunting to control the disease. CONCLUSION Chances are high for ASFV to become endemic in Assam region if stringent measures are not taken at proper time.
Collapse
Affiliation(s)
- Lukumoni Buragohain
- College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India
| | - Nagendra Nath Barman
- College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India
| | - Suparna Sen
- College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India
| | - Arpita Bharali
- College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India
| | - Biswajit Dutta
- College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India
| | | | | | | | - Rakesh Kumar
- Indian Institute of Technology, Guwahati, Assam, India
| | - Samsul Ali
- Wildlife Trust of India, CWRC, Kaziranga, Assam, India
| | - Sachin Kumar
- Indian Institute of Technology, Guwahati, Assam, India
| | - Yashpal Singh Malik
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| |
Collapse
|
6
|
Penrith ML, Van Heerden J, Heath L, Abworo EO, Bastos ADS. Review of the Pig-Adapted African Swine Fever Viruses in and Outside Africa. Pathogens 2022; 11:pathogens11101190. [PMID: 36297247 PMCID: PMC9609104 DOI: 10.3390/pathogens11101190] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 12/04/2022] Open
Abstract
The region in eastern, central and southern Africa (ECSA) where African swine fever (ASF) originated in a sylvatic cycle is home to all the p72 genotypes of ASF virus identified so far. While 20 of the 24 genotypes have been isolated from outbreaks in domestic pigs in the region, only five of the genotypes (I, II, VIII, IX, X) have an extended field presence associated with domestic pigs. Of the genotypes that appear to be strongly adapted to domestic pigs, two have spread beyond the African continent and have been the focus of efforts to develop vaccines against ASF. Most of the experimental ASF vaccines described do not protect against a wider spectrum of viruses and may be less useful in the event of incursions of different strains or where multiple genotypes co-exist. The other three pig-adapted strains that are currently restricted to the ECSA region might spread, and priority should be given to understanding not only the genetic and antigenic characteristics of these viruses but also their history. We review historic and current knowledge of the distribution of these five virus genotypes, and note that as was the case for genotype II, some pig-associated viruses have the propensity for geographical range expansion. These features are valuable for prioritizing vaccine-development efforts to ensure a swift response to virus escape. However, whilst ASF vaccines are critical for high-production systems, global food security relies on parallel efforts to improve biosecurity and pig production in Africa and on continued ASFV surveillance and characterisation in the ECSA region.
Collapse
Affiliation(s)
- Mary-Louise Penrith
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria 0110, South Africa
- Correspondence: or
| | - Juanita Van Heerden
- Transboundary Animal Diseases, Onderstepoort Veterinary Research, Agricultural Research Council, Pretoria 0110, South Africa
| | - Livio Heath
- Transboundary Animal Diseases, Onderstepoort Veterinary Research, Agricultural Research Council, Pretoria 0110, South Africa
| | - Edward Okoth Abworo
- Biosciences, Animal and Human Health Program, International Livestock Research Institute (ILRI), Nairobi 00100, Kenya
| | - Armanda D. S. Bastos
- Department of Zoology and Entomology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
7
|
Genetic Characterization of African Swine Fever Virus in Various Outbreaks in Central and Southern Vietnam During 2019-2021. Curr Microbiol 2022; 79:341. [PMID: 36209177 DOI: 10.1007/s00284-022-03033-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/08/2022] [Indexed: 11/03/2022]
Abstract
This study aimed to identify potential genetic diversity among African swine fever virus (ASFV) strains circulating in central and southern Vietnam. Thirty ASFV strains were collected from domestic pigs and convalescent pigs with ASFV-infected clinical signs from 19 different provinces of central and southern Vietnam during 2019-2021. A portion of the B646L (p72) gene and the entire E183L (p54), CP204L (p30), and B602L (CVR) genes were amplified, purified, and sequenced. Web-based BLAST and MEGA X software were used for sequence analysis. Analysis of the partial B646L (p72) gene, the full-length E183L (p54) and CP204L (p30) genes, and the central hypervariable region (CVR) of the B602L gene sequence showed that all 30 ASFV isolates belonged to genotype II and were 100% identical to the previously identified strains in Vietnam and China. Analysis of the p72, p54, and p30 regions did not indicate any change in the nucleotide and amino acid sequences among these strains in 3 years of research. No novel variant was found in the CVR within the B602L gene. Analysis of the CVR showed that these ASFV strains belong to subgroup XXXII. The results of this study revealed that these ASFVs shared high similarity with ASFV isolates detected previously in northern Vietnam and China. Taken together, the results of this study and a previous study in Vietnam showed high stability and no genetic diversity in the ASFV genome.
Collapse
|
8
|
Complete genome sequence of virulent genotype I African swine fever virus strain K49 from the Democratic Republic of the Congo, isolated from a domestic pig (Sus scrofa domesticus). Arch Virol 2022; 167:2377-2380. [PMID: 35920982 DOI: 10.1007/s00705-022-05543-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/09/2022] [Indexed: 11/02/2022]
Abstract
African swine fever is one of the most feared infectious diseases in the pig industry. African swine fever virus (ASFV) is an enveloped, cytoplasmic double-stranded DNA virus and the only member of the family Asfarviridae. Although ASFV is known to have been circulating on the African continent since at least 1921, little is known about the genetic characteristics of historical ASFV strains isolated in sub-Saharan Africa. The few complete ASFV genome sequences obtained from African historical isolates have demonstrated genetic diversity, but the available data are limited and insufficient for fully understanding the molecular evolution and continental spread of ASFV. Here, we report the complete genome sequence of the virulent ASFV strain K49, collected during an outbreak in the Belgian Congo (now the Democratic Republic of the Congo) in 1949. The complete genome sequence of ASFV strain K49 was determined using an Illumina HiSeq platform and is 189,523 bp in length with a mean GC content of 38.43%, with 189 genes annotated. This is the first reported complete genome sequence of an ASFV serogroup 2 isolate. Phylogenetic analysis demonstrated genetic divergence within genotype I, and strain K49 formed a separate branch from other ASFV genotype I isolates.
Collapse
|
9
|
Molini U, Franzo G, Settypalli TBK, Hemberger MY, Khaiseb S, Cattoli G, Dundon WG, Lamien CE. Viral Co-Infections of Warthogs in Namibia with African Swine Fever Virus and Porcine Parvovirus 1. Animals (Basel) 2022; 12:ani12131697. [PMID: 35804594 PMCID: PMC9265065 DOI: 10.3390/ani12131697] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Wild animals can transmit diseases to domestic animals. In Africa, warthogs are known to be carriers of pathogens that can infect pigs; consequently, it is important to identify these pathogens in order to protect pigs from infection. In this study, two important swine pathogens i.e., African swine fever virus (ASFV) and porcine parvovirus 1 (PPV1) were identified in warthogs in Namibia and characterized genetically. The results will be of interest to those working in swine disease management and control in Namibia. Abstract Understanding virus circulation in wild animals, particularly those that have contact with domestic animals, is crucial for disease management and control. In Africa, warthogs are known to be asymptomatic carriers of porcine pathogens; a recent study in Namibia has shown them to be positive for Porcine circovirus-2 (PCV-2). In this study, the same samples used for the PCV-2 investigation in Namibia were further screened for the presence of African swine fever virus (ASFV) and porcine parvovirus 1 (PPV1) by PCR. Of the 42 animals tested, 2 (4.8%) and 13 (31%) were positive for AFSV and PPV1, respectively. The two AFSV were also co-infected with PPV1. Combing the results of this study with the results of the previous PCV-2 investigation, four warthogs were shown to be co-infected with both PPV1 and PCV-2. Sequence and phylogenetic analysis revealed that the AFSV belonged to genotype (Ib) but were from different serogroups. Unexpectedly, the ASFVs from the warthogs were genetically distinct to those observed in an outbreak in the same region of Namibia that occurred less than fifteen months prior to the sampling of the warthogs. In fact, a stronger genetic relationship was observed between the warthog viruses and historical Namibian and South African ASFVs identified in 1980, 2004 and 2008. For the PPV1s, the closest relative to the Namibian PPV1 were viruses identified in wild boar in Romania in 2011. This study confirms that warthogs are carriers of porcine pathogens and the data should encourage further studies on larger populations of wild and domestic swine to more fully understand the epidemiology and transmission of viral pathogens from these species.
Collapse
Affiliation(s)
- Umberto Molini
- School of Veterinary Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Neudamm Campus, Private Bag 13301, Windhoek 9000, Namibia; (U.M.); (M.Y.H.)
- Central Veterinary Laboratory (CVL), 24 Goethe Street, Private Bag 18137, Windhoek 9000, Namibia;
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy;
| | - Tirumala B. K. Settypalli
- Animal Production and Health Laboratory, Animal Production and Health Section, Joint FAO/IAEA Division, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, P.O. Box 100, 1400 Vienna, Austria; (T.B.K.S.); (G.C.); (C.E.L.)
| | - Maria Y. Hemberger
- School of Veterinary Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Neudamm Campus, Private Bag 13301, Windhoek 9000, Namibia; (U.M.); (M.Y.H.)
| | - Siegfried Khaiseb
- Central Veterinary Laboratory (CVL), 24 Goethe Street, Private Bag 18137, Windhoek 9000, Namibia;
| | - Giovanni Cattoli
- Animal Production and Health Laboratory, Animal Production and Health Section, Joint FAO/IAEA Division, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, P.O. Box 100, 1400 Vienna, Austria; (T.B.K.S.); (G.C.); (C.E.L.)
| | - William G. Dundon
- Animal Production and Health Laboratory, Animal Production and Health Section, Joint FAO/IAEA Division, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, P.O. Box 100, 1400 Vienna, Austria; (T.B.K.S.); (G.C.); (C.E.L.)
- Correspondence:
| | - Charles E. Lamien
- Animal Production and Health Laboratory, Animal Production and Health Section, Joint FAO/IAEA Division, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, P.O. Box 100, 1400 Vienna, Austria; (T.B.K.S.); (G.C.); (C.E.L.)
| |
Collapse
|
10
|
Shi K, Liu H, Yin Y, Si H, Long F, Feng S. Molecular Characterization of African Swine Fever Virus From 2019-2020 Outbreaks in Guangxi Province, Southern China. Front Vet Sci 2022; 9:912224. [PMID: 35782548 PMCID: PMC9240437 DOI: 10.3389/fvets.2022.912224] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
African swine fever virus (ASFV) causes contagious hemorrhagic disease of pigs with high morbidity and mortality. To identify the molecular characteristics of ASFV strains circulating in Guangxi province, southern China, a total of 336 tissue samples collected from 336 domestic pigs that died as a result of severe hemorrhagic disease during 2019–2020 were tested for ASFV. Furthermore, 66 ASFV strains were genetically characterized by sequence analysis of the C-terminal region of B646L (p72) gene, the complete E183L (p54) gene, the variable region of EP402R (CD2v) gene, the central variable region (CVR) of B602L gene, the full MGF505-2R gene, and the tandem repeat sequence (TRS) within intergenic region (IGR) between the I73R and I329L (I73R/I329L) genes. Phylogenetic analysis revealed that the ASFV strains from Guangxi province belonged to genotypes I and II based on the B646L (p72) and E183L (p54) genes, and there were eight different tetrameric TRS variants based on the CVR of B602L gene. Phylogenetic analysis of the EP402R (CD2v) gene revealed that these ASFV strains belonged to serogroups 4 and 8. Eight of the 66 strains belonged to genotype I and serogroup 4, and showed deletion of whole MGF505-2R gene. The sequence analysis of the IGR between the I73R/I329L genes showed that IGR II and III variants were co-circulating in Guangxi province. The results indicated that ASFV strains circulating in Guangxi province during 2019–2020 outbreaks showed high genetic diversity, of which genotypes I and II, as well as serogroups 4 and 8, were simultaneously circulating in Guangxi province, and there existed wild-type and naturally gene-deleted strains in the field. This is the first detailed report on the molecular characterization of the ASFV strains circulating in southern China, and serogroup 4 in China.
