1
|
Guagliardo SAJ, Connelly CR, Lyons S, Martin SW, Sutter R, Hughes HR, Brault AC, Lambert AJ, Gould CV, Staples JE. Reemergence of Oropouche Virus in the Americas and Risk for Spread in the United States and Its Territories, 2024. Emerg Infect Dis 2024; 30:2241-2249. [PMID: 39353409 PMCID: PMC11521165 DOI: 10.3201/eid3011.241220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
Oropouche virus has recently caused outbreaks in South America and the Caribbean, expanding into areas to which the virus was previously not endemic. This geographic range expansion, in conjunction with the identification of vertical transmission and reports of deaths, has raised concerns about the broader threat this virus represents to the Americas. We review information on Oropouche virus, factors influencing its spread, transmission risk in the United States, and current status of public health response tools. On the basis of available data, the risk for sustained local transmission in the continental United States is considered low because of differences in vector ecology and in human-vector interactions when compared with Oropouche virus-endemic areas. However, more information is needed about the drivers for the current outbreak to clarify the risk for further expansion of this virus. Timely detection and control of this emerging pathogen should be prioritized to mitigate disease burden and stop its spread.
Collapse
|
2
|
Douglas KO. The silent invaders: Oropouche and Melao viruses, causes of increased public health risks for the Americas. Infect Dis (Lond) 2024; 56:1009-1014. [PMID: 39287941 DOI: 10.1080/23744235.2024.2403712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/03/2024] [Accepted: 09/07/2024] [Indexed: 09/19/2024] Open
Abstract
The Oropouche virus (OROV) is emerging as a major public health threat worldwide, yet for the Americas, it raises complex challenges that intersect with other existing arboviral threats such as Zika (ZIKV), dengue (DENV) and Chikungunya (CHIKV) viruses. Originating from Trinidad and Tobago in 1955, it has spread across the Amazonian Basin and more recently into the Caribbean (Cuba and Haiti) and Europe, highlighting the importance of air travel in its dissemination. OROV and the less studied Melao virus (MELV), pose significant laboratory diagnostic challenges particularly in regions co-endemic with other arboviral diseases, such as dengue and Zika fever. The effects of climate change, particularly in the Caribbean, may exacerbate the transmission of these viruses by exposing human exposure risk to vectors. Public health systems in the Americas are under strain due to complex clinical management of these infections necessitating enhanced surveillance, clinical vigilance, diagnostics and vector control. Vulnerable populations, including pregnant women, elderly, and young children, are at a heightened risk, which raises concerns about the impact on medical tourism in the region. To mitigate the spread and impact of OROV and MELV, recommendations include increased clinical surveillance, improved laboratory diagnostics, public health communication, and strengthened vector controls. Robust research and capacity building (including training and education) efforts are essential to address knowledge gaps and effectively manage future OROV and MELV outbreaks in the Americas.
Collapse
Affiliation(s)
- Kirk Osmond Douglas
- Centre for Biosecurity Studies, The University of the West Indies, Bridgetown, Barbados
| |
Collapse
|
3
|
das Neves Martins FE, Chiang JO, Nunes BTD, Ribeiro BDFR, Martins LC, Casseb LMN, Henriques DF, de Oliveira CS, Maciel ELN, Azevedo RDS, Cravo LDCC, Barreto ARF, Pessoa ALS, Filho AJM, de Sousa JR, Schuler-Faccini L, Quaresma JAS, da Costa Vasconcelos PF, da Silva Azevedo RDS. Newborns with microcephaly in Brazil and potential vertical transmission of Oropouche virus: a case series. THE LANCET. INFECTIOUS DISEASES 2024:S1473-3099(24)00617-0. [PMID: 39423837 DOI: 10.1016/s1473-3099(24)00617-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Oropouche fever, an orthobunyavirus disease endemic in Brazilian Amazon, has caused many febrile epidemics. In 2024, an epidemic of Oropouche fever spread in Brazil, with more than 7930 cases reported between Jan 1 and Aug 31. Infections in pregnant people have suggested the possibility of negative fetal consequences, therefore we tested newborns with microcephaly for known congenital pathogens and Oropouche virus (OROV). METHODS In this case series, we assessed historical cases of infants born with microcephaly, arthrogryposis, and other congenital malformations without a confirmed cause and their mothers for potential OROV congenital infections. The study population consisted of infants born in Brazil with samples from 2015-21 and 2024. Serum and cerebrospinal fluid (CSF) from this case series were analysed for: syphilis, toxoplasmosis, rubella, cytomegalovirus, herpes simplex, HIV, Zika, dengue, and chikungunya. Individuals that were negative for these pathogens were then tested for OROV. Pathogen testing included ELISA and haemagglutination inhibition testing for antibodies and RT-PCR for virus RNA. FINDINGS We tested 68 samples from 65 historical cases of congential malformations and three cases from 2024. All cases were from ten states in Brazil. Three historical cases tested positive for OROV and 62 historical cases tested negative. The three cases from 2024 all tested positive for OROV. Of the positive cases, five were female and one was male. Not all pathogens were tested for each case, and some did not have maternal samples available. One of the newborns (case 6) died aged 47 days and tissue samples were tested by real-time RT-PCR, histopathology, and immunohistochemistry assays. One other newborn died in 2016 but no post-mortem samples were available. OROV IgM was detected in five of five newborn CSF samples, and five of five newborn serum samples. Four of five maternal serum samples were positive for OROV IgM. One of four newborn CSF samples (case 6 at age 44 days) was OROV positive by real-time RT-quantitative PCR and 0 of four newborn serum samples were positive, as were 0 of three maternal serum samples. Case 6 had major tissue changes of the brain macroscopically and microscopically, including necrotic and apoptotic changes of neurons, microglia and astrocytes, vacuolisation, and tissue atrophy. OROV RNA was detected in brain, lungs, kidney, CSF, and pleural fluid; OROV antigens were found in CNS, liver, kidney, heart, and lung, mainly in neurons and microglia and also in endothelial cells, suggesting vasculitis. INTERPRETATION We detected OROV IgM in six of 68 newborns with microcephaly of unknown cause. One infant who died had OROV RNA and antigen in several tissues, including the brain. The possibility of OROV vertical transmission and potential fetal harm must be investigated with urgency. The evidence presented here does not completely confirm vertical transmission or congenital malformations due to OROV, but thorough case finding and detailed investigation of maternal or fetal OROV infection is a priority. FUNDING Evandro Chagas Institute, Secretaria de Vigilância em Saúde e Ambiente, and Ministry of Health and National Institute of Science and Technology for Emerging and Reemerging Viruses.
