1
|
Mahdavi F, Fatemi M, Mohammad Rahimi H, Niyyati M, Yadegar A, Mirjalali H. Identification of Candida albicans and non-MRSA Staphylococcus aureus in free-living amoebae isolated from the hospital wards; an alarm for distribution of nosocomial infections via FLA. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:3749-3759. [PMID: 38415666 DOI: 10.1080/09603123.2024.2323131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/21/2024] [Indexed: 02/29/2024]
Abstract
Free-living amoebae (FLA) are isolated from the hospital environments and known as Trojan horses for medical essential microorganisms. This study aimed to investigate the prevalence and the presence of FLA and two critical agents of nosocomial infections, in the hospital wards. Sixty samples were collected from four communities and cultured onto non-nutrient agar (NNA). After total DNA extraction, FLA were characterized using PCR and sequencing. The presence of Candida albicans and Staphylococcus aureus was evaluated using real-time and conventional PCR, respectively. Acanthamoeba sp. was characterized in 30 (50%) samples. Two (6.6%) and one (3.3%) samples were positive for Vahlkampfiidae and Vermamoeba vermiformis, respectively . S. aureus was detected in 13 (43.3%) of samples, while none of them were positive for methicillin-resistant gene. C. albicans DNA was detected in one (3.3%) FLA-positive sample. The isolation of FLA from hospital suggests an essential role these eukaryotes in the inter-ward circulation of nosocomial infections.
Collapse
Affiliation(s)
- Fatemeh Mahdavi
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marziye Fatemi
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hanieh Mohammad Rahimi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Niyyati
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Mirabedini Z, Niyyati M, Mohammad Rahimi H, Soleimani Jevinani S, Fatemi M, Tanhaei M, Mohebbi SR, Yadegar A, Abolghasemi S, Arab Mazar Z, Mirjalali H. The presence of yeasts and bacteria in free-living amoebae isolated from COVID-19 patients: concern for secondary infections. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-14. [PMID: 39428626 DOI: 10.1080/09603123.2024.2409830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/23/2024] [Indexed: 10/22/2024]
Abstract
This study aimed to investigate the presence of SARS-CoV-2, yeasts, and bacteria in isolated free-living amoeba (FLA) from COVID-19 patients. Nasopharyngeal swabs (n = 60) were obtained from COVID-19 patients. After cultivation, morphological characterization, and RNA/DNA extraction, the presence of selected microorganisms was investigated. From 60 COVID-19 samples, 18 (30%) were positive for FLA. Acanthamoeba sp. Naegleria australiensis, Tetramitus sp. and Vermamoeba vermiformis were characterized in 12 (80%), 1 (6.66%), 2 (13.33%), and 7 (38.88%) of samples, respectively. SARS-CoV-2 RNA was not detected in FLA. Candida albicans, C. tropicalis, and C. parapsilosis were detected in (11/18; 61.11%), (3/18; 16.67%), and (3/18; 16.67%) of samples, respectively. Geotrichum candidum was detected in 10/18 (55.55%) of samples. Streptococcus spp. and Staphylococcus spp. were identified in 16/18 (88.88%) and 3/18 (16.67%), respectively. The presence of yeasts and bacteria signifies the possible role of FLA in distribution of secondary infections in susceptible patients.
Collapse
Affiliation(s)
- Zahra Mirabedini
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Niyyati
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hanieh Mohammad Rahimi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Soleimani Jevinani
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marziye Fatemi
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Tanhaei
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Abolghasemi
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Arab Mazar
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Phendinvay O, Thongseesuksai T, Boonmars T, Laummaunwai P. EVALUATION OF THE CYSTICIDAL ACTIVITY OF CHLOROCRESOL AGAINST ACANTHAMOEBA POLYPHAGA. J Parasitol 2024; 110:423-427. [PMID: 39245448 DOI: 10.1645/24-15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024] Open
Abstract
Chlorocresol has antibacterial and antifungal properties, yet its effectiveness in eradicating Acanthamoeba spp. remains unexplored. Acanthamoeba species trophozoites are usually sensitive to biocides, whereas cysts tend to be more resistant. This study aimed to evaluate the cysticidal activity of chlorocresol against Acanthamoeba polyphaga. Chlorocresol concentrations of 0.02, 0.04, and 0.08% were prepared and A. polyphaga cysts were incubated at room temperature (28-37 C) for 1, 24, 48, and 72 hr at each concentration. Cyst viability was evaluated using trypan blue staining and the percentage of nonviable cysts was calculated. For qualification assays, treated cysts were cultured on nonnutrient agar medium coated with Escherichia coli, incubated at 30 C, observed under a stereomicroscope for 30 days, and inoculated into peptone-yeast extract-glucose medium at 30 C for 72 hr. The results revealed that the A. polyphaga cysts were susceptible to 0.02, 0.04, and 0.08% chlorocresol. Chlorocresol made a significant difference in viability (P < 0.001) compared with the nontreated control for the same incubation time. This is the first study to examine the efficacy of chlorocresol against A. polyphaga cysts and it was highly effective. Chlorocresol could thus serve as an alternative chemical disinfectant for the eradication of A. polyphaga cysts as well as a prophylactic against transmission of other pathogenic microorganisms for which Acanthamoeba species can act as a carrier.
Collapse
Affiliation(s)
- Orlanath Phendinvay
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen Province, Mitraparp Road, Thailand 40002
| | - Thaksaporn Thongseesuksai
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen Province, Mitraparp Road, Thailand 40002
| | - Thidarut Boonmars
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen Province, Mitraparp Road, Thailand 40002
- Neglected, Zoonosis and Vector-Borne Disease Research Group, Khon Kaen University, Mitraparp Road, Thailand 40002
| | - Porntip Laummaunwai
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen Province, Mitraparp Road, Thailand 40002
- Neglected, Zoonosis and Vector-Borne Disease Research Group, Khon Kaen University, Mitraparp Road, Thailand 40002
| |
Collapse
|
4
|
Siddiqui R, Khatoon B, Kawish M, Sajeev S, Faizi S, Shah MR, Alharbi AM, Khan NA. The potential of nanocomposites (patuletin-conjugated with gallic acid-coated zinc oxide) against free-living amoebae pathogens. Int Microbiol 2024:10.1007/s10123-024-00584-w. [PMID: 39276173 DOI: 10.1007/s10123-024-00584-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/16/2024]
Abstract
Free-living amoebae infections are on the rise while the prognosis remains poor. Current therapies are ineffective, and there is a need for novel effective drugs which can target Naegleria, Balamuthia, and Acanthamoeba species. In this study, we determined the effects of a nano-formulation based on flavonoid patuletin-loaded gallic acid functionalized zinc oxide nanoparticles (PA-GA-ZnO) against Acanthamoeba, Balamuthia, and Naegleria trophozoites. Characterization of the nano-formulation was accomplished utilizing analytical tools, namely Fourier-transform infrared spectroscopy, drug entrapment efficiency, polydispersity index, dimensions, and surface morphologies. Anti-amoebic effects were investigated using amoebicidal assay, cytopathogenicity assay, and cytotoxicity of the nano-formulation on human cells. The findings revealed that nano-formulation (PA-GA-ZnO) displayed significant anti-amoebic properties and augmented effects of patuletin alone against all three brain-eating amoebae. When tested alone, patuletin nano-formulations showed minimal toxicity effects against human cells. In summary, the nano-formulations evaluated herein depicts efficacy versus Acanthamoeba, Balamuthia, and Naegleria. Nonetheless, future studies are needed to comprehend the molecular mechanisms of patuletin nano-formulations versus free-living amoebae pathogens, in addition to animal studies to determine their potential value for clinical applications.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, EH14 4AS, UK
- Microbiota Research Center, Istinye University, Istanbul, 34010, Turkey
| | - Bushra Khatoon
- International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Kawish
- International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Sreedevi Sajeev
- Research Institute of Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Shaheen Faizi
- International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Raza Shah
- International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Ahmad M Alharbi
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Naveed Ahmed Khan
- Microbiota Research Center, Istinye University, Istanbul, 34010, Turkey.
- School of Science, College of Science and Engineering, University of Derby, Derby, DE22 1GB, UK.
| |
Collapse
|
5
|
Zhou M, Ma L, Wang Z, Li S, Cai Y, Li M, Zhang L, Wang C, Wu B, Yan Q, He Z, Shu L. Nano- and microplastics drive the dynamic equilibrium of amoeba-associated bacteria and antibiotic resistance genes. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134958. [PMID: 38905974 DOI: 10.1016/j.jhazmat.2024.134958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
As emerging pollutants, microplastics have become pervasive on a global scale, inflicting significant harm upon ecosystems. However, the impact of these microplastics on the symbiotic relationship between protists and bacteria remains poorly understood. In this study, we investigated the mechanisms through which nano- and microplastics of varying sizes and concentrations influence the amoeba-bacterial symbiotic system. The findings reveal that nano- and microplastics exert deleterious effects on the adaptability of the amoeba host, with the magnitude of these effects contingent upon particle size and concentration. Furthermore, nano- and microplastics disrupt the initial equilibrium in the symbiotic relationship between amoeba and bacteria, with nano-plastics demonstrating a reduced ability to colonize symbiotic bacteria within the amoeba host when compared to their microplastic counterparts. Moreover, nano- and microplastics enhance the relative abundance of antibiotic resistance genes and heavy metal resistance genes in the bacteria residing within the amoeba host, which undoubtedly increases the potential transmission risk of both human pathogens and resistance genes within the environment. In sum, the results presented herein provide a novel perspective and theoretical foundation for the study of interactions between microplastics and microbial symbiotic systems, along with the establishment of risk assessment systems for ecological environments and human health.
Collapse
Affiliation(s)
- Min Zhou
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Lu Ma
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Zihe Wang
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Shicheng Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Yijun Cai
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Meicheng Li
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Lin Zhang
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Cheng Wang
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Bo Wu
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Qingyun Yan
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhili He
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Longfei Shu
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
6
|
Vingataramin Y, Quétel I, Pons MA, Talarmin A, Marcelino I. Spatiotemporal distribution of thermophilic free-living amoebae in recreational waters: A 5-year survey in Guadeloupe (French West Indies). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173318. [PMID: 38777057 DOI: 10.1016/j.scitotenv.2024.173318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/04/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Free-living amoebae (FLA) such as Acanthamoeba, Balamuthia mandrillaris, Naegleria fowleri and Sappinia pedata are naturally widespread in freshwater, causing rare but fatal and debilitating infections in humans. Although recent studies have shown an increase in infection rates, there is a paucity of epidemiological studies regarding the presence of these emerging pathogens in water. Herein, we studied the diversity and relative abundance of thermophilic FLA in different recreational baths in a tropical climate for 5 years. From 2018 to 2022, a total of 96 water samples were collected from 7 recreational baths (natural, tiled, regularly cleaned or not, and with temperatures ranging from 27 to 40 °C). DNA was extracted from FLA cultivated at 37 °C to detect thermophilic culturable FLA. Metabarcoding studies were conducted through FLA 18S rRNA gene amplicons sequencing; amplicon sequence variants (ASV) were extracted from each sample and taxonomy assigned against PR2 database using dada2 and phyloseq tools. We also searched for Naegleria sp. and N. fowleri using PCR targeting ITS and NFITS genes (respectively) and we quantified them using an optimized most probable number (MPN) method for FLA. Our results showed that differences in FLA diversity and abundance were observed amongst the 7 baths, but without a clear seasonal distribution. Naegleria, Vermamoeba and Stenamoeba were the most represented genera, while the genera Acanthamoeba and Vahlkampfia were mainly found in 2 baths. The MPN values for Naegleria sp. (NT/l) increased between 2018 and 2022, but the MPN values for N. fowleri (NF/l) seemed to decrease. Globally, our results showed that since we cannot establish a seasonal distribution of FLA, the regular presence of FLA (namely Naegleria and Acanthamoeba) in recreational waters can pose a potential threat in terms of neuroinfections as well as Acanthamoeba keratitis. It is thus imperious to perform the regular control of these baths as a preventive health measure.