Collapse
Affiliation(s)
- Kaichuang Shi
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
- *Correspondence: Kaichuang Shi
| | - Huixin Liu
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yanwen Yin
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Hongbin Si
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Hongbin Si
| | - Feng Long
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Shuping Feng
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| |
Collapse
|
11
|
Auer A, Settypalli TB, Mouille B, Angot A, De Battisti C, Lamien CE, Cattoli G. Comparison of the sensitivity, specificity, correlation, and inter‐assay agreement of eight diagnostic in vitro assays for the detection of African Swine Fever Virus. Transbound Emerg Dis 2022; 69:e3231-e3238. [DOI: 10.1111/tbed.14491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/07/2022] [Accepted: 02/19/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Agathe Auer
- Animal Production and Health Laboratory Joint FAO/IAEA Centre for Nuclear Applications in Food and Agriculture Department of Nuclear Sciences and Applications International Atomic Energy Agency Friedenstrasse 1 Seibersdorf A‐2444 Austria
- Emergency Prevention System (EMPRES) Animal Health Service Food and Agriculture Organization of the United Nations (FAO‐UN) Rome Italy
| | - Tirumala B.K. Settypalli
- Animal Production and Health Laboratory Joint FAO/IAEA Centre for Nuclear Applications in Food and Agriculture Department of Nuclear Sciences and Applications International Atomic Energy Agency Friedenstrasse 1 Seibersdorf A‐2444 Austria
| | - Beatrice Mouille
- Emergency Prevention System (EMPRES) Animal Health Service Food and Agriculture Organization of the United Nations (FAO‐UN) Rome Italy
| | - Angelique Angot
- Emergency Prevention System (EMPRES) Animal Health Service Food and Agriculture Organization of the United Nations (FAO‐UN) Rome Italy
| | - Cristian De Battisti
- Emergency Prevention System (EMPRES) Animal Health Service Food and Agriculture Organization of the United Nations (FAO‐UN) Rome Italy
| | - Charles E. Lamien
- Animal Production and Health Laboratory Joint FAO/IAEA Centre for Nuclear Applications in Food and Agriculture Department of Nuclear Sciences and Applications International Atomic Energy Agency Friedenstrasse 1 Seibersdorf A‐2444 Austria
| | - Giovanni Cattoli
- Animal Production and Health Laboratory Joint FAO/IAEA Centre for Nuclear Applications in Food and Agriculture Department of Nuclear Sciences and Applications International Atomic Energy Agency Friedenstrasse 1 Seibersdorf A‐2444 Austria
| |
Collapse
|
12
|
Sidi M, Zerbo HL, Ouoba BL, Settypalli TBK, Bazimo G, Ouandaogo HS, Sie BN, Guy IS, Adama DDT, Savadogo J, Kabore-Ouedraogo A, Kindo MG, Achenbach JE, Cattoli G, Lamien CE. Molecular characterization of African swine fever viruses from Burkina Faso, 2018. BMC Vet Res 2022; 18:69. [PMID: 35151326 PMCID: PMC8840682 DOI: 10.1186/s12917-022-03166-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Abstract
Background
African swine fever (ASF) is a viral hemorrhagic disease of domestic and wild swine. ASF has been endemic in Burkina Faso since 2003. In October 2018, substantial pig deaths occurred in Ouagadougou and two neighboring municipalities in central Burkina Faso. Following these mortalities, the veterinary extension services carried out investigations to begin control measures and collect samples.
Methods
We performed real-time PCR for diagnostic confirmation and molecular characterization of the virus based on the partial P72, the complete p54, the partial CD2v, and partial B602L genes.
Results
The field study revealed that mortalities started two weeks before our investigations. The real-time PCR results confirmed ASFV DNA in twenty samples out of sixty-two blood samples collected in four different locations. The sequencing and phylogenetic analysis showed that ASFVs causing these outbreaks belong to genotype I and serogroup 4. The study of the CVR showed 4 TRS variants, and that of the CD2v amino acid sequence revealed five variants based on the number of deleted KCPPPK motifs in the C-terminal proline-reach region of the protein.
Conclusions
The existence of multiple variants in these outbreaks shows the importance of molecular characterization to understand the evolution of ASFV isolates and the link between epidemics.
Collapse
|
13
|
Penrith ML, Kivaria FM. One hundred years of African swine fever in Africa: where have we been, where are we now, where are we going? Transbound Emerg Dis 2022; 69:e1179-e1200. [PMID: 35104041 DOI: 10.1111/tbed.14466] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 11/26/2022]
Abstract
One hundred years have passed since the first paper on African swine fever (ASF) was published by Montgomery in 1921. With no vaccine, ineffectiveness of prevention and control measures, and lack of common interest in eradicating the disease, ASF has proven to be one of the most devastating diseases because of its significant sanitary and socioeconomic consequences. The rapid spread of the disease on the European and Asian continents and its recent appearance in the Caribbean puts all countries at great risk because of global trade. The incidence of ASF has also increased on the African continent over the last few decades, extending its distribution far beyond the area in which the ancient sylvatic cycle is present with its complex epidemiological transmission pathways involving virus reservoirs in ticks and wild African Suidae. Both in that area and elsewhere, efficient transmission by infected domestic pigs and virus resistance in infected animal products and fomites mean that human driven factors along the pig value chain are the dominant impediments for its prevention, control, and eradication. Control efforts in Africa are furthermore hampered by the lack of information about the size and location of the fast-growing pig population, particularly in the dynamic smallholder sector that constitutes up to 90% of pig production in the region. A vaccine that will be both affordable and effective against multiple genotypes of the virus is not a short-term reality. Therefore, a strategy for management of ASF in sub-Saharan Africa is needed to provide a roadmap for the way forward for the continent. This review explores the progression of ASF and our knowledge of it through research over a century in Africa, our current understanding of ASF, and what must be done going forwards to improve the African situation and contribute to global prevention and control. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mary Louise Penrith
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Fredrick Mathias Kivaria
- Food and Agriculture Organization of the UN, Block P, Level 3, United Nations Complex, UN Avenue, Gigiri, Nairobi, PO Box: 30470, GPO, Nairobi, 00100, Kenya
| |
Collapse
|
14
|
Franzo G, Settypalli TBK, Agusi ER, Meseko C, Minoungou G, Ouoba BL, Habibata ZL, Wade A, de Barros JL, Tshilenge CG, Gelaye E, Yami M, Gizaw D, Chibssa TR, Anahory IV, Mapaco LP, Achá SJ, Ijomanta J, Jambol AR, Adedeji AJ, Luka PD, Shamaki D, Diop M, Bakhoum MT, Lo MM, Chang'a JS, Magidanga B, Mayenga C, Ziba MW, Dautu G, Masembe C, Achenbach J, Molini U, Cattoli G, Lamien CE, Dundon WG. Porcine circovirus-2 in Africa: Identification of continent-specific clusters and evidence of independent viral introductions from Europe, North America and Asia. Transbound Emerg Dis 2021; 69:e1142-e1152. [PMID: 34812571 DOI: 10.1111/tbed.14400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/02/2021] [Accepted: 11/11/2021] [Indexed: 01/16/2023]
Abstract
Porcine circovirus-2 (PCV-2) is associated with several disease syndromes in domestic pigs that have a significant impact on global pig production and health. Currently, little is known about the status of PCV-2 in Africa. In this study, a total of 408 archived DNA samples collected from pigs in Burkina Faso, Cameroon, Cape Verde, Ethiopia, the Democratic Republic of the Congo, Mozambique, Nigeria, Senegal, Tanzania and Zambia between 2000 and 2018 were screened by PCR for the presence of PCV-2. Positive amplicons of the gene encoding the viral capsid protein (ORF2) were sequenced to determine the genotypes circulating in each country. Four of the nine currently known genotypes of PCV-2 were identified (i.e. PCV-2a, PCV-2b, PCV-2d and PCV-2 g) with more than one genotype being identified in Burkina Faso, Ethiopia, Nigeria, Mozambique, Senegal and Zambia. Additionally, a phylogeographic analysis which included 38 additional ORF2 gene sequences of PCV-2s previously identified in Mozambique, Namibia and South Africa from 2014 to 2016 and 2019 to 2020 and available in public databases, demonstrated the existence of several African-specific clusters and estimated the approximate time of introduction of PCV-2s into Africa from other continents. This is the first in-depth study of PCV-2 in Africa and it has important implications for pig production at both the small-holder and commercial farm level on the continent.
Collapse
Affiliation(s)
- Giovanni Franzo
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, Italy
| | - Tirumala B K Settypalli
- Animal Production and Health Laboratory, Animal Production and Health Section, Joint FAO/IAEA Centre, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | | | - Clement Meseko
- National Veterinary Research Institute, Vom, Plateau State, Nigeria
| | | | | | | | - Abel Wade
- National Veterinary Laboratory (LANAVET), Garoua, Cameroon
| | - José Luís de Barros
- Direction Génerale de l`Agriculture, Sylviculture et Élèvage, Direction des Services Vétérinaires, Cape Verde
| | | | - Esayas Gelaye
- National Veterinary Institute (NVI), Debre Zeit, Ethiopia
| | - Martha Yami
- National Veterinary Institute (NVI), Debre Zeit, Ethiopia
| | - Daniel Gizaw
- National Animal Health Diagnostic and Investigation Center (NAHDIC), Sebeta, Ethiopia
| | | | - Iolanda Vieira Anahory
- Directorate of Animal Science, Central Veterinary Laboratory, Agrarian Research Institute of Mozambique, Maputo, Mozambique
| | - Lourenço P Mapaco
- Directorate of Animal Science, Central Veterinary Laboratory, Agrarian Research Institute of Mozambique, Maputo, Mozambique
| | - Sara J Achá
- Directorate of Animal Science, Central Veterinary Laboratory, Agrarian Research Institute of Mozambique, Maputo, Mozambique
| | | | | | | | - Pam Dachung Luka
- National Veterinary Research Institute, Vom, Plateau State, Nigeria
| | - David Shamaki
- National Veterinary Research Institute, Vom, Plateau State, Nigeria
| | - Mariame Diop
- Laboratoire National de l'Elevage et de Recherches Vétérinaires, Institut Sénégalais de Recherches Agricoles (ISRA), Dakar, Sénégal
| | - Mame Thierno Bakhoum
- Laboratoire National de l'Elevage et de Recherches Vétérinaires, Institut Sénégalais de Recherches Agricoles (ISRA), Dakar, Sénégal
| | - Modou Moustapha Lo
- Laboratoire National de l'Elevage et de Recherches Vétérinaires, Institut Sénégalais de Recherches Agricoles (ISRA), Dakar, Sénégal
| | - Jelly S Chang'a
- Centre for Infectious Diseases and Biotechnology, Tanzania Veterinary Laboratory Agency, Dares Salaam, Tanzania
| | - Bishop Magidanga
- Centre for Infectious Diseases and Biotechnology, Tanzania Veterinary Laboratory Agency, Dares Salaam, Tanzania
| | - Charles Mayenga
- Centre for Infectious Diseases and Biotechnology, Tanzania Veterinary Laboratory Agency, Dares Salaam, Tanzania
| | - Maureen Wakwamba Ziba
- Department of Veterinary Services Ministry of Fisheries and Livestock, Central Veterinary Research Institute, Lusaka, Zambia
| | - George Dautu
- Department of Veterinary Services Ministry of Fisheries and Livestock, Central Veterinary Research Institute, Lusaka, Zambia
| | - Charles Masembe
- College of Natural Sciences, Makerere University, Kampala, Uganda
| | | | - Umberto Molini
- School of Veterinary Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Windhoek, Namibia.,Central Veterinary Laboratory (CVL), Windhoek, Namibia
| | - Giovanni Cattoli
- Animal Production and Health Laboratory, Animal Production and Health Section, Joint FAO/IAEA Centre, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Charles E Lamien
- Animal Production and Health Laboratory, Animal Production and Health Section, Joint FAO/IAEA Centre, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - William G Dundon
- Animal Production and Health Laboratory, Animal Production and Health Section, Joint FAO/IAEA Centre, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| |
Collapse
|
15
|
Njau EP, Machuka EM, Cleaveland S, Shirima GM, Kusiluka LJ, Okoth EA, Pelle R. African Swine Fever Virus (ASFV): Biology, Genomics and Genotypes Circulating in Sub-Saharan Africa. Viruses 2021; 13:2285. [PMID: 34835091 PMCID: PMC8623397 DOI: 10.3390/v13112285] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/17/2021] [Accepted: 11/03/2021] [Indexed: 12/22/2022] Open
Abstract
African swine fever (ASF) is a highly infectious and fatal haemorrhagic disease of pigs that is caused by a complex DNA virus of the genus Asfivirus and Asfarviridae African suids family. The disease is among the most devastating pig diseases worldwide including Africa. Although the disease was first reported in the 19th century, it has continued to spread in Africa and other parts of the world. Globally, the rising demand for pork and concomitant increase in transboundary movements of pigs and pork products is likely to increase the risk of transmission and spread of ASF and pose a major challenge to the pig industry. Different genotypes of the ASF virus (ASFV) with varying virulence have been associated with different outbreaks in several countries in sub-Saharan Africa (SSA) and worldwide, and understanding genotype circulation will be important for ASF prevention and control strategies. ASFV genotypes unique to Africa have also been reported in SSA. This review briefly recounts the biology, genomics and genotyping of ASFV and provides an account of the different genotypes circulating in SSA. The review also highlights prevention, control and progress on vaccine development and identifies gaps in knowledge of ASFV genotype circulation in SSA that need to be addressed.
