1
|
Wei J, Li Y, Chen X, Tan P, Muhammad T, Liang Y. Advances in understanding the interaction between Solanaceae NLR resistance proteins and the viral effector Avr. PLANT SIGNALING & BEHAVIOR 2024; 19:2382497. [PMID: 39312190 PMCID: PMC11421380 DOI: 10.1080/15592324.2024.2382497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 09/26/2024]
Abstract
The rising prevalence of viral-induced diseases, particularly those caused by certain strains, poses a substantial risk to the genetic diversity of Solanaceae crops and the overall safety of horticultural produce. According to the "gene-for-gene" hypothesis, resistance proteins are capable of selectively identifying nontoxic effectors produced by pathogens, as they are under purview of the host's immune defenses. The sensitivity and responsiveness of Solanaceae plants to viral attacks play a crucial role in shaping the outcomes of their interactions with viruses. Pathogenic organisms, devise an array of infection tactics aimed at circumventing or neutralizing the host's immune defenses to facilitate effective invasion. The invasion often accomplishes by suppressing or disrupting the host's defensive mechanisms or immune signals, which are integral to the infection strategies of such invading pathogens. This comprehensive review delves into the myriad approaches that pathogenic viruses employ to infiltrate and overcome the sophisticated immune system of tomatoes. Furthermore, the review explores the possibility of utilizing these viral strategies to bolster the resilience of horticultural crops, presenting a hopeful direction for forthcoming progress in plant health and agricultural stability.
Collapse
Affiliation(s)
- Jianming Wei
- College of Agriculture, Guizhou University, Guiyang, China
| | - Yunzhou Li
- College of Agriculture, Guizhou University, Guiyang, China
| | - Xiangru Chen
- College of Agriculture, Guizhou University, Guiyang, China
| | - Ping Tan
- Field management station, Guiyang Agricultural Test Center, Guiyang, China
| | - Tayeb Muhammad
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Yan Liang
- College of Horticulture, Northwest A&F University, Yangling, China
| |
Collapse
|
2
|
Koeda S, Yamamoto C, Yamamoto H, Fujishiro K, Mori R, Okamoto M, Nagano AJ, Mashiko T. Cy-1, a major QTL for tomato leaf curl New Delhi virus resistance, harbors a gene encoding a DFDGD-Class RNA-dependent RNA polymerase in cucumber (Cucumis sativus). BMC PLANT BIOLOGY 2024; 24:879. [PMID: 39358692 PMCID: PMC11446051 DOI: 10.1186/s12870-024-05591-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 09/12/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Tomato leaf curl New Delhi virus (ToLCNDV) (family Geminiviridae, genus Begomovirus) is a significant threat to cucumber (Cucumis sativus) production in many regions. Previous studies have reported the genetic mapping of loci related to ToLCNDV resistance, but no resistance genes have been identified. RESULTS We conducted map-based cloning of the ToLCNDV resistance gene in cucumber accession No.44. Agroinfiltration and graft-inoculation analyses confirmed the resistance of No.44 to ToLCNDV isolates from the Mediterranean and Asian countries. Initial mapping involving two rounds of phenotyping with two independent F2 populations generated by crossing the begomovirus-susceptible cultivar SHF and No.44 consistently detected major quantitative trait loci (QTLs) on chromosomes 1 and 2 that confer resistance to ToLCNDV. Fine-mapping of Cy-1, the dominant QTL on chromosome 1, using F3 populations narrowed the candidate region to a 209-kb genomic segment harboring 24 predicted genes. Among these genes, DFDGD-class RNA-dependent RNA polymerase (CsRDR3), an ortholog of Ty-1/Ty-3 of tomato and Pepy-2 of capsicum, was found to be a strong candidate conferring ToLCNDV resistance. The CsRDR3 sequence of No.44 contained multiple amino acid substitutions; the promoter region of CsRDR3 in No.44 had a large deletion; and the CsRDR3 transcript levels were greater in No.44 than in SHF. Virus-induced gene silencing (VIGS) of CsRDR3 using two chromosome segment substitution lines harboring chromosome 1 segments derived from No.44 compromised resistance to ToLCNDV. CONCLUSIONS Forward and reverse genetic approaches identified CsRDR3, which encodes a DFDGD-class RNA-dependent RNA polymerase, as the gene responsible for ToLCNDV resistance at the major QTL Cy-1 on chromosome 1 in cucumber. Marker-assisted breeding of ToLCNDV resistance in cucumber will be expedited by using No.44 and the DNA markers developed in this study.
Collapse
Affiliation(s)
- Sota Koeda
- Graduate School of Agriculture, Kindai University, Nara, Nara, 631-8505, Japan.
- Faculty of Agriculture, Kindai University, Nara, Nara, 631-8505, Japan.
| | - Chihiro Yamamoto
- Graduate School of Agriculture, Kindai University, Nara, Nara, 631-8505, Japan
| | - Hiroto Yamamoto
- Graduate School of Agriculture, Kindai University, Nara, Nara, 631-8505, Japan
| | - Kohei Fujishiro
- Faculty of Agriculture, Kindai University, Nara, Nara, 631-8505, Japan
| | - Ryoma Mori
- Faculty of Agriculture, Kindai University, Nara, Nara, 631-8505, Japan
| | - Momoka Okamoto
- Faculty of Agriculture, Kindai University, Nara, Nara, 631-8505, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, Shiga, 520-2914, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0017, Japan
| | | |
Collapse
|
3
|
Renukadevi P, Devi RG, Jothika C, Karthikeyan G, Malathi VG, Balakrishnan N, Rajagopal B, Nakkeeran S, Abd-Allah EF. Genomic distinctiveness and recombination in tomato leaf curl New Delhi virus (ToLCNDV-BG) isolates infecting bitter gourd. 3 Biotech 2024; 14:184. [PMID: 39070236 PMCID: PMC11282025 DOI: 10.1007/s13205-024-04009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/14/2024] [Indexed: 07/30/2024] Open
Abstract
There are two begomoviruses, tomato leaf curl New Delhi virus (ToLCNDV) and bitter gourd yellow mosaic virus (BgYMV) infecting bitter gourd in India. An extensive survey conducted from 2019 to 2022 clearly established that infection by ToLCNDV is more predominant (92.43%) than BgYMV (44%). The ToLCNDV isolates infecting bitter gourd shared only 88% identity in the DNA-A component with other ToLCNDV isolates and were found to be a distinct variant. The predicted amino acid sequence of the viral proteins, replication initiation protein, coat protein, and the symptom determinant protein in the study isolates are markedly different. Especially the RCR motif I and RCR motif III are different from other geminiviruses. Infectivity of cloned components of one of the isolates ToLCNDV-BG NP was demonstrated in bitter gourd. Recombination analysis clearly revealed that the study isolates are recombinants with the major parent predicted as squash leaf curl Yunnan virus (GenBank Accession Number: MK064241) and the minor parent as ToLCNDV from Pakistan (GenBank Accession Number: AM747291). Due to distinct genomic features and less than 90% identity with the majority of ToLCNDV isolates, the study isolates deserve to be raised to the status of a distinct strain, designated as ToLCNDV-BG. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04009-3.
Collapse
Affiliation(s)
- P. Renukadevi
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003 India
| | - R. Gomathi Devi
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003 India
| | - C. Jothika
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003 India
| | - G. Karthikeyan
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003 India
| | - V. G. Malathi
- GI, Sree Kumaran Hill Crest Apartment, Coimbatore, Tamil Nadu 641046 India
| | - N. Balakrishnan
- Directorate of Research, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003 India
| | - B. Rajagopal
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003 India
| | - S. Nakkeeran
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003 India
| | - Elsayed Fathi Abd-Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, 11451 Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Sandra N, Mandal B. Emerging evidence of seed transmission of begomoviruses: implications in global circulation and disease outbreak. FRONTIERS IN PLANT SCIENCE 2024; 15:1376284. [PMID: 38807782 PMCID: PMC11130427 DOI: 10.3389/fpls.2024.1376284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/09/2024] [Indexed: 05/30/2024]
Abstract
Begomoviruses (family Geminiviridae) are known for causing devastating diseases in fruit, fibre, pulse, and vegetable crops throughout the world. Begomoviruses are transmitted in the field exclusively through insect vector whitefly (Bemisia tabaci), and the frequent outbreaks of begomoviruses are attributed largely due to the abundance of whitefly in the agri-ecosystem. Begomoviruses being phloem-borne were known not be transmitted through seeds of the infected plants. The recent findings of seed transmission of begomoviruses brought out a new dimension of begomovirus perpetuation and dissemination. The first convincing evidence of seed transmission of begomoviruses was known in 2015 for sweet potato leaf curl virus followed by several begomoviruses, like bhendi yellow vein mosaic virus, bitter gourd yellow mosaic virus, dolichos yellow mosaic virus, mungbean yellow mosaic virus, mungbean yellow mosaic India virus, pepper yellow leaf curl Indonesia virus, tomato leaf curl New Delhi virus, tomato yellow leaf curl virus, tomato yellow leaf curl Sardinia virus, and okra yellow mosaic Mexico virus. These studies brought out two perspectives of seed-borne nature of begomoviruses: (i) the presence of begomovirus in the seed tissues derived from the infected plants but no expression of disease symptoms in the progeny seedlings and (ii) the seed infection successfully transmitted the virus to cause disease to the progeny seedlings. It seems that the seed transmission of begomovirus is a feature of a specific combination of host-genotype and virus strain, rather than a universal phenomenon. This review comprehensively describes the seed transmitted begomoviruses reported in the last 9 years and the possible mechanism of seed transmission. An emphasis is placed on the experimental results that proved the seed transmission of various begomoviruses, factors affecting seed transmission and impact of begomovirus seed transmission on virus circulation, outbreak of the disease, and management strategies.
Collapse
Affiliation(s)
- Nagamani Sandra
- Seed Pathology Laboratory, Division of Seed Science and Technology, Indian Agricultural Research Institute, New Delhi, India
| | - Bikash Mandal
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
5
|
Sáez C, Kheireddine A, García A, Sifres A, Moreno A, Font-San-Ambrosio MI, Picó B, López C. Further Molecular Diagnosis Determines Lack of Evidence for Real Seed Transmission of Tomato Leaf Curl New Delhi Virus in Cucurbits. PLANTS (BASEL, SWITZERLAND) 2023; 12:3773. [PMID: 37960129 PMCID: PMC10650430 DOI: 10.3390/plants12213773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
Begomoviruses (family Geminiviridae) cause serious diseases in many crop families. Since 2013, the Spanish isolate of tomato leaf curl New Delhi virus (ToLCNDV) has been a limiting factor for cucurbits production in the Mediterranean basin, forcing farmers to adapt new management and control techniques. Although it is well-known that begomoviruses are naturally transmitted by the whitefly Bemisia tabaci, the capacity of these viruses to be vertically transmitted through seeds remains controversial. Clarifying the potential ToLCNDV seed transmission is essential to understand the epidemiology of this threating-for-cucurbits virus and to design appropriate control strategies. We assessed ToLCNDV distribution in the leaves, flowers and seeds of the infected plants of susceptible Cucumis melo accessions and toleration to the infected genotypes of Cucurbita moschata by conventional and quantitative PCR. We analyzed whether the viral particle was transmitted to offspring. We also evaluated ToLCNDV presence in commercial seeds of cucurbits (zucchini (Cucurbita pepo), melon (C. melo), cucumber (Cucumis sativus) and watermelon (Citrullus lanatus)) and in their progenies. As the assayed seedlings remained symptomless, we increased the reliability and accuracy of detection in these samples by searching for replicative forms of ToLCNDV by combining Southern blot hybridization and rolling-circle amplification (RCA). However, integral genomic DNA was not identified in the plants of offspring. Although the seedborne nature of ToLCNDV was confirmed, our results do not support the transmission of this virus from contaminated seeds to progeny.
Collapse
Affiliation(s)
- Cristina Sáez
- Institute for the Conservation and Breeding of Valencian Agro-Diversity, Universitat Politècnica de València (COMAV-UPV), Camino de Vera s/n, 46022 Valencia, Spain; (A.K.); (A.S.); (B.P.)