Collapse
Affiliation(s)
| | - Jannifer Oliveira Chiang
- Department of Arbovirology and Hemorrhagic Fever, Evandro Chagas Institute, Ananindeua, Pará, Brazil
| | | | | | - Lívia Carício Martins
- Department of Arbovirology and Hemorrhagic Fever, Evandro Chagas Institute, Ananindeua, Pará, Brazil
| | | | - Daniele Freitas Henriques
- Department of Arbovirology and Hemorrhagic Fever, Evandro Chagas Institute, Ananindeua, Pará, Brazil
| | | | | | - Rafael da Silva Azevedo
- Department of Arbovirology and Hemorrhagic Fever, Evandro Chagas Institute, Ananindeua, Pará, Brazil
| | | | | | - André Luiz Santos Pessoa
- Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil; Hospital Infantil Albert Sabin, Secretaria de Saúde do Estado do Ceará, Fortaleza, Ceará, Brazil
| | | | | | - Lavinia Schuler-Faccini
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Juarez Antônio Simões Quaresma
- Department of Pathology, Evandro Chagas Institute, Ananindeua, Pará, Brazil; Department of Pathology, Pará State University, Belém, Pará, Brazil; Núcleo de Medicina Tropical, Universidade Federal do Pará, Pará, Brazil
| | - Pedro Fernando da Costa Vasconcelos
- Department of Arbovirology and Hemorrhagic Fever, Evandro Chagas Institute, Ananindeua, Pará, Brazil; Department of Pathology, Pará State University, Belém, Pará, Brazil.
| | | |
Collapse
|
4
|
Tilston-Lunel NL. Oropouche Virus: An Emerging Orthobunyavirus. J Gen Virol 2024; 105:002027. [PMID: 39351896 PMCID: PMC11443551 DOI: 10.1099/jgv.0.002027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/04/2024] [Indexed: 10/03/2024] Open
Abstract
On 2 February 2024, the Pan American Health Organization/World Health Organization issued an epidemiological alert on rising Oropouche virus (OROV) infections in South America. By 3 August 2024, this alert level had escalated from medium to high. OROV has been a public health concern in Central and South America since its emergence in Brazil in the 1960s. However, the 2024 outbreak marks a turning point, with the sustained transmission in non-endemic regions of Brazil, local transmission in Cuba, two fatalities and several cases of vertical transmission. As of the end of August 2024, 9852 OROV cases have been confirmed. The 2024 OROV outbreak underscores critical gaps in our understanding of OROV pathogenesis and highlights the urgent need for antivirals and vaccines. This review aims to provide a concise overview of OROV, a neglected orthobunyavirus.
Collapse
Affiliation(s)
- Natasha L. Tilston-Lunel
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
5
|
Wesselmann KM, Postigo-Hidalgo I, Pezzi L, de Oliveira-Filho EF, Fischer C, de Lamballerie X, Drexler JF. Emergence of Oropouche fever in Latin America: a narrative review. THE LANCET. INFECTIOUS DISEASES 2024; 24:e439-e452. [PMID: 38281494 DOI: 10.1016/s1473-3099(23)00740-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 01/30/2024]
Abstract
Since its discovery in 1955, the incidence and geographical spread of reported Oropouche virus (OROV) infections have increased. Oropouche fever has been suggested to be one of the most important vector-borne diseases in Latin America. However, both literature on OROV and genomic sequence availability are scarce, with few contributing laboratories worldwide. Three reassortant OROV glycoprotein gene variants termed Iquitos, Madre de Dios, and Perdões virus have been described from humans and non-human primates. OROV predominantly causes acute febrile illness, but severe neurological disease such as meningoencephalitis can occur. Due to unspecific symptoms, laboratory diagnostics are crucial. Several laboratory tests have been developed but robust commercial tests are hardly available. Although OROV is mainly transmitted by biting midges, it has also been detected in several mosquito species and a wide range of vertebrate hosts, which likely facilitates its widespread emergence. However, potential non-human vertebrate reservoirs have not been systematically studied. Robust animal models to investigate pathogenesis and immune responses are not available. Epidemiology, pathogenesis, transmission cycle, cross-protection from infections with OROV reassortants, and the natural history of infection remain unclear. This Review identifies Oropouche fever as a neglected disease and offers recommendations to address existing knowledge gaps, enable risk assessments, and ensure effective public health responses.
Collapse
Affiliation(s)
- Konrad M Wesselmann
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France
| | - Ignacio Postigo-Hidalgo
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Laura Pezzi
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France; Centre National de Référence (CNR) des Arbovirus, Marseille, France
| | - Edmilson F de Oliveira-Filho
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Carlo Fischer
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Xavier de Lamballerie
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France; Centre National de Référence (CNR) des Arbovirus, Marseille, France
| | - Jan Felix Drexler
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Centre for Infection Research (DZIF), Berlin, Germany.
| |
Collapse
|
6
|
Bayrou C, Van Laere AS, Dam Van P, Moula N, Garigliany MM, Desmecht D. Anti-Schmallenberg Virus Activities of Type I/III Interferons-Induced Mx1 GTPases from Different Mammalian Species. Viruses 2023; 15:v15051055. [PMID: 37243140 DOI: 10.3390/v15051055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Mx proteins are key factors of the innate intracellular defense mechanisms that act against viruses induced by type I/III interferons. The family Peribunyaviridae includes many viruses of veterinary importance, either because infection results in clinical disease or because animals serve as reservoirs for arthropod vectors. According to the evolutionary arms race hypothesis, evolutionary pressures should have led to the selection of the most appropriate Mx1 antiviral isoforms to resist these infections. Although human, mouse, bat, rat, and cotton rat Mx isoforms have been shown to inhibit different members of the Peribunyaviridae, the possible antiviral function of the Mx isoforms from domestic animals against bunyaviral infections has, to our knowledge, never been studied. Herein, we investigated the anti-Schmallenberg virus activity of bovine, canine, equine, and porcine Mx1 proteins. We concluded that Mx1 has a strong, dose-dependent anti-Schmallenberg activity in these four mammalian species.