Collapse
Affiliation(s)
- Emma P. Njau
- Biosciences Eastern and Central Africa—International Livestock Research Institute Hub, P.O. Box 30709, Nairobi 00100, Kenya; (E.M.M.); (E.A.O.); (R.P.)
- Nelson Mandela African Institution of Science and Technology, Arusha P.O. Box 447, Tanzania; (S.C.); (G.M.S.); (L.J.K.)
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Chuo Kikuu, Morogoro P.O. Box 3015, Tanzania
| | - Eunice M. Machuka
- Biosciences Eastern and Central Africa—International Livestock Research Institute Hub, P.O. Box 30709, Nairobi 00100, Kenya; (E.M.M.); (E.A.O.); (R.P.)
| | - Sarah Cleaveland
- Nelson Mandela African Institution of Science and Technology, Arusha P.O. Box 447, Tanzania; (S.C.); (G.M.S.); (L.J.K.)
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Gabriel M. Shirima
- Nelson Mandela African Institution of Science and Technology, Arusha P.O. Box 447, Tanzania; (S.C.); (G.M.S.); (L.J.K.)
| | - Lughano J. Kusiluka
- Nelson Mandela African Institution of Science and Technology, Arusha P.O. Box 447, Tanzania; (S.C.); (G.M.S.); (L.J.K.)
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Chuo Kikuu, Morogoro P.O. Box 3015, Tanzania
- Mzumbe University, Morogoro P.O. Box 1, Tanzania
| | - Edward A. Okoth
- Biosciences Eastern and Central Africa—International Livestock Research Institute Hub, P.O. Box 30709, Nairobi 00100, Kenya; (E.M.M.); (E.A.O.); (R.P.)
| | - Roger Pelle
- Biosciences Eastern and Central Africa—International Livestock Research Institute Hub, P.O. Box 30709, Nairobi 00100, Kenya; (E.M.M.); (E.A.O.); (R.P.)
| |
Collapse
|
16
|
First Genomic Evidence of Dual African Swine Fever Virus Infection: Case Report from Recent and Historical Outbreaks in Sardinia. Viruses 2021; 13:v13112145. [PMID: 34834952 PMCID: PMC8618892 DOI: 10.3390/v13112145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/05/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
African swine fever virus (ASFV) is one of the pathogens of highest concern worldwide. Despite different virus lineages co-circulating in several areas, dual infections in the same animal have been rarely observed, suggesting that ASF superinfections are infrequent events. Here we present the first genome-wide detection and analysis of two intragenotype dual ASFV infections. The dual infections have been detected in a hunted wild boar and in a pig carcass, both infected by ASFV genotype I in Sardinia in 1984 and 2018, respectively. We characterize the genetic differences between the two sequences, their intra-host frequency, and their phylogenetic relationship among fully sequenced ASFV strains from Sardinia. Both dual infections involve pairs of closely related but different viruses that were circulating in Sardinia in the same period. The results imply that dual ASFV infections or similar ASFV strains are more common than expected, especially in ASF endemic areas, albeit difficult to detect.
Collapse
|
17
|
Bisimwa PN, Dione M, Basengere B, Mushagalusa CA, Steinaa L, Ongus J. Risk factors of African swine fever virus in suspected infected pigs in smallholder farming systems in South-Kivu province, Democratic Republic of Congo. J Vet Sci 2021; 22:e35. [PMID: 34056876 PMCID: PMC8170224 DOI: 10.4142/jvs.2021.22.e35] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/09/2021] [Accepted: 02/26/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND African swine fever (ASF) is an infectious viral disease of domestic pigs that presents as a hemorrhagic fever, and for which no effective vaccine is available. The disease has a serious negative social and economic impact on pig keepers. There is limited information on the potential risk factors responsible for the spread of ASF in South Kivu. OBJECTIVE The aim of this study was to determine the potential risk factors associated with ASF infection in suspected ASF virus (ASFV)-infected pigs. METHODS We sampled whole blood from 391 pigs. Additionally, 300 pig farmers were interviewed using a structured questionnaire. Viral DNA was detected by using the real-time polymerase chain reaction technique. RESULTS The majority of pigs sampled, 78% (95% confidence interval [CI], 74.4-82.6), were of local breeds. Over half, 60.4% (95% CI, 55.5-65.2), were female, and most of them, 90.5% (95% CI, 87.6-93.4), were adult pigs (> 1 year old). Viral DNA was detected in 72 of the 391 sampled pigs, indicating an overall infection rate of 18.4% (95% CI, 14.5-22.4). Multivariable logistic regression analysis revealed several risk factors positively associated with ASFV infection: feeding with swill in pen (odds ratio [OR], 3.8; 95% CI, 2.12-6.77); mixed ages of pigs in the same pen (OR, 3.3; 95% CI, 1.99-5.57); introduction of new animals to the farm (OR, 5.4; 95% CI, 1.91-15.28). The risk factors that were negatively (protective) correlated with ASFV positivity were the presence of male animals and the use of an in-pen breeding system. CONCLUSION Local pig farmers should be encouraged to adopt proper husbandry and feeding practices in order to increase the number of ASF-free farms.
Collapse
Affiliation(s)
- Patrick N Bisimwa
- Department of Animal Sciences and Production, Université Evangélique en Afrique, Bukavu 3323, Democratic Republic of Congo.,Department of Molecular Biology and Biotechnology, Pan African University Institute of Basic Sciences, Technology and Innovation, Nairobi 62000-00200, Kenya.
| | - Michel Dione
- International Livestock Research Institute, Dakar 24265, Senegal.,Department of Animal and Human Health, International Livestock Research Institute, Nairobi 30709, Kenya
| | - Bisimwa Basengere
- Department of Animal Sciences and Production, Université Evangélique en Afrique, Bukavu 3323, Democratic Republic of Congo
| | - Ciza Arsène Mushagalusa
- Department of Animal Sciences and Production, Université Evangélique en Afrique, Bukavu 3323, Democratic Republic of Congo
| | - Lucilla Steinaa
- International Livestock Research Institute, Dakar 24265, Senegal.,Department of Animal and Human Health, International Livestock Research Institute, Nairobi 30709, Kenya
| | - Juliette Ongus
- Department of Molecular Biology and Biotechnology, Pan African University Institute of Basic Sciences, Technology and Innovation, Nairobi 62000-00200, Kenya.,Department of Medical Laboratory Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi 62000-00200, Kenya
| |
Collapse
|
18
|
Minoungou GL, Diop M, Dakouo M, Ouattara AK, Settypalli TBK, Lo MM, Sidibe S, Kanyala E, Kone YS, Diallo MS, Ouedraogo A, Coulibaly K, Ouedraogo V, Sow I, Niang M, Achenbach JE, Wade A, Unger H, Diallo A, Cattoli G, Lamien CE, Simpore J. Molecular characterization of African Swine fever viruses in Burkina Faso, Mali, and Senegal 1989-2016: Genetic diversity of ASFV in West Africa. Transbound Emerg Dis 2021; 68:2842-2852. [PMID: 34323385 DOI: 10.1111/tbed.14240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 06/12/2021] [Accepted: 07/13/2021] [Indexed: 11/26/2022]
Abstract
African swine fever (ASF) has been endemic in sub-Saharan Africa since the 1960s. Following its introduction in Senegal, in 1957, ASF steadily progressed through West Africa, reaching Burkina Faso in 2003, and later Mali in 2016. Despite the heavy burden of disease on pig production, little information is available on the genetic diversity of Africa swine fever virus (ASFV) in Burkina Faso, Mali and Senegal. Here, we used real-time PCR ASFV to detect the ASFV genome in samples collected between 1989 and 2016, in Burkina Faso, Mali and Senegal, and conventional approaches for isolate characterization. The C-terminal end of the p72 protein gene, the full E183L gene and the central variable region (CVR) within the B602L gene in ASFV genome were sequenced and compared to publicly available sequences. ASFV genome was found in 27 samples, 19 from Burkina Faso, three from Mali and five from Senegal. The phylogenetic analyses showed that all viruses belong to genotype I, with the ASFVs from Burkina Faso and Mali grouping with genotype Ia and ASFV serogroup 4, and those from Senegal with genotype Ib and the ASFV serogroup 1. The analysis of the CVR tetrameric tandem repeat sequences (TRS) showed four TRS variants in Burkina Faso, two in Senegal and one in Mali. The three countries did not share any common TRS, and all CVRs of this study differed from previously reported CVRs in West Africa, except for Senegal. Three of the five isolates from Senegal fully matched with the CVR, p72 and p54 sequences from ASFV IC96 collected during the 1996 ASF outbreak in Ivory Coast. This study shows the spread of the same ASFV strains across countries, highlighting the importance of continuous monitoring of ASFV isolates. It also calls for an urgent need to establish a regional plan for the control and eradication of ASF in West Africa.
Collapse
Affiliation(s)
- Germaine L Minoungou
- Laboratory of Molecular Biology and Molecular Genetics (LABIOGENE) UFR/SVT, University Joseph KI-ZERBO, Ouagadougou, Burkina Faso.,Laboratoire National d'Elevage (LNE), Ouagadougou, Burkina Faso
| | - Mariame Diop
- Laboratoire National de l'Elevage et de Recherches Vétérinaires (LNERV), Institut Sénégalais de Recherches Agricoles (ISRA), Dakar, Sénégal
| | | | - Abdoul Karim Ouattara
- Laboratory of Molecular Biology and Molecular Genetics (LABIOGENE) UFR/SVT, University Joseph KI-ZERBO, Ouagadougou, Burkina Faso.,Biomolecular Research Center Pietro Annigoni (CERBA), Ouagadougou, Burkina Faso
| | - Tirumala Bharani K Settypalli
- Animal Production and Health Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Modou M Lo
- Laboratoire National de l'Elevage et de Recherches Vétérinaires (LNERV), Institut Sénégalais de Recherches Agricoles (ISRA), Dakar, Sénégal
| | | | - Estelle Kanyala
- Direction de la Santé Animale (DSA), Ouagadougou, Burkina Faso
| | | | | | - Anne Ouedraogo
- Laboratoire National d'Elevage (LNE), Ouagadougou, Burkina Faso
| | | | | | - Ibrahim Sow
- Laboratoire Central Vétérinaire (LCV), Bamako, Mali
| | - Mamadou Niang
- Laboratoire Central Vétérinaire (LCV), Bamako, Mali.,Emergency Center for Transboundary Animal Diseases (ECTAD), Regional Office for Africa (RAF), Food and Agriculture Organization of the United Nations (FAO), Accra, Ghana
| | | | - Abel Wade
- National Veterinary Laboratory (LANAVET), Garoua, Cameroon
| | - Hermann Unger
- Animal Production and Health Section, Joint FAO/IAEA Division for Nuclear Applications in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna International Centre, Vienna, Austria
| | - Adama Diallo
- Laboratoire National de l'Elevage et de Recherches Vétérinaires (LNERV), Institut Sénégalais de Recherches Agricoles (ISRA), Dakar, Sénégal.,Cirad, UMR CIRAD INRA, Animal, Santé, Territoires, Risques et Ecosystèmes (ASTRE), Campus International de Baillarguet, Montpellier, France
| | - Giovanni Cattoli
- Animal Production and Health Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Charles Euloge Lamien
- Animal Production and Health Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Jacques Simpore
- Laboratory of Molecular Biology and Molecular Genetics (LABIOGENE) UFR/SVT, University Joseph KI-ZERBO, Ouagadougou, Burkina Faso.,Biomolecular Research Center Pietro Annigoni (CERBA), Ouagadougou, Burkina Faso
| |
Collapse
|
19
|
Bisimwa PN, Wasso DS, Bantuzeko F, Aksanti CB, Tonui R, Birindwa AB, Bisimwa EB. First investigation on the presence of porcine parvovirus type 3 in domestic pig farms without reproductive failure in the Democratic Republic of Congo. Vet Anim Sci 2021; 13:100187. [PMID: 34278045 PMCID: PMC8264215 DOI: 10.1016/j.vas.2021.100187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 11/28/2022] Open
Abstract
Porcine Parvovirus (PPV) is one of the major pathogens responsible for reproductive failure in sows. However, the information on its frequency in the Democratic Republic of Congo (DRC) is largely unknown. Thus, the present study was carried out to detect and genetically characterize some of known Parvovirus namely porcine parvovirus 1, 2, 3, 4, porcine bocavirus (PBoV) 1, and porcine bocavirus-like virus (PBolikeV) in 80 randomly selected archive pig farm samples during an African swine fever (ASF) survey in South Kivu, eastern DRC by polymerase chain reaction (PCR). The majority of animals analyzed (82.5%) were local breeds, and most of them (87.5%) were adults (above one year old). The majority of the animals (65%) were from the free range farms. The PCR result indicated that only PPV3 was detected in 14/80 pigs. Seven swine herds (8.7%) were co-infected with PPV3 and ASFV. Morever, a significantly high PPV3 infection rate was observed in the spleen (66.7%, P<0.0001) compared to the others type of samples. Further, the phylogenetic analysis of partial PPV3 sequences revealed one clade of PPV3 clustered with PPV3 isolates reported in a previous study in Cameroun, China, Slovakia, Germany, and China. This study is the first to report the detection of PPV in DRC. Further studies are needed to assess the levels of PPV3 viremia and the impact in co-infections with other endemic pig viruses, including ASFV.