Collapse
Affiliation(s)
| | - Isaure Quétel
- Institut Pasteur de la Guadeloupe, Les Abymes, Guadeloupe, France
| | - Marie-Anne Pons
- Agence Régionale de Santé (ARS) Guadeloupe, Les Abymes, France
| | - Antoine Talarmin
- Institut Pasteur de la Guadeloupe, Les Abymes, Guadeloupe, France
| | - Isabel Marcelino
- Institut Pasteur de la Guadeloupe, Les Abymes, Guadeloupe, France.
| |
Collapse
|
7
|
Moreno-Mesonero L, Soler P, Alonso JL, Macián VJ, Moreno Y. Assessment of pathogenic protozoa in a drinking water treatment plant with UV treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121897. [PMID: 39043088 DOI: 10.1016/j.jenvman.2024.121897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/04/2024] [Accepted: 07/14/2024] [Indexed: 07/25/2024]
Abstract
Controlling drinking water treatment processes is essential to address water contamination and the adaptability of certain pathogenic protozoa. Sometimes, standard treatment methods and chlorine disinfection may prove insufficient in eliminating pathogenic protozoa. However, ultraviolet (UV) radiation has proved to be more effective than chlorine. This study aims to characterize the eukaryotic community of a drinking water treatment plant that applies a final UV disinfection treatment, focusing on pathogenic protozoa. Fifty water samples (raw water, before and after UV treatment) were evaluated to comply with regulation parameters and identify relevant protozoa. Despite physicochemical and microbiological parameters meeting the regulation, some potentially pathogenic protozoa, such as Blastocystis or Cryptosporidium, were still detected in very low relative abundances in treated water. It was found for the first time in Spain the pathogenic amoebae Naegleria fowleri in one river water, which was not found after the treatment. Moreover, Blastocystis subtypes ST1-ST6 were detected in this study in raw, before and after UV water samples. Blastocystis was only found in 2 two samples after UV treatment, with a very low abundance (≤0.02%). Obtained results demonstrate the effectiveness of water treatment in reducing the prevalence of pathogenic protozoa.
Collapse
Affiliation(s)
- L Moreno-Mesonero
- Research Institute of Water and Environmental Engineering (IIAMA). Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.
| | - P Soler
- Research Institute of Water and Environmental Engineering (IIAMA). Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain; Empresa Mixta Valenciana de Aguas, S.A. (EMIVASA). Av. del Regne de València, 28, 46005, Valencia, Spain.
| | - J L Alonso
- Research Institute of Water and Environmental Engineering (IIAMA). Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.
| | - V J Macián
- Empresa Mixta Valenciana de Aguas, S.A. (EMIVASA). Av. del Regne de València, 28, 46005, Valencia, Spain.
| | - Y Moreno
- Research Institute of Water and Environmental Engineering (IIAMA). Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.
| |
Collapse
|
8
|
Ghafari S, Alavi SM, Khaghani S. Potentially pathogenic culturable bacteria in hemodialysis waters. BMC Microbiol 2024; 24:276. [PMID: 39054498 PMCID: PMC11270894 DOI: 10.1186/s12866-024-03430-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Hemodialysis patients are at risk of acquiring healthcare-related infections due to using non-sterile water to prepare hemodialysis fluid. Therefore, microbiological control and monitoring of used water are of crucial importance. MATERIALS AND METHODS In this work, we identified bacterial populations occupying a hemodialysis water distribution system for almost a 6-month period in Ahvaz city, southwest of Iran. A total of 18 samples from three points were collected. We found high colony counts of bacteria on R2A agar. 31 bacteria with different morphological and biochemical characteristics were identified by molecular-genetic methods based on 16 S rRNA gene sequencing. Endotoxin concentrations were measured, using Endosafe® Rapid LAL Single-Test Vials. RESULTS A diverse bacterial community was identified, containing predominantly Gram-negative bacilli. The most frequently isolated genus was Sphingomonas. Five species including M. fortuitum, M. lentiflavum, M.szulgai, M. barrassiae, and M. gordonae was identified .Despite the presence of Gram-negative bacteria the endotoxin analysis of all samples revealed that their endotoxin values were below the detection limit. CONCLUSION The members of Sphingomonas genus along with Bosea and mycobacteria could be regarded as pioneers in surface colonization and biofilm creation. These bacteria with others like Pelomonas, Bradyrhizobium, staphylococcus, and Microbacterium may represent a potential health risk to patients under hemodialysis treatment.
Collapse
Affiliation(s)
- Shokouh Ghafari
- Cellular and Molecular Research Center, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyed Mohammad Alavi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Soheila Khaghani
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
9
|
Zahid MT, Mustafa G, Sajid R, Razzaq A, Waheed M, Khan MA, Hwang JH, Park YK, Chung WJ, Jeon BH. Surviving chlorinated waters: bleaching sensitivity and persistence of free-living amoebae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:48073-48084. [PMID: 39017868 DOI: 10.1007/s11356-024-34379-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024]
Abstract
Recent advancements in membrane technologies and disinfection methods have enhanced drinking water quality significantly. However, microorganisms, including free-living amoebae (FLA), persist and pose potential threats to humans. FLA are linked to severe neuro-ophthalmic infections and serve as hosts of pathogenic bacteria. This study examined FLA presence in chlorinated and ultrafiltration drinking water and evaluated chlorine's disinfectant. Of 115 water samples, 21 tested positive for Acanthamoeba sp., Allovahlkampfia sp., and Vermamoeba vermiformis, originating from chlorinated sources. FLA trophozoites withstand temperatures up to 37 °C, while the cysts tolerate heat shocks of 60-70 °C. Trophozoites are susceptible to 5 mg L-1 chlorine, but cysts remain viable at concentrations up to 10 mg L-1. FLAs' survival in chlorinated waters is attributed to high cyst tolerance and lower residual chlorine concentrations. These findings highlight the need for ultrafiltration or enhanced chlorination protocols to ensure safer drinking water.
Collapse
Affiliation(s)
- Muhammad Tariq Zahid
- Department of Zoology, Dr. Nazir Ahmad Institute of Biological Sciences, Government College University, Lahore, Pakistan
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea
| | - Ghulam Mustafa
- Department of Zoology, Dr. Nazir Ahmad Institute of Biological Sciences, Government College University, Lahore, Pakistan
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea
| | - Romasa Sajid
- Department of Zoology, Dr. Nazir Ahmad Institute of Biological Sciences, Government College University, Lahore, Pakistan
| | - Ayesha Razzaq
- Department of Zoology, Dr. Nazir Ahmad Institute of Biological Sciences, Government College University, Lahore, Pakistan
| | - Muzdalfa Waheed
- Department of Zoology, Dr. Nazir Ahmad Institute of Biological Sciences, Government College University, Lahore, Pakistan
| | - Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Jae-Hoon Hwang
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC, H3G 1M8, Canada
| | - Young Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Woo Jin Chung
- Department of Environmental Energy Engineering, Kyonggi University, 154-42 Gwanggyosan-Ro, Yeongtong-Gu, Suwon-Si, Gyeonggi-Do, 16227, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
10
|
Fan S, Shen Y, Qian L. Social life of free-living amoebae in aquatic environment- comprehensive insights into interactions of free-living amoebae with neighboring microorganisms. Front Microbiol 2024; 15:1382075. [PMID: 38962117 PMCID: PMC11220160 DOI: 10.3389/fmicb.2024.1382075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
Free-living amoebae (FLA) are prevalent in nature and man-made environments, and they can survive in harsh conditions by forming cysts. Studies have discovered that some FLA species are able to show pathogenicity to human health, leading to severe infections of central nervous systems, eyes, etc. with an extremely low rate of recovery. Therefore, it is imperative to establish a surveillance framework for FLA in environmental habitats. While many studies investigated the risks of independent FLA, interactions between FLA and surrounding microorganisms determined microbial communities in ecosystems and further largely influenced public health. Here we systematically discussed the interactions between FLA and different types of microorganisms and corresponding influences on behaviors and health risks of FLA in the environment. Specifically, bacteria, viruses, and eukaryotes can interact with FLA and cause either enhanced or inhibited effects on FLA infectivity, along with microorganism community changes. Therefore, considering the co-existence of FLA and other microorganisms in the environment is of great importance for reducing environmental health risks.
Collapse
Affiliation(s)
| | | | - Li Qian
- Department of Civil and Environmental Engineering, School of Engineering and Applied Science, The George Washington University, Washington, DC, United States
| |
Collapse
|
11
|
Cardoso IR, de Lima CS, dos Reis RB, Pinto ACA, Pissinatti T, Kugelmeier T, Neto SFDC, da Silva FA, Santos HLC. Occurrence of Free-Living Amoebae in Non-Human Primate Gut. Trop Med Infect Dis 2024; 9:108. [PMID: 38787041 PMCID: PMC11125615 DOI: 10.3390/tropicalmed9050108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 05/25/2024] Open
Abstract
The gut microbiome reflects health and predicts possible disease in hosts. A holistic view of this community is needed, focusing on identifying species and dissecting how species interact with their host and each other, regardless of whether their presence is beneficial, inconsequential, or detrimental. The distribution of gut-associated eukaryotes within and across non-human primates is likely driven by host behavior and ecology. To ascertain the existence of free-living amoebae (FLA) in the gut of wild and captive non-human primates, 101 stool samples were collected and submitted to culture-dependent microscopy examination and DNA sequencing. Free-living amoebae were detected in 45.4% (46/101) of fecal samples analyzed, and their morphological characteristics matched those of Acanthamoeba spp., Vermamoeba spp., heterolobosean amoeboflagellates and fan-shaped amoebae of the family Vannellidae. Sequence analysis of the PCR products revealed that the suspected amoebae are highly homologous (99% identity and 100% query coverage) with Acanthamoeba T4 genotype and Vermamoeba vermiformis amoebae. The results showed a great diversity of amoebae in the non-human primate's microbiome, which may pose a potential risk to the health of NHPs. To our knowledge, this is the first report of free-living amoebae in non-human primates that are naturally infected. However, it is unknown whether gut-borne amoebae exploit a viable ecological niche or are simply transient residents in the gut.
Collapse
Affiliation(s)
- Igor Rodrigues Cardoso
- Laboratório de Doenças Parasitárias, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (I.R.C.); (C.S.d.L.); (R.B.d.R.)
| | - Clezia Siqueira de Lima
- Laboratório de Doenças Parasitárias, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (I.R.C.); (C.S.d.L.); (R.B.d.R.)
- Instituto de Saúde de Nova Friburgo, da Universidade Federal Fluminense, Nova Friburgo 28625-650, Brazil
| | - Rhagner Bonono dos Reis
- Laboratório de Doenças Parasitárias, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (I.R.C.); (C.S.d.L.); (R.B.d.R.)
| | - Ana Cristina Araujo Pinto
- Instituto de Ciência e Tecnologia em Biomodelos/FIOCRUZ, Rio de Janeiro 26382-462, Brazil; (A.C.A.P.); (T.P.); (T.K.); (F.A.d.S.)
| | - Thalita Pissinatti
- Instituto de Ciência e Tecnologia em Biomodelos/FIOCRUZ, Rio de Janeiro 26382-462, Brazil; (A.C.A.P.); (T.P.); (T.K.); (F.A.d.S.)
| | - Tatiana Kugelmeier
- Instituto de Ciência e Tecnologia em Biomodelos/FIOCRUZ, Rio de Janeiro 26382-462, Brazil; (A.C.A.P.); (T.P.); (T.K.); (F.A.d.S.)
| | | | - Fabio Alves da Silva
- Instituto de Ciência e Tecnologia em Biomodelos/FIOCRUZ, Rio de Janeiro 26382-462, Brazil; (A.C.A.P.); (T.P.); (T.K.); (F.A.d.S.)
| | - Helena Lúcia Carneiro Santos
- Laboratório de Doenças Parasitárias, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (I.R.C.); (C.S.d.L.); (R.B.d.R.)
| |
Collapse
|
12
|
Ali M, Rice CA, Byrne AW, Paré PE, Beauvais W. Modelling dynamics between free-living amoebae and bacteria. Environ Microbiol 2024; 26:e16623. [PMID: 38715450 DOI: 10.1111/1462-2920.16623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/04/2024] [Indexed: 05/23/2024]
Abstract
Free-living amoebae (FLA) serve as hosts for a variety of endosymbionts, which are microorganisms that reside and multiply within the FLA. Some of these endosymbionts pose a pathogenic threat to humans, animals, or both. The symbiotic relationship with FLA not only offers these microorganisms protection but also enhances their survival outside their hosts and assists in their dispersal across diverse habitats, thereby escalating disease transmission. This review is intended to offer an exhaustive overview of the existing mathematical models that have been applied to understand the dynamics of FLA, especially concerning their interactions with bacteria. An extensive literature review was conducted across Google Scholar, PubMed, and Scopus databases to identify mathematical models that describe the dynamics of interactions between FLA and bacteria, as published in peer-reviewed scientific journals. The literature search revealed several FLA-bacteria model systems, including Pseudomonas aeruginosa, Pasteurella multocida, and Legionella spp. Although the published mathematical models account for significant system dynamics such as predator-prey relationships and non-linear growth rates, they generally overlook spatial and temporal heterogeneity in environmental conditions, such as temperature, and population diversity. Future mathematical models will need to incorporate these factors to enhance our understanding of FLA-bacteria dynamics and to provide valuable insights for future risk assessment and disease control measures.