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28031 Madrid, Spain
| | - Amina Kheireddine
- Institute for the Conservation and Breeding of Valencian Agro-Diversity, Universitat Politècnica de València (COMAV-UPV), Camino de Vera s/n, 46022 Valencia, Spain; (A.K.); (A.S.); (B.P.)
| | - Arcadio García
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas—Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain;
| | - Alicia Sifres
- Institute for the Conservation and Breeding of Valencian Agro-Diversity, Universitat Politècnica de València (COMAV-UPV), Camino de Vera s/n, 46022 Valencia, Spain; (A.K.); (A.S.); (B.P.)
| | | | - María Isabel Font-San-Ambrosio
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València (IAM-UPV), Camino de Vera s/n, 46022 Valencia, Spain;
| | - Belén Picó
- Institute for the Conservation and Breeding of Valencian Agro-Diversity, Universitat Politècnica de València (COMAV-UPV), Camino de Vera s/n, 46022 Valencia, Spain; (A.K.); (A.S.); (B.P.)
| | - Carmelo López
- Institute for the Conservation and Breeding of Valencian Agro-Diversity, Universitat Politècnica de València (COMAV-UPV), Camino de Vera s/n, 46022 Valencia, Spain; (A.K.); (A.S.); (B.P.)
| |
Collapse
|
6
|
Vignesh S, Renukadevi P, Nagendran K, Senthil N, Kumar RV, SwarnaPriya R, Behera TK, Karthikeyan G. A distinct strain of tomato leaf curl New Delhi virus that causes mosaic disease in ash gourd and other cucurbitaceous crops. Front Microbiol 2023; 14:1268333. [PMID: 37965544 PMCID: PMC10641021 DOI: 10.3389/fmicb.2023.1268333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/05/2023] [Indexed: 11/16/2023] Open
Abstract
Ash gourd (Benincasa hispida) is a cucurbitaceous crop cultivated as an edible vegetable rich in vitamins, minerals, dietary fibers and antioxidants. In a field survey conducted in the Udumalpet region of Tamil Nadu during 2019, the incidence of mosaic disease on ash gourd crop was observed to be 75%. The DNA-A and DNA-B components of begomovirus genome have been identified as associated with this disease. Both the cloned DNA-A and DNA-B genomic components shared highest pairwise sequence identities with the isolates of tomato leaf curl New Delhi virus (ToLCNDV), a bipartite begomovirus. Recombinant analysis showed that both the components are possibly evolved through intra-species recombination between ToLCNDV isolates. Tomato leaf curl Bangladesh betasatellite (ToLCBB) is not naturally associated with this sample. The results of infectivity studies on ash gourd and other cucurbitaceous crops demonstrates the Koch's postulates, when co-inoculation of DNA-A and DNA-B of ToLCNDV was undertaken. However, the inoculation of non-cognate ToLCBB along with DNA-A and DNA-B enhances the symptom expression and reduces the time taken for symptom development. Thus, Koch's postulates were proved for these virus complexes on cucurbitaceous crops. Furthermore, an enhanced accumulation of DNA-A component was detected in the cucurbits co-inoculated with ToLCNDV and ToLCBB. This report highlights the importance of investigating the spread of these disease complexes with other cucurbitaceous crops in India.
Collapse
Affiliation(s)
- S. Vignesh
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - P. Renukadevi
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - K. Nagendran
- Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
| | - N. Senthil
- Department of Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - R. Vinoth Kumar
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - R. SwarnaPriya
- Floriculture Research Station, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | | | - G. Karthikeyan
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
7
|
Sangwan A, Gupta D, Singh OW, Roy A, Mukherjee SK, Mandal B, Singh N. Size variations of mesoporous silica nanoparticle control uptake efficiency and delivery of AC2-derived dsRNA for protection against tomato leaf curl New Delhi virus. PLANT CELL REPORTS 2023; 42:1571-1587. [PMID: 37482559 DOI: 10.1007/s00299-023-03048-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 07/07/2023] [Indexed: 07/25/2023]
Abstract
KEY MESSAGE We report the size dependent uptake of dsRNA loaded MSNPs into the leaves and roots of Nicotiana benthamiana plants and accessed for their relative reduction in Tomato leaf curl New Delhi viral load. A non-GMO method of RNA interference (RNAi) has been recently in practice through direct delivery of double stranded RNA into the plant cells. Tomato leaf curl New Delhi virus (ToLCNDV), a bipartitie begomovirus, is a significant viral pathogen of many crops in the Indian subcontinent. Conventional RNAi cargo delivery strategies for instance uses viral vectors and Agrobacterium-facilitated delivery, exhibiting specific host responses from the plant system. In the present study, we synthesized three different sizes of amine-functionalized mesoporous silica nanoparticles (amino-MSNPs) to mediate the delivery of dsRNA derived from the AC2 (dsAC2) gene of ToLCNDV and showed that these dsRNA loaded nanoparticles enabled effective reduction in viral load. Furthermore, we demonstrate that amino-MSNPs protected the dsRNA molecules from nuclease degradation, while the complex was efficiently taken up by the leaves and roots of Nicotiana benthamiana. The real time gene expression evaluation showed that plants treated with nanoparticles of different sizes ~ 10 nm (MSNPDEA), ~ 32 nm (MSNPTEA) and ~ 66 nm (MSNPNH3) showed five-, eleven- and threefold reduction of ToLCNDV in N. benthamiana, respectively compared to the plants treated with naked dsRNA. This work clearly demonstrates the size dependent internalization of amino-MSNPs and relative efficacy in transporting dsRNA into the plant system, which will be useful in convenient topical treatment to protect plants against their pathogens including viruses. Mesoporous silica nanoparticles loaded with FITC, checked for its uptake into Nicotiana benthamiana.
Collapse
Affiliation(s)
- Anju Sangwan
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Dipinte Gupta
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Oinam Washington Singh
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Anirban Roy
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Sunil Kumar Mukherjee
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Bikash Mandal
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Neetu Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
- Biomedical Engineering Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
8
|
Li G, Tang L, He Y, Xu Y, Bendahmane A, Garcia-Mas J, Lin T, Zhao G. The haplotype-resolved T2T reference genome highlights structural variation underlying agronomic traits of melon. HORTICULTURE RESEARCH 2023; 10:uhad182. [PMID: 37885818 PMCID: PMC10599238 DOI: 10.1093/hr/uhad182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 09/04/2023] [Indexed: 10/28/2023]
Abstract
Melon (Cucumis melo L.) is an important vegetable crop that has an extensive history of cultivation. However, the genome of wild and semi-wild melon types that can be used for the analysis of agronomic traits is not yet available. Here we report a chromosome-level T2T genome assembly for 821 (C. melo ssp. agrestis var. acidulus), a semi-wild melon with two haplotypes of ~373 Mb and ~364 Mb, respectively. Comparative genome analysis discovered a significant number of structural variants (SVs) between melo (C. melo ssp. melo) and agrestis (C. melo ssp. agrestis) genomes, including a copy number variation located in the ToLCNDV resistance locus on chromosome 11. Genome-wide association studies detected a significant signal associated with climacteric ripening and identified one candidate gene CM_ac12g14720.1 (CmABA2), encoding a cytoplasmic short chain dehydrogenase/reductase, which controls the biosynthesis of abscisic acid. This study provides valuable genetic resources for future research on melon breeding.
Collapse
Affiliation(s)
- Guoli Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450009, China
- China Agricultural University, College of Horticulture, Beijing 100193, China
| | - Lingli Tang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450009, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453400, China
| | - Yuhua He
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450009, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China
| | - Yongyang Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450009, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China
| | - Abdelhafid Bendahmane
- Institute of Plant Sciences Paris-Saclay (IPS2), INRAE, CNRS, University of Paris-Saclay, University of Evry, University of Paris-Diderot, Gif sur Yvette 91192, France
| | - Jordi Garcia-Mas
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Edifici CRAG, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Tao Lin
- China Agricultural University, College of Horticulture, Beijing 100193, China
| | - Guangwei Zhao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450009, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453400, China
| |
Collapse
|
9
|
Ivanov PA, Gasanova TV, Repina MN, Zamyatnin AA. Signaling and Resistosome Formation in Plant Innate Immunity to Viruses: Is There a Common Mechanism of Antiviral Resistance Conserved across Kingdoms? Int J Mol Sci 2023; 24:13625. [PMID: 37686431 PMCID: PMC10487714 DOI: 10.3390/ijms241713625] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/16/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Virus-specific proteins, including coat proteins, movement proteins, replication proteins, and suppressors of RNA interference are capable of triggering the hypersensitive response (HR), which is a type of cell death in plants. The main cell death signaling pathway involves direct interaction of HR-inducing proteins with nucleotide-binding leucine-rich repeats (NLR) proteins encoded by plant resistance genes. Singleton NLR proteins act as both sensor and helper. In other cases, NLR proteins form an activation network leading to their oligomerization and formation of membrane-associated resistosomes, similar to metazoan inflammasomes and apoptosomes. In resistosomes, coiled-coil domains of NLR proteins form Ca2+ channels, while toll-like/interleukin-1 receptor-type (TIR) domains form oligomers that display NAD+ glycohydrolase (NADase) activity. This review is intended to highlight the current knowledge on plant innate antiviral defense signaling pathways in an attempt to define common features of antiviral resistance across the kingdoms of life.
Collapse
Affiliation(s)
- Peter A. Ivanov
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (P.A.I.); (T.V.G.); (M.N.R.)
| | - Tatiana V. Gasanova
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (P.A.I.); (T.V.G.); (M.N.R.)
| | - Maria N. Repina
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (P.A.I.); (T.V.G.); (M.N.R.)
| | - Andrey A. Zamyatnin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
- Research Center for Translational Medicine, Sirius University of Science and Technology, Sirius 354340, Krasnodar Region, Russia
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| |
Collapse
|
10
|
Kumar R, Lal MK, Tiwari RK, Chourasia KN, Kumar A, Kumar R, Sharma S, Singh B. Investigating the Interplay between Tomato Leaf Curl New Delhi Virus Infection, Starch Metabolism and Antioxidant Defence System in Potato ( Solanum tuberosum L.). Antioxidants (Basel) 2023; 12:1447. [PMID: 37507984 PMCID: PMC10376058 DOI: 10.3390/antiox12071447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The potato apical leaf curl disease is caused by tomato leaf curl New Delhi virus-potato (ToLCNDV-potato), which severely alters a plant's starch metabolism, starch hydrolysing enzymes, and antioxidant mechanism. In this study, the result suggested that ToLCNDV-potato significantly (p < 0.01) affected the morphological parameters and photosynthetic pigment system in both the cultivars of potato, viz., Kufri Pukhraj (susceptible) and Kufri Bahar (tolerant). However, the impact of ToLCNDV-potato was lower in Kufri Bahar. Moreover, the viral infection in potato showed significant (p < 0.01) enhancement in the leakage of plant oxidative metabolites such as proline and malondialdehyde (MDA) which was further confirmed with higher electrolyte leakage. The viral infection imbalance of starch metabolism in the leaves ultimately affects the carbohydrate profile. ToLCNDV-potato significantly lowered starch synthesis, enhanced the accumulation of sucrose, glucose, fructose and-which was further validated by enzymatic estimation of β-amylase-α-amylase and phosphorylase activity in the leaves of both cultivars. The antioxidant enzymes, viz., catalase, ascorbate peroxidase, and superoxide dismutase, were reported to be enhanced in both the cultivars due to ToLCNDV-potato infection. The higher enhancement of antioxidant enzyme activity was observed in Kufri Bahar, which signifies its resistant attributes. These findings in the potato plant broaden our understanding of the regulatory mechanisms of starch metabolism and antioxidant activity and provide proof of concept for breeding potato for ToLCNDV-potato tolerance.
Collapse
Affiliation(s)
- Ravinder Kumar
- ICAR-Central Potato Research Institute, Shimla 171001, Himachal Pradesh, India
| | - Milan Kumar Lal
- ICAR-Central Potato Research Institute, Shimla 171001, Himachal Pradesh, India
| | - Rahul Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla 171001, Himachal Pradesh, India
| | - Kumar Nishant Chourasia
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore 700121, West Bengal, India
| | - Awadhesh Kumar
- ICAR-National Rice Research Institute, Cuttack 753006, Odisha, India
| | - Rakesh Kumar
- ICAR-Central Potato Research Institute, Shimla 171001, Himachal Pradesh, India
| | - Shivangi Sharma
- ICAR-Central Potato Research Institute, Shimla 171001, Himachal Pradesh, India
| | - Brajesh Singh
- ICAR-Central Potato Research Institute, Shimla 171001, Himachal Pradesh, India
| |
Collapse
|
11
|
Vo TTB, Lal A, Nattanong B, Tabassum M, Qureshi MA, Troiano E, Parrella G, Kil EJ, Lee S. Coat protein is responsible for tomato leaf curl New Delhi virus pathogenicity in tomato. FRONTIERS IN PLANT SCIENCE 2023; 14:1206255. [PMID: 37492775 PMCID: PMC10364049 DOI: 10.3389/fpls.2023.1206255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/23/2023] [Indexed: 07/27/2023]
Abstract
Tomato leaf curl New Delhi virus (ToLCNDV), a bipartite Begomovirus belonging to the family Geminiviridae, causes severe damage to many economically important crops worldwide. In the present study, pathogenicity of Asian (ToLCNDV-In from Pakistan) and Mediterranean isolates (ToLCNDV-ES from Italy) were examined using infectious clones in tomato plants. Only ToLCNDV-In could infect the three tomato cultivars, whereas ToLCNDV-ES could not. Genome-exchange of the two ToLCNDVs revealed the ToLCNDV DNA-A segment as the main factor for ToLCNDV infectivity in tomato. In addition, serial clones with chimeric ToLCNDV-In A and ToLCNDV-ES A genome segments were generated to identify the region determining viral infectivity in tomatoes. A chimeric clone carrying the ToLCNDV-In coat protein (CP) exhibited pathogenic adaptation in tomatoes, indicating that the CP of ToLCNDV is essential for its infectivity. Analyses of infectious clones carrying a single amino acid substitution revealed that amino acid at position 143 of the CP is critical for ToLCNDV infectivity in tomatoes. To better understand the molecular basis whereby CP function in pathogenicity, a yeast two-hybrid screen of a tomato cDNA library was performed using CPs as bait. The hybrid results showed different interactions between the two CPs and Ring finger protein 44-like in the tomato genome. The relative expression levels of upstream and downstream genes and Ring finger 44-like genes were measured using quantitative reverse transcription PCR (RT-qPCR) and compared to those of control plants. This is the first study to compare the biological features of the two ToLCNDV strains related to viral pathogenicity in the same host plant. Our results provide a foundation for elucidating the molecular mechanisms underlying ToLCNDV infection in tomatoes.