Collapse
Affiliation(s)
- Patrick N Bisimwa
- Université Evangélique en Afrique, Department of Animal Science and Production, Bukavu DR Congo.,Pan African University, Institute of Basic Sciences, Technology and Innovation, Department of Molecular Biology and Biotechnology, Nairobi, Kenya
| | - Dieudonné S Wasso
- Université Evangélique en Afrique, Department of Animal Science and Production, Bukavu DR Congo
| | - Fabrice Bantuzeko
- Université Evangélique en Afrique, Department of Animal Science and Production, Bukavu DR Congo
| | - Chance B Aksanti
- Université Evangélique en Afrique, Department of Animal Science and Production, Bukavu DR Congo.,University of Namur, Research Unit in Environmental and Evolutionary Biology, Institute of Life, Earth & Environment, Namur, Belgium
| | - Ronald Tonui
- Pan African University, Institute of Basic Sciences, Technology and Innovation, Department of Molecular Biology and Biotechnology, Nairobi, Kenya
| | - Ahadi B Birindwa
- Université Evangélique en Afrique, Department of Animal Science and Production, Bukavu DR Congo
| | - Espoir B Bisimwa
- Université Evangélique en Afrique, Department of Animal Science and Production, Bukavu DR Congo
| |
Collapse
|
20
|
Dharmayanti NI, Sendow I, Ratnawati A, Settypalli TBK, Saepulloh M, Dundon WG, Nuradji H, Naletoski I, Cattoli G, Lamien CE. African swine fever in North Sumatra and West Java provinces in 2019 and 2020, Indonesia. Transbound Emerg Dis 2021; 68:2890-2896. [PMID: 33725423 DOI: 10.1111/tbed.14070] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 11/29/2022]
Abstract
African swine fever (ASF) is a highly lethal and contagious viral haemorrhagic disease of domestic and wild pigs, caused by the ASF virus (ASFV). After entering China in 2018, the disease has continued to spread through Asia. In September 2019, a team from the Indonesian Research Center for Veterinary Science, Bogor, investigated outbreaks in backyard pigs in the Dairi and Humbang Hasundutan districts of North Sumatra province. In January 2020, three pigs purchased from a pig seller in Bogor District, West Java province were also tested. Real-time PCR results confirmed ASFV DNA in sixteen out of twenty-nine samples, with nine positive samples from North Sumatra and seven from West Java. Four partial or full-length genes (i.e. p72, p54, pB602L and CD2v) and a 356-bp fragment between the I73R and I329L genes were sequenced from representative samples. Phylogenetic analysis established that the ASFV in the samples from both North Sumatra and West Java were identical, indicating a common source of infection, and that they belonged to the p72 genotype II and serogroup 8. The sequences from the Indonesian ASFVs were also identical to other genotype II ASFV from domestic pigs in Vietnam, China and Russia.
Collapse
Affiliation(s)
| | - Indrawati Sendow
- Indonesian Research Center for Veterinary Science (IRCVS), Bogor, Indonesia
| | - Atik Ratnawati
- Indonesian Research Center for Veterinary Science (IRCVS), Bogor, Indonesia
| | - Tirumala Bharani K Settypalli
- Animal Production and Health Section, Animal Production and Health Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna International Centre, Vienna, Austria
| | - Muharam Saepulloh
- Indonesian Research Center for Veterinary Science (IRCVS), Bogor, Indonesia
| | - William G Dundon
- Animal Production and Health Section, Animal Production and Health Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna International Centre, Vienna, Austria
| | - Harimurti Nuradji
- Indonesian Research Center for Veterinary Science (IRCVS), Bogor, Indonesia
| | - Ivancho Naletoski
- Animal Production and Health Section, Animal Production and Health Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna International Centre, Vienna, Austria
| | - Giovanni Cattoli
- Animal Production and Health Section, Animal Production and Health Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna International Centre, Vienna, Austria
| | - Charles E Lamien
- Animal Production and Health Section, Animal Production and Health Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna International Centre, Vienna, Austria
| |
Collapse
|
21
|
Bisimwa PN, Ishara LK, Wasso DS, Bantuzeko F, Tonui R, Bwihangane AB. Detection and genetic characterization of African swine fever virus (ASFV) in clinically infected pigs in two districts in South Kivu province, Democratic Republic Congo. Heliyon 2021; 7:e06419. [PMID: 33732937 PMCID: PMC7938247 DOI: 10.1016/j.heliyon.2021.e06419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/05/2021] [Accepted: 03/01/2021] [Indexed: 11/13/2022] Open
Abstract
African swine fever (ASF) is a notifiable contagious disease caused by the African swine fever virus (ASFV), leading to a serious socio-economic impact, constraining pig industry, and affecting food security worldwide. This study aimed to detect and characterize ASFV strains from suspected infected domestic pigs in two South-Kivu province districts of the Democratic Republic of the Congo (DRC). A total of 155 pig samples were screened for viral DNA and sequencing at multiple loci. An infection rate of 5.2% (8/155) was recorded from a total of 155 blood samples with the highest ASFV infection rate of 8% for Uvira (6/75) and mostly in female pigs 5 (7.6%). Most ASF associated clinical signs were redness on the skin and snout at 49% (95% CI: 21–34), followed by the unwillingness of pigs to stand at 29 % (95%, CI: 19–35). Phylogenetic analysis of partial B646L (p72) and the full-length E183 (p54) gene sequences revealed the circulation of genotypes IX and X, which clustered with previously reported viruses in the same region, Uganda, Kenya, and Tanzania. Intragenotypic resolution of the CVR region clustered the viruses into two subgroups: the genotype X strain subgroup (10 repeats, AAAABNAABA) and the genotype IX strain subgroup (11 repeats, AAAAAAAAAAF). This finding provides additional evidence that genetically similar ASFV strains may be circulating within South Kivu province and highlights the need for improved coordination to prevent the spread of the disease in non-infected areas.
Collapse
Affiliation(s)
- Patrick N. Bisimwa
- Université Evangélique en Afrique, Department of Animal Science and Production, Biosciences Unit, Bukavu, Democratic Republic of the Congo
- Pan African University Institute of Basic Sciences, Technology and Innovation, Department of Molecular Biology and Biotechnology, Nairobi, Kenya
- Corresponding author.
| | - Lionel K. Ishara
- Université Evangélique en Afrique, Department of Animal Science and Production, Biosciences Unit, Bukavu, Democratic Republic of the Congo
| | - Dieudonné S. Wasso
- Université Evangélique en Afrique, Department of Animal Science and Production, Biosciences Unit, Bukavu, Democratic Republic of the Congo
| | - Fabrice Bantuzeko
- Université Evangélique en Afrique, Department of Animal Science and Production, Biosciences Unit, Bukavu, Democratic Republic of the Congo
| | - Ronald Tonui
- Pan African University Institute of Basic Sciences, Technology and Innovation, Department of Molecular Biology and Biotechnology, Nairobi, Kenya
| | - Ahadi B. Bwihangane
- Université Evangélique en Afrique, Department of Animal Science and Production, Biosciences Unit, Bukavu, Democratic Republic of the Congo
| |
Collapse
|
22
|
Hakizimana JN, Yona C, Kamana O, Nauwynck H, Misinzo G. African Swine Fever Virus Circulation between Tanzania and Neighboring Countries: A Systematic Review and Meta-Analysis. Viruses 2021; 13:v13020306. [PMID: 33672090 PMCID: PMC7919636 DOI: 10.3390/v13020306] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 11/16/2022] Open
Abstract
For over 100 years after the description of the first case of African swine fever (ASF) in Kenya, ASF virus (ASFV) cross-border spread in eastern and southern Africa has not been fully investigated. In this manuscript, we reviewed systematically the available literature on molecular epidemiology of ASF in Tanzania and its eight neighboring countries in order to establish the transmission dynamics of ASFV between these countries. Data were retrieved from World Animal Health Information System (WAHIS), Google Scholar, PubMed, Scopus, and CrossRef databases, using the recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and reviewed to document ASF outbreaks and ASFV genotypes distribution. Using phylogeographic approach applied to ASFV p72 sequence dataset, the evolutionary history and the dispersal pattern of the ASFV strains were assessed. From 2005 to 2019, a total of 1588 ASF outbreaks affecting 341,742 cases that led to 302,739 domestic pig deaths were reported. The case fatality rates (CFR) varied from 15.41% to 98.95% with an overall CFR of 88.58%. Fifteen different p72 ASFV genotypes were reported and the time to the most recent common ancestor (TMRCA) for ASFV strains dated back to 1652.233 (1626.473, 1667.735) with an evolutionary rate of 4.805 × 10−5 (2.5857 × 10−5, 9.7789 × 10−5). Phylogeographic dispersal analysis revealed several transboundary spread events of ASFV strains between these countries. These results suggest persistent circulation of ASFV in these countries and advocate for more research to improve our understanding of the transmission dynamics of the virus and for a regional approach to mitigate the spread of ASFV.