Collapse
Affiliation(s)
- Calixte Bayrou
- Animal Pathology, FARAH Research Center, Faculty of Veterinary Medicine, University of Liège, Sart-Tilman B43, 4000 Liège, Belgium
| | - Anne-Sophie Van Laere
- Animal Pathology, FARAH Research Center, Faculty of Veterinary Medicine, University of Liège, Sart-Tilman B43, 4000 Liège, Belgium
| | - Phai Dam Van
- Animal Pathology, FARAH Research Center, Faculty of Veterinary Medicine, University of Liège, Sart-Tilman B43, 4000 Liège, Belgium
| | - Nassim Moula
- Animal Productions, FARAH Research Center, Faculty of Veterinary Medicine, University of Liège, Sart-Tilman B43, 4000 Liège, Belgium
| | - Mutien-Marie Garigliany
- Animal Pathology, FARAH Research Center, Faculty of Veterinary Medicine, University of Liège, Sart-Tilman B43, 4000 Liège, Belgium
| | - Daniel Desmecht
- Animal Pathology, FARAH Research Center, Faculty of Veterinary Medicine, University of Liège, Sart-Tilman B43, 4000 Liège, Belgium
| |
Collapse
|
7
|
Hellert J, Aebischer A, Haouz A, Guardado-Calvo P, Reiche S, Beer M, Rey FA. Structure, function, and evolution of the Orthobunyavirus membrane fusion glycoprotein. Cell Rep 2023; 42:112142. [PMID: 36827185 DOI: 10.1016/j.celrep.2023.112142] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/29/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
La Crosse virus, responsible for pediatric encephalitis in the United States, and Schmallenberg virus, a highly teratogenic veterinary virus in Europe, belong to the large Orthobunyavirus genus of zoonotic arthropod-borne pathogens distributed worldwide. Viruses in this under-studied genus cause CNS infections or fever with debilitating arthralgia/myalgia syndromes, with no effective treatment. The main surface antigen, glycoprotein Gc (∼1,000 residues), has a variable N-terminal half (GcS) targeted by the patients' antibody response and a conserved C-terminal moiety (GcF) responsible for membrane fusion during cell entry. Here, we report the X-ray structure of post-fusion La Crosse and Schmallenberg virus GcF, revealing the molecular determinants for hairpin formation and trimerization required to drive membrane fusion. We further experimentally confirm the role of residues in the fusion loops and in a vestigial endoplasmic reticulum (ER) translocation sequence at the GcS-GcF junction. The resulting knowledge provides essential molecular underpinnings for future development of potential therapeutic treatments and vaccines.
Collapse
Affiliation(s)
- Jan Hellert
- Structural Virology Unit, Institut Pasteur - Université Paris-Cité, CNRS UMR 3569, 25-28 rue du Dr. Roux, 75015 Paris, France; Centre for Structural Systems Biology (CSSB), Leibniz-Institut für Virologie (LIV), Notkestraße 85, 22607 Hamburg, Germany
| | - Andrea Aebischer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald, Germany; Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald, Germany
| | - Ahmed Haouz
- Crystallography Platform C2RT, Institut Pasteur, CNRS UMR 3528, 25-28 rue du Dr. Roux, 75015 Paris, France
| | - Pablo Guardado-Calvo
- Structural Virology Unit, Institut Pasteur - Université Paris-Cité, CNRS UMR 3569, 25-28 rue du Dr. Roux, 75015 Paris, France
| | - Sven Reiche
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald, Germany.
| | - Félix A Rey
- Structural Virology Unit, Institut Pasteur - Université Paris-Cité, CNRS UMR 3569, 25-28 rue du Dr. Roux, 75015 Paris, France.
| |
Collapse
|
8
|
Barbosa NS, Concha JO, daSilva LLP, Crump CM, Graham SC. Oropouche Virus Glycoprotein Topology and Cellular Requirements for Glycoprotein Secretion. J Virol 2023; 97:e0133122. [PMID: 36475765 PMCID: PMC9888203 DOI: 10.1128/jvi.01331-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/19/2022] [Indexed: 12/13/2022] Open
Abstract
Oropouche virus (OROV; genus Orthobunyavirus) is the etiological agent of Oropouche fever, a debilitating febrile illness common in South America. We used recombinant expression of the OROV M polyprotein, which encodes the surface glycoproteins Gn and Gc plus the nonstructural protein NSm, to probe the cellular determinants for OROV assembly and budding. Gn and Gc self-assemble and are secreted independently of NSm. Mature OROV Gn has two predicted transmembrane domains that are crucial for glycoprotein translocation to the Golgi complex and glycoprotein secretion, and unlike related orthobunyaviruses, both transmembrane domains are retained during Gn maturation. Disruption of Golgi function using the drugs brefeldin A and monensin inhibits glycoprotein secretion. Infection studies have previously shown that the cellular endosomal sorting complexes required for transport (ESCRT) machinery is recruited to Golgi membranes during OROV assembly and that ESCRT activity is required for virus secretion. A dominant-negative form of the ESCRT-associated ATPase VPS4 significantly reduces recombinant OROV glycoprotein secretion and blocks virus release from infected cells, and VPS4 partly colocalizes with OROV glycoproteins and membranes costained with Golgi markers. Furthermore, immunoprecipitation and fluorescence microscopy experiments demonstrate that OROV glycoproteins interact with the ESCRT-III component CHMP6, with overexpression of a dominant-negative form of CHMP6 significantly reducing OROV glycoprotein secretion. Taken together, our data highlight differences in M polyprotein processing across orthobunyaviruses, indicate that Golgi and ESCRT function are required for glycoprotein secretion, and identify CHMP6 as an ESCRT-III component that interacts with OROV glycoproteins. IMPORTANCE Oropouche virus causes Oropouche fever, a debilitating illness common in South America that is characterized by high fever, headache, myalgia, and vomiting. The tripartite genome of this zoonotic virus is capable of reassortment, and there have been multiple epidemics of Oropouche fever in South America over the last 50 years, making Oropouche virus infection a significant threat to public health. However, the molecular characteristics of this arbovirus are poorly understood. We developed a recombinant protein expression system to investigate the cellular determinants of OROV glycoprotein maturation and secretion. We show that the proteolytic processing of the M polypeptide, which encodes the surface glycoproteins (Gn and Gc) plus a nonstructural protein (NSm), differs between OROV and its close relative Bunyamwera virus. Furthermore, we demonstrate that OROV M glycoprotein secretion requires the cellular endosomal sorting complexes required for transport (ESCRT) membrane-remodeling machinery and identify that the OROV glycoproteins interact with the ESCRT protein CHMP6.