Collapse
Affiliation(s)
- Thuy T. B. Vo
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Aamir Lal
- Agriculture Science and Technology Research Institute, Andong National University, Andong, Republic of Korea
| | - Bupi Nattanong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Marjia Tabassum
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Muhammad Amir Qureshi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Elisa Troiano
- Department of Biology, Agriculture and Food Sciences, Institute for Sustainable Plant Protection of the National Research Council (IPSP-CNR), Portici, Italy
| | - Giuseppe Parrella
- Department of Biology, Agriculture and Food Sciences, Institute for Sustainable Plant Protection of the National Research Council (IPSP-CNR), Portici, Italy
| | - Eui-Joon Kil
- Agriculture Science and Technology Research Institute, Andong National University, Andong, Republic of Korea
- Department of Plant Medicals, Andong National University, Andong, Republic of Korea
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
12
|
Mastrochirico M, Spanò R, De Miccolis Angelini RM, Mascia T. Molecular Characterization of a Recombinant Isolate of Tomato Leaf Curl New Delhi Virus Associated with Severe Outbreaks in Zucchini Squash in Southern Italy. PLANTS (BASEL, SWITZERLAND) 2023; 12:2399. [PMID: 37446959 DOI: 10.3390/plants12132399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/07/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023]
Abstract
The molecular characterization of a tomato leaf curl New Delhi virus (ToLCNDV) isolate, denoted ToLCNDV-Le, is reported. The virus was associated with severe and recurrent outbreaks in protected crops of zucchini squash grown in the Province of Lecce (Apulia, southern Italy). The fully sequenced genome of ToLCNDV-Le consists of two genomic components named DNA-A and DNA-B of 2738 and 2683 nt in size, respectively. Like other ToLCNDV isolates, ToLCNDV-Le DNA-A contains the AV2 and AV1 open reading frames (ORFs) in the virion-sense orientation and five additional ORFs named AC1, AC2, AC3, AC4 and AC5 in the complementary-sense orientation. The DNA-B contains BV1 ORF in the virion-sense orientation and BC1 ORF in the complementary-sense orientation. No DNA betasatellites were found associated with ToLCNDV-Le in naturally infected samples. Phylogenetic analysis clustered ToLCNDV-Le with the ToLCNDV-ES strain of western Mediterranean Basin isolates. Consequently, the ToLCNDV-ES-[IT-Zu-Le18] name is proposed as the descriptor for ToLCNDV-Le. Using recombination detection program RDP4, one putative recombination breakpoint (Rbp) was identified close to nucleotide positions 2197-2727, covering approximately half of the AC1 region, including the AC4 ORF and the 3' UTR. RDP4 indicated the event represents an Rbp of an isolate similar to ToLCNDV [Pk-06] (Acc. No. EF620534) found in Luffa acutangula in Pakistan and identified as putative minor parent into the background of ToLCNDV [BG-Jes-Svr-05] (Acc. No. AJ875157), found in tomato in Bangladesh, and identified as putative major parent. To the best of our knowledge, this is the first report of a ToLCNDV-ES recombinant isolate in the AC1-AC4 region in Italy.
Collapse
Affiliation(s)
| | - Roberta Spanò
- Department of Soil, Plant and Food Sciences, University of Bari "Aldo Moro", 70126 Bari, Italy
| | | | - Tiziana Mascia
- Department of Soil, Plant and Food Sciences, University of Bari "Aldo Moro", 70126 Bari, Italy
| |
Collapse
|
13
|
Farina A, Rapisarda C, Fiallo-Olivé E, Navas-Castillo J. Tomato Leaf Curl New Delhi Virus Spain Strain Is Not Transmitted by Trialeurodes vaporariorum and Is Inefficiently Transmitted by Bemisia tabaci Mediterranean between Zucchini and the Wild Cucurbit Ecballium elaterium. INSECTS 2023; 14:384. [PMID: 37103199 PMCID: PMC10146520 DOI: 10.3390/insects14040384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
Tomato leaf curl New Delhi virus (ToLCNDV) is a bipartite begomovirus (genus Begomovirus, family Geminiviridae) persistently transmitted, as with all other begomoviruses, by whiteflies (Hemiptera: Aleyrodidae) of the Bemisia tabaci cryptic species complex. The virus, originally from the Indian subcontinent, was recently introduced in the Mediterranean basin, where it is currently a major concern for protected and open-field horticulture. The Mediterranean ToLCNDV isolates belong to a novel strain named "Spain strain" (ToLCNDV-ES), which infects zucchini and other cucurbit crops but is poorly adapted to tomato. Recently, it has been reported that another whitefly, Trialeurodes vaporariorum, is able to transmit an isolate of ToLCNDV from India which infects the chayote plant, a cucurbit. The present work aimed to clarify some aspects of whitefly transmission of ToLCNDV-ES. It was shown that T. vaporariorum is not able to transmit ToLCNDV-ES between zucchini plants. In addition, Ecballium elaterium may not act as a relevant reservoir for this virus strain in the Mediterranean basin, as B. tabaci Mediterranean (MED), the most prevalent species of the complex in the region, is not an efficient vector of this begomovirus between cultivated zucchini and wild E. elaterium plants.
Collapse
Affiliation(s)
- Alessia Farina
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, 29750 Algarrobo-Costa, Spain; (A.F.); (E.F.-O.)
- Applied Entomology Section, Department of Agriculture, Food and Environment (Di3A), University of Catania, 95123 Catania, Italy;
| | - Carmelo Rapisarda
- Applied Entomology Section, Department of Agriculture, Food and Environment (Di3A), University of Catania, 95123 Catania, Italy;
| | - Elvira Fiallo-Olivé
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, 29750 Algarrobo-Costa, Spain; (A.F.); (E.F.-O.)
| | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, 29750 Algarrobo-Costa, Spain; (A.F.); (E.F.-O.)
| |
Collapse
|
14
|
Moya-Ruiz CD, Gómez P, Juárez M. Occurrence, Distribution, and Management of Aphid-Transmitted Viruses in Cucurbits in Spain. Pathogens 2023; 12:422. [PMID: 36986344 PMCID: PMC10057868 DOI: 10.3390/pathogens12030422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/10/2023] Open
Abstract
The effectiveness of pest and disease management in crops relies on knowledge about their presence and distribution in crop-producing areas. Aphids and whiteflies are among the main threats to vegetable crops since these hemipterans feed on plants, causing severe damage, and are also able to transmit a large number of devastating plant viral diseases. In particular, the widespread occurrence of aphid-transmitted viruses in cucurbit crops, along with the lack of effective control measures, makes surveillance programs and virus epidemiology necessary for providing sound advice and further integration into the management strategies that can ensure sustainable food production. This review describes the current presence and distribution of aphid-transmitted viruses in cucurbits in Spain, providing valuable epidemiological information, including symptom expressions of virus-infected plants for further surveillance and viral detection. We also provide an overview of the current measures for virus infection prevention and control strategies in cucurbits and indicate the need for further research and innovative strategies against aphid pests and their associated viral diseases.
Collapse
Affiliation(s)
- Celia De Moya-Ruiz
- Centro de Edafología y Biología Aplicada del Segura (CEBAS), CSIC, Departamento de Biología del Estrés y Patología Vegetal, 30100 Murcia, Spain
| | - Pedro Gómez
- Centro de Edafología y Biología Aplicada del Segura (CEBAS), CSIC, Departamento de Biología del Estrés y Patología Vegetal, 30100 Murcia, Spain
| | - Miguel Juárez
- Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO), Universidad Miguel Hernández de Elche, 03312 Orihuela, Spain
| |
Collapse
|
15
|
Fortes IM, Pérez-Padilla V, Romero-Rodríguez B, Fernández-Muñoz R, Moyano C, Castillo AG, De León L, Moriones E. Begomovirus Tomato Leaf Curl New Delhi Virus Is Seedborne but Not Seed Transmitted in Melon. PLANT DISEASE 2023; 107:473-479. [PMID: 35771117 DOI: 10.1094/pdis-09-21-1930-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Seed transmission can be of considerable relevance to the dissemination of plant viruses in nature and for their prevalence and perpetuation. Long-distance spread of isolates of the begomovirus species Tomato leaf curl New Delhi virus (genus Begomovirus, family Geminiviridae) has recently occurred from Asia to the Middle East and the Mediterranean Basin. Here, we investigated the possible transmission by melon (Cucumis melo L.) seeds of a tomato leaf curl New Delhi virus (ToLCNDV) isolate of the "Spain" strain widely distributed in the Mediterranean area as an alternative mechanism for long-distance spread. PCR amplification detection of ToLCNDV in floral parts and mature seeds of melon plants reveals that this virus is seedborne. "Seedborne" is defined as the ability of a virus to be carried through seeds, which does not necessarily lead to transmission to the next generation. Treatment with a chemical disinfectant significantly reduced the detectable virus associated with melon seeds, suggesting ToLCNDV contamination of the external portion of the seed coat. Also, when the internal fraction of the mature seed (seed cotyledons + embryo) was analyzed by quantitative PCR amplification, ToLCNDV was detectable at low levels, suggesting the potential for viral contamination or infection of the internal portions of seed. However, grow-out studies conducted with melon progeny plants germinated from mature seeds collected from ToLCNDV-infected plants and evaluated at early (1-leaf) or at late (20-leaf) growth stages did not support the transmission of ToLCNDV from seeds to offspring.
Collapse
Affiliation(s)
- Isabel M Fortes
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora", E-29750 Algarrobo-Costa, Málaga, Spain
| | - Verónica Pérez-Padilla
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de La Coruña, km 7.5, E-28040 Madrid, Spain
| | - Beatriz Romero-Rodríguez
- IHSM, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Área de Genética, Facultad de Ciencias, Universidad de Málaga, E-29071, Málaga, Spain
| | - Rafael Fernández-Muñoz
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora", E-29750 Algarrobo-Costa, Málaga, Spain
| | - Cristina Moyano
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de La Coruña, km 7.5, E-28040 Madrid, Spain
| | - Araceli G Castillo
- IHSM, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Área de Genética, Facultad de Ciencias, Universidad de Málaga, E-29071, Málaga, Spain
| | - Leandro De León
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de La Coruña, km 7.5, E-28040 Madrid, Spain
| | - Enrique Moriones
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora", E-29750 Algarrobo-Costa, Málaga, Spain
| |
Collapse
|
16
|
Vo TTB, Cho WK, Jo Y, Lal A, Nattanong B, Qureshi MA, Tabssum M, Troiano E, Parrella G, Kil EJ, Lee TK, Lee S. Transcriptional Analysis of the Differences between ToLCNDV-India and ToLCNDV-ES Leading to Contrary Symptom Development in Cucumber. Int J Mol Sci 2023; 24:ijms24032181. [PMID: 36768502 PMCID: PMC9916722 DOI: 10.3390/ijms24032181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Tomato leaf curl New Delhi virus-ES (ToLCNDV-ES), a high threat to cucurbits in the Mediterranean Basin, is listed as a different strain from the Asian ToLCNDV isolates. In this study, the infectivity of two clones previously isolated from Italy and Pakistan were compared in cucumbers, which resulted in the opposite symptom appearance. The swapping subgenome was processed; however, the mechanisms related to the disease phenotype remain unclear. To identify the disease-associated genes that could contribute to symptom development under the two ToLCNDV infections, the transcriptomes of ToLCNDV-infected and mock-inoculated cucumber plants were compared 21 days postinoculation. The number of differentially expressed genes in ToLCNDV-India-infected plants was 10 times higher than in ToLCNDV-ES-infected samples. The gene ontology (GO) and pathway enrichment were analyzed using the Cucurbits Genomics Database. The flavonoid pathway-related genes were upregulated in ToLCNDV-ES, but some were downregulated in ToLCNDV-India infection, suggesting their role in resistance to the two ToLCNDV infections. The relative expression levels of the selected candidate genes were validated by qRT-PCR under two ToLCNDV-infected conditions. Our results reveal the different infectivity of the two ToLCNDVs in cucumber and also provide primary information based on RNA-seq for further analysis related to different ToLCNDV infections.
Collapse
Affiliation(s)
- Thuy T. B. Vo
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Won Kyong Cho
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yeonhwa Jo
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Aamir Lal
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Bupi Nattanong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Muhammad Amir Qureshi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Marjia Tabssum
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Elisa Troiano
- Institute for Sustainable Plant Protection of the National Research Council (IPSP-CNR), 80055 Portici, Italy
| | - Giuseppe Parrella
- Institute for Sustainable Plant Protection of the National Research Council (IPSP-CNR), 80055 Portici, Italy
| | - Eui-Joon Kil
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea
| | - Taek-Kyun Lee
- Risk Assessment Research Center, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
- Correspondence: (T.-K.L.); (S.L.)