Collapse
Affiliation(s)
- Marwa Ali
- Comparative Pathobiology Department, Purdue Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - Christopher A Rice
- Comparative Pathobiology Department, Purdue Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Drug Discovery (PIDD), Purdue University, West Lafayette, Indiana, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease (PI4D), Purdue University, West Lafayette, Indiana, USA
- Regenstrief Center for Healthcare Engineering (RHCE), Purdue University, West Lafayette, Indiana, USA
| | - Andrew W Byrne
- One Health Scientific Support Unit, National Disease Control Centre, Agriculture House, Dublin, Ireland
| | - Philip E Paré
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Wendy Beauvais
- Comparative Pathobiology Department, Purdue Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease (PI4D), Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
13
|
Özcan Aykol ŞM, Zeybek Z. Interaction between Acanthamoeba and Staphylococcus. J Basic Microbiol 2024; 64:e2300551. [PMID: 38416601 DOI: 10.1002/jobm.202300551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/01/2024]
Abstract
Free-living amoebae of the genus Acanthamoeba are infected by various bacteria in nature, and thus bacteria can protect themselves from adverse environmental conditions. Contrary to this ameba-bacteria relationship whether Acanthamoeba has antibacterial effects on bacteria is the different aspect of the relationship between these microorganisms. In this study, we investigate various Acanthamoeba strains have antibacterial effects on various Staphylococcus strains. Three environmental Acanthamoeba strains, isolated from various aquatic environments in Turkey, and Acanthamoeba castellanii ATCC 50373 standard strains were used in the study. The antistaphylococcal effect of cell-free supernatant (CFS) obtained from these amoebae against 12 different Staphylococcus bacteria was investigated by colony counting method. In addition, the pathogenicity of the tested Acanthamoeba strains was determined using osmotolerance and thermotolerance tests. CFSs obtained from Acanthamoeba were found to have varying degrees of antistaphylococcal effects on various Staphylococcus strains (0%-100%). It was determined that the CFS of the standard Acanthamoeba strain showed 100% inhibitory effect against one clinical methicillin-resistant Staphylococcus aureus strain (M2). Also, CFS of Ugöl strain showed 99.97% inhibitory effect against one clinical methicillin-sensitive Staphylococcus epidermidis strain (L3). It was determined that all Acanthamoeba isolates had no pathogenic potential. According to the results, it has been observed that Acanthamoeba produces antibacterial substance(s) against Staphylococcus bacteria and that the ameba-bacteria relationship may also result in the detriment of the bacteria. Furthermore, the current study indicates that new and natural antimicrobial agents from Acanthamoeba can be used as an alternative to infections caused by Staphylococcus.
Collapse
Affiliation(s)
- Şevval M Özcan Aykol
- Department of Pharmaceutical Microbiology, Biruni University Faculty of Pharmacy, İstanbul, Turkey
| | - Zuhal Zeybek
- Department of Biology, İstanbul University Faculty of Science, İstanbul, Turkey
| |
Collapse
|
14
|
da Silva TCB, Chaúque BJM, Benitez GB, Rott MB. Global prevalence of potentially pathogenic free-living amoebae in sewage and sewage-related environments-systematic review with meta-analysis. Parasitol Res 2024; 123:148. [PMID: 38433138 DOI: 10.1007/s00436-024-08164-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/14/2024] [Indexed: 03/05/2024]
Abstract
Free-living amoebae (FLA) include amphizoic microorganisms important in public health, widely isolated from air, water, and soil. However, its occurrence in sewage-related environments still needs to be systematically documented. This study summarizes the occurrence of FLA in sewage-related environments through a systematic review with meta-analysis. A total of 1983 scientific article were retrieved from different databases, of which 35 were selected and analyzed using a random effects forest plot model with a 95% confidence interval (IC). The pooled overall prevalence of FLA in sewage across 12 countries was 68.96% (95% IC = 58.5-79.42). Subgroup analysis indicates high prevalence in all environments analyzed, including sewage water from the sewage treatment plant (81.19%), treated sewage water (75.57%), sewage-contaminated water (67.70%), sediment contaminated by sewage (48.91%), and sewage water (47.84%). Prevalence values of Acanthamoeba spp., Hartmanella/Vermamoeba spp., and Naegleria spp. are 47.48%, 28.24%, and 16.69%, respectively. Analyzing the species level, the distribution is as follows: Acanthamoeba palestinensis (88%), A. castellanii (23.74%), A. astronyxis (19.18%), A. polyphaga (13.59%), A. culbertsoni (12.5%), A. stevensoni (8.33%), A. tubiashi (4.35%) and A. hatchetti (1.1%), Naegleria fowleri (28.4%), N. gruberi (25%), N. clarki (8.33%), N. australiensis (4.89%) and N. italica (4.29%), Hartmannella/Vermamoeba exundans (40%) and H.V. vermiform (32.61%). Overall, our findings indicate a high risk associated with sewage-related environments, as the prevalence of FLA, including pathogenic strains, is high, even in treated sewage water. The findings of this study may be valuable both for risk remediation actions against amoebic infections and for future research endeavors.
Collapse
Affiliation(s)
- Thaisla Cristiane Borella da Silva
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Rio Grande Do Sul, Brazil
| | - Beni Jequicene Mussengue Chaúque
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Rio Grande Do Sul, Brazil
- Postgraduate Program in Biological Sciences: Pharmacology and Therapeutics, UFRGS, Porto Alegre, Rio Grande Do Sul, Brazil
- Center of Studies in Science and Technology (NECET), Biology Course, Universidade Rovuma, Niassa Branch, Lichinga, Mozambique
| | - Guilherme Brittes Benitez
- Industrial and Systems Engineering Graduate Program, Polytechnic School, Pontifical Catholic University of Parana (PUCPR), Curitiba, Paraná, Brazil
| | - Marilise Brittes Rott
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Rio Grande Do Sul, Brazil.
- Laboratory 520, Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Department of Parasitology, Universidade Federal Do Rio Grande Do Sul, Ramiro Barcelos Street, Porto Alegre, Rio Grande Do Sul, N 2600, Brazil.
| |
Collapse
|
15
|
Hall AD, Kumar JE, Golba CE, Luckett KM, Bryant WK. Primary amebic meningoencephalitis: a review of Naegleria fowleri and analysis of successfully treated cases. Parasitol Res 2024; 123:84. [PMID: 38182931 DOI: 10.1007/s00436-023-08094-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/12/2023] [Indexed: 01/07/2024]
Abstract
Primary amebic meningoencephalitis (PAM) is a necrotizing and hemorrhagic inflammation of the brain and meninges caused by Naegleria fowleri, a free-living thermophilic ameba of freshwater systems. PAM remains a neglected disease that disproportionately affects children in tropical and subtropical climates, with an estimated mortality rate of 95-98%. Due to anthropogenic climate change, the average temperature in the USA has increased by 0.72 to 1.06 °C in the last century, promoting the poleward spread of N. fowleri. PAM is often misdiagnosed as bacterial meningitis or viral encephalitis, which shortens the window for potentially life-saving treatment. Diagnosis relies on the patient's history of freshwater exposure and the physician's high index of suspicion, supported by cerebrospinal fluid studies. While no experimental trials have been conducted to assess the relative efficacy of treatment regimens, anti-amebic therapy with adjunctive neuroprotection is standard treatment in the USA. We performed a literature review and identified five patients from North America between 1962 and 2022 who survived PAM with various degrees of sequelae.
Collapse
Affiliation(s)
- Ashton D Hall
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Julia E Kumar
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Claire E Golba
- Department of Emergency Medicine, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH, 45267, USA
| | - Keith M Luckett
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Whitney K Bryant
- Department of Emergency Medicine, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH, 45267, USA.
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
16
|
Jessu A, Delafont V, Moyen JL, Biet F, Samba-Louaka A, Héchard Y. Characterization of Rosculus vilicus sp. nov., a rhizarian amoeba interacting with Mycobacterium avium subsp. paratuberculosis. Front Microbiol 2023; 14:1324985. [PMID: 38188567 PMCID: PMC10770858 DOI: 10.3389/fmicb.2023.1324985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Free-living amoebae are described as potential reservoirs for pathogenic bacteria in the environment. It has been hypothesized that this might be the case for Mycobacterium avium subsp. paratuberculosis, the bacterium responsible for paratuberculosis. In a previous work, we isolated an amoeba from a water sample in the environment of infected cattle and showed that this amoeba was associated with Mycobacterium avium subsp. paratuberculosis. While a partial 18S rRNA gene has allowed us to suggest that this amoeba was Rosculus-like, at that time we were not able to sub-cultivate it. In the present study, we succeeded in cultivating this strain at 20-25°C. This amoeba is among the smallest (5-7 μm) described. The sequencing of the whole genome allowed us to extract the full 18S rRNA gene and propose this strain as a new species of the Rosculus genus, i.e., R. vilicus. Of note, the mitochondrial genome is particularly large (184,954 bp). Finally, we showed that this amoeba was able to phagocyte Mycobacterium avium subsp. paratuberculosis and that the bacterium was still observed within amoebae after at least 3 days. In conclusion, we characterized a new environmental amoeba species at the cellular and genome level that was able to interact with Mycobacterium avium subsp. paratuberculosis. As a result, R. vilicus is a potential candidate as environmental reservoir for Mycobacterium avium subsp. paratuberculosis but further experiments are needed to test this hypothesis.
Collapse
Affiliation(s)
- Amélie Jessu
- Université de Poitiers, CNRS, EBI, Poitiers, France
- Laboratoire Départemental d’Analyse et de Recherche de la Dordogne, Coulounieix-Chamiers, France
| | | | - Jean-Louis Moyen
- Laboratoire Départemental d’Analyse et de Recherche de la Dordogne, Coulounieix-Chamiers, France
| | - Franck Biet
- Laboratoire Départemental d’Analyse et de Recherche de la Dordogne, Coulounieix-Chamiers, France
| | | | - Yann Héchard
- Université de Poitiers, CNRS, EBI, Poitiers, France
| |
Collapse
|
17
|
Hoogenkamp MA, Mazurel D, Deutekom-Mulder E, de Soet JJ. The consistent application of hydrogen peroxide controls biofilm growth and removes Vermamoeba vermiformis from multi-kingdom in-vitro dental unit water biofilms. Biofilm 2023; 5:100132. [PMID: 37346320 PMCID: PMC10279787 DOI: 10.1016/j.bioflm.2023.100132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/23/2023] Open
Abstract
The water systems inside a dental unit are known to be contaminated with a multi-kingdom biofilm encompassing bacteria, fungi, viruses and protozoa. Aerosolization of these micro-organisms can potentially create a health hazard for both dental staff and the patient. Very little is known on the efficacy of dental unit disinfection products against amoeba. In this study we have examined the effect of four different treatment regimens, with the hydrogen peroxide (H2O2) containing product Oxygenal, on an in-vitro multi-kingdom dental unit water system (DUWS) biofilm. The treatment efficacy was assessed in time using heterotrophic plate counts, the bacterial 16S rDNA, fungal 18S rDNA gene load and the number of genomic units for Legionella spp. the amoeba Vermamoeba vermiformis. The results indicated that a daily treatment of the DUWS with a low dose H2O2 (0.02% for 5 h), combined with a weekly shock dose (0.25% H2O2, 30 min) is necessary to reduce the heterotrophic plate count of a severely contaminated DUWS (>106 CFU.mL-1) to below 100 CFU.mL-1. A daily treatment with a low dose hydrogen peroxide alone, is sufficient for the statistically significant reduction of the total amount of bacterial 16S rDNA gene, Legionella spp. and Vermamoeba vermiformis load (p < 0.005). Also shown is that even though hydrogen peroxide does not kill the trophozoite nor the cysts of V. vermiformis, it does however result in the detachment of the trophozoite form of this amoeba from the DUWS biofilm and hereby ultimately removing the amoeba from the system.
Collapse
Affiliation(s)
- Michel A. Hoogenkamp
- Corresponding author. Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, the Netherlands.
| | | | | | | |
Collapse
|
18
|
Matos de Oliveira YL, Lima ETS, Rott MB, Fernandes RPM, Jain S, de Aragão Batista MV, Santana Dolabella S. Occurrence, molecular diversity and pathogenicity of Acanthamoeba spp. isolated from aquatic environments of Northeastern Brazil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:1686-1696. [PMID: 36041225 DOI: 10.1080/09603123.2022.2117280] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Acanthamoeba is a free-living amoeba (FLA) that is ubiquitous in nature and can cause serious pathologies in humans. This protozoan has been detected in several environmental sources, such as soil, water, and swimming pools. The aim of this study was to evaluate the occurrence and molecular diversity of Acanthamoeba spp. in aquatic environments of the state of Sergipe, northeastern Brazil, and to determine the pathogenic potential of the isolated samples. A total of 138 samples were collected from 69 aquatic environments and, after cell culture, 74% of the samples were positive for FLA, 47% belonging to the genus Acanthamoeba. Genotypic analysis was performed using the primers JDP1 and JDP2, confirming distinct Acanthamoeba genotypes: 18 (75%) isolates belonging to genotype T4, two (8%) to T3, and one isolate (4%) to genotype T5. Tests carried out to analyze the pathogenic potential showed that 11 isolates could grow at 0.5 M mannitol concentration and seven isolates supported hyperosmolarity. In the thermotolerance test, two isolates grew at 37°C. These results confirm the presence and the pathogenic potential of FLA of the genus Acanthamoeba in aquatic environments of the municipalities of Sergipe.