Collapse
Affiliation(s)
- Natalia S. Barbosa
- Center for Virus Research, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Juan O. Concha
- Center for Virus Research, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luis L. P. daSilva
- Center for Virus Research, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Colin M. Crump
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Stephen C. Graham
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
9
|
Baseline mapping of Oropouche virology, epidemiology, therapeutics, and vaccine research and development. NPJ Vaccines 2022; 7:38. [PMID: 35301331 PMCID: PMC8931169 DOI: 10.1038/s41541-022-00456-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 02/04/2022] [Indexed: 11/08/2022] Open
Abstract
Oropouche virus (OROV) is an arthropod-borne orthobunyavirus found in South America and causes Oropouche fever, a febrile infection similar to dengue. It is the second most prevalent arthropod-borne viral disease in South America after dengue. Over 500,000 cases have been diagnosed since the virus was first discovered in 1955; however, this is likely a significant underestimate given the limited availability of diagnostics. No fatalities have been reported to date, however, up to 60% of cases have a recurrent phase of disease within one month of recovery from the primary disease course. The main arthropod vector is the biting midge Culicoides paraensis, which has a geographic range as far north as the United States and demonstrates the potential for OROV to geographically expand. The transmission cycle is incompletely understood and vertebrate hosts include both non-human primates and birds further supporting the potential ability of the virus to spread. A number of candidate antivirals have been evaluated against OROV in vitro but none showed antiviral activity. Surprisingly, there is only one report in the literature on candidate vaccines. We suggest that OROV is an undervalued pathogen much like chikungunya, Schmallenberg, and Zika viruses were before they emerged. Overall, OROV is an important emerging disease that has been under-investigated and has the potential to cause large epidemics in the future. Further research, in particular candidate vaccines, is needed for this important pathogen.
Collapse
|
10
|
Kopanke J, Carpenter M, Lee J, Reed K, Rodgers C, Burton M, Lovett K, Westrich JA, McNulty E, McDermott E, Barbera C, Cavany S, Rohr JR, Perkins TA, Mathiason CK, Stenglein M, Mayo C. Bluetongue Research at a Crossroads: Modern Genomics Tools Can Pave the Way to New Insights. Annu Rev Anim Biosci 2022; 10:303-324. [PMID: 35167317 DOI: 10.1146/annurev-animal-051721-023724] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bluetongue virus (BTV) is an arthropod-borne, segmented double-stranded RNA virus that can cause severe disease in both wild and domestic ruminants. BTV evolves via several key mechanisms, including the accumulation of mutations over time and the reassortment of genome segments.Additionally, BTV must maintain fitness in two disparate hosts, the insect vector and the ruminant. The specific features of viral adaptation in each host that permit host-switching are poorly characterized. Limited field studies and experimental work have alluded to the presence of these phenomena at work, but our understanding of the factors that drive or constrain BTV's genetic diversification remains incomplete. Current research leveraging novel approaches and whole genome sequencing applications promises to improve our understanding of BTV's evolution, ultimately contributing to the development of better predictive models and management strategies to reduce future impacts of bluetongue epizootics.
Collapse
Affiliation(s)
- Jennifer Kopanke
- Office of the Campus Veterinarian, Washington State University, Spokane, Washington, USA;
| | - Molly Carpenter
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Justin Lee
- Genomic Sequencing Laboratory, Centers for Disease Control and Prevention, Atlanta, Georgia, USA;
| | - Kirsten Reed
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Case Rodgers
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Mollie Burton
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Kierra Lovett
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Joseph A Westrich
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Erin McNulty
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Emily McDermott
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, Arkansas, USA;
| | - Carly Barbera
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA; , , ,
| | - Sean Cavany
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA; , , ,
| | - Jason R Rohr
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA; , , ,
| | - T Alex Perkins
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA; , , ,
| | - Candace K Mathiason
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Mark Stenglein
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Christie Mayo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| |
Collapse
|
11
|
Ren F, Shen S, Wang Q, Wei G, Huang C, Wang H, Ning YJ, Zhang DY, Deng F. Recent Advances in Bunyavirus Reverse Genetics Research: Systems Development, Applications, and Future Perspectives. Front Microbiol 2021; 12:771934. [PMID: 34950119 PMCID: PMC8689132 DOI: 10.3389/fmicb.2021.771934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/03/2021] [Indexed: 12/25/2022] Open
Abstract
Bunyaviruses are members of the Bunyavirales order, which is the largest group of RNA viruses, comprising 12 families, including a large group of emerging and re-emerging viruses. These viruses can infect a wide variety of species worldwide, such as arthropods, protozoans, plants, animals, and humans, and pose substantial threats to the public. In view of the fact that a better understanding of the life cycle of a highly pathogenic virus is often a precondition for developing vaccines and antivirals, it is urgent to develop powerful tools to unravel the molecular basis of the pathogenesis. However, biosafety level −3 or even −4 containment laboratory is considered as a necessary condition for working with a number of bunyaviruses, which has hampered various studies. Reverse genetics systems, including minigenome (MG), infectious virus-like particle (iVLP), and infectious full-length clone (IFLC) systems, are capable of recapitulating some or all steps of the viral replication cycle; among these, the MG and iVLP systems have been very convenient and effective tools, allowing researchers to manipulate the genome segments of pathogenic viruses at lower biocontainment to investigate the viral genome transcription, replication, virus entry, and budding. The IFLC system is generally developed based on the MG or iVLP systems, which have facilitated the generation of recombinant infectious viruses. The MG, iVLP, and IFLC systems have been successfully developed for some important bunyaviruses and have been widely employed as powerful tools to investigate the viral replication cycle, virus–host interactions, virus pathogenesis, and virus evolutionary process. The majority of bunyaviruses is generally enveloped negative-strand RNA viruses with two to six genome segments, of which the viruses with bipartite and tripartite genome segments have mostly been characterized. This review aimed to summarize current knowledge on reverse genetic studies of representative bunyaviruses causing severe diseases in humans and animals, which will contribute to the better understanding of the bunyavirus replication cycle and provide some hints for developing designed antivirals.