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Correspondence: (T.-K.L.); (S.L.)
| |
Collapse
|
17
|
Neoh ZY, Lai HC, Lin CC, Suwor P, Tsai WS. Genetic Diversity and Geographic Distribution of Cucurbit-Infecting Begomoviruses in the Philippines. PLANTS (BASEL, SWITZERLAND) 2023; 12:272. [PMID: 36678986 PMCID: PMC9862860 DOI: 10.3390/plants12020272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/18/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
Cucurbits are important economic crops worldwide. However, the cucurbit leaf curl disease (CuLCD), caused by whitefly-transmitted begomoviruses constrains their production. In Southeast Asia, three major begomoviruses, Tomato leaf curl New Delhi virus (ToLCNDV), Squash leaf curl China virus (SLCCNV) and Squash leaf curl Philippines virus (SLCuPV) are associated with CuLCD. SLCuPV and SLCCNV were identified in Luzon, the Philippines. Here, the genetic diversity and geographic distribution of CuLCD-associated begomoviruses in the Philippines were studied based on 103 begomovirus detected out of 249 cucurbit samples collected from 60 locations throughout the country in 2018 and 2019. The presence of SLCCNV and SLCuPV throughout the Philippines were confirmed by begomovirus PCR detection and viral DNA sequence analysis. SLCuPV was determined as a predominant CuLCD-associated begomovirus and grouped into two strains. Interestingly, SLCCNV was detected in pumpkin and bottle gourd without associated viral DNA-B and mixed-infected with SLCuPV. Furthermore, the pathogenicity of selected isolates of SLCCNV and SLCuPV was confirmed. The results provide virus genetic diversity associated with CuLCD for further disease management, especially in developing the disease-resistant cultivars in the Philippines as well as Southeast Asia.
Collapse
Affiliation(s)
- Zhuan Yi Neoh
- Department of Plant Medicine, National Chiayi University, Chiayi City 600355, Taiwan
| | - Hsuan-Chun Lai
- Department of Plant Medicine, National Chiayi University, Chiayi City 600355, Taiwan
| | | | - Patcharaporn Suwor
- Agriculture Technology, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Wen-Shi Tsai
- Department of Plant Medicine, National Chiayi University, Chiayi City 600355, Taiwan
| |
Collapse
|
18
|
Venkataravanappa V, Kodandaram MH, Prasanna HC, Reddy MK, Reddy CNL. Unraveling different begomoviruses, DNA satellites and cryptic species of Bemisia tabaci and their endosymbionts in vegetable ecosystem. Microb Pathog 2023; 174:105892. [PMID: 36502993 DOI: 10.1016/j.micpath.2022.105892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/16/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022]
Abstract
Bemisia tabaci species complex contains more than 46 cryptic species. It has emerged as an important pest causing significant yield loss in many cultivated crops. This pest is also a vector for more than 100 species of begomoviruses, that are a major threat for the cultivation of many crops in different regions of the world. The relation between cryptic species of the B. tabaci species complex and associated begomoviruses that infect different crops remains unclear. In the present study, four cryptic species (Asia I, China 3, Asia II 5 and Asia II-1) of B. tabaci and four associated endosymbionts (Arsenophonus, Cardinium, Rickettsia and Wolbachia) were identified in different vegetable crops. The vector-based PCR detection revealed five different begomoviruses such as okra enation leaf curl virus (OELCuV), tomato leaf curl Palampur virus (ToLCPalV), squash leaf curl China virus (SLCCNV), chilli leaf curl virus (ChiLCuV), and tomato leaf curl New Delhi virus (ToLCNDV). Of these begomoviruses, the maximum infection rate was observed (9.1%) for OELCuV, followed by 7.3% for ToLCNDV. The infection rate of the other three viruses (SLCCNV, ChiLCuV, ToLCPalV) ranged from 0.9 to 2.7% in cryptic species of B. tabaci. Further, each cryptic species was infected with multiple virus species and the virus infection rate of Asia I, Asia II-5, China 3 and Asia II-1 was 21.2%, 15.1%, 15.1% and 0.6% respectively. Similarly, in case of betasatellites the highest infection rate was 12% for ToLCBDB, followed by 6% for OLCuB and PaLCB. With regard to alphasatellites, the highest infection rate was 18.2% for AEV and 3% for CLCuMuA. This study demonstrates the distribution of cryptic species of whitefly and their endosymbionts, and associated begomoviruses and DNA satellites in vegetable ecosystem. We believe that the information generated here is useful for evolving an effective pest management strategies for vegetable production.
Collapse
Affiliation(s)
- V Venkataravanappa
- ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake PO, Bengaluru, 560089, Karnataka, India; ICAR-Indian Institute of Vegetable Research, Varanasi, 221305, Uttar Pradesh, India.
| | - M H Kodandaram
- ICAR- Indian Institute of Pulses Research, Regional Research Center, UAS Campus, Dharwad, 580005, Karnataka, India; ICAR-Indian Institute of Vegetable Research, Varanasi, 221305, Uttar Pradesh, India.
| | - H C Prasanna
- ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake PO, Bengaluru, 560089, Karnataka, India; ICAR-Indian Institute of Vegetable Research, Varanasi, 221305, Uttar Pradesh, India
| | - M Krishna Reddy
- ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake PO, Bengaluru, 560089, Karnataka, India
| | - C N Lakshminarayana Reddy
- Department of Plant Pathology, College of Agriculture, University of Agricultural Sciences, GKVK, Bengaluru, 560065, Karnataka, India
| |
Collapse
|
19
|
Mastrochirico M, Spanò R, Mascia T. Grafting to Manage Infections of the Emerging Tomato Leaf Curl New Delhi Virus in Cucurbits. PLANTS (BASEL, SWITZERLAND) 2022; 12:37. [PMID: 36616164 PMCID: PMC9824083 DOI: 10.3390/plants12010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/27/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Tomato leaf curl New Delhi virus (ToLCNDV) is an emerging begomovirus (Geminiviridae family) listed in the EPPO Alert List 2, present in the Mediterranean area and in Italy, where it was reported in 2015 in Sicilian courgette. The virus is widespread in cucurbits where it causes up to 100% production losses. In 2018, ToLCNDV was isolated in Apulia (southern Italy) in commercial fields of zucchini squash and since then its recurrent outbreaks generated justified concern among growers. Thus, a sustainable and environmentally friendly approach must be adopted. Genetic resistances have been identified in Cucurbita moschata and Luffa cylindrica but, compared to genetic resistance, grafting could provide a faster and more flexible solution because the graft wounding induces tolerance rather than resistance against airborne virus infection. Compared to tolerance, the up-regulation of resistance genes requires energy resources mobilized at the expense of primary metabolism, plant growth, and development. Results of screening among twenty-one local cucurbit cvs. ecotypes and accessions to evaluate tolerance levels against rub-inoculation of ToLCNDV led to the identification of potential rootstocks to attain suitable levels of tolerance against the virus in commercial cucurbit varieties. Cucurbit plants were challenged by a ToLCNDV isolated in Apulia denoted ToLCNDV-Le and evaluated for disease symptoms development and viral DNA accumulation up to 28 days after inoculation. On the basis of disease symptoms developed, plants were classified as tolerant, moderately tolerant, moderately susceptible, and susceptible. Cucumis melo cv. Barattiere did not show any detectable disease symptoms and very low levels of viral DNA accumulation was recorded; thus, it was used as rootstock for some of the remaining cucurbit genotypes that were used as scions. The tolerance trait was transmitted to the otherwise susceptible and moderately susceptible cucurbit genotypes grafted onto the cv. Barattiere. The results of this study suggest practical implications of the approach described.
Collapse
|
20
|
Multiple begomoviruses infecting soybean; a case study in Faisalabad, Pakistan. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01290-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Sett S, Prasad A, Prasad M. Resistance genes on the verge of plant-virus interaction. TRENDS IN PLANT SCIENCE 2022; 27:1242-1252. [PMID: 35902346 DOI: 10.1016/j.tplants.2022.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/06/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Viruses are acellular pathogens that cause severe infections in plants, resulting in worldwide crop losses every year. The lack of chemical agents to control viral diseases exacerbates the situation. Thus, to devise proper management strategies, it is important that the defense mechanisms of plants against viruses are understood. Resistance (R) genes regulate plant defense against invading pathogens by eliciting a hypersensitive response (HR). Compatible interaction between plant R gene and viral avirulence (Avr) protein activates the necrotic cell death response at the site of infection, resulting in the cessation of disease. Here, we review different aspects of R gene-mediated dominant resistance against plant viruses in dicotyledonous plants and possible ways for developing crops with better disease resistance.
Collapse
Affiliation(s)
- Susmita Sett
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ashish Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India; Department of Plant Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India.
| |
Collapse
|
22
|
Vo TTB, Troiano E, Lal A, Hoang PT, Kil EJ, Lee S, Parrella G. ToLCNDV-ES infection in tomato is enhanced by TYLCV: Evidence from field survey and agroinoculation. Front Microbiol 2022; 13:954460. [PMID: 36425034 PMCID: PMC9679516 DOI: 10.3389/fmicb.2022.954460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Thuy Thi Bich Vo
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Elisa Troiano
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Portici, Italy
| | - Aamir Lal
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Phuong Thi Hoang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Eui-Joon Kil
- Department of Plant Medicals, Andong National University, Andong, South Korea
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Giuseppe Parrella
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Portici, Italy
- *Correspondence: Giuseppe Parrella,
| |
Collapse
|
23
|
Li R, Liu Y, Yin C, Sun K, Zhang P. Occurrence of Tomato leaf curl New Delhi virus in tomato ( Lycopersicon esculentum) in China. PLANT DISEASE 2022; 107:1639. [PMID: 36281022 DOI: 10.1094/pdis-06-22-1427-pdn] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Tomato leaf curl New Delhi virus (ToLCNDV), a member of the genus Begomovirus in the family Geminiviridae is naturally transmitted by the whitefly Bemisia tabaci (order Hemiptera, family Aleyrodidae) in a circulative and persistent manner (Moriones et al. 2017). ToLCNDV has occurred in Bangladesh, India, Indonesia, Iran, Italy, Malaysia, Pakistan, Sri Lanka, Spain, Thailand and Tunisia (Moriones et al. 2017). To date, The primary cultivated host of ToLCNDV has been identified as tomato (Lycopersicon esculentum), but the virus is also known to infect 43 other plant species from a range of families including Cucurbitaceae, Euphorbiaceae, Solanaceae, Malvaceae and Fabaceae (Zaidi et al. 2017). In August 2021, virus-like symptoms including leaf deformation and curing were observed on tomato (Lycopersicon esculentum) in a greenhouse of about 0.5 hectares in Zhejiang Province, China. To identify viral agents potentially associated with this disease, an Oxford Nanopore cDNA library from a symptomatic sample was generated and sequenced. Total RNA was extracted using RNAiso Plus (TaKaRa, Tokyo, Japan). Libraries were constructed using Oxford Nanopore PCR-cDNA Sequencing Kit (SQK-PCS109; Oxford Nanopore Technologies, Oxford, UK), as recommended. Approximately 8.7 million reads were obtained from the Oxford MinION platform. After removing the adapters and low-quality reads, the clean reads were subjected to BLASTn analysis against the nt database. Approximately 797 and 168 reads produced high nt identities to the genome of ToLCNDV DNA-A (GeneBank Accession No. U15015.2) and ToLCNDV DNA-B (GeneBank Accession No. U15017.2) respectively. We designed 6 primer pairs (Table S1) to obtain the sequence of ToLCNDV Zhejiang (ToLCNDV-ZJ) isolate DNA-A and DNA-B. Briefly, total DNA from ToLCNDV-infected tomato was extracted using standard cetyl trimethylammonium bromide method. Segments of ToLCNDV DNA-A and DNA-B were amplified using high-fidelity DNA polymerase KOD-Plus-Neo (Toyobo, Osaka, Japan). PCR products were cloned into the pLB vector (Tiangen, Beijing, China) and Sanger sequenced. The obtained sequences were assembled into complete sequences of ToLCNDV-ZJ DNA-A (2,739 nt, GeneBank Accession No. OP356207) and DNA-B (2,693 nt, GeneBank Accession No. OP356208). Pairwise sequence comparison revealed that the ToLCNDV -ZJ shared the highest nt sequence identities of 98.7% and 98.4% with the genome segments of New Delhi isolate (genome A: HM159454) and India:Delhi:Cucumis:2012 isolate (genome B: KC545813) respectively. Furthermore, we performed PCR detection on 10 collected samples using the primer pair P1F and P1R. All eight symptomatic plants showing upward leaf curling and leaf distortion tested positive for ToLCNDV infection, whereas two asymptomatic plants were ToLCNDV free. To our knowledge, this is the first report of ToLCNDV infecting tomato in China, and with the widespread presence of B. tabaci in green houses, ToLCNDV may be a potential threat to the cultivation of tomato in China. In addition, ToLCNDV is an exceptional Old World bipartite begomovirus. In China, monopartite DNA satellite-associated begomoviruses with mostly narrow geographical ranges predominate, and are widespread (Li et al., 2022). The occurrence of ToLCNDV in China, which indicates that the success of this virus would become an emerging threat to vegetable and fiber crops.