Collapse
Affiliation(s)
- Yrna Lorena Matos de Oliveira
- Laboratory of Entomology and Tropical Parasitology, Department of Morphology, University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Erica Tirzah Santos Lima
- Laboratory of Entomology and Tropical Parasitology, Department of Morphology, University of Sergipe, São Cristóvão, Sergipe, Brazil
- Postgraduate Program in Industrial Biotechnology, Universidade Tiradentes, Aracaju, Sergipe, Brazil
| | - Marilise Brittes Rott
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Sona Jain
- Postgraduate Program in Industrial Biotechnology, Universidade Tiradentes, Aracaju, Sergipe, Brazil
| | - Marcus Vinicius de Aragão Batista
- Laboratory of Molecular Genetics and Biotechnology, Department of Biology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Silvio Santana Dolabella
- Laboratory of Entomology and Tropical Parasitology, Department of Morphology, University of Sergipe, São Cristóvão, Sergipe, Brazil
| |
Collapse
|
19
|
Delumeau A, Quétel I, Harnais F, Sellin A, Gros O, Talarmin A, Marcelino I. Bacterial microbiota management in free-living amoebae (Heterolobosea lineage) isolated from water: The impact of amoebae identity, grazing conditions, and passage number. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165816. [PMID: 37506913 DOI: 10.1016/j.scitotenv.2023.165816] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
Free-living amoebae (FLA) are ubiquitous protozoa mainly found in aquatic environments. They are well-known reservoirs and vectors for the transmission of amoeba-resistant bacteria (ARB), most of which are pathogenic to humans. Yet, the natural bacterial microbiota associated with FLA remains largely unknown. Herein, we characterized the natural bacterial microbiota of different FLA species isolated from recreational waters in Guadeloupe. Monoxenic cultures of Naegleria australiensis, Naegleria sp. WTP3, Paravahlkampfia ustiana and Vahlkampfia sp. AK-2007 (Heterolobosea lineage) were cultivated under different grazing conditions, during successive passages. The whole bacterial microbiota of the waters and the amoebal cysts was characterized using 16S rRNA gene metabarcoding. The culturable subset of ARB was analyzed by mass spectrometry (MALDI-TOF MS), conventional 16S PCR, and disk diffusion method (to assess bacterial antibiotic resistance). Transmission electron microscopy was used to locate the ARB inside the amoebae. According to alpha and beta-diversity analyses, FLA bacterial microbiota were significantly different from the ones of their habitat. While Vogesella and Aquabacterium genera were detected in water, the most common ARB belonged to Pseudomonas, Bosea, and Escherichia/Shigella genera. The different FLA species showed both temporary and permanent associations with differentially bacterial taxa, suggesting host specificity. These associations depend on the number of passages and grazing conditions. Additionally, Naegleria, Vahlkampfia and Paravahlkampfia cysts were shown to naturally harbor viable bacteria of the Acinetobacter, Escherichia, Enterobacter, Pseudomonas and Microbacterium genera, all being pathogenic to humans. To our knowledge, this is the first time Paravahlkampfia and Vahlkampfia have been demonstrated as hosts of pathogenic ARB in water. Globally, the persistence of these ARB inside resistant cysts represents a potential health risk. To ensure the continued safety of recreational waters, it is crucial to (i) regularly control both the amoebae and their ARB and (ii) improve knowledge on amoebae-bacteria interactions to establish better water management protocols.
Collapse
Affiliation(s)
- Aurélie Delumeau
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France
| | - Isaure Quétel
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France
| | - Florian Harnais
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France
| | - Arantxa Sellin
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France
| | - Olivier Gros
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Pointe-à-Pitre, Guadeloupe, France
| | - Antoine Talarmin
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France
| | - Isabel Marcelino
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France.
| |
Collapse
|
20
|
Chaúque BJM, da Silva TCB, Dos Santos DL, Benitez GB, Chaúque LGH, Benetti AD, Zanette RA, Rott MB. Global prevalence of free-living amoebae in solid matrices - A systematic review with meta-analysis. Acta Trop 2023; 247:107006. [PMID: 37633571 DOI: 10.1016/j.actatropica.2023.107006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
The ubiquitous free-living amoebae (FLA) are microorganisms of significant medical, sanitary, and ecological importance. However, their characterization within solid matrices such as soil, dust, sediment, mud, sludge, and compost remain to be systematized. In this study, we conducted a systematic review with meta-analysis to explore the global distribution of FLA in solid matrices. From the analysis of 104 out of 4,414 scientific articles retrieved from different databases, it was found that the general global prevalence of FLA in solid matrices was of 55.13% (95% confidence interval (CI) 49.32-60.94). Specifically, FLA prevalence was high in soil (72.40%, 95% CI 69.08-75.73), sediment (57.91%, 95% CI 50.01-65.81), mud (52.90%, 95% CI 24.01-81.78), dust (48.60%, 95% CI 43.00-54.19), and sewage sludge (40.19%, 95% CI 30.68-49.70). In aerosols it was comparatively lower (17.21%, 95% CI 12.76-21.66). Acanthamoeba spp. (52.23%) and Hartmanella/Vermamoeba spp. (36.06%) were found to be more prevalent, whereas Naegleria spp. (34.98%) and Balamuthia spp. (27.32%) were less prevalent. The distribution of the highest global prevalence values for species of Acanthamoeba spp., considering different publication periods of the studies, is as follows: A. hatchetti (51.46%), A. rhysodes (47.49%), A. polyphaga (36.37%), A. culbertsoni (34.31%), A. castellanii (34.21%), and A. lenticulata (32.82%). For other FLA species, the distribution is: Hartmannella/Vermamoeba vermiformis (91.57%), Naegleria fowleri (42.32%), Naegleria gruberi (32.39%), and Balamuthia mandrillaris (25%). The most prevalent Acanthamoeba genotypes were T4 (33.38%) and T3 (23.94%). Overall, the global prevalence of FLA in solid matrices is as high as or greater than that reported in water by previous systematic reviews. Thus, actions aimed at reducing exposure to FLA or exploring their ecological dynamics should consider not only water but also the various solid matrices. The finding outlined here can provide valuable insights for such actions, e.g., informing on the level of exposure to FLA, or on the microbial biodiversity of specific environmental compartments.
Collapse
Affiliation(s)
- Beni Jequicene Mussengue Chaúque
- Graduate Program in Agricultural and Environmental Microbiology, Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Brazil; Postgraduate Program in Biological Sciences: Pharmacology and Therapeutics, UFRGS, Rio Grande do Sul, Brazil; Center of Studies in Science and Technology (NECET), Biology Course, Universidade Rovuma, Niassa Branch, Lichinga, Mozambique
| | - Thaisla Cristiane Borella da Silva
- Graduate Program in Agricultural and Environmental Microbiology, Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Brazil
| | - Denise Leal Dos Santos
- CAPES Clinical Research Pilot Program at Hospital de Clínicas de Porto Alegre, Rio Grande do Sul, Brazil
| | - Guilherme Brittes Benitez
- Industrial and Systems Engineering Graduate Program, Polytechnic School, Pontifical Catholic University of Parana (PUCPR), Brazil
| | | | | | - Régis Adriel Zanette
- Postgraduate Program in Biological Sciences: Pharmacology and Therapeutics, UFRGS, Rio Grande do Sul, Brazil
| | - Marilise Brittes Rott
- Graduate Program in Agricultural and Environmental Microbiology, Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Brazil.
| |
Collapse
|
21
|
Fatemi M, Niyyati M, Rouhani S, Karamati SA, Mirjalali H, Karanis P. Contamination of fresh vegetables in municipal stores with pathogenic Acanthamoeba genotypes; a public health concern. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:1010-1021. [PMID: 35443833 DOI: 10.1080/09603123.2022.2067328] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/12/2022] [Indexed: 05/23/2023]
Abstract
Acanthamoeba spp. cause keratitis and encephalitis, and are a proper carrier of foodborne pathogens. A total of 70 samples including garden cress, chives, mint, parsley, and basil were collected. Samples were cultured onto a 2% non-nutrient agar medium. The cultures were analyzed using morphological and molecular techniques. In total, 18 (25.7%) out of 70 samples were positive including garden cress 10/22 (45.45%), chives 3/12 (25%), mint 2/13 (15.38%), basil 2/13 (15.38%), and parsley 1/10 (10%). The diagnostic fragment 3 was successfully sequenced in 15 samples and represented 11 (73.3%) T4, three (20%) T5, and one T9 genotypes. In addition, three, two, and one strains, belonging to the genotypes T4, T5, and T9 were ranked highly pathogenic. This is the first study reporting contamination of the most commonly consumed fresh vegetables with pathogenic Acanthamoeba genotypes. Our findings signify the public health concerns due the contamination of vegetables in municipal public markets.
Collapse
Affiliation(s)
- Marziye Fatemi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Niyyati
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheila Rouhani
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Ahmad Karamati
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Panagiotis Karanis
- University of Cologne, Medical Faculty and University Hospital, Cologne 50931, Germany
- Department of Basic and Clinical Sciences, Nicosia University Medical School, Nicosia, Cyprus
| |
Collapse
|
22
|
Borella da Silva TC, Dos Santos DL, Rott MB. First report of free-living amoebae in sewage treatment plants in Porto Alegre, southern Brazil. JOURNAL OF WATER AND HEALTH 2023; 21:1611-1624. [PMID: 37902214 PMCID: wh_2023_261 DOI: 10.2166/wh.2023.261] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Free-living amoebae (FLA) are amphizoic protozoans with a cosmopolitan distribution. Some strains of species are associated with infections in humans. They feed on microorganisms by phagocytosis; however, some of these can become endocytobionts by resisting this process and taking shelter inside the amoeba. The whole world is experiencing increasing shortage of water, and sewage is being reused, so the study of this environment is important in public health context. The objective of this work was to identify FLA present in sewage treatment plants in Porto Alegre, Brazil. About 1 L samples were collected from eight stations (raw and treated sewage) in January, February, July, and August 2022. The samples were sown in monoxenic culture, and the isolated amoebae were subjected to morphological and molecular identification. Polymerase chain reaction results indicated the presence of the genus Acanthamoeba in 100% of the samples. Gene sequencing showed the presence of Acanthamoeba lenticulata and Acanthamoeba polyphaga - T5 and T4 genotypes - respectively, which are related to pathogenicity. The environment where the sewage is released can be used in recreational activities, exposing individuals to potential interactions with these amoebae and their potential endocytobionts, which may pose risks to public health.
Collapse
Affiliation(s)
- Thaisla Cristiane Borella da Silva
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil E-mail:
| | - Daniel Leal Dos Santos
- Faculty of Geography, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Avenue, N 6681, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| | - Marilise Brittes Rott
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
23
|
Abdul Halim R, Mohd Hussain RH, Aazmi S, Halim H, Ahmed Khan N, Siddiqui R, Shahrul Anuar T. Molecular characterisation and potential pathogenicity analysis of Acanthamoeba isolated from recreational lakes in Peninsular Malaysia. JOURNAL OF WATER AND HEALTH 2023; 21:1342-1356. [PMID: 37756200 PMCID: wh_2023_186 DOI: 10.2166/wh.2023.186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
The present study aims to identify the Acanthamoeba genotypes and their pathogenic potential in three recreational lakes in Malaysia. Thirty water samples were collected by purposive sampling between June and July 2022. Physical parameters of water quality were measured in situ while chemical and microbiological analyses were performed in the laboratory. The samples were vacuum filtered through nitrate filter, cultured onto non-nutrient agar and observed microscopically for amoebic growth. DNAs from positive samples were extracted and made to react with polymerase chain reaction using specific primers. Physiological tolerance tests were performed for all Acanthamoeba-positive samples. The presence of Acanthamoeba was found in 26 of 30 water samples by PCR. The highest rate in lake waters contaminated with amoeba was in Biru Lake (100%), followed by Titiwangsa Lake (80%) and Shah Alam Lake (80%). ORP, water temperature, pH and DO were found to be significantly correlated with the presence of Acanthamoeba. The most common genotype was T4. Temperature- and osmo-tolerance tests showed that 8 (30.8%) of the genotypes T4, T9 and T11 were highly pathogenic. The presence of genotype T4 in habitats related to human activities supports the relevance of this amoeba as a potential public health concern.