Collapse
Affiliation(s)
- Jean N. Hakizimana
- SACIDS Africa Centre of Excellence for Infectious Diseases, SACIDS Foundation for One Health, Sokoine University of Agriculture, P.O. Box 3019 Morogoro, Tanzania;
- Department of Veterinary Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P.O. Box 3019 Morogoro, Tanzania
- Correspondence: (J.N.H.); (G.M.)
| | - Clara Yona
- SACIDS Africa Centre of Excellence for Infectious Diseases, SACIDS Foundation for One Health, Sokoine University of Agriculture, P.O. Box 3019 Morogoro, Tanzania;
- Department of Biosciences, Solomon Mahlangu College of Science and Education, Sokoine University of Agriculture, P.O. Box 3019 Morogoro, Tanzania
| | - Olivier Kamana
- Department of Applied Research and Development and Foresight Incubation, National Industrial Research and Development Agency, P.O. Box 273 Kigali, Rwanda;
| | - Hans Nauwynck
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium;
| | - Gerald Misinzo
- SACIDS Africa Centre of Excellence for Infectious Diseases, SACIDS Foundation for One Health, Sokoine University of Agriculture, P.O. Box 3019 Morogoro, Tanzania;
- Department of Veterinary Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P.O. Box 3019 Morogoro, Tanzania
- Correspondence: (J.N.H.); (G.M.)
| |
Collapse
|
23
|
Bisimwa PN, Ongus JR, Steinaa L, Bisimwa EB, Bochere E, Machuka EM, Entfellner JBD, Okoth E, Pelle R. The first complete genome sequence of the African swine fever virus genotype X and serogroup 7 isolated in domestic pigs from the Democratic Republic of Congo. Virol J 2021; 18:23. [PMID: 33478547 PMCID: PMC7819171 DOI: 10.1186/s12985-021-01497-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/12/2021] [Indexed: 11/25/2022] Open
Abstract
Background African swine fever (ASF), a highly contagious hemorrhagic disease, affects domestic pigs in the Democratic Republic of Congo (DRC) where regular outbreaks are reported leading to high mortality rates approaching 100% in the affected regions. No study on the characteristics of the complete genome of strains responsible for ASF outbreaks in the South Kivu province of DRC is available, limited a better understanding of molecular evolution and spread of this virus within the country. The present study aimed at determining the complete genome sequence of ASFV strains genotype X involved in 2018–2019 ASF disease outbreaks in South Kivu province of DRC. Materials and methods Genomic DNA of a spleen sample from an ASFV genotype X-positive domestic pig in Uvira, during the 2018–2019 outbreaks in South Kivu, was sequenced using the Illumina HiSeq X platform. Obtained trimmed reads using Geneious Prime 2020.0.4 were blasted against a pig reference genome then contigs were generated from the unmapped reads enriched in ASFV DNA using Spades implemented in Geneious 2020.0.4. The assembly of the complete genome sequence of ASFV was achieved from the longest overlapping contigs. The new genome was annotated with the genome annotation transfer utility (GATU) software and the CLC Genomics Workbench 8 software was further used to search for any ORFs that failed to be identified by GATU. Subsequent analyses of the newly determined Uvira ASFV genotype X genome were done using BLAST for databases search, CLUSTAL W for multiple sequences alignments and MEGA X for phylogeny. Results 42 Gbp paired-end reads of 150 bp long were obtained containing about 0.1% of ASFV DNA. The assembled Uvira ASFV genome, termed Uvira B53, was 180,916 bp long that could be assembled in 2 contigs. The Uvira B53genome had a GC content of 38.5%, encoded 168 open reading frames (ORFs) and had 98.8% nucleotide identity with the reference ASFV genotype X Kenya 1950. The phylogenetic relationship with selected representative genomes clustered the Uvira B53 strain together with ASFV genotype X reported to date (Kenya 1950 and Ken05/Tk1). Multiple genome sequences comparison with the two reference ASFV genotype X strains showed that 130 of the 168 ORFs were fully conserved in the Uvira B53. The other 38 ORFs were divergent mainly due to SNPs and indels (deletions and insertions). Most of 46 multigene family (MGF) genes identified were affected by various genetic variations. However, 8 MGF ORFs present in Kenya 1950 and Ken05/Tk1 were absent from the Uvira B53 genome including three members of MGF 360, four of MGF 110 and one of MGF 100 while one MGF ORF (MGF 360-1L) at the left end of the genome was truncated in Uvira B53. Moreover, ORFs DP96R and p285L were also absent in the Uvira B53 genome. In contrast, the ORF MGF 110-5L present in Uvira B53 and Ken05/Tk1 was missing in Kenya 1950. The analysis of the intergenic region between the I73R and I329L genes also revealed sequence variations between the three genotype X strains mainly characterized by a deletion of 69 bp in Uvira B53 and 36 bp in Kenya 1950, compared to Ken05/Tk1. Assessment of the CD2v (EP402R) antigen unveiled the presence of SNPs and indels particularly in the PPPKPY tandem repeat region between selected variants representing the eight serogroups reported to date. Uvira B53 had identical CD2v variable region to the Uganda (KM609361) strain, the only other ASFV serogroup 7 reported to date. Conclusion We report the first complete genome sequence of an African swine fever virus (ASFV) p72 genotype X and CD2v serogroup 7, termed Uvira B53. This study provides additional insights on genetic characteristics and evolution of ASFV useful for tracing the geographical spread of ASF and essential for improved design of control and management strategies against ASF.
Collapse
Affiliation(s)
- Patrick N Bisimwa
- Institute of Basic Sciences, Technology and Innovation, Department of Molecular Biology and Biotechnology, Pan African University, Nairobi, Kenya. .,Department of Animal Science and Production, Université Evangélique en Afrique, P.O. Box 3323, Bukavu, Democratic Republic of Congo.
| | - Juliette R Ongus
- Institute of Basic Sciences, Technology and Innovation, Department of Molecular Biology and Biotechnology, Pan African University, Nairobi, Kenya.,Department of Medical Laboratory Sciences, Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya
| | - Lucilla Steinaa
- International Livestock Research Institute, Animal and Human Health, Nairobi, Kenya
| | - Espoir B Bisimwa
- Department of Animal Science and Production, Université Evangélique en Afrique, P.O. Box 3323, Bukavu, Democratic Republic of Congo
| | - Edwina Bochere
- Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, Naivasha Road, P.O. Box 30709, Nairobi, 00100, Kenya
| | - Eunice M Machuka
- Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, Naivasha Road, P.O. Box 30709, Nairobi, 00100, Kenya
| | - Jean-Baka Domelevo Entfellner
- Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, Naivasha Road, P.O. Box 30709, Nairobi, 00100, Kenya
| | - Edward Okoth
- Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, Naivasha Road, P.O. Box 30709, Nairobi, 00100, Kenya
| | - Roger Pelle
- Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, Naivasha Road, P.O. Box 30709, Nairobi, 00100, Kenya.
| |
Collapse
|
24
|
Bosch-Camós L, López E, Navas MJ, Pina-Pedrero S, Accensi F, Correa-Fiz F, Park C, Carrascal M, Domínguez J, Salas ML, Nikolin V, Collado J, Rodríguez F. Identification of Promiscuous African Swine Fever Virus T-Cell Determinants Using a Multiple Technical Approach. Vaccines (Basel) 2021; 9:29. [PMID: 33430316 PMCID: PMC7825812 DOI: 10.3390/vaccines9010029] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 11/23/2022] Open
Abstract
The development of subunit vaccines against African swine fever (ASF) is mainly hindered by the lack of knowledge regarding the specific ASF virus (ASFV) antigens involved in protection. As a good example, the identity of ASFV-specific CD8+ T-cell determinants remains largely unknown, despite their protective role being established a long time ago. Aiming to identify them, we implemented the IFNγ ELISpot as readout assay, using as effector cells peripheral blood mononuclear cells (PBMCs) from pigs surviving experimental challenge with Georgia2007/1. As stimuli for the ELISpot, ASFV-specific peptides or full-length proteins identified by three complementary strategies were used. In silico prediction of specific CD8+ T-cell epitopes allowed identifying a 19-mer peptide from MGF100-1L, as frequently recognized by surviving pigs. Complementarily, the repertoire of SLA I-bound peptides identified in ASFV-infected porcine alveolar macrophages (PAMs), allowed the characterization of five additional SLA I-restricted ASFV-specific epitopes. Finally, in vitro stimulation studies using fibroblasts transfected with plasmids encoding full-length ASFV proteins, led to the identification of MGF505-7R, A238L and MGF100-1L as promiscuously recognized antigens. Interestingly, each one of these proteins contain individual peptides recognized by surviving pigs. Identification of the same ASFV determinants by means of such different approaches reinforce the results presented here.
Collapse
Affiliation(s)
- Laia Bosch-Camós
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (L.B.-C.); (E.L.); (M.J.N.); (S.P.-P.); (F.C.-F.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain;
| | - Elisabet López
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (L.B.-C.); (E.L.); (M.J.N.); (S.P.-P.); (F.C.-F.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain;
| | - María Jesús Navas
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (L.B.-C.); (E.L.); (M.J.N.); (S.P.-P.); (F.C.-F.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain;
| | - Sonia Pina-Pedrero
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (L.B.-C.); (E.L.); (M.J.N.); (S.P.-P.); (F.C.-F.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain;
| | - Francesc Accensi
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain;
- UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, 08193 Bellaterra, Spain
| | - Florencia Correa-Fiz
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (L.B.-C.); (E.L.); (M.J.N.); (S.P.-P.); (F.C.-F.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain;
| | - Chankyu Park
- Department of Stem Cells and Regenerative Biology, Konkuk University, Seoul 05029, Korea;
| | - Montserrat Carrascal
- Instituto de Investigaciones Biomédicas de Barcelona-Unidad de Espectrometría de Masas Biológica y Proteómica, Consejo Superior de Investigaciones Científicas (CSIC), 08193 Bellaterra, Spain;
| | - Javier Domínguez
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28049 Madrid, Spain;
| | - Maria Luisa Salas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autònoma de Madrid, 28049 Madrid, Spain;
| | - Veljko Nikolin
- Boehringer Ingelheim Veterinary Research Center (BIVRC) GmbH & Co. KG, 30559 Hannover, Germany;
| | - Javier Collado
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
| | - Fernando Rodríguez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (L.B.-C.); (E.L.); (M.J.N.); (S.P.-P.); (F.C.-F.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain;
| |
Collapse
|
25
|
Abstract
African swine fever is a devastating disease that can result in death in almost all infected pigs. The continuing spread of African swine fever from Africa to Europe and recently to the high-pig production countries of China and others in Southeast Asia threatens global pork production and food security. The African swine fever virus is an unusual complex DNA virus and is not related to other viruses. This has presented challenges for vaccine development, and currently none is available. The virus is extremely well adapted to replicate in its hosts in the sylvatic cycle in East and South Africa. Its spread to other regions, with different wildlife hosts, climatic conditions, and pig production systems, has revealed unexpected epidemiological scenarios and different challenges for control. Here we review the epidemiology of African swine fever in these different scenarios and methods used for control. We also discuss progress toward vaccine development and research priorities to better understand this complex disease and improve control.
Collapse
Affiliation(s)
- Linda K Dixon
- The Pirbright Institute, Woking, Surrey GU24 0NF, United Kingdom;
| | - Karl Stahl
- Department of Disease Control and Epidemiology, National Veterinary Institute, SE-751 89 Uppsala, Sweden;
| | - Ferran Jori
- UMR CIRAD-INRA ASTRE (Animal, Health, Territories, Risks and Ecosystems) Department BIOS, Campus International de Baillarguet, 34398 Montpellier, Cedex 5, France; ,
| | - Laurence Vial
- UMR CIRAD-INRA ASTRE (Animal, Health, Territories, Risks and Ecosystems) Department BIOS, Campus International de Baillarguet, 34398 Montpellier, Cedex 5, France; ,
| | - Dirk U Pfeiffer
- Centre for Applied One Health Research and Policy Advice, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, PR China;
| |
Collapse
|
26
|
Hakizimana JN, Nyabongo L, Ntirandekura JB, Yona C, Ntakirutimana D, Kamana O, Nauwynck H, Misinzo G. Genetic Analysis of African Swine Fever Virus From the 2018 Outbreak in South-Eastern Burundi. Front Vet Sci 2020; 7:578474. [PMID: 33251264 PMCID: PMC7674587 DOI: 10.3389/fvets.2020.578474] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/01/2020] [Indexed: 11/24/2022] Open
Abstract
African swine fever (ASF) is a contagious viral disease that causes high mortality, approaching 100%, in domestic pigs and wild boars. The disease has neither a cure nor a vaccine, and it is caused by an ASF virus (ASFV), the only member of the family Asfarviridae, genus Asfivirus, and the only known DNA arbovirus. Twenty-four genotypes of ASFV have been described to date, and all of them have been described in Africa. ASF is endemic in Burundi, and several outbreaks have been reported in the country; the disease continues to economically impact on small-scale farmers. This study aimed at genetic characterization of ASFV that caused an ASF outbreak in the Rutana region, Burundi, in the year 2018. Tissue samples from domestic pigs that died as a result of a severe hemorrhagic disease were collected in order to confirm the disease using polymerase chain reaction (PCR) and to conduct partial genome sequencing. Nucleotide sequences were obtained for the B646L (p72) gene, the intergenic fragment between the I73R and I329L genes, and the central variable region (CVR) of the B602L gene. Phylogenetic analysis of the Burundian 2018 ASFV grouped the virus within B646L (p72) genotype X and clustered together with those reported during the 1984 and 1990 outbreaks in Burundi with high nucleotide identity to some ASFV strains previously reported in neighboring East African countries, indicating a regional distribution of this ASFV genotype. Analysis of the intergenic fragment between I73R and I329L genes showed that the Burundian 2018 ASFV described in this study lacked a 32–base pair (bp) fragment present in the reference genotype X strain, Kenya 1950. In addition, the strain described in this study had the signature AAABNAABA at the CVR (B602L) gene and showed 100% amino acid sequence identity to viruses responsible for recent ASF outbreaks in the region. The virus described in this study showed high genetic similarities with ASFV strains previously described in domestic pigs, wild suids, and soft ticks in East African countries, indicating a possible common wild source and continuous circulation in domestic pigs in the region.