Collapse
Affiliation(s)
- Ruichen Li
- China Jiliang University, 92270, College of Life Sciences, Hangzhou, China;
| | - Yi Liu
- China Jiliang University, 92270, College of Life Sciences, Hangzhou, China;
| | - Chuanlin Yin
- China Jiliang University, 92270, College of Life Sciences, Hangzhou, China;
| | - Kai Sun
- China Jiliang University, 92270, College of Life Sciences, room 508,Gebei hall, Xueyuan street 258, Hangzhou, China, 310018
- United States;
| | | |
Collapse
|
24
|
Qureshi MA, Lal A, Nawaz-ul-Rehman MS, Vo TTB, Sanjaya GNPW, Ho PT, Nattanong B, Kil EJ, Jahan SMH, Lee KY, Tsai CW, Dao HT, Hoat TX, Aye TT, Win NK, Lee J, Kim SM, Lee S. Emergence of Asian endemic begomoviruses as a pandemic threat. FRONTIERS IN PLANT SCIENCE 2022; 13:970941. [PMID: 36247535 PMCID: PMC9554542 DOI: 10.3389/fpls.2022.970941] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/05/2022] [Indexed: 06/16/2023]
Abstract
Plant viruses are responsible for the most devastating and commercially significant plant diseases, especially in tropical and subtropical regions. The genus begomovirus is the largest one in the family Geminiviridae, with a single-stranded DNA genome, either monopartite or bipartite. Begomoviruses are transmitted by insect vectors, such as Bemisia tabaci. Begomoviruses are the major causative agents of diseases in agriculture globally. Because of their diversity and mode of evolution, they are thought to be geographic specific. The emerging begomoviruses are of serious concern due to their increasing host range and geographical expansion. Several begomoviruses of Asiatic origin have been reported in Europe, causing massive economic losses; insect-borne transmission of viruses is a critical factor in virus outbreaks in new geographical regions. This review highlights crucial information regarding Asia's four emerging and highly destructive begomoviruses. We also provided information regarding several less common but still potentially important pathogens of different crops. This information will aid possible direction of future studies in adopting preventive measures to combat these emerging viruses.
Collapse
Affiliation(s)
- Muhammad Amir Qureshi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Aamir Lal
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | | | - Thuy Thi Bich Vo
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | | | - Phuong Thi Ho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Bupi Nattanong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Eui-Joon Kil
- Department of Plant Medicals, Andong National University, Andong, South Korea
| | | | - Kyeong-Yeoll Lee
- Division of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, South Korea
| | - Chi-Wei Tsai
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Hang Thi Dao
- Plant Protection Research Institute, Hanoi, Vietnam
| | | | - Tin-Tin Aye
- Department of Entomology, Yezin Agricultural University, Yezin, Myanmar
| | - Nang Kyu Win
- Department of Plant Pathology, Yezin Agricultural University, Yezin, Myanmar
| | - Jangha Lee
- Crop Breeding Research Center, NongWoo Bio, Yeoju, South Korea
| | - Sang-Mok Kim
- Plant Quarantine Technology Center, Animal and Plant Quarantine Agency, Gimcheon, South Korea
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
25
|
Prasad A, Prasad M. Interaction of ToLCNDV TrAP with SlATG8f marks it susceptible to degradation by autophagy. Cell Mol Life Sci 2022; 79:241. [PMID: 35428912 PMCID: PMC11072827 DOI: 10.1007/s00018-022-04281-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/15/2022] [Accepted: 03/30/2022] [Indexed: 11/24/2022]
Abstract
Tomato leaf curl New Delhi virus (ToLCNDV) is a devastating plant pathogen which causes significant losses in tomato yield. According to previous reports, proteins of geminiviruses like βC1 of Cotton leaf curl Multan virus and C1 of Tomato leaf curl Yunnan virus are degraded by the autophagy pathway. There are no reports on the role of autophagy in ToLCNDV pathogenesis. In this study, we have shown that SlATG8f interacts with the ToLCNDV Transcription activator protein (TrAP; AC2) to mediate its degradation by the autophagy pathway. Silencing of SlATG8f in a ToLCNDV tolerant tomato cultivar; H-88-78-1 resulted in enhanced viral symptoms and ToLCNDV accumulation suggesting an anti-viral role for SlATG8f against ToLCNDV. TrAP is a nucleus localized protein, but it interacts with SlATG8f in and outside the nucleus indicating its nuclear export. This export might be mediated by Exportin1 as treatment with Exportin1 inhibitor inhibits TrAP export outside the nucleus. ToLCNDV TrAP is known to possess host RNA silencing suppression (RSS) activity. Degradation of TrAP results in the attenuation of its RSS activity. To the best of our knowledge, we have shown for the first time that SlATG8f-TrAP interaction leads to TrAP degradation providing defence against ToLCNDV.
Collapse
Affiliation(s)
- Ashish Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
26
|
Donati L, Bertin S, Gentili A, Luigi M, Taglienti A, Manglli A, Tiberini A, Brasili E, Sciubba F, Pasqua G, Ferretti L. Effects of Organic Biostimulants Added with Zeolite on Zucchini Squash Plants Infected by Tomato Leaf Curl New Delhi Virus. Viruses 2022; 14:v14030607. [PMID: 35337014 PMCID: PMC8952782 DOI: 10.3390/v14030607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Abstract
The use of organic substances in integrated pest management can contribute to human- and environment-safe crop production. In the present work, a combination of organic biostimulants (Fullcrhum Alert and BioVeg 500) and an inorganic corroborant (Clinogold, zeolite) was tested for the effects on the plant response to the quarantine pest tomato leaf curl New Delhi virus (ToLCNDV). Biostimulants were applied to healthy and infected greenhouse-grown zucchini plants, and the vegetative parameters and viral titer were evaluated. Although no antiviral effects were observed in terms of both virus replication and symptom expression, these biostimulants were shown to influence plant fitness. A significant increase in biomass and in leaf, flower, and fruit production was induced in both healthy and infected plants. Biostimulants also enhanced the production of metabolites commonly involved in plant response to virus infection, such as carbohydrates, phenylpropanoids and free amino acids. These results encourage new field trials to evaluate the actual productivity of infected plants after treatments and the possible application of organic biostimulants in agriculture.
Collapse
Affiliation(s)
- Livia Donati
- Council for Agricultural Research and Economics–Research Centre for Plant Protection and Certification, 00156 Rome, Italy; (S.B.); (A.G.); (M.L.); (A.T.); (A.M.); (A.T.); (L.F.)
- Correspondence:
| | - Sabrina Bertin
- Council for Agricultural Research and Economics–Research Centre for Plant Protection and Certification, 00156 Rome, Italy; (S.B.); (A.G.); (M.L.); (A.T.); (A.M.); (A.T.); (L.F.)
| | - Andrea Gentili
- Council for Agricultural Research and Economics–Research Centre for Plant Protection and Certification, 00156 Rome, Italy; (S.B.); (A.G.); (M.L.); (A.T.); (A.M.); (A.T.); (L.F.)
| | - Marta Luigi
- Council for Agricultural Research and Economics–Research Centre for Plant Protection and Certification, 00156 Rome, Italy; (S.B.); (A.G.); (M.L.); (A.T.); (A.M.); (A.T.); (L.F.)
| | - Anna Taglienti
- Council for Agricultural Research and Economics–Research Centre for Plant Protection and Certification, 00156 Rome, Italy; (S.B.); (A.G.); (M.L.); (A.T.); (A.M.); (A.T.); (L.F.)
| | - Ariana Manglli
- Council for Agricultural Research and Economics–Research Centre for Plant Protection and Certification, 00156 Rome, Italy; (S.B.); (A.G.); (M.L.); (A.T.); (A.M.); (A.T.); (L.F.)
| | - Antonio Tiberini
- Council for Agricultural Research and Economics–Research Centre for Plant Protection and Certification, 00156 Rome, Italy; (S.B.); (A.G.); (M.L.); (A.T.); (A.M.); (A.T.); (L.F.)
| | - Elisa Brasili
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy; (E.B.); (F.S.); (G.P.)
- NMR-based Metabolomics Laboratory (NMLab), Sapienza University of Rome, 00185 Rome, Italy
| | - Fabio Sciubba
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy; (E.B.); (F.S.); (G.P.)
- NMR-based Metabolomics Laboratory (NMLab), Sapienza University of Rome, 00185 Rome, Italy
| | - Gabriella Pasqua
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy; (E.B.); (F.S.); (G.P.)
- NMR-based Metabolomics Laboratory (NMLab), Sapienza University of Rome, 00185 Rome, Italy
| | - Luca Ferretti
- Council for Agricultural Research and Economics–Research Centre for Plant Protection and Certification, 00156 Rome, Italy; (S.B.); (A.G.); (M.L.); (A.T.); (A.M.); (A.T.); (L.F.)
| |
Collapse
|
27
|
Role of the Sw5 Gene Cluster in the Fight against Plant Viruses. J Virol 2022; 96:e0208421. [PMID: 34985996 DOI: 10.1128/jvi.02084-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Sw5 gene cluster furnishes robust resistance to Tomato spotted wilt virus in tomato, which has led to its widespread applicability in agriculture. Among the five orthologs, Sw5b functions as a resistance gene against a broad-spectrum tospovirus and is linked with tospovirus resistance. However, its paralog Sw5a has been recently implicated in providing resistance against Tomato leaf curl New Delhi virus, broadening the relevance of the Sw5 gene cluster in promoting defense against plant viruses. We propose that plants have established modifications within the homologs of R genes that permit identification of different effector proteins and provide broad and robust resistance against different pathogens through activation of the hypersensitive response and cell death.
Collapse
|
28
|
Vo TTB, Lal A, Ho PT, Troiano E, Parrella G, Kil EJ, Lee S. Different Infectivity of Mediterranean and Southern Asian Tomato Leaf Curl New Delhi Virus Isolates in Cucurbit Crops. PLANTS (BASEL, SWITZERLAND) 2022; 11:704. [PMID: 35270174 PMCID: PMC8912351 DOI: 10.3390/plants11050704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Tomato leaf curl New Delhi virus (ToLCNDV) became an alerting virus in Europe from 2017 to 2020 because of its significant damage to Cucurbitaceae cultivation. Until now, just some cucurbit crops including sponge gourd, melon, pumpkin, and cucumber were reported to be resistant to ToLCNDV, but no commercial cultivars are available. In this study, a new isolate of ToLCNDV was identified in Pakistan and analyzed together with ToLCNDV-ES which was previously isolated in Italy. Furthermore, infectious clones of two ToLCNDV isolates were constructed and agroinoculated into different cucurbit crops to verify their infectivity. Results showed that both isolates exhibited severe infection on all tested cucurbit (>70%) except watermelon. Thus, those cultivars may be good candidates in the first step of screening genetic resources for resistance on both Southeast Asian and Mediterranean ToLCNDV isolates. Additional, comparison pathogenicity of different geographical ToLCNDV isolates will be aided to understand viral characterization as such knowledge could facilitate breeding resistance to this virus.
Collapse
Affiliation(s)
- Thuy T. B. Vo
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (T.T.B.V.); (A.L.); (P.T.H.)
| | - Aamir Lal
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (T.T.B.V.); (A.L.); (P.T.H.)
| | - Phuong T. Ho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (T.T.B.V.); (A.L.); (P.T.H.)
| | - Elisa Troiano
- Institute for Sustainable Plant Protection of the National Research Council (IPSP-CNR), 80055 Portici, Italy;
| | - Giuseppe Parrella
- Institute for Sustainable Plant Protection of the National Research Council (IPSP-CNR), 80055 Portici, Italy;
| | - Eui-Joon Kil
- Department of Plant Medicals, Andong National University, Andong 36729, Korea
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (T.T.B.V.); (A.L.); (P.T.H.)
| |
Collapse
|
29
|
Asad Z, Ashfaq M, Iqbal N, Muhammad Usman Aslam H, Riaz H, Hameed A, Parvaiz F, Sadiq N, Ali Khan K, Ahmad Z. Genetic Diversity of Cucumber Green Mottle Mosaic Virus (CGMMV) Infecting Cucurbits. Saudi J Biol Sci 2022; 29:3577-3585. [PMID: 35844387 PMCID: PMC9280310 DOI: 10.1016/j.sjbs.2022.02.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 11/25/2022] Open
Abstract
Cucumber green mottle mosaic virus (CGMMV), a well-known Tobamovirus, infects cucurbits across the globe. To determine its current status, molecular characterization, genetic recombination, gene flow and selection pressure, 10 districts from Punjab province of Pakistan were surveyed and a total of 2561 cucurbits samples were collected during 2019–2020. These samples were subjected to virus-specific double antibody sandwich-enzyme linked immunosorbent assay (DAS-ELISA) for the detection of CGMMV. The results revealed that viral disease was prevalent in all surveyed districts of Punjab with an overall 25.69% disease incidence. ELISA positive samples were further confirmed through RT-PCR and sequencing of coat protein (CP) cistron. Sequence analysis showed that the present studied CGMMV isolates have 96–99.5% nucleotide and 94.40–99.50% amino acid identities with those already available in GenBank. Phylogenetic analysis also revealed that understudied isolates were closely related with South Korean (AB369274) and Japanese (V01551) isolates and clustered in a separate clad. Sequence polymorphisms were observed in 663 bp of sequence within 31 CGMMV isolates covering complete CP gene. Total number of sites were 662, of which 610 and 52 sites were monomorphic and polymorphic (segregating), respectively. Of these polymorphic, 24 were singleton variable and 28 were parsimony informative. Overall nucleotide diversity (π) in all the understudied 31 isolates was 0.00010 while a total of 1 InDel event was observed and InDel Diversity (k) was 0.065. Haplotype diversity analysis revealed that there was a total 29 haplotypes with haplotype diversity (Hd) of 0.993458 in all the 31 isolates which provide evidence of less diversity among Pakistani isolates. The statistical analysis revealed the values 2.568, 5.31304 and 4.86698 of Tajima's D, Fu, & Li’s F* and D*, respectively, which witnessed the population of CGMMV was under balanced selection pressure.