Collapse
Affiliation(s)
- Fuli Ren
- Research Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Shu Shen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Qiongya Wang
- Research Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan, China
| | - Gang Wei
- Research Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan, China
| | - Chaolin Huang
- Research Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan, China
| | - Hualin Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yun-Jia Ning
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ding-Yu Zhang
- Research Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
12
|
Pereira TN, Virginio F, Souza JI, Moreira LA. Emergent Arboviruses: A Review About Mayaro virus and Oropouche orthobunyavirus. FRONTIERS IN TROPICAL DISEASES 2021. [DOI: 10.3389/fitd.2021.737436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Arthropod-borne viruses have a significant impact on public health worldwide, and their (re) emergence put aside the importance of other circulating arboviruses. Therefore, this scoping review aims to identify and characterize the literature produced in recent years, focusing on aspects of two arboviruses: Mayaro virus and Oropouche orthobunyavirus. The Mayaro and Oropouche viruses were isolated for the first time in Trinidad and Tobago in 1954 and 1955, respectively, and have more recently caused numerous outbreaks. In addition, they have been incriminated as candidate diseases for human epidemics. These viruses have been drawing the attention of public health authorities worldwide following recent outbreaks. To determine the global epidemiological profile of these viruses, we used the Dimensions Database, which contains more than 100 million publications. In general, we identified 327 studies published from 1957 to 2020 for Mayaro virus, and 152 studies published from 1961 to 2020 for Oropouche orthobunyavirus. Interestingly, we observed that Mayaro and Oropouche had a significant increase in the number of publications in recent years. Thus, this comprehensive review will be helpful to guide future research based on the identified knowledge gaps.
Collapse
|
13
|
Mammals Preferred: Reassortment of Batai and Bunyamwera orthobunyavirus Occurs in Mammalian but Not Insect Cells. Viruses 2021; 13:v13091702. [PMID: 34578285 PMCID: PMC8473249 DOI: 10.3390/v13091702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/17/2021] [Accepted: 08/21/2021] [Indexed: 12/20/2022] Open
Abstract
Reassortment is a viral genome-segment recomposition known for many viruses, including the orthobunyaviruses. The co-infection of a host cell with two viruses of the same serogroup, such as the Bunyamwera orthobunyavirus and the Batai orthobunyavirus, can give rise to novel viruses. One example is the Ngari virus, which has caused major outbreaks of human infections in Central Africa. This study aimed to investigate the potential for reassortment of Bunyamwera orthobunyavirus and the Batai orthobunyavirus during co-infection studies and the replication properties of the reassortants in different mammalian and insect cell lines. In the co-infection studies, a Ngari-like virus reassortant and a novel reassortant virus, the Batunya virus, arose in BHK-21 cells (Mesocricetus auratus). In contrast, no reassortment was observed in the examined insect cells from Aedes aegypti (Aag2) and Aedes albopictus (U4.4 and C6/36). The growth kinetic experiments show that both reassortants are replicated to higher titers in some mammalian cell lines than the parental viruses but show impaired growth in insect cell lines.
Collapse
|
14
|
Ho JSY, Angel M, Ma Y, Sloan E, Wang G, Martinez-Romero C, Alenquer M, Roudko V, Chung L, Zheng S, Chang M, Fstkchyan Y, Clohisey S, Dinan AM, Gibbs J, Gifford R, Shen R, Gu Q, Irigoyen N, Campisi L, Huang C, Zhao N, Jones JD, van Knippenberg I, Zhu Z, Moshkina N, Meyer L, Noel J, Peralta Z, Rezelj V, Kaake R, Rosenberg B, Wang B, Wei J, Paessler S, Wise HM, Johnson J, Vannini A, Amorim MJ, Baillie JK, Miraldi ER, Benner C, Brierley I, Digard P, Łuksza M, Firth AE, Krogan N, Greenbaum BD, MacLeod MK, van Bakel H, Garcìa-Sastre A, Yewdell JW, Hutchinson E, Marazzi I. Hybrid Gene Origination Creates Human-Virus Chimeric Proteins during Infection. Cell 2020; 181:1502-1517.e23. [PMID: 32559462 PMCID: PMC7323901 DOI: 10.1016/j.cell.2020.05.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 02/26/2020] [Accepted: 05/18/2020] [Indexed: 01/12/2023]
Abstract
RNA viruses are a major human health threat. The life cycles of many highly pathogenic RNA viruses like influenza A virus (IAV) and Lassa virus depends on host mRNA, because viral polymerases cleave 5'-m7G-capped host transcripts to prime viral mRNA synthesis ("cap-snatching"). We hypothesized that start codons within cap-snatched host transcripts could generate chimeric human-viral mRNAs with coding potential. We report the existence of this mechanism of gene origination, which we named "start-snatching." Depending on the reading frame, start-snatching allows the translation of host and viral "untranslated regions" (UTRs) to create N-terminally extended viral proteins or entirely novel polypeptides by genetic overprinting. We show that both types of chimeric proteins are made in IAV-infected cells, generate T cell responses, and contribute to virulence. Our results indicate that during infection with IAV, and likely a multitude of other human, animal and plant viruses, a host-dependent mechanism allows the genesis of hybrid genes.