Collapse
Affiliation(s)
- Rohaya Abdul Halim
- Centre for Medical Laboratory Technology Studies, Faculty of Health Sciences, Universiti Teknologi MARA, Puncak Alam Campus, Puncak Alam, Selangor, Malaysia E-mail:
| | - Rosnani Hanim Mohd Hussain
- Centre for Medical Laboratory Technology Studies, Faculty of Health Sciences, Universiti Teknologi MARA, Puncak Alam Campus, Puncak Alam, Selangor, Malaysia
| | - Shafiq Aazmi
- School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia; Microbiome Health and Environment (MiHeaRT), Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - Hasseri Halim
- Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam Campus, Puncak Alam, Selangor, Malaysia; Integrative Pharmacogenomics Institute, Universiti Teknologi MARA, Puncak Alam Campus, Puncak Alam, Selangor, Malaysia
| | - Naveed Ahmed Khan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul, Turkey
| | - Ruqaiyyah Siddiqui
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul, Turkey; College of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Tengku Shahrul Anuar
- Centre for Medical Laboratory Technology Studies, Faculty of Health Sciences, Universiti Teknologi MARA, Puncak Alam Campus, Puncak Alam, Selangor, Malaysia; Microbiome Health and Environment (MiHeaRT), Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| |
Collapse
|
24
|
Moreno-Mesonero L, Soler L, Amorós I, Moreno Y, Ferrús M, Alonso J. Protozoan parasites and free-living amoebae contamination in organic leafy green vegetables and strawberries from Spain. Food Waterborne Parasitol 2023; 32:e00200. [PMID: 37405064 PMCID: PMC10316001 DOI: 10.1016/j.fawpar.2023.e00200] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023] Open
Abstract
In this study, the presence of Acanthamoeba spp., Blastocystis sp., Cryptosporidium spp., Cyclospora cayetanensis, Entamoeba histolytica, Giardia sp., Toxoplasma gondii and Vermamoeba vermiformis was assessed in organic leafy green vegetables (lettuce, spinach, cabbage) and fruits (strawberry), which are usually consumed raw. A total of 110 organic samples were collected in Valencia (Spain). Protozoa were concentrated before detection by immunofluorescence (Cryptosporidium spp. and Giardia sp.) or real-time qPCR (Acanthamoeba spp., Blastocystis sp., C. cayetanensis, E. histolytica, T. gondii and V. vermiformis). The most abundant protozoa in organic vegetables and berry fruits were Acanthamoeba (65.5%), followed by T. gondii (37.2%), V. vermiformis (17.3%), C. cayetanensis (12.7%), Cryptosporidium spp. (6.8%), Blastocystis sp. (1.8%) and Giardia sp. (1.7%). E. histolytica was not found in any of the organic samples. Thus, results showed that consumers can be exposed to protozoan parasites by consuming organic vegetables and berry fruits. This is the first report in Spain describing the presence of the protozoan pathogens Acanthamoeba spp., Blastocystis sp., C. cayetanensis, T. gondii and V. vermiformis, Cryptosporidium spp. and Giardia sp. in organic fresh produce. The results of this research will help determine the risk of foodborne protozoan parasites on organic leafy greens and strawberries that are available at local markets.
Collapse
Affiliation(s)
- L. Moreno-Mesonero
- Instituto de Ingeniería del Agua y Medio Ambiente (IIAMA), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
- Departamento de Biotecnología, Centro Avanzado de Microbiología de Alimentos, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - L. Soler
- Instituto de Ingeniería del Agua y Medio Ambiente (IIAMA), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - I. Amorós
- Instituto de Ingeniería del Agua y Medio Ambiente (IIAMA), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Y. Moreno
- Instituto de Ingeniería del Agua y Medio Ambiente (IIAMA), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - M.A. Ferrús
- Departamento de Biotecnología, Centro Avanzado de Microbiología de Alimentos, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - J.L. Alonso
- Instituto de Ingeniería del Agua y Medio Ambiente (IIAMA), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| |
Collapse
|
25
|
Lefebvre M, Razakandrainibe R, Schapman D, François A, Genty D, Galas L, Villena I, Favennec L, Costa D. Interactions between free-living amoebae and Cryptosporidium parvum: an experimental study. Parasite 2023; 30:31. [PMID: 37606589 PMCID: PMC10443459 DOI: 10.1051/parasite/2023033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/05/2023] [Indexed: 08/23/2023] Open
Abstract
Free-Living Amebae (FLA) and Cryptosporidium oocysts occasionally share the same environment. From 2004 to 2016, Cryptosporidium was responsible for 60% of 905 worldwide waterborne outbreaks caused by protozoan parasites. The aim of this study was to evaluate interactions between C. parvum oocysts and two common FLAs (Acanthamoeba castellanii and Vermamoeba vermiformis) in a water environment. Encystment and survival of FLAs were evaluated by microscopy using trypan blue vital coloration. Oocysts were numerated on microscopy. Interactions were studied over time in conditions both unfavorable and favorable to phagocytosis. Potential phagocytosis was directly evaluated by several microscopic approaches and indirectly by numeration of microorganisms and oocyst infectivity evaluation. Occasional phagocytosis of C. parvum by FLAs was documented. However, oocyst concentrations did not decrease significantly, suggesting resistance of oocysts to phagocytosis. A temporary decrease of oocyst infectivity was observed in the presence of A. castellanii. The effect of these interactions on C. parvum infectivity is particularly interesting. The biofilm condition could favor the persistence or even the proliferation of oocysts over time. This study demonstrated interactions between C. parvum and FLAs. Further knowledge of the mechanisms involved in the decrease of oocyst infectivity in the presence of A. castellanii could facilitate the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Marion Lefebvre
- Univ Rouen Normandie, Laboratory of Parasitology-Mycology, EA7510 ESCAPE, University hospital of Rouen Normandie 76000 Rouen France
| | - Romy Razakandrainibe
- Univ Rouen Normandie, Laboratory of Parasitology-Mycology, EA7510 ESCAPE, University hospital of Rouen Normandie 76000 Rouen France
- National Reference Center Cryptosporidiosis, microsporidia and other protozoa, University Hospital of Rouen Normandie 76000 Rouen France
| | - Damien Schapman
- Univ Rouen Normandie, INSERM, CNRS, HeRacLeS US 51 UAR 2026, PRIMACEN 76000 Rouen France
| | - Arnaud François
- Univ Rouen Normandie, Laboratory of Parasitology-Mycology, EA7510 ESCAPE, University hospital of Rouen Normandie 76000 Rouen France
- Department of anathomopathology, University Hospital of Rouen Normandie 76000 Rouen France
| | - Damien Genty
- Department of anathomopathology, University Hospital of Rouen Normandie 76000 Rouen France
| | - Ludovic Galas
- Univ Rouen Normandie, INSERM, CNRS, HeRacLeS US 51 UAR 2026, PRIMACEN 76000 Rouen France
| | - Isabelle Villena
- Reims Champagne-Ardenne University, Laboratory of Parasitology-Mycology, EA7510 ESCAPE 51454 Reims France
| | - Loic Favennec
- Univ Rouen Normandie, Laboratory of Parasitology-Mycology, EA7510 ESCAPE, University hospital of Rouen Normandie 76000 Rouen France
- National Reference Center Cryptosporidiosis, microsporidia and other protozoa, University Hospital of Rouen Normandie 76000 Rouen France
| | - Damien Costa
- Univ Rouen Normandie, Laboratory of Parasitology-Mycology, EA7510 ESCAPE, University hospital of Rouen Normandie 76000 Rouen France
- National Reference Center Cryptosporidiosis, microsporidia and other protozoa, University Hospital of Rouen Normandie 76000 Rouen France
| |
Collapse
|
26
|
Soler L, Moreno Y, Moreno-Mesonero L, Amorós I, Alonso JL, Ferrús MA. Microbiome of Free-Living Amoebae (FLA) Isolated from Fresh Organic Produce: Potential Risk to Consumers? Foods 2023; 12:3102. [PMID: 37628102 PMCID: PMC10453443 DOI: 10.3390/foods12163102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
In response to growing global interest in organic agriculture, this study delves into the microbial landscape of organically grown raw produce with a focus on food safety. Vegetables that are consumed raw are potential vehicles for the transmission of any type of microorganism capable of causing human disease. Free-living amoebae (FLA) are ubiquitous protozoa found in many ecosystems and can serve as hosts to pathogenic bacteria. So far, data regarding the FLA bacterial microbiome in fresh produce remain scarce and are non-existent for those of organic origin. Thus, the aim of this preliminary work is to characterize the microbiome of FLA in commonly consumed raw vegetables to know their possible implications for consumers. A total of 40 organic cabbage, lettuce, spinach, and strawberry samples were analyzed. FLA were found in all samples, and their bacterial microbiome was obtained via amplicon sequencing using the Illumina MiSeq platform and pair-end protocol. Acanthamoeba spp. and Vermamoeba vermiformis were identified via qPCR in 65.0% and 25.0% of the samples, respectively. Regarding the bacterial microbiome of FLA, the most abundant genera were Pseudomonas (1.8-17.8%) and Flavobacterium (1.7-12.6%). Bacteria not previously related to FLA, such as Prosthecobacter or Cellvibrio, are described in this work. Importantly, several bacterial genera found within the FLA microbiome were identified as potential human pathogens, including Pseudomonas, Flavobacterium, Arcobacter, Klebsiella, Mycobacterium, Salmonella and Legionella. This is the first work in which FLA microbiome isolated from organic products has been characterized, underscoring the significance of understanding FLA's role as carriers of pathogenic bacteria in the context of organic food safety.
Collapse
Affiliation(s)
- Lara Soler
- Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (L.S.); (L.M.-M.); (I.A.); (J.L.A.)
| | - Yolanda Moreno
- Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (L.S.); (L.M.-M.); (I.A.); (J.L.A.)
| | - Laura Moreno-Mesonero
- Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (L.S.); (L.M.-M.); (I.A.); (J.L.A.)
- Biotechnology Department, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain;
| | - Inmaculada Amorós
- Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (L.S.); (L.M.-M.); (I.A.); (J.L.A.)
| | - José Luís Alonso
- Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (L.S.); (L.M.-M.); (I.A.); (J.L.A.)
| | - María Antonia Ferrús
- Biotechnology Department, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain;
| |
Collapse
|
27
|
Soler L, Moreno Y, Moreno-Mesonero L, Amorós I, Alonso JL, Ferrús MA. Microbiome of Free-Living Amoebae (FLA) Isolated from Fresh Organic Produce: Potential Risk to Consumers? Foods 2023; 12:3102. [DOI: https:/doi.org/10.3390/foods12163102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023] Open
Abstract
In response to growing global interest in organic agriculture, this study delves into the microbial landscape of organically grown raw produce with a focus on food safety. Vegetables that are consumed raw are potential vehicles for the transmission of any type of microorganism capable of causing human disease. Free-living amoebae (FLA) are ubiquitous protozoa found in many ecosystems and can serve as hosts to pathogenic bacteria. So far, data regarding the FLA bacterial microbiome in fresh produce remain scarce and are non-existent for those of organic origin. Thus, the aim of this preliminary work is to characterize the microbiome of FLA in commonly consumed raw vegetables to know their possible implications for consumers. A total of 40 organic cabbage, lettuce, spinach, and strawberry samples were analyzed. FLA were found in all samples, and their bacterial microbiome was obtained via amplicon sequencing using the Illumina MiSeq platform and pair-end protocol. Acanthamoeba spp. and Vermamoeba vermiformis were identified via qPCR in 65.0% and 25.0% of the samples, respectively. Regarding the bacterial microbiome of FLA, the most abundant genera were Pseudomonas (1.8–17.8%) and Flavobacterium (1.7–12.6%). Bacteria not previously related to FLA, such as Prosthecobacter or Cellvibrio, are described in this work. Importantly, several bacterial genera found within the FLA microbiome were identified as potential human pathogens, including Pseudomonas, Flavobacterium, Arcobacter, Klebsiella, Mycobacterium, Salmonella and Legionella. This is the first work in which FLA microbiome isolated from organic products has been characterized, underscoring the significance of understanding FLA’s role as carriers of pathogenic bacteria in the context of organic food safety.