Collapse
|
30
|
Janssen D, Simón A, Boulares M, Ruiz L. Host Species-Dependent Transmission of Tomato Leaf Curl New Delhi Virus-ES by Bemisia tabaci. PLANTS (BASEL, SWITZERLAND) 2022; 11:390. [PMID: 35161372 PMCID: PMC8837991 DOI: 10.3390/plants11030390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
The tomato leaf curl New Delhi virus (ToLCNDV) is a bipartite, single-stranded begomovirus that was first identified in India in 1995 affecting solanaceous crops. A different strain, named ToLCNDV-ES, was introduced in Spain in 2012 and causes severe symptoms in zucchini crops. Virus transmission experiments with the whitefly Bemisia tabaci, were used to compare the transmission parameters in zucchini and tomato plants. The minimum acquisition access period and inoculation access period of ToLCNDV-ES transmission was similar in zucchini and tomato. However, the transmission efficiency was significantly higher in zucchini (96%) compared to tomato (2%). The maximum retention of the virus in the vector was 16 days. B. tabaci feeding on, or recently emerged from infected zucchini plants, accumulated more virus than those from infected tomato, as determined by real-time PCR. A total of 20% of B. tabaci that were recently emerged from infected zucchini, and none from infected tomato, were able to transmit the virus to virus-free zucchini. The results may explain the different incidences of ToLCNDV-ES in zucchini and tomato crops in Spain. But they are also relevant for ToLCNDV-ES management of crops and the role of the trade and transport of infected plant material, when small-sized immature stages of B. tabaci could be a source of infection.
Collapse
|
31
|
Rodríguez-Verástegui LL, Ramírez-Zavaleta CY, Capilla-Hernández MF, Gregorio-Jorge J. Viruses Infecting Trees and Herbs That Produce Edible Fleshy Fruits with a Prominent Value in the Global Market: An Evolutionary Perspective. PLANTS (BASEL, SWITZERLAND) 2022; 11:203. [PMID: 35050091 PMCID: PMC8778216 DOI: 10.3390/plants11020203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 05/12/2023]
Abstract
Trees and herbs that produce fruits represent the most valuable agricultural food commodities in the world. However, the yield of these crops is not fully achieved due to biotic factors such as bacteria, fungi, and viruses. Viruses are capable of causing alterations in plant growth and development, thereby impacting the yield of their hosts significantly. In this work, we first compiled the world's most comprehensive list of known edible fruits that fits our definition. Then, plant viruses infecting those trees and herbs that produce fruits with commercial importance in the global market were identified. The identified plant viruses belong to 30 families, most of them containing single-stranded RNA genomes. Importantly, we show the overall picture of the host range for some virus families following an evolutionary approach. Further, the current knowledge about plant-virus interactions, focusing on the main disorders they cause, as well as yield losses, is summarized. Additionally, since accurate diagnosis methods are of pivotal importance for viral diseases control, the current and emerging technologies for the detection of these plant pathogens are described. Finally, the most promising strategies employed to control viral diseases in the field are presented, focusing on solutions that are long-lasting.
Collapse
Affiliation(s)
| | - Candy Yuriria Ramírez-Zavaleta
- Cuerpo Académico Procesos Biotecnológicos, Universidad Politécnica de Tlaxcala, Av. Universidad Politécnica 1, San Pedro Xalcaltzinco 90180, Mexico; (C.Y.R.-Z.); (M.F.C.-H.)
| | - María Fernanda Capilla-Hernández
- Cuerpo Académico Procesos Biotecnológicos, Universidad Politécnica de Tlaxcala, Av. Universidad Politécnica 1, San Pedro Xalcaltzinco 90180, Mexico; (C.Y.R.-Z.); (M.F.C.-H.)
| | - Josefat Gregorio-Jorge
- Consejo Nacional de Ciencia y Tecnología, Universidad Politécnica de Tlaxcala, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Ciudad de Mexico 03940, Mexico
| |
Collapse
|
32
|
Prasad A, Sharma N, Chirom O, Prasad M. The sly-miR166-SlyHB module acts as a susceptibility factor during ToLCNDV infection. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:233-242. [PMID: 34636959 DOI: 10.1007/s00122-021-03962-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
The role of miRNAs during viral pathogenesis is poorly understood in plants. Here, we demonstrate a miRNA/target module that acts as a susceptibility factor during ToLCNDV infection. Tomato leaf curl New Delhi virus (ToLCNDV) is a devastating pathogen that causes huge crop loss. It is spreading to new geographical locations at a very rapid rate-raising serious concerns. Evolution of insecticidal resistance in Bemisia tabaci which acts as the carrier for ToLCNDV has made insect control very difficult in the recent years. Thus, it is important that the host molecular mechanisms associated with ToLCNDV resistance/susceptibility are investigated to develop management strategies. In our study, we have identified that sly-miR166/SlyHB module acts as a susceptibility factor to ToLCNDV in Solanum lycopersicum. Sly-miR166 is differentially regulated upon ToLCNDV infection in two contrasting tomato cultivars; H-88-78-1 (tolerant to ToLCNDV) and Punjab Chhuhara (susceptible to ToLCNDV). Expression analysis of predicted sly-miR166 targets revealed that the expression of SlyHB is negatively correlated with its corresponding miRNA. Virus-induced gene silencing of SlyHB in the susceptible tomato cultivar resulted in the decrease in disease severity suggesting that SlyHB is a negative regulator of plant defence. In summary, our study highlights a miRNA/target module that acts as a susceptibility factor during ToLCNDV infection. To the best of our knowledge, this is the first report that highlights the role of sly-miR166/SlyHB module in ToLCNDV pathogenesis.
Collapse
Affiliation(s)
- Ashish Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Namisha Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Oceania Chirom
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
- Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India.
| |
Collapse
|
33
|
Chen YJ, Lai HC, Lin CC, Neoh ZY, Tsai WS. Genetic Diversity, Pathogenicity and Pseudorecombination of Cucurbit-Infecting Begomoviruses in Malaysia. PLANTS (BASEL, SWITZERLAND) 2021; 10:2396. [PMID: 34834759 PMCID: PMC8624487 DOI: 10.3390/plants10112396] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022]
Abstract
Cucurbits are important crops in the world. However, leaf curl disease constrains their production. Here, begomovirus diversity and pathogenicity associated with the disease in Malaysia were studied based on 49 begomovirus-detected out of 69 symptomatic plants from seven cucurbit crops in 15 locations during 2016 and 2017. The presence of Squash leaf curl China virus (SLCCNV) and Tomato leaf curl New Delhi virus (ToLCNDV) were confirmed by virus detection by polymerase chain reaction, viral DNA sequence analysis and specific detection of the viral components. ToLCNDV Malaysian isolates were further distinguished into strains A, B, C and D. Virus co-infection was detected in bitter gourd, bottle gourd and squash. Among them, eight bitter gourd samples were detected without SLCCNV DNA-A. However, one bottle gourd and five squash samples were without ToLCNDV DNA-B. Pseudorecombination of ToLCNDV DNA-A and SLCCNV DNA-B was detected in two bitter gourd samples. The pathogenic viruses and pseudorecombinants were confirmed by agroinoculation. The viral DNA-B influencing on symptomology and host range was also confirmed. The results strengthen the epidemic of cucurbit-infecting begomovirus in Malaysia as well as Southeast Asia. Especially, the natural pseudorecombinant of begomovirus that extends host range and causes severe symptom implies a threat to crops.
Collapse
Affiliation(s)
- Yu-Jeng Chen
- Department of Plant Medicine, National Chiayi University, Chiayi City 600355, Taiwan; (Y.-J.C.); (H.-C.L.); (Z.Y.N.)
| | - Hsuan-Chun Lai
- Department of Plant Medicine, National Chiayi University, Chiayi City 600355, Taiwan; (Y.-J.C.); (H.-C.L.); (Z.Y.N.)
| | | | - Zhuan Yi Neoh
- Department of Plant Medicine, National Chiayi University, Chiayi City 600355, Taiwan; (Y.-J.C.); (H.-C.L.); (Z.Y.N.)
| | - Wen-Shi Tsai
- Department of Plant Medicine, National Chiayi University, Chiayi City 600355, Taiwan; (Y.-J.C.); (H.-C.L.); (Z.Y.N.)
| |
Collapse
|
34
|
The Sw5a gene confers resistance to ToLCNDV and triggers an HR response after direct AC4 effector recognition. Proc Natl Acad Sci U S A 2021; 118:2101833118. [PMID: 34385303 DOI: 10.1073/pnas.2101833118] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Several attempts have been made to identify antiviral genes against Tomato leaf curl New Delhi virus (ToLCNDV) and related viruses. This has led to the recognition of Ty genes (Ty1-Ty6), which have been successful in developing virus-resistant crops to some extent. Owing to the regular appearance of resistance-breaking strains of these viruses, it is important to identify genes related to resistance. In the present study, we identified a ToLCNDV resistance (R) gene, SlSw5a, in a ToLCNDV-resistant tomato cultivar, H-88-78-1, which lacks the known Ty genes. The expression of SlSw5a is controlled by the transcription factor SlMyb33, which in turn is regulated by microRNA159 (sly-miR159). Virus-induced gene silencing of either SlSw5a or SlMyb33 severely increases the disease symptoms and viral titer in leaves of resistant cultivar. Moreover, in SlMyb33-silenced plants, the relative messenger RNA level of SlSw5a was reduced, suggesting SlSw5a is downstream of the sly-miR159-SlMyb33 module. We also demonstrate that SlSw5a interacts physically with ToLCNDV-AC4 (viral suppressor of RNA silencing) to trigger a hypersensitive response (HR) and generate reactive oxygen species at infection sites to limit the spread of the virus. The "RTSK" motif in the AC4 C terminus is important for the interaction, and its mutation completely abolishes the interaction with Sw5a and HR elicitation. Overall, our research reports an R gene against ToLCNDV and establishes a connection between the upstream miR159-Myb33 module and its downstream target Sw5a to activate HR in the tomato, resulting in geminivirus resistance.
Collapse
|
35
|
Rivarez MPS, Vučurović A, Mehle N, Ravnikar M, Kutnjak D. Global Advances in Tomato Virome Research: Current Status and the Impact of High-Throughput Sequencing. Front Microbiol 2021; 12:671925. [PMID: 34093492 PMCID: PMC8175903 DOI: 10.3389/fmicb.2021.671925] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/12/2021] [Indexed: 11/30/2022] Open
Abstract
Viruses cause a big fraction of economically important diseases in major crops, including tomato. In the past decade (2011–2020), many emerging or re-emerging tomato-infecting viruses were reported worldwide. In this period, 45 novel viral species were identified in tomato, 14 of which were discovered using high-throughput sequencing (HTS). In this review, we first discuss the role of HTS in these discoveries and its general impact on tomato virome research. We observed that the rate of tomato virus discovery is accelerating in the past few years due to the use of HTS. However, the extent of the post-discovery characterization of viruses is lagging behind and is greater for economically devastating viruses, such as the recently emerged tomato brown rugose fruit virus. Moreover, many known viruses still cause significant economic damages to tomato production. The review of databases and literature revealed at least 312 virus, satellite virus, or viroid species (in 22 families and 39 genera) associated with tomato, which is likely the highest number recorded for any plant. Among those, here, we summarize the current knowledge on the biology, global distribution, and epidemiology of the most important species. Increasing knowledge on tomato virome and employment of HTS to also study viromes of surrounding wild plants and environmental samples are bringing new insights into the understanding of epidemiology and ecology of tomato-infecting viruses and can, in the future, facilitate virus disease forecasting and prevention of virus disease outbreaks in tomato.