Collapse
Affiliation(s)
- Jessica Sook Yuin Ho
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Matthew Angel
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Yixuan Ma
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Elizabeth Sloan
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Guojun Wang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carles Martinez-Romero
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marta Alenquer
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Vladimir Roudko
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Liliane Chung
- The Roslin Institute, University of Edinburgh, Edinburgh EH25 9PS, UK
| | - Simin Zheng
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Max Chang
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Yesai Fstkchyan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sara Clohisey
- The Roslin Institute, University of Edinburgh, Edinburgh EH25 9PS, UK
| | - Adam M Dinan
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 0SP, UK
| | - James Gibbs
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Robert Gifford
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Rong Shen
- Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, UK
| | - Quan Gu
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Nerea Irigoyen
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 0SP, UK
| | - Laura Campisi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Cheng Huang
- Department of Pathology, the University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Nan Zhao
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joshua D Jones
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 0SP, UK
| | | | - Zeyu Zhu
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Natasha Moshkina
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Léa Meyer
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Justine Noel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zuleyma Peralta
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Veronica Rezelj
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Robyn Kaake
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Brad Rosenberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bo Wang
- The Roslin Institute, University of Edinburgh, Edinburgh EH25 9PS, UK
| | - Jiajie Wei
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Slobodan Paessler
- Department of Pathology, the University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Helen M Wise
- The Roslin Institute, University of Edinburgh, Edinburgh EH25 9PS, UK
| | - Jeffrey Johnson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alessandro Vannini
- Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, UK; Fondazione Human Technopole, Structural Biology Research Centre, 20157 Milan, Italy
| | | | - J Kenneth Baillie
- The Roslin Institute, University of Edinburgh, Edinburgh EH25 9PS, UK
| | - Emily R Miraldi
- Divisions of Immunobiology and Biomedical Informatics, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45257, USA
| | - Christopher Benner
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Ian Brierley
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 0SP, UK
| | - Paul Digard
- The Roslin Institute, University of Edinburgh, Edinburgh EH25 9PS, UK
| | - Marta Łuksza
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 0SP, UK
| | - Nevan Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Benjamin D Greenbaum
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Megan K MacLeod
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8QQ, UK
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adolfo Garcìa-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jonathan W Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Edward Hutchinson
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK.
| | - Ivan Marazzi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
15
|
Oymans J, Wichgers Schreur PJ, van Oort S, Vloet R, Venter M, Pijlman GP, van Oers MM, Kortekaas J. Reverse Genetics System for Shuni Virus, an Emerging Orthobunyavirus with Zoonotic Potential. Viruses 2020; 12:E455. [PMID: 32316542 PMCID: PMC7232226 DOI: 10.3390/v12040455] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 01/10/2023] Open
Abstract
The genus Orthobunyavirus (family Peribunyaviridae, order Bunyavirales) comprises over 170 named mosquito- and midge-borne viruses, several of which cause severe disease in animals or humans. Their three-segmented genomes enable reassortment with related viruses, which may result in novel viruses with altered host or tissue tropism and virulence. One such reassortant, Schmallenberg virus (SBV), emerged in north-western Europe in 2011. Shuni virus (SHUV) is an orthobunyavirus related to SBV that is associated with neurological disease in horses in southern Africa and recently caused an outbreak manifesting with neurological disease and birth defects among ruminants in Israel. The zoonotic potential of SHUV was recently underscored by its association with neurological disease in humans. We here report a reverse genetics system for SHUV and provide first evidence that the non-structural (NSs) protein of SHUV functions as an antagonist of host innate immune responses. We furthermore report the rescue of a reassortant containing the L and S segments of SBV and the M segment of SHUV. This novel reverse genetics system can now be used to study SHUV virulence and tropism, and to elucidate the molecular mechanisms that drive reassortment events.
Collapse
Affiliation(s)
- Judith Oymans
- Department of Virology, Wageningen Bioveterinary Research, Houtribweg 39, 8221 RA Lelystad, The Netherlands; (J.O.); (P.J.W.S.); (S.v.O.); (R.V.)
- Laboratory of Virology, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands; (G.P.P.); (M.M.v.O.)
| | - Paul J. Wichgers Schreur
- Department of Virology, Wageningen Bioveterinary Research, Houtribweg 39, 8221 RA Lelystad, The Netherlands; (J.O.); (P.J.W.S.); (S.v.O.); (R.V.)
| | - Sophie van Oort
- Department of Virology, Wageningen Bioveterinary Research, Houtribweg 39, 8221 RA Lelystad, The Netherlands; (J.O.); (P.J.W.S.); (S.v.O.); (R.V.)
| | - Rianka Vloet
- Department of Virology, Wageningen Bioveterinary Research, Houtribweg 39, 8221 RA Lelystad, The Netherlands; (J.O.); (P.J.W.S.); (S.v.O.); (R.V.)
| | - Marietjie Venter
- Department Medical Virology, Faculty of Health Science, Centre for Viral Zoonoses, University of Pretoria, Pretoria 0028, South Africa;
| | - Gorben P. Pijlman
- Laboratory of Virology, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands; (G.P.P.); (M.M.v.O.)
| | - Monique M. van Oers
- Laboratory of Virology, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands; (G.P.P.); (M.M.v.O.)
| | - Jeroen Kortekaas
- Department of Virology, Wageningen Bioveterinary Research, Houtribweg 39, 8221 RA Lelystad, The Netherlands; (J.O.); (P.J.W.S.); (S.v.O.); (R.V.)