Collapse
Affiliation(s)
- Jean N Hakizimana
- SACIDS Africa Centre of Excellence for Infectious Diseases, SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro, Tanzania.,Department of Veterinary Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Lionel Nyabongo
- National Veterinary Laboratory of Burundi, Bujumbura, Burundi
| | - Jean B Ntirandekura
- Department of Animal Health and Productions, University of Burundi, Bujumbura, Burundi
| | - Clara Yona
- SACIDS Africa Centre of Excellence for Infectious Diseases, SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro, Tanzania.,Department of Biosciences, Solomon Mahlangu College of Science and Education, Sokoine University of Agriculture, Morogoro, Tanzania
| | | | - Olivier Kamana
- Department of Food Science and Technology, College of Agriculture, Animal Sciences and Veterinary Medicine, University of Rwanda, Busogo, Rwanda.,Department of Applied Research and Development and Foresight Incubation, National Industrial Research and Development Agency, Kigali, Rwanda
| | - Hans Nauwynck
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Gerald Misinzo
- SACIDS Africa Centre of Excellence for Infectious Diseases, SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro, Tanzania.,Department of Veterinary Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| |
Collapse
|
27
|
Isolation and Genetic Characterization of African Swine Fever Virus from Domestic Pig Farms in South Korea, 2019. Viruses 2020; 12:v12111237. [PMID: 33143155 PMCID: PMC7693868 DOI: 10.3390/v12111237] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 11/18/2022] Open
Abstract
On 17 September 2019, the first outbreak of African swine fever in a pig farm was confirmed in South Korea. By 9 October, 14 outbreaks of ASF in domestic pigs had been diagnosed in 4 cities/counties. We isolated viruses from all infected farms and performed genetic characterization. The phylogenetic analysis showed that all of fourteen ASFV isolates in South Korea belong to genotype II and serogroup 8. Additionally, all isolates had an intergenic region (IGR) II variant with additional tandem repeat sequences (TRSs) between the I73R and I329L genes and showed characteristics of central variable region (CVR) 1 of the B602L gene and IGR 1 of MGF 505 9R/10R genes. These are identical to the genetic characteristics of some European isolates and Chinese isolates.
Collapse
|
28
|
Bisimwa PN, Ongus JR, Tiambo CK, Machuka EM, Bisimwa EB, Steinaa L, Pelle R. First detection of African swine fever (ASF) virus genotype X and serogroup 7 in symptomatic pigs in the Democratic Republic of Congo. Virol J 2020; 17:135. [PMID: 32883295 PMCID: PMC7468181 DOI: 10.1186/s12985-020-01398-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/14/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND African swine fever (ASF) is a highly contagious and severe hemorrhagic viral disease of domestic pigs. The analysis of variable regions of African swine fever virus (ASFV) genome led to more genotypic and serotypic information about circulating strains. The present study aimed at investigating the genetic diversity of ASFV strains in symptomatic pigs in South Kivu province of the Democratic Republic of Congo (DRC). MATERIALS AND METHODS Blood samples collected from 391 ASF symptomatic domestic pigs in 6 of 8 districts in South Kivu were screened for the presence of ASFV, using a VP73 gene-specific polymerase chain reaction (PCR) with the universal primer set PPA1-PPA2. To genotype the strains, we sequenced and compared the nucleotide sequences of PPA-positive samples at three loci: the C-terminus of B646L gene encoding the p72 protein, the E183L gene encoding the p54 protein, and the central hypervariable region (CVR) of the B602L gene encoding the J9L protein. In addition, to serotype and discriminate between closely related strains, the EP402L (CD2v) gene and the intergenic region between the I73R and I329L genes were analyzed. RESULTS ASFV was confirmed in 26 of 391 pigs tested. However, only 19 and 15 PPA-positive samples, respectively, were successfully sequenced and phylogenetically analyzed for p72 (B646L) and p54 (E183L). All the ASFV studied were of genotype X. The CVR tetrameric repeat clustered the ASFV strains in two subgroups: the Uvira subgroup (10 TRS repeats, AAAABNAABA) and another subgroup from all other strains (8 TRS repeats, AABNAABA). The phylogenetic analysis of the EP402L gene clustered all the strains into CD2v serogroup 7. Analyzing the intergenic region between I73R and I329L genes revealed that the strains were identical but contained a deletion of a 33-nucleotide internal repeat sequence compared to ASFV strain Kenya 1950. CONCLUSION ASFV genotype X and serogroup 7 was identified in the ASF disease outbreaks in South Kivu province of DRC in 2018-2019. This represents the first report of ASFV genotype X in DRC. CVR tetrameric repeat sequences clustered the ASFV strains studied in two subgroups. Our finding emphasizes the need for improved coordination of the control of ASF.
Collapse
Affiliation(s)
- Patrick N. Bisimwa
- Department of Molecular Biology and Biotechnology, Pan African University, Institute of Basic Sciences, Technology and Innovation, Nairobi, Kenya
- Department of Animal Science and Production, Université Evangélique en Afrique, Bukavu, Democratic Republic of the Congo
| | - Juliette R. Ongus
- Department of Molecular Biology and Biotechnology, Pan African University, Institute of Basic Sciences, Technology and Innovation, Nairobi, Kenya
- Department of Medical Laboratory Sciences, Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya
| | - Christian K. Tiambo
- Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub, Naivasha Road, P.O. Box 30709, Nairobi, 00100 Kenya
- Centre for Tropical Livestock Genetics and Health (CTLGH), International Livestock Research Institute, Nairobi, Kenya
| | - Eunice M. Machuka
- Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub, Naivasha Road, P.O. Box 30709, Nairobi, 00100 Kenya
| | - Espoir B. Bisimwa
- Department of Animal Science and Production, Université Evangélique en Afrique, Bukavu, Democratic Republic of the Congo
| | - Lucilla Steinaa
- International Livestock Research Institute, Animal and Human Health, Nairobi, Kenya
| | - Roger Pelle
- Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub, Naivasha Road, P.O. Box 30709, Nairobi, 00100 Kenya
| |
Collapse
|
29
|
Ngu Ngwa V, Abouna A, Zoli AP, Attili AR. Epidemiology of African Swine Fever in Piggeries in the Center, South and South-West of Cameroon. Vet Sci 2020; 7:vetsci7030123. [PMID: 32882818 PMCID: PMC7559320 DOI: 10.3390/vetsci7030123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/14/2020] [Accepted: 07/28/2020] [Indexed: 02/01/2023] Open
Abstract
African Swine Fever (ASF) is enzootic in Cameroon. A cross-sectional study was conducted in the center, south and south-west regions of Cameroon in order to determine: the knowledge, skills and practices at risk of pig breeders; the prevalence of the disease in piggeries; the genome of the circulating virus. A total of 684 blood samples were collected in 209 farms for RT-PCR and ELISA analyses at the National Veterinary Laboratory (LANAVET) annex in Yaoundé. Prevalences of 15.2% (95CI: 12.5–17.9%) by ELISA, 23.8% (95CI: 20.6–27.0%) by RT-PCR, and 15.2% (95CI: 12.5–17.9%) by ELISA-PCR, were recorded. Of the farmers surveyed, 90% knew about the ASF and 55.3% have already experienced it. The 47.4% of them would not be able to recognize ASF if it occurred and, according to them, the risk of the disease introduction in farms would be 32% linked to the animal health personnel who work on farms. Molecular characterization revealed that only ASF genotype-I variable 19T-RSs is circulating. ASF is still hovering at a risky rate over the pig sector of Cameroon. The control of ASF needs an epidemiological surveillance, a better involvement of all stakeholders, sensitization of breeders and an effective State support for producers.
Collapse
Affiliation(s)
- Victor Ngu Ngwa
- School of Veterinary Medicine and Sciences, University of Ngaoundéré, Ngaoundéré P.O. Box 454, Cameroon; (A.A.); (A.P.Z.)
- Correspondence:
| | - Abdelrazak Abouna
- School of Veterinary Medicine and Sciences, University of Ngaoundéré, Ngaoundéré P.O. Box 454, Cameroon; (A.A.); (A.P.Z.)
| | - André Pagnah Zoli
- School of Veterinary Medicine and Sciences, University of Ngaoundéré, Ngaoundéré P.O. Box 454, Cameroon; (A.A.); (A.P.Z.)
| | - Anna-Rita Attili
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica, Italy;
| |
Collapse
|
30
|
Yu LS, Chou SY, Wu HY, Chen YC, Chen YH. Rapid and semi-quantitative colorimetric loop-mediated isothermal amplification detection of ASFV via HSV color model transformation. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2020; 54:963-970. [PMID: 32868194 DOI: 10.1016/j.jmii.2020.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/15/2020] [Accepted: 08/05/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND African Swine Fever (ASF) is a highly contagious and lethal viral disease of swine, the presence of which in groups of pigs leads to enormous economic losses in the farming industry. However, vaccines and drugs to treat ASF have yet to be developed. To control the spread of the African Swine Fever Virus (ASFV), a diagnostic method that can be applied rapidly and can detect the disease during the early stages of infection is urgently needed. METHODS In this study, we demonstrate a rapid and easy-to-use ASFV detection method that combines loop-mediated isothermal amplification (LAMP) and image processing with the hue-saturation-value (HSV) color model. This method was validated through use of synthetic ASFV DNA. RESULTS The method shows high sensitivity, as it detects as few as 10 copies per reaction within 20 min. The speed and sensitivity of this newly developed assay are superior to those reported in previous studies. In addition, through HSV color space transformation, the colorimetric result of this LAMP assay can be used for a semi-quantitative analysis for ASFV (ranging from 108 to 101 copies per reaction) and improve the discern to low concentration samples from a negative control. CONCLUSION These results show that the combination of ASFV-LAMP assay and HSV color space transformation may accelerate the screening process of pigs for ASFV infection. Overall, this study provides a rapid, sensitive, early-stage, on-site diagnosis of ASFV infection and has potential to be applied to other infectious diseases.
Collapse
Affiliation(s)
- Ling-Shan Yu
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | | | - Hsing-Yu Wu
- System Manufacturing Center, National Chung-Shan Institute of Science and Technology, Taoyuan, Taiwan; Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Yu-Cheng Chen
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yen-Hsu Chen
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Institute of Graduate Medicine, Centre of Sepsis, Centre of Tropical Medicine and Infectious Diseases, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
31
|
Petit K, Dunoyer C, Fischer C, Hars J, Baubet E, López-Olvera JR, Rossi S, Collin E, Le Potier MF, Belloc C, Peroz C, Rose N, Vaillancourt JP, Saegerman C. Assessment of the impact of forestry and leisure activities on wild boar spatial disturbance with a potential application to ASF risk of spread. Transbound Emerg Dis 2019; 67:1164-1176. [PMID: 31821736 DOI: 10.1111/tbed.13447] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 11/25/2019] [Accepted: 12/02/2019] [Indexed: 11/30/2022]
Abstract
In Europe, African swine fever virus (ASFV) is one of the most threatening infectious transboundary diseases of domestic pigs and wild boar. In September 2018, ASF was detected in wild boar in the South of Belgium. France, as a bordering country, is extremely concerned about the ASF situation in Belgium, and an active preparedness is ongoing in the country. One of the questions raised by this situation relates to disturbing activities that may affect wild boar movements and their possible impact on the spread of ASFV. Despite evidence of disturbance related to hunting practices, there is a paucity of information on the impact of forestry and human leisure activities. To assess this impact on wild boar movements, a systematic review was first conducted but very few useful data were obtained. For this reason, an expert elicitation was carried out by the French Agency for Food, Environmental and Occupational Health & Safety in order to deal with this knowledge gap. A total of 30 experts originating from France and adjacent neighbouring countries (Spain, Belgium and Switzerland) were elicited about the relative importance of six factors of spatial disturbance of wild boar (noise, smell, invasion of space, modification of the environment, duration and frequency of the activity). Then, for each factor of disturbance, they were asked about the impact of 16 different commercial forestry and human leisure activities. A global weighted score was estimated in order to capture the variability of a wide range of territorial conditions and the uncertainty of expert elicitation. This estimate permitted ranking all 16 activities and aggregating them in three groups according to their potential for disturbance of wild boar, using a regression tree analysis. The results of this expert elicitation provide a methodological approach that may be useful for French and other European decision makers and stakeholders involved in the crisis management of ASF.