Collapse
Affiliation(s)
- Mark Paul Selda Rivarez
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia.,Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Ana Vučurović
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia.,Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Nataša Mehle
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Maja Ravnikar
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia.,School for Viticulture and Enology, University of Nova Gorica, Nova Gorica, Slovenia
| | - Denis Kutnjak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
36
|
Prasad A, Hari-Gowthem G, Muthamilarasan M, Hussain Z, Yadav PK, Tripathi S, Prasad M. Molecular characterization of SlATG18f in response to Tomato leaf curl New Delhi virus infection in tomato and development of a CAPS marker for leaf curl disease tolerance. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1463-1474. [PMID: 33554270 DOI: 10.1007/s00122-021-03783-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Analysis of autophagy-related genes in tomato shows the involvement of SlATG18f in leaf curl disease tolerance and a CAPS marker developed from this gene demonstrates its usefulness in marker-assisted selection. Autophagy is a highly conserved catabolic process regulating cellular homeostasis and adaptation to different biotic and abiotic stress. Several autophagy-related proteins (ATGs) are reported to be involved in autophagic processes, and considering their importance in regulating growth and stress adaptation, these proteins have been identified and characterized in several plant species. However, there is no information available on the role of autophagy-related proteins regulating the tolerance of tomato to tomato leaf curl disease (ToLCD). Given this, the present genome-wide study identified thirty ATG-encoding genes (SlATG) in tomato, followed by their functional characterization. Expression profiling of the SlATG genes in contrasting tomato cultivars subjected to virus infection showed a 4.5-fold upregulation of SlATG18f in the tolerant cultivar. Further, virus-induced gene silencing of SlATG18f in the tolerant cultivar conferred disease susceptibility, which suggested the role of this gene in Tomato leaf curl New Delhi virus tolerance. Comparison of the gene sequence of both tolerant and susceptible cultivars along with the 5' upstream regions identified an SNP (A/T) at -2916 upstream of the start codon. A cleaved amplified polymorphic sequence (CAPS) marker was developed targeting this region, which showed a significant association with the tolerance characteristics in the tomato germplasm (R2 = 0.1787). Altogether, the study identified a potential gene that could be used to develop ToLCNDV tolerant tomato cultivars using transgene-based or marker-assisted breeding-based approaches.
Collapse
Affiliation(s)
- Ashish Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | - Mehanathan Muthamilarasan
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Zakir Hussain
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Pawan Kumar Yadav
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Sandhya Tripathi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
37
|
Sáez C, Ambrosio LGM, Miguel SM, Valcárcel JV, Díez MJ, Picó B, López C. Resistant Sources and Genetic Control of Resistance to ToLCNDV in Cucumber. Microorganisms 2021; 9:microorganisms9050913. [PMID: 33923281 PMCID: PMC8146778 DOI: 10.3390/microorganisms9050913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 11/21/2022] Open
Abstract
Tomato leaf curl New Delhi virus (ToLCNDV) is a severe threat for cucurbit production worldwide. Resistance has been reported in several crops, but at present, there are no described accessions with resistance to ToLCNDV in cucumber (Cucumis sativus). C. sativus var. sativus accessions were mechanically inoculated with ToLCNDV and screened for resistance, by scoring symptom severity, tissue printing, and PCR (conventional and quantitative). Severe symptoms and high load of viral DNA were found in plants of a nuclear collection of Spanish landraces and in accessions of C. sativus from different geographical origins. Three Indian accessions (CGN23089, CGN23423, and CGN23633) were highly resistant to the mechanical inoculation, as well as all plants of their progenies obtained by selfing. To study the inheritance of the resistance to ToLCNDV, plants of the CGN23089 accession were crossed with the susceptible accession BGV011742, and F1 hybrids were used to construct segregating populations (F2 and backcrosses), which were mechanically inoculated and evaluated for symptom development and viral load by qPCR. The analysis of the genetic control fit with a recessive monogenic inheritance model, and after genotyping with SNPs distributed along the C. sativus genome, a QTL associated with ToLCNDV resistance was identified in chromosome 2 of cucumber.
Collapse
|
38
|
Lal MK, Tiwari RK, Kumar R, Naga KC, Kumar A, Singh B, Raigond P, Dutt S, Chourasia KN, Kumar D, Parmar V, Changan SS. Effect of potato apical leaf curl disease on glycemic index and resistant starch of potato (Solanum tuberosum L.) tubers. Food Chem 2021; 359:129939. [PMID: 33957333 DOI: 10.1016/j.foodchem.2021.129939] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 04/06/2021] [Accepted: 04/21/2021] [Indexed: 12/19/2022]
Abstract
Tomato leaf curl New Delhi virus-potato (ToLCNDV-potato) causes potato apical leaf curl disease which severely affects nutritional parameters such as carbohydrate, protein, and starch biosynthesis thereby altering glycemic index (GI) and resistant starch (RS) of potato. ToLCNDV-potato virus was inoculated on potato cultivars (Kufri Pukhraj [susceptible]; Kufri Bahar [resistant]) and various quality parameters of potato tuber were studied. There was a significant (P < 0.01) reduction in starch, amylose and resistant starch contents in the infected tubers. However, carbohydrate and amylopectin increased significantly (P < 0.01) which contributes to increased starch digestibility reflected with high GI and glycemic load values. Besides, ToLCNDV-potato infection leads to a significant increase in reducing sugar, sucrose, amino acid and protein in potato tubers. This is a first-ever study that highlights the impact of biotic stress on GI, RS and nutritional quality parameters of potato which is a matter of concern for consumers.
Collapse
Affiliation(s)
- Milan Kumar Lal
- ICAR-Central Potato Research Institute, Shimla 171001, Himachal Pradesh, India; ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Rahul Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla 171001, Himachal Pradesh, India; ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Ravinder Kumar
- ICAR-Central Potato Research Institute, Shimla 171001, Himachal Pradesh, India
| | | | - Awadhesh Kumar
- ICAR-National Rice Research Institute, Cuttack 753006, Odisha, India
| | - Brajesh Singh
- ICAR-Central Potato Research Institute, Shimla 171001, Himachal Pradesh, India
| | - Pinky Raigond
- ICAR-Central Potato Research Institute, Shimla 171001, Himachal Pradesh, India
| | - Som Dutt
- ICAR-Central Potato Research Institute, Shimla 171001, Himachal Pradesh, India
| | | | - Dharmendra Kumar
- ICAR-Central Potato Research Institute, Shimla 171001, Himachal Pradesh, India
| | - Vandana Parmar
- ICAR-Central Potato Research Institute, Shimla 171001, Himachal Pradesh, India
| | | |
Collapse
|
39
|
Sarkar M, Aggarwal S, Mukherjee SK, Mandal B, Roy A. Sub-cellular localization of suppressor proteins of tomato leaf curl New Delhi virus. Virusdisease 2021; 32:298-304. [PMID: 34350318 DOI: 10.1007/s13337-021-00651-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 11/25/2022] Open
Abstract
Tomato leaf curl New Delhi virus (ToLCNDV), a bipartite begomovirus, is the most important among the 14 species of begomoviruses infecting tomato in Indian subcontinent. Begomovirus is known to evade RNA silencing of host plants through suppressor proteins. However, in case of ToLCNDV, the suppressor proteins have not been studied well. The objective of the study is to know the sub-cellular localization of three suppressor proteins encoded by AV2, AC2 and AC4 ORFs of ToLCNDV in Nicotiana benthamiana. AV2, AC2 and AC4 ORFs of ToLCNDV were cloned and sequenced (accession numbers MW423574, MW423576, MW423575, respectively) from a ToLCNDV isolate characterized earlier (accession number MW429271) and GFP tagged constructs were prepared in a plant expressing binary vector pEarleygate103. Bioinformatics analysis using Peptide 2.0 server predicted that all these proteins have more basic amino acid residues then acidic amino acid and AV2 protein has more hydrophobic amino acid residues. ScanProsite server predicted presence of different fuctional motifs in these proteins amongst which presence of kinase motif was observed in all of them. Virus mPLoc server predicted their subcellular localization. The suppressor gene constructs were agroinfiltrated on to leaves of one month old N. benthamiana plants and their subcellular localization has been studied through confocal microscopy. Results have shown that AV2 localizes in the host cell membrane and nucleus, AC2 in the nucleus and AC4 in the host cell membrane. Earlier reports with other begomoviruses also showed similar localization behaviour of these suppressor protein except AV2, where it was shown to be present in cytoplasm. Such localization study will help understand the mechanism of their suppression activity.
Collapse
Affiliation(s)
- Mehulee Sarkar
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Shilpi Aggarwal
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Sunil Kumar Mukherjee
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Bikash Mandal
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Anirban Roy
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012 India
| |
Collapse
|
40
|
Yan Z, Wolters AMA, Navas-Castillo J, Bai Y. The Global Dimension of Tomato Yellow Leaf Curl Disease: Current Status and Breeding Perspectives. Microorganisms 2021; 9:740. [PMID: 33916319 PMCID: PMC8066563 DOI: 10.3390/microorganisms9040740] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/20/2022] Open
Abstract
Tomato yellow leaf curl disease (TYLCD) caused by tomato yellow leaf curl virus (TYLCV) and a group of related begomoviruses is an important disease which in recent years has caused serious economic problems in tomato (Solanum lycopersicum) production worldwide. Spreading of the vectors, whiteflies of the Bemisia tabaci complex, has been responsible for many TYLCD outbreaks. In this review, we summarize the current knowledge of TYLCV and TYLV-like begomoviruses and the driving forces of the increasing global significance through rapid evolution of begomovirus variants, mixed infection in the field, association with betasatellites and host range expansion. Breeding for host plant resistance is considered as one of the most promising and sustainable methods in controlling TYLCD. Resistance to TYLCD was found in several wild relatives of tomato from which six TYLCV resistance genes (Ty-1 to Ty-6) have been identified. Currently, Ty-1 and Ty-3 are the primary resistance genes widely used in tomato breeding programs. Ty-2 is also exploited commercially either alone or in combination with other Ty-genes (i.e., Ty-1, Ty-3 or ty-5). Additionally, screening of a large collection of wild tomato species has resulted in the identification of novel TYLCD resistance sources. In this review, we focus on genetic resources used to date in breeding for TYLCVD resistance. For future breeding strategies, we discuss several leads in order to make full use of the naturally occurring and engineered resistance to mount a broad-spectrum and sustainable begomovirus resistance.
Collapse
Affiliation(s)
- Zhe Yan
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands; (Z.Y.); (A.-M.A.W.)
| | - Anne-Marie A. Wolters
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands; (Z.Y.); (A.-M.A.W.)
| | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Consejo Superior de Investigaciones Científicas Universidad de Málaga (IHSM-CSIC-UMA), Avenida Dr. Weinberg s/n, 29750 Algarrobo-Costa, Málaga, Spain;
| | - Yuling Bai
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands; (Z.Y.); (A.-M.A.W.)
| |
Collapse
|
41
|
Jeevalatha A, Vanishree G, Siddappa S, Kumar R, Kaundal P, Kumar A, Chakrabarti SK. Molecular characterization and infectivity analysis of tomato leaf curl New Delhi virus isolates infecting potato. 3 Biotech 2021; 11:203. [PMID: 33927993 DOI: 10.1007/s13205-021-02752-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/19/2021] [Indexed: 01/18/2023] Open
Abstract
Nucleotide sequence of complete genome of a new isolate (KAN-6) of tomato leaf curl New Delhi virus (ToLCNDV) from Kanpur, Uttar Pradesh, India was determined. Sequence analysis indicated that it shared maximum identity to ToLCNDV isolates from pumpkin and ashgourd. Infectious clones of isolate KAN-6 along with two other ToLCNDV isolates (MOD-21 & FAI-19) obtained from potato fields of Modipuram and Faizabad, India were produced and used in symptom expression studies in N. benthamiana and potato plants through agro-inoculation. These isolates produced different symptoms both in N. benthamiana and potato. Severe symptoms of yellow mottling, downward curling and stunted growth were observed in N. benthamiana plants inoculated with KAN-6. MOD-21-inoculated plants also showed downward curling, stunted growth, but yellow mottling was observed only in older leaves whereas FAI-19-inoculated plants produced only downward curling symptoms. In case of potato, typical symptoms of apical leaf curl disease were observed in cultivar Kufri Pukhraj inoculated with MOD-21 and KAN-6 that are similar to those produced by virus-infected plants in the field. However, MOD-21 produced more prominent yellow mosaic symptoms as compared to KAN-6. FAI-19 produced only restricted yellow spots in Kufri Pukhraj. Only mild symptoms appeared in KAN-6 and no symptoms were observed in MOD-21- and FAI-19-inoculated Kufri Bahar plants which is known to show lowest seed degeneration under field conditions. Analysis of genomic components indicated that these isolates had 94.8-94.9% and 87.9-97.3% identity among them in DNA A and DNA B, respectively. The results of the study indicate the association of ToLCNDV isolates of different symptomatology with apical leaf curl disease of potato. This is also a first experimental demonstration of Koch's postulate for a begomovirus associated with apical leaf curl disease of potato.Author names: Please confirm if the author names (Swarup Kumar Chakrabarti) are presented accurately and in the correct sequence (given name, middle name/initial, family name).Yes. It is correct. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02752-5.