- Laboratory of Virology, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands; (G.P.P.); (M.M.v.O.)
| |
Collapse
|
16
|
Li X, Jing H, Liu X, Wang Q, Qiu S, Liu D, Wu S, Lin X. Comparative evaluation of two commercial ELISA kits for detection of antibodies against Akabane virus in cattle serum. BMC Vet Res 2019; 15:408. [PMID: 31711494 PMCID: PMC6849277 DOI: 10.1186/s12917-019-2156-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 10/24/2019] [Indexed: 11/10/2022] Open
Abstract
Background Akabane disease (AD), a barrier to international trade for endemic areas with far economic impact on the countries, is caused by Akabane virus (AKAV). Commercial enzyme-linked immunosorbent assay (ELISA) is a commonly used diagnostic technique for AKAV infection, including the IDEXX and IDVET ELISA kits. However, the comparative evaluation of the IDEXX and IDVET ELISA kits has not been published. The object of this study was to evaluate the test performance of the two commercial ELISA kits in detecting serum anti-AKAV antibodies in cattle. Results With virus neutralization test (VNT) as the “relative gold standard”, the diagnostic sensitivity (DSe) was 80.39% (123/153) and 93.46% (143/153) for the IDEXX and IDVET ELISA kit, when suspect samples were included. The diagnostic specificity (DSp) for the IDEXX and IDVET ELISA kit was 93.48% (502/537) and 82.31% (442/537), respectively. Conclusion Both of the tested ELISA kits could be applied to detect antibodies against AKAV in cattle serum. The IDVET ELISA kit had a higher DSe. The IDEXX ELISA kit possessed the higher DSp. These results have important implications if the kits are used to screen herds or individual cattle in surveillance programs, or at border crossings for import-export inspection and quarantine.
Collapse
Affiliation(s)
- Xiaolin Li
- Institute of Animal Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Hongli Jing
- Institute of Animal Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Xiaofei Liu
- Institute of Animal Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Qin Wang
- Institute of Animal Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Songyin Qiu
- Institute of Animal Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Dandan Liu
- Institute of Animal Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Shaoqiang Wu
- Institute of Animal Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.
| | - Xiangmei Lin
- Institute of Animal Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.
| |
Collapse
|
17
|
M Segment-Based Minigenomes and Virus-Like Particle Assays as an Approach To Assess the Potential of Tick-Borne Phlebovirus Genome Reassortment. J Virol 2019; 93:JVI.02068-18. [PMID: 30567991 PMCID: PMC6401446 DOI: 10.1128/jvi.02068-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 12/14/2018] [Indexed: 12/20/2022] Open
Abstract
Bunyaviruses have a tripartite negative-sense RNA genome. Due to the segmented nature of these viruses, if two closely related viruses coinfect the same host or vector cell, it is possible that RNA segments from either of the two parental viruses will be incorporated into progeny virions to give reassortant viruses. Little is known about the ability of tick-borne phleboviruses to reassort. The present study describes the development of minigenome assays for the tick-borne viruses Uukuniemi phlebovirus (UUKV) and Heartland phlebovirus (HRTV). We used these minigenome assays in conjunction with the existing minigenome system of severe fever with thrombocytopenia syndrome (SFTS) phlebovirus (SFTSV) to assess the abilities of viral N and L proteins to recognize, transcribe, and replicate the M segment-based minigenome of a heterologous virus. The highest minigenome activity was detected with the M segment-based minigenomes of cognate viruses. However, our findings indicate that several combinations utilizing N and L proteins of heterologous viruses resulted in M segment minigenome activity. This suggests that the M segment untranslated regions (UTRs) are recognized as functional promoters of transcription and replication by the N and L proteins of related viruses. Further, virus-like particle assays demonstrated that HRTV glycoproteins can package UUKV and SFTSV S and L segment-based minigenomes. Taken together, these results suggest that coinfection with these viruses could lead to the generation of viable reassortant progeny. Thus, the tools developed in this study could aid in understanding the role of genome reassortment in the evolution of these emerging pathogens in an experimental setting.IMPORTANCE In recent years, there has been a large expansion in the number of emerging tick-borne viruses that are assigned to the Phlebovirus genus. Bunyaviruses have a tripartite segmented genome, and infection of the same host cell by two closely related bunyaviruses can, in theory, result in eight progeny viruses with different genome segment combinations. We used genome analogues expressing reporter genes to assess the abilities of Phlebovirus nucleocapsid protein and RNA-dependent RNA polymerase to recognize the untranslated region of a genome segment of a related phlebovirus, and we used virus-like particle assays to assess whether viral glycoproteins can package genome analogues of related phleboviruses. Our results provide strong evidence that these emerging pathogens could reassort their genomes if they were to meet in nature in an infected host or vector. This reassortment process could result in viruses with new pathogenic properties.
Collapse
|
18
|
Dunlop JI, Szemiel AM, Navarro A, Wilkie GS, Tong L, Modha S, Mair D, Sreenu VB, Da Silva Filipe A, Li P, Huang YJS, Brennan B, Hughes J, Vanlandingham DL, Higgs S, Elliott RM, Kohl A. Development of reverse genetics systems and investigation of host response antagonism and reassortment potential for Cache Valley and Kairi viruses, two emerging orthobunyaviruses of the Americas. PLoS Negl Trop Dis 2018; 12:e0006884. [PMID: 30372452 PMCID: PMC6245839 DOI: 10.1371/journal.pntd.0006884] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 11/20/2018] [Accepted: 09/28/2018] [Indexed: 11/24/2022] Open
Abstract
Orthobunyaviruses such as Cache Valley virus (CVV) and Kairi virus (KRIV) are important animal pathogens. Periodic outbreaks of CVV have resulted in the significant loss of lambs on North American farms, whilst KRIV has mainly been detected in South and Central America with little overlap in geographical range. Vaccines or treatments for these viruses are unavailable. One approach to develop novel vaccine candidates is based on the use of reverse genetics to produce attenuated viruses that elicit immune responses but cannot revert to full virulence. The full genomes of both viruses were sequenced to obtain up to date genome sequence information. Following sequencing, minigenome systems and reverse genetics systems for both CVV and KRIV were developed. Both CVV and KRIV showed a wide in vitro cell host range, with BHK-21 cells a suitable host cell line for virus propagation and titration. To develop attenuated viruses, the open reading frames of the NSs proteins were disrupted. The recombinant viruses with no NSs protein expression induced the production of type I interferon (IFN), indicating that for both viruses NSs functions as an IFN antagonist and that such attenuated viruses could form the basis for attenuated viral vaccines. To assess the potential for reassortment between CVV and KRIV, which could be relevant during vaccination campaigns in areas of overlap, we attempted to produce M segment reassortants by reverse genetics. We were unable to obtain such viruses, suggesting that it is an unlikely event.