Collapse
Affiliation(s)
- Lara Soler
- Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Yolanda Moreno
- Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Laura Moreno-Mesonero
- Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
- Biotechnology Department, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Inmaculada Amorós
- Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - José Luís Alonso
- Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - María Antonia Ferrús
- Biotechnology Department, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
28
|
Mai Y, Zheng J, Zeng J, Wang Z, Liu F, Ma L, Zhou M, Zhao S, Wu B, Wang C, Yan Q, He Z, Shu L. Protozoa as Hotspots for Potential Pathogens in the Drinking Water of a Subtropical Megacity: Diversity, Treatment, and Health Risk. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6108-6118. [PMID: 37026396 DOI: 10.1021/acs.est.2c09139] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Drinking water systems host a wide range of microorganisms essential for biosafety. However, one major group of waterborne pathogens, protozoa, is relatively neglected compared to bacteria and other microorganisms. Until now, little is known about the growth and fate of protozoa and their associated bacteria in drinking water systems. In this study, we aim to investigate how drinking water treatment affects the growth and fate of protozoa and their associated bacteria in a subtropical megacity. The results showed that viable protozoa were prevalent in the city's tap water, and amoebae were the major component of tap water protozoa. In addition, protozoan-associated bacteria contained many potential pathogens and were primarily enriched in amoeba hosts. Furthermore, this study showed that current drinking water disinfection methods have little effect on protozoa and their associated bacteria. Besides, ultrafiltration membranes unexpectedly served as an ideal growth surface for amoebae in drinking water systems, and they could significantly promote the growth of amoeba-associated bacteria. In conclusion, this study shows that viable protozoa and their associated bacteria are prevalent in tap water, which may present an emerging health risk in drinking water biosafety.
Collapse
Affiliation(s)
- Yingwen Mai
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Jianyi Zheng
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Jiaxiong Zeng
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Zihe Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Fei Liu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Lu Ma
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Min Zhou
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Shanshan Zhao
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Bo Wu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Cheng Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Longfei Shu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
29
|
Baccari O, Barkallah M, Elleuch J, Ben Ayed N, Chtourou A, Karray-Hakim H, Hammami A, Michaud P, Fendri I, Abdelkafi S. A new TaqMan real-time PCR assay to detect Parachlamydia acanthamoebae and to monitor its co-existence with SARS-COV-2 among COVID-19 patients. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:17564-17572. [PMID: 36195814 PMCID: PMC9532228 DOI: 10.1007/s11356-022-23227-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Human respiratory infections caused by a large variety of microbial pathogens are the most common diseases responsible for hospitalization, morbidity and mortality. Parachlamydia acanthamoebae, a Chlamydia-related bacterium, has been found to be potentially associated with these diseases. An early and accurate diagnosis of this pathogen could be useful to avoid the potential respiratory complications linked especially to COVID-19 patients and to set suitable outbreak control measures. A TaqMan-PCR assay was developed to detect and quantify Parachlamydia acanthamoebae in environmental and clinical samples from patients of all ages with COVID-19. The selected hydrolysis probe displayed no cross-reaction with the closely related Chlamydia or the other tested pathogens. This q-PCR achieved good reproducibility and repeatability with a detection limit of about 5 DNA copies per reaction. Using this q-PCR assay, Parachlamydia acanthamoebae was detected in 2/78 respiratory specimens and 9/47 water samples. Only one case (1.3%) of Parachlamydia acanthamoebae and SARS-COV-2 co-infection was noticed. To our knowledge, the combination of these two respiratory pathogens has not been described yet. This new TaqMan-PCR assay represents an efficient diagnostic tool to survey Parachlamydia acanthamoebae on a large-scale screening programs and also during outbreaks.
Collapse
Affiliation(s)
- Olfa Baccari
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia
| | - Mohamed Barkallah
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia
| | - Jihen Elleuch
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia
| | - Nourelhouda Ben Ayed
- Laboratory of Microbiology, Faculty of Medicine of Sfax, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
| | - Amel Chtourou
- Laboratory of Microbiology, Faculty of Medicine of Sfax, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
| | - Héla Karray-Hakim
- Laboratory of Microbiology, Faculty of Medicine of Sfax, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
| | - Adenene Hammami
- Laboratory of Microbiology, Faculty of Medicine of Sfax, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
| | - Philippe Michaud
- Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, 63000, Clermont-Ferrand, France
| | - Imen Fendri
- Laboratoire de Biotechnologie Végétale Appliquée à l'Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, 3038, Sfax, Tunisia
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia.
| |
Collapse
|
30
|
The Status of Molecular Analyses of Isolates of Acanthamoeba Maintained by International Culture Collections. Microorganisms 2023; 11:microorganisms11020295. [PMID: 36838260 PMCID: PMC9961329 DOI: 10.3390/microorganisms11020295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/04/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Acanthamoeba is among the most ubiquitous protistan groups in nature. Knowledge of the biological diversity of Acanthamoeba comes in part from the use of strains maintained by the major microbial culture collections, ATCC and CCAP. Standard strains are vital to ensure the comparability of research. The diversity of standard strains of Acanthamoeba in the culture collections is reviewed, emphasizing the extent of genotypic studies based on DNA sequencing of the small subunit ribosomal RNA from the nucleus (18S rRNA gene; Rns) or the mitochondria (16S-like rRNA gene; rns). Over 170 different strains have been maintained at some time by culture centers. DNA sequence information is available for more than 70% of these strains. Determination of the genotypic classification of standard strains within the genus indicates that frequencies of types within culture collections only roughly mirror that from clinical or environmental studies, with significant differences in the frequency of some genotypes. Culture collections include the type of isolate from almost all named species of Acanthamoeba, allowing an evaluation of the validity of species designations. Multiple species are found to share the same Sequence Type, while multiple Sequence Types have been identified for different strains that share the same species name. Issues of sequence reliability and the possibility that a small number of standard strains have been mislabeled when studied are also examined, leading to potential problems for comparative analyses. It is important that all species have reliable genotype designations. The culture collections should be encouraged to assist in completing the molecular inventory of standard strains, while workers in the Acanthamoeba research community should endeavor to ensure that strains representative of genotypes that are missing from the culture collection are provided to the culture centers for preservation.
Collapse
|
31
|
Padua MFFE, Masangkay FR, Alejandro GJD, Milanez GDJ. Detection of Acanthamoeba spp. in groundwater sources in a rural area in the Philippines. JOURNAL OF WATER AND HEALTH 2023; 21:138-146. [PMID: 36705503 DOI: 10.2166/wh.2023.258] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Research on free-living amoebae (FLA) and its public health implication as an etiologic agent of parasitic infection in humans has recently gained traction in the Philippines. This study aimed to identify potential FLAs in collected groundwater samples from Masinloc, Zambales, Philippines. Fifty-four (54) water samples were collected in 250-mL sterile polyethylene containers by purposive sampling from selected groundwater sources in six (6) barangays of Masinloc. The samples were vacuum filtered through a 1.2-μm pore glass microfiber filter, cultured onto non-nutrient agar (NNA) lawned with Escherichia coli, and observed microscopically for amoebic growth for 14 days using light microscopy. Amoebic growth was observed in 11.1% (6/54) of water samples. DNAs from positive samples were extracted and were made to react with polymerase chain reaction using Acanthamoeba-specific JDP1 (5'-GGCCCAGATCGTTTACCGTGAA-3') and JDP2 (5'-TCTCACAAGCTGCTAGGGAGTCA-3') primers, and universal primer Euk A (5'-AACCTGGTTGATCCTGCCAGT-3') and Euk B (5'-TGATCCTTCTGCAGGTTCACCTAC-3'). The presence of Acanthamoeba genotypes T4, T7, and T11 was confirmed using molecular and phylogenetic analysis. Our results confirmed that groundwater sources from two of six sampling sites (33.3%) in Masinloc, Zambales, were contaminated with potentially pathogenic FLAs. Proper identification of risk factors that may cause contamination consequently leads to the implementation of programs that will prevent future infections.
Collapse
Affiliation(s)
- Mark F F E Padua
- The Graduate School, University of Santo Tomas, Manila 1015, Philippines; Department of Medical Technology, Far Eastern University, Manila 1008, Philippines
| | - Frederick Ramirez Masangkay
- Department of Medical Technology, Faculty of Pharmacy, University of Santo Tomas, Manila 1015, Philippines E-mail:
| | | | - Giovanni De Jesus Milanez
- Department of Medical Technology, Faculty of Pharmacy, University of Santo Tomas, Manila 1015, Philippines E-mail:
| |
Collapse
|
32
|
Ultraviolet – Chlorine combined treatment efficiency to eliminate Naegleria fowleri in artificial surf lagoons. Heliyon 2022; 8:e11625. [PMID: 36439712 PMCID: PMC9691874 DOI: 10.1016/j.heliyon.2022.e11625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/14/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022] Open
Abstract
Naegleria. fowleri, a protozoa belonging to the free-living amoeba group, is the causative agent of a central nervous system affecting disease that is fatal in more than the 95% of the reported cases. This parasite can be found in warm water bodies such as lakes, rivers or inadequately disinfected swimming pools. On the other hand, chlorination and UV light treatment are two of the most extensively used disinfection methods in recreational water facilities. In this study the effect of chlorination and UV light on N. fowleri trophozoites was studied in a close water circuit with the aim to assess the efficacy of this disinfection methods in large pools. The obtained results showed that the chlorination was able to decrease the number of viable cells despite the elimination was not totally achieved. Nonetheless, the combination of the UV light with the chlorination allowed the complete removal of the N. fowleri trophozoites from the water in experimental testing conditions. Absence of an standardized water treatment protocol to eliminate N. fowleri. Treatment based only on chlorine was ineffective to eliminate N. fowleri. Combined chlorination and UV light treatment was effective to completely eliminate N.fowleri. Combination of chlorine - Uv would be a promising method for water disinfection.
Collapse
|
33
|
Long-term survive of Aliarcobacter butzleri in two models symbiotic interaction with Acanthamoeba castellanii. Arch Microbiol 2022; 204:610. [DOI: 10.1007/s00203-022-03223-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/02/2022]
|
34
|
Andalib S, Mohammad Rahimi H, Niyyati M, Shalileh F, Nemati S, Rouhani S, Zali MR, Mirjalali H, Karanis P. Free-living amoebae in an oil refinery wastewater treatment facility. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156301. [PMID: 35636544 DOI: 10.1016/j.scitotenv.2022.156301] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Free Living Amoebae (FLA) are ubiquitous microorganisms reported from harsh environmental conditions. Oil refinery facilities consume vast volumes of water during their processes, generating a large amount of wastewater. The present study aimed to evaluate the wastewater treatment process in an oil refinery wastewater treatment facility (ORWWTF) for the presence of FLA. Water samples were collected from an oil refinery wastewater (ORWW) for nine months. After recording physical-chemical features, samples were cultivated onto non-nutrient agar (NNA). The discriminative fragments of the ribosomal RNA (rRNA) gene were amplified and sequenced to characterize the isolated FLA. Phylogenetic tree, and network analysis were employed to evaluate genetic relationships. The thermo- and osmotolerant tests were performed on the isolated FLA. Twenty-five (32.9%) samples were positive for FLA cultivation. Acanthamoeba spp., Vahlkampfiids, and Vermamoeba spp. were detected, of which Acanthamoeba species were predominant. There was no statistical correlation between pH, NH3, PO4, H2S, and TDS with the presence of FLA. A statistical correlation between the presence of FLA and the type of wastewater treatment plants (WWTPs) was significant (P-value = 0.011). All Acanthamoeba spp. isolates belonged to the genotypes T4 (17/21; 80.95%) and T11 (4/21; 19.05%). Vahlkampfiids were Naegleria spp., (7/10; 70%), Tetramitus aberdonicus (1/10; 10%), Learamoeba spp., (1/10; 10%), and Vahlkampfia spp., (1/10; 10%). All three Vermamoeba spp. were V. vermiformis. The ORWW contains toxic materials, and a few microorganisms can stay active in these environments. This is the first study which isolates FLA from such super harsh conditions. For the first time, T. aberdonicus, and Learamoeba spp., were isolated from oily wastewater. Our findings signify the concern due to the distribution of potentially pathogenic FLA to downstream lands via treated wastewater that may be released after treatment processing.