Collapse
Affiliation(s)
- Karine Petit
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Maisons-Alfort, France
| | - Charlotte Dunoyer
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Maisons-Alfort, France
| | - Claude Fischer
- Department of Nature Management, University of Applied Sciences and Arts - Western Switzerland (HEPIA), Jussy, Switzerland
| | - Jean Hars
- Research and Expertise Department, Diseases Unit, French Hunting and Wildlife Agency (ONCFS), St Benoist, France
| | - Eric Baubet
- Research and Expertise Department, Wild Ungulates Unit, French Hunting and Wildlife Agency (ONCFS), Birieux, France
| | - Jorge Ramón López-Olvera
- Servei d'Ecopatologia de Fauna Salvatge (SEFAS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Sophie Rossi
- Research and Expertise Department, Diseases Unit, French Hunting and Wildlife Agency (ONCFS), St Benoist, France
| | - Eric Collin
- French National Society of Veterinary Technical Groups (SNGTV), Paris, France
| | - Marie-Frédérique Le Potier
- Pig virology and Immunology Unit, Laboratory of Ploufragan/Plouzané/Niort, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France
| | - Catherine Belloc
- BIOEPAR, INRA, Oniris, Université Bretagne Loire, Nantes, France
| | - Carole Peroz
- BIOEPAR, INRA, Oniris, Université Bretagne Loire, Nantes, France
| | - Nicolas Rose
- Epidemiology, Health and Welfare Unit, Laboratory of Ploufragan/Plouzané/Niort, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France
| | | | - Claude Saegerman
- Research Unit for Epidemiology and Risk Analysis applied to veterinary sciences (UREAR-ULg), Centre of Fundamental and Applied Research for Animals and Health (FARAH), University of Liège, Liège, Belgium
| |
Collapse
|
32
|
Evidence for the presence of African swine fever virus in apparently healthy pigs in South-Kivu Province of the Democratic Republic of Congo. Vet Microbiol 2019; 240:108521. [PMID: 31902515 PMCID: PMC7045278 DOI: 10.1016/j.vetmic.2019.108521] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 11/25/2022]
Abstract
The high level of antibody in adult animal kept in free-range system emphasis use of good husbandry practices. The presence of viral DNA in apparently healthy animals help in understanding the persistence of ASF. The differences in ecological conditions may play a key role in virus transmission. Identification of ASFV genotype IX confirms spread of the virus throughout the country.
African swine fever (ASF) is the most important disease constraining smallholder pig production in the Democratic Republic of Congo, causing high mortality in domestic pigs with severe impacts on the livelihoods of local populations. This study was conducted with the aim of determining the prevalence of ASF and circulating virus genotypes in asymptomatic pigs raised on smallholder farms in the South Kivu province to understand the transmission dynamics of ASF and ultimately improving disease control. A cross-sectional survey was carried out in 5 districts where 267 pig blood were screened for both antibody and viral genome using indirect Enzyme Linked Immunosorbent Assay (ELISA) and polymerase chain reaction (PCR) respectively. Additionally, amplicons from PCR positive samples were sequenced by Sanger method for genetic analysis of ASF virus (ASFV) based on the C-terminal region of the B646L gene that encodes the major capsid protein p72 and the gene E183L encoding the p54 protein. The overall seroprevalence obtained based on antibody to p30 protein was 37 % and was significantly higher (P < 0.05) in adult (>1 year) animals (44.7 %) than in younger (<1 year) ones (33.5 %). Moreover, the seropositivity varied significantly (P < 0.05) according to the pig husbandry system practiced within the districts investigated with Uvira (55 %) and Mwenga (42.2 %) having the highest ASFV antibodies, while the lowest (10.5 %) were in Kalehe. Free-range pigs exhibited a higher level of seropositivity to ASFV antibody (68.9 %) than pigs kept in the pigsty housing system (21.6 %). However, no statistically significant differences (P > 0.05) were observed when sex of the animal and breed were factored. PCR detection of ASFV amplified a specific band of expected size (257 bp) in 61 out of 267 blood samples, confirming the presence of the viral DNA in 22.8 % of asymptomatic domestic pigs. Statistical analysis revealed that ASFV infection in domestic pigs varied significantly (p < 0.001) according to geographical location and breed, with the highest infection rate found in Walungu district (33.7 %) while the lowest was registered in Kalehe (15.8 %). Local pigs (27.2 %) were more infected than crosses (9.2 %). Phylogenetic analyses based on partial sequences of the p72 and p54 genes revealed that all the ASFV detected belonged to genotype IX, which has previously been reported in other parts of DR Congo, and was clustered together with isolates from Kenya, Uganda and Republic of Congo. This study avails the first evidence of the presence of ASF virus in domestic pigs in the absence of outbreaks in South Kivu province, eastern DR Congo, indicating a need to raise awareness among pig farmers and veterinary authorities on the application of biosecurity measures and good husbandry practices to control the disease.
Collapse
|
33
|
Molini U, Mushonga B, Settypalli TBK, Dundon WG, Khaiseb S, Jago M, Cattoli G, Lamien CE. Molecular characterization of African swine fever virus from outbreaks in Namibia in 2018. Transbound Emerg Dis 2019; 67:1008-1014. [PMID: 31650681 DOI: 10.1111/tbed.13399] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/02/2019] [Accepted: 10/07/2019] [Indexed: 11/27/2022]
Abstract
Five samples were collected from four suspected outbreaks of African swine fever in Namibia in 2018. Sequencing of the C-terminus of the B646L gene (p72 protein), the central hypervariable region (CVR) of the B602L gene, the E183L gene (p54 protein) and the CD2v (used to determine the serogroup) was performed on DNA isolated from the samples. Phylogenetic analyses of the B646L (p72) revealed that one of the samples belonged to genotype I while the remaining samples could not be assigned to any currently known genotype. In contrast, by using the E183L gene three of the samples were shown to belong to genotype Id and only two were of unknown genotype. Based on the analysis of the partial CD2v amino acid sequences of four of the samples, one of the viruses clustered with serogroup 2 while the other three did not cluster within any of the eight known serogroups. Examination of the CVR identified three variants with 8, 18 and 24 tetrameric tandem repeat sequences. This study indicates that at least three different genetically distinct ASFV are currently present in Namibia.
Collapse
Affiliation(s)
- Umberto Molini
- Faculty of Agriculture and Natural Resources, School of Veterinary Medicine, University of Namibia, Windhoek, Namibia.,Central Veterinary Laboratory, Windhoek, Namibia
| | - Borden Mushonga
- Faculty of Agriculture and Natural Resources, School of Veterinary Medicine, University of Namibia, Windhoek, Namibia
| | - Tirumala B K Settypalli
- Animal Production and Health Laboratory, Department of Nuclear Sciences and Applications, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - William G Dundon
- Animal Production and Health Laboratory, Department of Nuclear Sciences and Applications, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | | | - Mark Jago
- Faculty of Agriculture and Natural Resources, School of Veterinary Medicine, University of Namibia, Windhoek, Namibia
| | - Giovanni Cattoli
- Animal Production and Health Laboratory, Department of Nuclear Sciences and Applications, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - Charles E Lamien
- Animal Production and Health Laboratory, Department of Nuclear Sciences and Applications, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| |
Collapse
|
34
|
Wang D, Yu J, Wang Y, Zhang M, Li P, Liu M, Liu Y. Development of a real-time loop-mediated isothermal amplification (LAMP) assay and visual LAMP assay for detection of African swine fever virus (ASFV). J Virol Methods 2019; 276:113775. [PMID: 31726114 DOI: 10.1016/j.jviromet.2019.113775] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/05/2019] [Accepted: 11/10/2019] [Indexed: 11/25/2022]
Abstract
African swine fever (ASF) is a fatal disease caused by a virus in domestic pigs. In this study, a real-time loop-mediated isothermal amplification (LAMP) assay and visual LAMP assay were developed for the detection of African swine fever virus (ASFV). LAMP primers targeting the p10 gene of ASFV were designed, the LAMP reaction system was optimized with plasmid pUC57 containing the p10 gene sequence, and the specificities of the real-time LAMP and the visual assays were tested with the DNA or cDNA of pseudorabies virus (PRV), porcine circovirus type 2 (PCV2), classical swine fever virus (CSFV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine parvovirus (PPV) and ASFV, as well as the plasmid pUC57 containing the p10 gene sequence. The detection limits were determined using a serial dilution of plasmid pUC57 containing the p10 gene sequence. Our results showed that the LAMP assays could accurately and specifically detect ASFV with a detection limit of 30 copies per μl-1 of pUC57 containing p10 gene sequence. In addition, the LAMP assays were further evaluated using various genotypes of ASFV strains. Furthermore, the LAMP assays are comparable with the well-established real-time PCR assay. This study provides promising solutions for facilitating preliminary and cost-effective surveillance for prevention and control of ASFV.
Collapse
Affiliation(s)
- Deguo Wang
- Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety of Henan Province, Xuchang University, Xuchang, 461000, China
| | - Jianghan Yu
- School of Food and Biological Engineering, Henan University of Science and Technology, Luoyang, 471000, China
| | - Yongzhen Wang
- Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety of Henan Province, Xuchang University, Xuchang, 461000, China
| | - Meng Zhang
- School of Food and Biological Engineering, Henan University of Science and Technology, Luoyang, 471000, China
| | - Peng Li
- XinXiang University, Xinxiang, 453000, China
| | - Meng Liu
- Zhumadian Veterinary Drug & Feed (Animal Products) Inspection and Testing Center, Zhumadian, 463000, China
| | - Yanhong Liu
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, 19038, USA.
| |
Collapse
|
35
|
Chang'a JS, Mayenga C, Settypalli TBK, Achenbach JE, Mwanandota JJ, Magidanga B, Cattoli G, Jeremiah M, Kamigwe A, Guo S, Kalabi D, Mramba F, Lamien CE. Symptomatic and asymptomatic cases of African swine fever in Tanzania. Transbound Emerg Dis 2019; 66:2402-2410. [PMID: 31325213 DOI: 10.1111/tbed.13298] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 11/27/2022]
Abstract
African swine fever (ASF) is an acute, highly contagious and deadly viral haemorrhagic disease of domestic pigs caused by African swine fever virus (ASFV). In ASF endemic countries, there are an increasing number of reports on circulating ASFV strains with different levels of virulence causing a broad range of clinical symptoms in susceptible animals. Tanzania, where ASFV is endemic since 2001, recorded several outbreaks including symptomatic and asymptomatic cases between 2015 and 2017. We collected 35 clinical samples from four outbreaks for diagnostic confirmation and sequenced the partial B646L (p72), the full E183L (p54) gene, the central variable region of the B602L gene and the intergenic region between the I73R and I329L genes to characterize molecularly the new ASFV isolates and analyse their relatedness with previously reported Tanzanian and foreign isolates. We detected ASFV in 21 samples, 15 from symptomatic and six from asymptomatic pigs. Phylogenetic analyses based on the partial p72 gene and the complete p54 (E183L) genes revealed that the ASFVs in samples from symptomatic pigs belonged to genotypes II and those in samples from asymptomatic pigs belonged to genotype IX. The CVR profiles of the p72 genotype II and genotype IX isolates differed between each other and from previously published Tanzanian sequences. The sequence analysis of the intergenic region between the I73R and I329L for the 2017 genotype II isolates showed the absence of one GGAATATATA motif in those isolates. This study showed the simultaneous circulation of two different ASFV genotypes with different levels of pathogenicity in Tanzania. Since the existence of sub-clinically infected pigs may contribute to the persistence of the virus, our findings suggest continuous surveillance and characterization of ASFV isolates in disease-endemic regions.