Collapse
Affiliation(s)
- James I. Dunlop
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Agnieszka M. Szemiel
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Aitor Navarro
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Gavin S. Wilkie
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Lily Tong
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Sejal Modha
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Daniel Mair
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Vattipally B. Sreenu
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Ana Da Silva Filipe
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Ping Li
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Yan-Jang S. Huang
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Benjamin Brennan
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Dana L. Vanlandingham
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
- Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, United States of America
| | - Stephen Higgs
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
- Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, United States of America
| | - Richard M. Elliott
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| |
Collapse
|
19
|
|
20
|
Nucleoprotein from the unique human infecting Orthobunyavirus of Simbu serogroup (Oropouche virus) forms higher order oligomers in complex with nucleic acids in vitro. Amino Acids 2018; 50:711-721. [PMID: 29626301 DOI: 10.1007/s00726-018-2560-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/26/2018] [Indexed: 10/17/2022]
Abstract
Oropouche virus (OROV) is the unique known human pathogen belonging to serogroup Simbu of Orthobunyavirus genus and Bunyaviridae family. OROV is transmitted by wild mosquitoes species to sloths, rodents, monkeys and birds in sylvatic environment, and by midges (Culicoides paraensis and Culex quinquefasciatus) to man causing explosive outbreaks in urban locations. OROV infection causes dengue fever-like symptoms and in few cases, can cause clinical symptoms of aseptic meningitis. OROV contains a tripartite negative RNA genome encapsidated by the viral nucleocapsid protein (NP), which is essential for viral genome encapsidation, transcription and replication. Here, we reported the first study on the structural properties of a recombinant NP from human pathogen Oropouche virus (OROV-rNP). OROV-rNP was successfully expressed in E. coli in soluble form and purified using affinity and size-exclusion chromatographies. Purified OROV-rNP was analyzed using a series of biophysical tools and molecular modeling. The results showed that OROV-rNP formed stable oligomers in solution coupled with endogenous E. coli nucleic acids (RNA) of different sizes. Finally, electron microscopy revealed a total of eleven OROV-rNP oligomer classes with tetramers (42%) and pentamers (43%) the two main populations and minor amounts of other bigger oligomeric states, such as hexamers, heptamers or octamers. The different RNA sizes and nucleotide composition may explain the diversity of oligomer classes observed. Besides, structural differences among bunyaviruses NP can be used to help in the development of tools for specific diagnosis and epidemiological studies of this group of viruses.
Collapse
|
21
|
Reusken CB, Ieven M, Sigfrid L, Eckerle I, Koopmans M. Laboratory preparedness and response with a focus on arboviruses in Europe. Clin Microbiol Infect 2017; 24:221-228. [PMID: 29274465 DOI: 10.1016/j.cmi.2017.12.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 12/08/2017] [Accepted: 12/12/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND The global health burden of arboviruses is continuously rising, which results in increasing pressure on local and (inter)national laboratory infrastructures. Timely and accurate diagnosis of cases is one of the main pillars for public health and clinical responses to an arbovirus emergence. AIMS AND SOURCES This narrative review aims to summarize recent advances and to identify needs in laboratory preparedness and response activities, with a focus on viruses transmitted by arthropods in Europe. The review is based on evidence extracted from PubMed searches, Public Health and clinical laboratory experiences from the authors and the authors' opinions substantiated by peer-reviewed scientific literature. CONTENT We illustrate the importance of inter-epidemic laboratory preparedness activities to ensure adequate Public Health and clinical responses. We describe the status of arbovirus endemicity and emergence in Europe thereby highlighting the need for preparedness for these viruses. We discuss the components and pitfalls of an adequate laboratory preparedness and response and the broader context of the current landscape of international research, clinical and laboratory preparedness networks. The complexity of arbovirus laboratory preparedness and response is described. IMPLICATIONS Outbreak preparedness plans need to look beyond national reference laboratories, to include first-line responding onsite hospital laboratories and plans for strengthening of such local capacity and capability as required depending on the nature of the outbreak. In particular, the diagnosis of arbovirus infections is complicated by the existence of geographic overlap of circulation of numerous arboviruses, the overlap in clinical manifestation between many arboviruses and other aetiologies and the existence of cross-reactivity between related arboviruses in serology testing. Inter-epidemic preparedness activities need strong national and international networks addressing these issues. However, the current mushrooming of European preparedness networks requires governance to bring the European preparedness and response to a next level.
Collapse
Affiliation(s)
- C B Reusken
- Department of Viroscience, WHO Collaborating Center for Arboviruses and Viral Haemorrhagic Fever Reference and Research, Erasmus University Medical Centre, Rotterdam, the Netherlands.
| | - M Ieven
- Department of Medical Microbiology, Antwerp University Hospital, Antwerp, Belgium; Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - L Sigfrid
- Centre for Tropical Medicine and Global Health, Nuffield Dept. of Medicine, University of Oxford, Oxford, UK
| | - I Eckerle
- Institut für Virologie. Universitätsklinikum Bonn, Bonn, Germany
| | - M Koopmans
- Department of Viroscience, WHO Collaborating Center for Arboviruses and Viral Haemorrhagic Fever Reference and Research, Erasmus University Medical Centre, Rotterdam, the Netherlands
| |
Collapse
|