Collapse
Affiliation(s)
- Saeid Andalib
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hanieh Mohammad Rahimi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Niyyati
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Farzaneh Shalileh
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Nemati
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheila Rouhani
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Panagiotis Karanis
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Nicosia University Medical School, Department of Basic and Clinical Sciences, Nicosia 2408, Cyprus
| |
Collapse
|
35
|
Montalbano Di Filippo M, Boni A, Chiani P, Marra M, Carollo M, Cristofari L, Minelli F, Knijn A, Morabito S. Exploring the nature of interaction between shiga toxin producing Escherichia coli (STEC) and free-living amoeba - Acanthamoeba sp. Front Cell Infect Microbiol 2022; 12:926127. [PMID: 36159652 PMCID: PMC9504058 DOI: 10.3389/fcimb.2022.926127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Free-living amoebae (FLA) are widely distributed protozoa in nature, known to cause severe eye infections and central nervous system disorders. There is growing attention to the potential role that these protozoa could act as reservoirs of pathogenic bacteria and, consequently, to the possibility that, the persistence and spread of the latter may be facilitated, by exploiting internalization into amoebae. Shiga toxin-producing strains of Escherichia coli (STEC) are zoonotic agents capable of causing serious diseases, such as hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS). Cattle represent the main natural reservoir of STEC, which are frequently found also in other domestic and wild ruminants, often without causing any evident symptoms of disease. The aspects related to the ecology of STEC strains in animal reservoirs and the environment are poorly known, including the persistence of these microorganisms within niches unfavorable to survival, such as soils or waters. In this study we investigated the interaction between STEC strains of serotype O157: H7 with different virulence gene profiles, and a genus of a wild free-living amoeba, Acanthamoeba sp. Our results confirm the ability of STEC strains to survive up to 20 days within a wild Acanthamoeba sp., in a quiescent state persisting in a non-cultivable form, until they reactivate following some stimulus of an unknown nature. Furthermore, our findings show that during their internalization, the E. coli O157 kept the set of the main virulence genes intact, preserving their pathogenetic potential. These observations suggest that the internalization in free-living amoebae may represent a means for STEC to resist in environments with non-permissive growth conditions. Moreover, by staying within the protozoa, STEC could escape their detection in the vehicles of infections and resist to the treatments used for the disinfection of the livestock environment.
Collapse
Affiliation(s)
- Margherita Montalbano Di Filippo
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
- *Correspondence: Margherita Montalbano Di Filippo,
| | - Arianna Boni
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Chiani
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Manuela Marra
- Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Carollo
- Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Lucrezia Cristofari
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Fabio Minelli
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Arnold Knijn
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Stefano Morabito
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
36
|
Jin C, Mo Y, Zhao L, Xiao Z, Zhu S, He Z, Chen Z, Zhang M, Shu L, Qiu R. Host-Endosymbiont Relationship Impacts the Retention of Bacteria-Containing Amoeba Spores in Porous Media. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12347-12357. [PMID: 35916900 DOI: 10.1021/acs.est.2c02899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Amoebae are protists that are commonly found in water, soil, and other habitats around the world and have complex interactions with other microorganisms. In this work, we investigated how host-endosymbiont interactions between amoebae and bacteria impacted the retention behavior of amoeba spores in porous media. A model amoeba species, Dictyostelium discoideum, and a representative bacterium, Burkholderia agricolaris B1qs70, were used to prepare amoeba spores that carried bacteria. After interacting with B. agricolaris, the retention of D. discoideum spores was enhanced compared to noninfected spores. Diverse proteins, especially proteins contributing to the looser exosporium structure and cell adhesion functionality, are secreted in higher quantities on the exosporium surface of infected spores compared to that of noninfected ones. Comprehensive examinations using a quartz crystal microbalance with dissipation (QCM-D), a parallel plate chamber, and a single-cell force microscope present coherent evidence that changes in the exosporium of D. discoideum spores due to infection by B. agricolaris enhance the connections between spores in the suspension and the spores that were previously deposited on the collector surface, thus resulting in more retention compared to the uninfected ones in porous media. This work provides novel insight into the retention of amoeba spores after bacterial infection in porous media and suggests that the host-endosymbiont relationship regulates the fate of biocolloids in drinking water systems, groundwater, and other porous environments.
Collapse
Affiliation(s)
- Chao Jin
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Yijun Mo
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Lingan Zhao
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Zihan Xiao
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Shishu Zhu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Zhenzhen He
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Zijian Chen
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Miaoyue Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Longfei Shu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, P. R. China
| |
Collapse
|
37
|
Masangkay FR, Milanez GD, Dionisio JD, Ormita LAGL, Alvarez AV, Karanis P. Well water sources simultaneous contamination with Cryptosporidium and Acanthamoeba in East-Southeast Asia and Acanthamoeba spp. in biofilms in the Philippines. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155752. [PMID: 35533862 DOI: 10.1016/j.scitotenv.2022.155752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/05/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Cryptosporidium is the leading agent of waterborne parasitic protozoan outbreaks and is the second leading cause of infant mortality due to diarrhoea worldwide. Acanthamoeba spp. causes Acanthamoeba keratitis (AK) and a life-threatening condition known as granulomatous amoebic encephalitis (GAE). The present study aimed to assess the water quality of an indigenous and a rural community for waterborne parasitic protozoan contamination. Aquatic samples (n = 22) were processed by filtration of 500 mL portion through a 1.2 μm pore size glass microfiber filter and eluted for light microscopy, culture in non-nutrient agar, and PCR analysis. Overall, 36% (8/22) of the investigated aquatic samples were positive for either Cryptosporidium spp. oocysts (13%; 3/22) or Acanthamoeba spp., (36%; 8/22) or both (13%; 3/22). Cryptosporidium spp. oocysts were detected in 27% (3/11) of wet season samples only while Acanthamoeba spp. were detected in 18% (2/11) and 55% (6/11) of wet and dry season samples, respectively. Subsequently, molecular detection for Acanthamoeba species identified A. lenticulata and A. hatchetti with 98-99% BLAST similarity. This is the first report on the simultaneous contamination of Cryptosporidium and Acanthamoeba in well water sources in East-Southeast Asia, the first detection of Acanthamoeba spp. in biofilms in the Philippines, and the longest viability demonstrated for A. lenticulata in two-year-old water samples stored at room temperature.
Collapse
Affiliation(s)
- Frederick R Masangkay
- Department of Medical Technology, Faculty of Pharmacy, University of Santo Tomas, Manila 1008, Philippines.
| | - Giovanni D Milanez
- Department of Medical Technology, Faculty of Pharmacy, University of Santo Tomas, Manila 1008, Philippines
| | - Joseph D Dionisio
- Department of Medical Technology, Far Eastern University-Manila, Manila 1015, Philippines
| | - Luzelle Anne G-L Ormita
- Department of Psychology, Far Eastern University-Manila, Manila 1015, Philippines; Community Extension Services, Far Eastern University-Manila, Manila 1015, Philippines
| | - Abel V Alvarez
- Community Extension Services, Far Eastern University-Manila, Manila 1015, Philippines
| | - Panagiotis Karanis
- University of Cologne, Faculty of Medical and University Hospital Cologne, Cologne 50923, Germany; Medical School, Department of Basic and Clinical Science, University of Nicosia, Nicosia, 2417, Cyprus.
| |
Collapse
|
38
|
Milanez GD, Masangkay FR, Martin I GL, Hapan MFZ, Manahan EP, Castillo J, Karanis P. Epidemiology of free-living amoebae in the Philippines: a review and update. Pathog Glob Health 2022; 116:331-340. [PMID: 35112656 PMCID: PMC9387320 DOI: 10.1080/20477724.2022.2035626] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Free-living amoebae (FLA) are considered environmental pathogens and thus pose a public health threat. Their ubiquity in natural sources may magnify the potential severity of health outcomes in the future. However, less attention was given despite several probable public health risks that arise from the presence of pathogenic strains in the environment. Here, we provide epidemiological data based on investigations involving the distribution and occurrence of free-living amoebae in the Republic of the Philippines. This aims to connect data of fragmented studies of these organisms and provide potential roadmaps in FLA research in the country. The majority of the reviewed articles (n = 19) focused on characterization studies (36.8%; 7/19) while environmental isolation and isolation from biological samples had an equal frequency of 31.6% (6/19) each. There is a great disparity between the established ubiquity in environmental sources and the number of cases of FLA infections in the country. FLA-related research in the Philippines is still in its inceptive stage with several gaps to fill, which can be used to formulate policy briefs in the future regarding its isolation, identification, diagnosis, therapeutic management, and control of FLA infections in the country.
Collapse
Affiliation(s)
- Giovanni D. Milanez
- Department of Medical Technology, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines,CONTACTGiovanni D. Milanez Department of Medical Technology, Faculty of Pharmacy, University of Santo Tomas, Manila1015, Philippines
| | - Frederick R. Masangkay
- Department of Medical Technology, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines
| | - Gregorio L. Martin I
- Department of Medical Technology, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines
| | - Ma. Frieda Z Hapan
- Department of Medical Technology, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines
| | - Edilberto P. Manahan
- Department of Medical Technology, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines
| | | | - Panagiotis Karanis
- Medical Faculty, University of Cologne, Cologne, Germany,Department of Basic and Clinical Science, University of Nicosia Medical School, Nicosia, Cyprus
| |
Collapse
|
39
|
Leal dos Santos D, Chaúque BJM, Virginio VG, Cossa VC, Pettan-Brewer C, Schrekker HS, Rott MB. Occurrence of Naegleria fowleri and their implication for health - a look under the One Health approaches. Int J Hyg Environ Health 2022; 246:114053. [DOI: 10.1016/j.ijheh.2022.114053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022]
|
40
|
Prevalence of free-living amoebae in swimming pools and recreational waters, a systematic review and meta-analysis. Parasitol Res 2022; 121:3033-3050. [PMID: 36040629 PMCID: PMC9424809 DOI: 10.1007/s00436-022-07631-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/16/2022] [Indexed: 11/06/2022]
Abstract
Free-living amoebae (FLA) are cosmopolitan microorganisms known to be pathogenic to humans who often have a history of contact with contaminated water. Swimming pools and recreational waters are among the environments where the greatest human exposure to FLA occurs. This study aimed to determine the prevalence of FLA in swimming pools and recreational waters, through a systematic review and meta-analysis that included studies published between 1977 and 2022. A total of 106 studies were included and an overall prevalence of FLA in swimming pools and recreational waters of 44.34% (95% CI = 38.57–50.18) was found. Considering the studies published up to 2010 (1977–2010), between 2010 and 2015, and those published after 2010 (> 2010–2022), the prevalence was 53.09% (95% CI = 43.33–62.73) and 37.07% (95% CI = 28.87–45.66) and 45.40% (95% CI = 35.48–55.51), respectively. The highest prevalence was found in the American continent (63.99%), in Mexico (98.35%), and in indoor hot swimming pools (52.27%). The prevalence varied with the variation of FLA detection methods, morphology (57.21%), PCR (25.78%), and simultaneously morphology and PCR (43.16%). The global prevalence by genera was Vahlkampfia spp. (54.20%), Acanthamoeba spp. (33.47%), Naegleria spp. (30.95%), Hartmannella spp./Vermamoeba spp. (20.73%), Stenamoeba spp. (12.05%), and Vannella spp. (10.75%). There is considerable risk of FLA infection in swimming pools and recreational waters. Recreational water safety needs to be routinely monitored and, in case of risk, locations need to be identified with warning signs and users need to be educated. Swimming pools and artificial recreational water should be properly disinfected. Photolysis of NaOCl or NaCl in water by UV-C radiation is a promising alternative to disinfect swimming pools and artificial recreational waters.
Collapse
|
41
|
Siddiqui R, Makhlouf Z, Akbar N, Khamis M, Ibrahim T, Khan AS, Khan NA. Antiamoebic properties of salicylic acid-based deep eutectic solvents for the development of contact lens disinfecting solutions against Acanthamoeba. Mol Biochem Parasitol 2022; 250:111493. [PMID: 35753525 DOI: 10.1016/j.molbiopara.2022.111493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/30/2022] [Accepted: 06/20/2022] [Indexed: 10/17/2022]
Abstract
Acanthamoeba castellanii is a protist pathogen that can cause sight-threatening keratitis and a fatal infection of the central nervous system, known as granulomatous amoebic encephalitis. In this study, effects of five malonic acid and salicylic acid-based deep eutectic solvents (DES) on A. castellanii were investigated. These are salicylic acid-trioctylphosphine (DES 1), salicylic acid- trihexylamine (DES 2), salicylic acid-trioctylamine (DES 3), malonic acid-trioctylphosphine (DES 4) and malonic acid-trihexylamine (DES 5). The experiments were done by performing amoebicidal, encystment, excystment, cytopathogenicity, and cytotoxicity assays. At micromolar dosage, the solvents DES 2 and DES 3 displayed significant amoebicidal effects (P<0.05), inhibited encystment and excystment, undermined the cell-mediated cytopathogenicity of A. castellanii, and also displayed minimal cytotoxicity to human cells. Conversely, the chemical components of these solvents: salicylic acid, trihexylamine, and trioctylamine showed minimal effects when tested individually. These results are very promising and to the best of our knowledge, are reported for the first time on the effects of deep eutectic solvents on amoebae. These results can be applied in the development of new formulations of novel contact lens disinfectants against Acanthamoeba castellanii.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah 26666, United Arab Emirates
| | - Zinb Makhlouf
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah 26666, United Arab Emirates
| | - Noor Akbar
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah 26666, United Arab Emirates
| | - Mustafa Khamis
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah 26666, United Arab Emirates
| | - Taleb Ibrahim
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
| | - Amir Sada Khan
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
| | - Naveed Ahmed Khan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, University, City, Sharjah, 27272, United Arab Emirates.
| |
Collapse
|
42
|
Zhang M, Altan-Bonnet N, Shen Y, Shuai D. Waterborne Human Pathogenic Viruses in Complex Microbial Communities: Environmental Implication on Virus Infectivity, Persistence, and Disinfection. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5381-5389. [PMID: 35434991 PMCID: PMC9073700 DOI: 10.1021/acs.est.2c00233] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Waterborne human pathogenic viruses challenge global health and economy. Viruses were long believed to transmit among hosts as individual, free particles. However, recent evidence indicates that viruses also transmit in populations, so-called en bloc transmission, by either interacting with coexisting bacteria, free-living amoebas, and other higher organisms through endosymbiosis and surface binding, or by being clustered inside membrane-bound vesicles or simply self-aggregating with themselves. En bloc transmission of viruses and virus-microbiome interactions could enable viruses to enhance their infectivity, increase environmental persistence, and resist inactivation from disinfection. Overlooking this type of transmission and virus-microbiome interactions may underestimate the environmental and public health risks of the viruses. We herein provide a critical perspective on waterborne human pathogenic viruses in complex microbial communities to elucidate the environmental implication of virus-microbiome interactions on virus infectivity, persistence, and disinfection. This perspective also provides insights on advancing disinfection and sanitation guidelines and regulations to protect the public health.