Collapse
Affiliation(s)
- Jelly S Chang'a
- Centre for Infectious Diseases and Biotechnology, Tanzania Veterinary Laboratory Agency, Dar es Salaam, Tanzania
| | - Charles Mayenga
- Centre for Infectious Diseases and Biotechnology, Tanzania Veterinary Laboratory Agency, Dar es Salaam, Tanzania
| | - Tirumala Bharani K Settypalli
- Animal Production and Health Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | | | - Julius J Mwanandota
- Centre for Infectious Diseases and Biotechnology, Tanzania Veterinary Laboratory Agency, Dar es Salaam, Tanzania
| | - Bishop Magidanga
- Centre for Infectious Diseases and Biotechnology, Tanzania Veterinary Laboratory Agency, Dar es Salaam, Tanzania
| | - Giovanni Cattoli
- Animal Production and Health Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Mashaka Jeremiah
- Centre for Infectious Diseases and Biotechnology, Tanzania Veterinary Laboratory Agency, Dar es Salaam, Tanzania
| | - Aloyce Kamigwe
- Centre for Infectious Diseases and Biotechnology, Tanzania Veterinary Laboratory Agency, Dar es Salaam, Tanzania
| | - Shukuru Guo
- Centre for Infectious Diseases and Biotechnology, Tanzania Veterinary Laboratory Agency, Dar es Salaam, Tanzania
| | - Denis Kalabi
- Centre for Infectious Diseases and Biotechnology, Tanzania Veterinary Laboratory Agency, Dar es Salaam, Tanzania
| | - Furaha Mramba
- Centre for Infectious Diseases and Biotechnology, Tanzania Veterinary Laboratory Agency, Dar es Salaam, Tanzania
| | - Charles E Lamien
- Animal Production and Health Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| |
Collapse
|
36
|
Mulumba-Mfumu LK, Saegerman C, Dixon LK, Madimba KC, Kazadi E, Mukalakata NT, Oura CAL, Chenais E, Masembe C, Ståhl K, Thiry E, Penrith ML. African swine fever: Update on Eastern, Central and Southern Africa. Transbound Emerg Dis 2019; 66:1462-1480. [PMID: 30920725 DOI: 10.1111/tbed.13187] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 03/21/2019] [Accepted: 03/24/2019] [Indexed: 11/28/2022]
Abstract
Control of African swine fever (ASF) in countries in Eastern, Central and Southern Africa (ECSA) is particularly complex owing to the presence of all three known epidemiological cycles of maintenance of the virus, namely an ancient sylvatic cycle involving the natural hosts and vectors of the disease as well as domestic cycles with and without involvement of natural vectors. While the situation is well documented in some of the countries, for others very little information is available. In spite of the unfavourable ASF situation, the pig population in the sub-region has grown exponentially in recent decades and is likely to continue to grow in response to rapid urban growth resulting in increasing demand for animal protein by populations that are no longer engaged in livestock production. Better management of ASF will be essential to permit the pig sector to reach its full potential as a supplier of high quality protein and a source of income to improve livelihoods and create wealth. No vaccine is currently available and it is likely that, in the near future, the sub-region will continue to rely on the implementation of preventive measures, based on the epidemiology of the disease, to avoid both the devastating losses that outbreaks can cause and the risk the sub-region poses to other parts of Africa and the world. The current situation in the ECSA sub-region is reviewed and gaps in knowledge are identified in order to support ongoing strategy development for managing ASF in endemic areas.
Collapse
Affiliation(s)
- Léopold K Mulumba-Mfumu
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo.,Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR- ULiège), Fundamental and Applied Research for Animals & Health (FARAH) Center, Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
| | - Claude Saegerman
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR- ULiège), Fundamental and Applied Research for Animals & Health (FARAH) Center, Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
| | | | - Kapanga C Madimba
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Eric Kazadi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Ndeji T Mukalakata
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Chris A L Oura
- School of Veterinary Medicine, Faculty of Medical Sciences, University of the West Indies, Champ Fleurs, Trinidad and Tobago
| | - Erika Chenais
- Department of Disease Control and Epidemiology, SVA, Uppsala, Sweden
| | - Charles Masembe
- College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Karl Ståhl
- Department of Disease Control and Epidemiology, SVA, Uppsala, Sweden
| | - Etienne Thiry
- Veterinary Virology and Animal Viral Diseases, Fundamental and Applied Research for Animals & Health (FARAH) Center, Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
| | - Mary Louise Penrith
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| |
Collapse
|
37
|
Molecular Characterization of African Swine Fever Viruses from Outbreaks in Peri-Urban Kampala, Uganda. Adv Virol 2019; 2019:1463245. [PMID: 31057618 PMCID: PMC6463604 DOI: 10.1155/2019/1463245] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/04/2019] [Accepted: 03/10/2019] [Indexed: 12/03/2022] Open
Abstract
African swine fever (ASF) is an infectious transboundary disease of domestic pigs and wild swine and is currently the most serious constraint to piggery in Uganda. The causative agent of ASF is a large double-stranded linear DNA virus with a complex structure. There are twenty-four ASFV genotypes described to date; however, in Uganda, only genotypes IX and X have been previously described. Inadequate ASF outbreak investigation has contributed to the delayed establishment of effective interventions to aid the control of ASF. Continuous virus characterization enhances the understanding of ASF epidemiology in terms of viral genome variations, extent, severity, and the potential source of the viruses responsible for outbreaks. We collected samples from pigs that had died of a hemorrhagic disease indicative of ASF. DNA was extracted from all samples and screened with the OIE recommended diagnostic PCR for ASF. Partial B646L (p72), full-length E183L (p54) genes, and CVR region of the P72 gene were amplified, purified, and sequenced. Web-based BLAST and MEGA X software were used for sequence analysis. ASF was confirmed in 10 of the 15 suspected pig samples. Phylogenetic analysis confirmed circulation of genotype IX by both full-length E183 (p54) and partial B646L (p72) gene sequencing. Intragenotypic resolution of the CVR region revealed major deletions in the virus genome, in some isolates of this study. The marked reduction in the number of tetrameric tandem repeats in some isolates of this study could potentially play a role in influencing the virulence of this particular genotype IX in Uganda.
Collapse
|
38
|
Penrith ML, Bastos AD, Etter EMC, Beltrán-Alcrudo D. Epidemiology of African swine fever in Africa today: Sylvatic cycle versus socio-economic imperatives. Transbound Emerg Dis 2019; 66:672-686. [PMID: 30633851 DOI: 10.1111/tbed.13117] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/04/2018] [Accepted: 12/14/2018] [Indexed: 11/29/2022]
Abstract
African swine fever (ASF) is believed to have evolved in eastern and southern Africa in a sylvatic cycle between common warthogs (Phacochoerus africanus) and argasid ticks of the Ornithodoros moubata complex that live in their burrows. The involvement of warthogs and possibly other wild suids in the maintenance of ASF virus means that the infection cannot be eradicated from Africa, but only prevented and controlled in domestic pig populations. Historically, outbreaks of ASF in domestic pigs in Africa were almost invariably linked to the presence of warthogs, but subsequent investigations of the disease in pigs revealed the presence of another cycle involving domestic pigs and ticks, with a third cycle becoming apparent when the disease expanded into West Africa where the sylvatic cycle is not present. The increase in ASF outbreaks that has accompanied the exponential growth of the African pig population over the last three decades has heralded a shift in the epidemiology of ASF in Africa, and the growing importance of the pig husbandry and trade in the maintenance and spread of ASF. This review, which focuses on the ASF situation between 1989 and 2017, suggests a minor role for wild suids compared with the domestic cycle, driven by socio-economic factors that determine the ability of producers to implement the control measures needed for better management of ASF in Africa.
Collapse
Affiliation(s)
- Mary-Louise Penrith
- Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
| | - Armanda Duarte Bastos
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| | - Eric M C Etter
- Department of Production Animal Studies, University of Pretoria, Pretoria, South Africa.,CIRAD, UMR Animal Santé, Territoires, Risque et Ecosystèmes (ASTRE), Montpellier, France.,ASTRE, Univ. Montpellier, CIRAD, INRA, Montpellier, France
| | - Daniel Beltrán-Alcrudo
- Regional Office for Europe and Central Asia, Food and Agriculture Organization of the United Nations, Budapest, Hungary
| |
Collapse
|
39
|
BA71ΔCD2: a New Recombinant Live Attenuated African Swine Fever Virus with Cross-Protective Capabilities. J Virol 2017; 91:JVI.01058-17. [PMID: 28814514 PMCID: PMC5640839 DOI: 10.1128/jvi.01058-17] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/07/2017] [Indexed: 12/04/2022] Open
Abstract
African swine fever is a highly contagious viral disease of mandatory declaration to the World Organization for Animal Health (OIE). The lack of available vaccines makes its control difficult; thus, African swine fever virus (ASFV) represents a major threat to the swine industry. Inactivated vaccines do not confer solid protection against ASFV. Conversely, live attenuated viruses (LAV), either naturally isolated or obtained by genetic manipulation, have demonstrated reliable protection against homologous ASFV strains, although little or no protection has been demonstrated against heterologous viruses. Safety concerns are a major issue for the use of ASFV attenuated vaccine candidates and have hampered their implementation in the field so far. While trying to develop safer and efficient ASFV vaccines, we found that the deletion of the viral CD2v (EP402R) gene highly attenuated the virulent BA71 strain in vivo. Inoculation of pigs with the deletion mutant virus BA71ΔCD2 conferred protection not only against lethal challenge with the parental BA71 but also against the heterologous E75 (both genotype I strains). The protection induced was dose dependent, and the cross-protection observed in vivo correlated with the ability of BA71ΔCD2 to induce specific CD8+ T cells capable of recognizing both BA71 and E75 viruses in vitro. Interestingly, 100% of the pigs immunized with BA71ΔCD2 also survived lethal challenge with Georgia 2007/1, the genotype II strain of ASFV currently circulating in continental Europe. These results open new avenues to design ASFV cross-protective vaccines, essential to fight ASFV in areas where the virus is endemic and where multiple viruses are circulating. IMPORTANCE African swine fever virus (ASFV) remains enzootic in most countries of Sub-Saharan Africa, today representing a major threat for the development of their swine industry. The uncontrolled presence of ASFV has favored its periodic exportation to other countries, the last event being in Georgia in 2007. Since then, ASFV has spread toward neighboring countries, reaching the European Union's east border in 2014. The lack of available vaccines against ASFV makes its control difficult; so far, only live attenuated viruses have demonstrated solid protection against homologous experimental challenges, but they have failed at inducing solid cross-protective immunity against heterologous viruses. Here we describe a new LAV candidate with unique cross-protective abilities: BA71ΔCD2. Inoculation of BA71ΔCD2 protected pigs not only against experimental challenge with BA71, the virulent parental strain, but also against heterologous viruses, including Georgia 2007/1, the genotype II strain of ASFV currently circulating in Eastern Europe.
Collapse
|
40
|
The Epidemiology of African Swine Fever in "Nonendemic" Regions of Zambia (1989-2015): Implications for Disease Prevention and Control. Viruses 2017; 9:v9090236. [PMID: 28832525 PMCID: PMC5618003 DOI: 10.3390/v9090236] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/11/2017] [Accepted: 08/21/2017] [Indexed: 11/29/2022] Open
Abstract
African swine fever (ASF) is a highly contagious and deadly viral hemorrhagic disease of swine. In Zambia, ASF was first reported in 1912 in Eastern Province and is currently believed to be endemic in that province only. Strict quarantine measures implemented at the Luangwa River Bridge, the only surface outlet from Eastern Province, appeared to be successful in restricting the disease. However, in 1989, an outbreak occurred for the first time outside the endemic province. Sporadic outbreaks have since occurred almost throughout the country. These events have brought into acute focus our limited understanding of the epidemiology of ASF in Zambia. Here, we review the epidemiology of the disease in areas considered nonendemic from 1989 to 2015. Comprehensive sequence analysis conducted on genetic data of ASF viruses (ASFVs) detected in domestic pigs revealed that p72 genotypes I, II, VIII and XIV have been involved in causing ASF outbreaks in swine during the study period. With the exception of the 1989 outbreak, we found no concrete evidence of dissemination of ASFVs from Eastern Province to other parts of the country. Our analyses revealed a complex epidemiology of the disease with a possibility of sylvatic cycle involvement. Trade and/or movement of pigs and their products, both within and across international borders, appear to have been the major factor in ASFV dissemination. Since ASFVs with the potential to cause countrywide and possibly regional outbreaks, could emerge from “nonendemic regions”, the current ASF control policy in Zambia requires a dramatic shift to ensure a more sustainable pig industry.
Collapse
|