Collapse
Affiliation(s)
- Mengyang Zhang
- Department of Civil and Environmental Engineering, The George Washington University, Washington, DC 20052, United States
- Laboratory of Host-Pathogen Dynamics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Nihal Altan-Bonnet
- Laboratory of Host-Pathogen Dynamics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Yun Shen
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92521
| | - Danmeng Shuai
- Department of Civil and Environmental Engineering, The George Washington University, Washington, DC 20052, United States
| |
Collapse
|
43
|
He Z, Zheng N, Zhang L, Tian Y, Hu Z, Shu L. Efficient inactivation of intracellular bacteria in dormant amoeba spores by FeP. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127996. [PMID: 34902724 DOI: 10.1016/j.jhazmat.2021.127996] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/26/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Waterborne pathogens and related diseases are a severe public health threat worldwide. Recent studies suggest that microbial interactions among infectious agents can significantly disrupt the disinfection processes, and current disinfection methods cannot inactivate intracellular pathogens effectively, posing an emerging threat to the safety of drinking water. This study developed a novel strategy, the FeP/persulfate (PS) system, to effectively inactivate intracellular bacteria within the amoeba spore. We found that the sulfate radical (SO4•-) produced by the FeP/PS system can be quickly converted into hydroxyl radicals (•OH), and •OH can penetrate the amoeba spores and inactivate the bacteria hidden inside amoeba spores. Therefore, this study proposes a novel technique to overcome the protective effects of microbial interactions and provides a new direction to inactivate intracellular pathogens efficiently.
Collapse
Affiliation(s)
- Zhenzhen He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Ningchao Zheng
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Lin Zhang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuehui Tian
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhuofeng Hu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China.
| | - Longfei Shu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
44
|
Dos Santos DL, Virginio VG, Berté FK, Lorenzatto KR, Marinho DR, Kwitko S, Locatelli CI, Freitas EC, Rott MB. Clinical and molecular diagnosis of Acanthamoeba keratitis in contact lens wearers in southern Brazil reveals the presence of an endosymbiont. Parasitol Res 2022; 121:1447-1454. [PMID: 35194678 DOI: 10.1007/s00436-022-07474-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/17/2022] [Indexed: 12/17/2022]
Abstract
Acanthamoeba keratitis (AK) is an infection that is mostly observed in contact lens wearers. It is often misdiagnosed causing delays in the administration of the correct treatment. The aim of this study was to report the outcome of clinical and molecular diagnosis of AK cases during the summer of 2019 in the southern region of Brazil. Three suspected cases of AK were discovered after an ophthalmic examination at a public hospital in the city of Porto Alegre. These cases were then confirmed through laboratory diagnosis (cell culture and molecular analysis by PCR and sequencing). In each of the three clinical sample cell cultures of corneal scraping and molecular analysis confirmed the presence of Acanthamoeba spp., all belonging to the morphological group II and to the genotype T4, which is the most common genotype associated with AK. In addition, Acanthamoeba spp. isolated from one of the clinical samples was found to harbor the Candidatus Paracaedibacter acanthamoeba, a bacterial endosymbiont. The presence of Ca. Paracaedibacter acanthamoeba in clinical isolates requires further research to reveal its possible role in the pathogenicity of Acanthamoeba infections.
Collapse
Affiliation(s)
- Denise Leal Dos Santos
- Microbiology, Immunology and Parasitology Department, Basic Health Sciences Institute, Parasitology Sector, Rio Grande Do Sul Federal University, Sarmento Leite Street, N 500, Porto Alegre, Rio Grande Do Sul, 90050-170, Brazil
| | - Veridiana Gomes Virginio
- Microbiology, Immunology and Parasitology Department, Basic Health Sciences Institute, Parasitology Sector, Rio Grande Do Sul Federal University, Sarmento Leite Street, N 500, Porto Alegre, Rio Grande Do Sul, 90050-170, Brazil
| | - Francisco Kercher Berté
- Microbiology, Immunology and Parasitology Department, Basic Health Sciences Institute, Parasitology Sector, Rio Grande Do Sul Federal University, Sarmento Leite Street, N 500, Porto Alegre, Rio Grande Do Sul, 90050-170, Brazil
| | - Karina Rodrigues Lorenzatto
- Microbiology, Immunology and Parasitology Department, Basic Health Sciences Institute, Parasitology Sector, Rio Grande Do Sul Federal University, Sarmento Leite Street, N 500, Porto Alegre, Rio Grande Do Sul, 90050-170, Brazil
| | - Diane Ruschel Marinho
- Cornea Department, Ophthalmology Service, Hospital de Clínicas de Porto Alegre Rio Grande Do Sul, Ramiro Barcelos Street, N 2350, Porto Alegre, Rio Grande Do Sul, 90035-903, Brazil
| | - Sergio Kwitko
- Cornea Department, Ophthalmology Service, Hospital de Clínicas de Porto Alegre Rio Grande Do Sul, Ramiro Barcelos Street, N 2350, Porto Alegre, Rio Grande Do Sul, 90035-903, Brazil
| | - Claudete Inês Locatelli
- Cornea Department, Ophthalmology Service, Hospital de Clínicas de Porto Alegre Rio Grande Do Sul, Ramiro Barcelos Street, N 2350, Porto Alegre, Rio Grande Do Sul, 90035-903, Brazil
| | - Eduarda Correa Freitas
- Cornea Department, Ophthalmology Service, Hospital de Clínicas de Porto Alegre Rio Grande Do Sul, Ramiro Barcelos Street, N 2350, Porto Alegre, Rio Grande Do Sul, 90035-903, Brazil
| | - Marilise Brittes Rott
- Microbiology, Immunology and Parasitology Department, Basic Health Sciences Institute, Parasitology Sector, Rio Grande Do Sul Federal University, Sarmento Leite Street, N 500, Porto Alegre, Rio Grande Do Sul, 90050-170, Brazil.
| |
Collapse
|
45
|
Nasher F, Wren BW. Transient internalization of Campylobacter jejuni in Amoebae enhances subsequent invasion of human cells. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35175913 PMCID: PMC8941996 DOI: 10.1099/mic.0.001143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The ubiquitous unicellular eukaryote, Acanthamoeba, is known to play a role in the survival and dissemination of Campylobacter jejuni. C. jejuni is the leading cause of bacterial foodborne gastroenteritis world-wide and is a major public health problem. The ability of C. jejuni to interact and potentially invade epithelial cells is thought to be key for disease development in humans. We examined C. jejuni grown under standard laboratory conditions, 11168HCBA with that harvested from within Acanthamoeba castellanii (11168HAC/CBA) or Acanthamoeba polyphaga (11168HAP/CBA), and compared their ability to invade different cell lines. C. jejuni harvested from within amoebae had a ~3.7-fold increase in invasiveness into T84 human epithelial cells and a striking ~11-fold increase for re-entry into A. castellanii cells. We also investigated the invasiveness and survivability of six diverse representative C. jejuni strains within Acanthamoeba spp., our results confirm that invasion and survivability is likely host-cell-dependent. Our survival assay data led us to conclude that Acanthamoeba spp. are a transient host for C. jejuni and that survival within amoebae pre-adapts C. jejuni and enhances subsequent cell invasion. This study provides new insight into C. jejuni interactions with amoebae and its increased invasiveness potential in mammalian hosts.
Collapse
Affiliation(s)
- Fauzy Nasher
- London School of Hygiene and Tropical Medicine, London, UK
| | - Brendan W Wren
- London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
46
|
Gomaa F, Utter DR, Loo W, Lahr DJ, Cavanaugh CM. Exploring the protist microbiome: The diversity of bacterial communities associated with Arcella spp. (Tubulina: Amoebozoa). Eur J Protistol 2022; 82:125861. [DOI: 10.1016/j.ejop.2021.125861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 11/08/2021] [Accepted: 12/18/2021] [Indexed: 11/15/2022]
|
47
|
Chaúque BJM, Rott MB. The role of free-living amoebae in the persistence of viruses in the era of severe acute respiratory syndrome 2, should we be concerned? Rev Soc Bras Med Trop 2022; 55:e0045. [PMID: 35674555 PMCID: PMC9176723 DOI: 10.1590/0037-8682-0045-2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/25/2022] [Indexed: 12/13/2022] Open
|
48
|
Molecular identification and phylogenetic analysis of free-living amoeba (Naegleria and Acanthamoeba) from treated and untreated drinking water. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
49
|
Various brain-eating amoebae: the protozoa, the pathogenesis, and the disease. Front Med 2021; 15:842-866. [PMID: 34825341 DOI: 10.1007/s11684-021-0865-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/25/2021] [Indexed: 10/19/2022]
Abstract
Among various genera of free-living amoebae prevalent in nature, some members are identified as causative agents of human encephalitis, in which Naegleria fowleri followed by Acanthamoeba spp. and Balamuthia mandrillaris have been successively discovered. As the three dominant genera responsible for infections, Acanthamoeba and Balamuthia work as opportunistic pathogens of granulomatous amoebic encephalitis in immunocompetent and immunocompromised individuals, whereas Naegleria induces primary amoebic meningoencephalitis mostly in healthy children and young adults as a more violent and deadly disease. Due to the lack of typical symptoms and laboratory findings, all these amoebic encephalitic diseases are difficult to diagnose. Considering that subsequent therapies are also affected, all these brain infections cause significant mortality worldwide, with more than 90% of the cases being fatal. Along with global warming and population explosion, expanding areas of human and amoebae activity in some regions lead to increased contact, resulting in more serious infections and drawing increased public attention. In this review, we summarize the present information of these pathogenic free-living amoebae, including their phylogeny, classification, biology, and ecology. The mechanisms of pathogenesis, immunology, pathophysiology, clinical manifestations, epidemiology, diagnosis, and therapies are also discussed.
Collapse
|
50
|
Paes J, Kepler R, Gonçalves RF, Berte FK, Virginio VG, Benitez LB, Rott MB. Amoebal coculture and enrichment methods as a proposal for water quality control in Brazil. Acta Trop 2021; 223:106074. [PMID: 34358510 DOI: 10.1016/j.actatropica.2021.106074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 11/27/2022]
Abstract
Free living amoebae (FLA) can be found in different environments, where they feed on diverse microorganisms. Some bacteria preyed by FLA are called amoeba-resistant bacteria (ARB), as they can resist to lysosomal fusion and are capable of multiplying and evading FLA after internalization, propagating in the environment. Despite the health risks due to the existence of pathogenic and opportunistic species that are ARB and the pathogenicity of some FLA species, there are no water quality protocols to analyze the presence of ARB or FLA. In this sense, our study aimed to isolate FLA through amoebal enrichment and to identify ARB using amoebal coculture in water samples from a public park and two hospitals in southern Brazil. As a result, 9 different microorganisms genera have been identified through amoebal coculture, including fastidious Legionella spp. and Bosea vestrisii. From the positive samples for FLA, by amoebal enrichment, Acanthamoeba spp., Vermamoeba vermiformis and Naegleria spp. were identified in 14 amoebic isolates. The methodologies used in this work proved to be effective as simple and low-cost methods to be used in the implementation in water quality control of anthropogenic environments.
Collapse
|