Collapse
|
42
|
Roques L, Desbiez C, Berthier K, Soubeyrand S, Walker E, Klein EK, Garnier J, Moury B, Papaïx J. Emerging strains of watermelon mosaic virus in Southeastern France: model-based estimation of the dates and places of introduction. Sci Rep 2021; 11:7058. [PMID: 33782446 PMCID: PMC8007712 DOI: 10.1038/s41598-021-86314-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 02/16/2021] [Indexed: 11/09/2022] Open
Abstract
Where and when alien organisms are successfully introduced are central questions to elucidate biotic and abiotic conditions favorable to the introduction, establishment and spread of invasive species. We propose a modelling framework to analyze multiple introductions by several invasive genotypes or genetic variants, in competition with a resident population, when observations provide knowledge on the relative proportions of each variant at some dates and places. This framework is based on a mechanistic-statistical model coupling a reaction–diffusion model with a probabilistic observation model. We apply it to a spatio-temporal dataset reporting the relative proportions of five genetic variants of watermelon mosaic virus (WMV, genus Potyvirus, family Potyviridae) in infections of commercial cucurbit fields. Despite the parsimonious nature of the model, it succeeds in fitting the data well and provides an estimation of the dates and places of successful introduction of each emerging variant as well as a reconstruction of the dynamics of each variant since its introduction.
Collapse
Affiliation(s)
- L Roques
- INRAE, BioSP, 84914, Avignon, France.
| | - C Desbiez
- INRAE, Pathologie Végétale, 84140, Montfavet, France
| | - K Berthier
- INRAE, Pathologie Végétale, 84140, Montfavet, France
| | | | - E Walker
- INRAE, BioSP, 84914, Avignon, France
| | - E K Klein
- INRAE, BioSP, 84914, Avignon, France
| | - J Garnier
- Laboratoire de Mathématiques (LAMA), CNRS and Université de Savoie-Mont Blanc, Chambéry, France
| | - B Moury
- INRAE, Pathologie Végétale, 84140, Montfavet, France
| | - J Papaïx
- INRAE, BioSP, 84914, Avignon, France
| |
Collapse
|
43
|
Genomic dissection of ROS detoxifying enzyme encoding genes for their role in antioxidative defense mechanism against Tomato leaf curl New Delhi virus infection in tomato. Genomics 2021; 113:889-899. [PMID: 33524498 DOI: 10.1016/j.ygeno.2021.01.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/13/2021] [Accepted: 01/27/2021] [Indexed: 01/23/2023]
Abstract
In the present study, genes encoding for six major classes of enzymatic antioxidants, namely superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), Peroxidase (Prx) and glutathione S-transferase (GST) are identified in tomato. Their expression was studied in tomato cultivars contrastingly tolerant to ToLCNDV during virus infection and different hormone treatments. Significant upregulation of SlGR3, SlPrx25, SlPrx75, SlPrx95, SlGST44, and SlGST96 was observed in the tolerant cultivar during disease infection. Virus-induced gene silencing of SlGR3 in the tolerant cultivar conferred disease susceptibility to the knock-down line, and higher accumulation (~80%) of viral DNA was observed in the tolerant cultivar. Further, subcellular localization of SlGR3 showed its presence in cytoplasm, and its enzymatic activity was found to be increased (~65%) during ToLCNDV infection. Knock-down lines showed ~3- and 3.5-fold reduction in GR activity, which altogether underlines that SlGR3 is vital component of the defense mechanism against ToLCNDV infection.
Collapse
|
44
|
Jones RAC. Global Plant Virus Disease Pandemics and Epidemics. PLANTS (BASEL, SWITZERLAND) 2021; 10:233. [PMID: 33504044 PMCID: PMC7911862 DOI: 10.3390/plants10020233] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/18/2022]
Abstract
The world's staple food crops, and other food crops that optimize human nutrition, suffer from global virus disease pandemics and epidemics that greatly diminish their yields and/or produce quality. This situation is becoming increasingly serious because of the human population's growing food requirements and increasing difficulties in managing virus diseases effectively arising from global warming. This review provides historical and recent information about virus disease pandemics and major epidemics that originated within different world regions, spread to other continents, and now have very wide distributions. Because they threaten food security, all are cause for considerable concern for humanity. The pandemic disease examples described are six (maize lethal necrosis, rice tungro, sweet potato virus, banana bunchy top, citrus tristeza, plum pox). The major epidemic disease examples described are seven (wheat yellow dwarf, wheat streak mosaic, potato tuber necrotic ringspot, faba bean necrotic yellows, pepino mosaic, tomato brown rugose fruit, and cucumber green mottle mosaic). Most examples involve long-distance virus dispersal, albeit inadvertent, by international trade in seed or planting material. With every example, the factors responsible for its development, geographical distribution and global importance are explained. Finally, an overall explanation is given of how to manage global virus disease pandemics and epidemics effectively.
Collapse
Affiliation(s)
- Roger A C Jones
- The UWA Institute of Agriculture, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
45
|
Sáez C, Flores-León A, Montero-Pau J, Sifres A, Dhillon NPS, López C, Picó B. RNA-Seq Transcriptome Analysis Provides Candidate Genes for Resistance to Tomato Leaf Curl New Delhi Virus in Melon. FRONTIERS IN PLANT SCIENCE 2021; 12:798858. [PMID: 35116050 PMCID: PMC8805612 DOI: 10.3389/fpls.2021.798858] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/29/2021] [Indexed: 05/10/2023]
Abstract
Tomato leaf curl New Delhi virus (ToLCNDV) emerged in the Mediterranean Basin in 2012 as the first DNA bipartite begomovirus (Geminiviridae family), causing severe yield and economic losses in cucurbit crops. A major resistance locus was identified in the wild melon accession WM-7 (Cucumis melo kachri group), but the mechanisms involved in the resistant response remained unknown. In this work, we used RNA-sequencing to identify disease-associated genes that are differentially expressed in the course of ToLCNDV infection and could contribute to resistance. Transcriptomes of the resistant WM-7 genotype and the susceptible cultivar Piñonet Piel de Sapo (PS) (C. melo ibericus group) in ToLCNDV and mock inoculated plants were compared at four time points during infection (0, 3, 6, and 12 days post inoculation). Different gene expression patterns were observed over time in the resistant and susceptible genotypes in comparison to their respective controls. Differentially expressed genes (DEGs) in ToLCNDV-infected plants were classified using gene ontology (GO) terms, and genes of the categories transcription, DNA replication, and helicase activity were downregulated in WM-7 but upregulated in PS, suggesting that reduced activity of these functions reduces ToLCNDV replication and intercellular spread and thereby contributes to resistance. DEGs involved in the jasmonic acid signaling pathway, photosynthesis, RNA silencing, transmembrane, and sugar transporters entail adverse consequences for systemic infection in the resistant genotype, and lead to susceptibility in PS. The expression levels of selected candidate genes were validated by qRT-PCR to corroborate their differential expression upon ToLCNDV infection in resistant and susceptible melon. Furthermore, single nucleotide polymorphism (SNPs) with an effect on structural functionality of DEGs linked to the main QTLs for ToLCNDV resistance have been identified. The obtained results pinpoint cellular functions and candidate genes that are differentially expressed in a resistant and susceptible melon line in response to ToLCNDV, an information of great relevance for breeding ToLCNDV-resistant melon cultivars.
Collapse
Affiliation(s)
- Cristina Sáez
- Institute for the Conservation and Breeding of Agricultural Biodiversity, Universitat Politècnica de València, Valencia, Spain
- *Correspondence: Cristina Sáez,
| | - Alejandro Flores-León
- Institute for the Conservation and Breeding of Agricultural Biodiversity, Universitat Politècnica de València, Valencia, Spain
| | - Javier Montero-Pau
- Cavanilles Institute of Biodiversity and Evolutionary Biology, Universitat de València, Valencia, Spain
| | - Alicia Sifres
- Institute for the Conservation and Breeding of Agricultural Biodiversity, Universitat Politècnica de València, Valencia, Spain
| | - Narinder P. S. Dhillon
- World Vegetable Center, East and Southeast Asia, Research and Training Station, Kasetsart University, Nakhon Pathom, Thailand
| | - Carmelo López
- Institute for the Conservation and Breeding of Agricultural Biodiversity, Universitat Politècnica de València, Valencia, Spain
- Carmelo López,
| | - Belén Picó
- Institute for the Conservation and Breeding of Agricultural Biodiversity, Universitat Politècnica de València, Valencia, Spain
- Belén Picó,
| |
Collapse
|
46
|
Kumar M, Bharti R, Ranjan T. The Evolutionary Significance of Generalist Viruses with Special Emphasis on Plant Viruses and their Hosts. Open Virol J 2020. [DOI: 10.2174/1874357902014010022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The host range of a virus is defined as the number of species a virus potentially infects. The specialist virus infects one or few related species while the generalist virus infects several different species, possibly in different families. Origin of generalist viruses from their specialist nature and the expansion of the host range of the generalist virus occur with the host shift event in which the virus encounters and adapts to a new host. Host shift events have resulted in the majority of the newly emerging viral diseases. This review discusses the advantages and disadvantages of generalist over specialist viruses and the unique features of plant viruses and their hosts that result in a higher incidence of generalist viruses in plants.
Collapse
|
47
|
Disease Pandemics and Major Epidemics Arising from New Encounters between Indigenous Viruses and Introduced Crops. Viruses 2020; 12:v12121388. [PMID: 33291635 PMCID: PMC7761969 DOI: 10.3390/v12121388] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 01/13/2023] Open
Abstract
Virus disease pandemics and epidemics that occur in the world’s staple food crops pose a major threat to global food security, especially in developing countries with tropical or subtropical climates. Moreover, this threat is escalating rapidly due to increasing difficulties in controlling virus diseases as climate change accelerates and the need to feed the burgeoning global population escalates. One of the main causes of these pandemics and epidemics is the introduction to a new continent of food crops domesticated elsewhere, and their subsequent invasion by damaging virus diseases they never encountered before. This review focusses on providing historical and up-to-date information about pandemics and major epidemics initiated by spillover of indigenous viruses from infected alternative hosts into introduced crops. This spillover requires new encounters at the managed and natural vegetation interface. The principal virus disease pandemic examples described are two (cassava mosaic, cassava brown streak) that threaten food security in sub-Saharan Africa (SSA), and one (tomato yellow leaf curl) doing so globally. A further example describes a virus disease pandemic threatening a major plantation crop producing a vital food export for West Africa (cacao swollen shoot). Also described are two examples of major virus disease epidemics that threaten SSA’s food security (rice yellow mottle, groundnut rosette). In addition, brief accounts are provided of two major maize virus disease epidemics (maize streak in SSA, maize rough dwarf in Mediterranean and Middle Eastern regions), a major rice disease epidemic (rice hoja blanca in the Americas), and damaging tomato tospovirus and begomovirus disease epidemics of tomato that impair food security in different world regions. For each pandemic or major epidemic, the factors involved in driving its initial emergence, and its subsequent increase in importance and geographical distribution, are explained. Finally, clarification is provided over what needs to be done globally to achieve effective management of severe virus disease pandemics and epidemics initiated by spillover events.
Collapse
|
48
|
Sharma N, Prasad M. Silencing AC1 of Tomato leaf curl virus using artificial microRNA confers resistance to leaf curl disease in transgenic tomato. PLANT CELL REPORTS 2020; 39:1565-1579. [PMID: 32860518 DOI: 10.1007/s00299-020-02584-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 08/20/2020] [Indexed: 05/25/2023]
Abstract
Expression of artificial microRNA targeting ATP binding domain of AC1 in transgenic tomato confers resistance to Tomato leaf curl disease without impacting the yield of tomato. Tomato curl leaf disease caused by Tomato leaf curl virus (ToLCV) is a key constraint to tomato cultivation worldwide. Engineering transgenic plants expressing artificial microRNAs (amiRNAs) against the AC1 gene of Tomato leaf curl New Delhi virus (ToLCNDV), which is important for virus replication and pathogenicity, would consequently confer virus resistance and reduce crop loss in the economically important crops. This study relates to an amiRNA developed on the sequence of Arabidopsis miRNA319a, targeting the ATP/GTP binding domain of AC1 gene of ToLCNDV. The AC1-amiR was found to regulate the abundance of AC1, providing an excellent strategy in providing defense against ToLCNDV. Transgenic lines over-expressing AC1-amiR, when challenged with ToLCNDV, showed reduced disease symptoms and high percentage resistance ranging between ∼ 40 and 80%. The yield of transgenic plants was significantly higher upon ToLCNDV infection as compared to the non-transgenic plants. Although the natural resistance resources against ToLCNDV are not available, this work streamlines a novel amiRNA-based mechanism that may have the potential to develop viral resistance strategies in tomato, apart from its normal symptom development properties as it is targeting the conserved region against which higher accumulation of small interfering RNAs (siRNA) occurred in a naturally tolerant tomato cultivar.
Collapse
Affiliation(s)
- Namisha Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
49
|
Bragard C, Dehnen‐Schmutz K, Di Serio F, Gonthier P, Jacques M, Jaques Miret JA, Justesen AF, MacLeod A, Magnusson CS, Milonas P, Navas‐Cortes JA, Parnell S, Reignault PL, Thulke H, Van der Werf W, Civera AV, Yuen J, Zappalà L, Chatzivassiliou E, Debode J, Manceau C, Gardi C, Mosbach‐Schulz O, Potting R. Commodity risk assessment of Jasminum polyanthum plants from Israel. EFSA J 2020; 18:e06225. [PMID: 32793314 PMCID: PMC7421533 DOI: 10.2903/j.efsa.2020.6225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The European Commission requested the EFSA Panel on Plant Health to prepare and deliver risk assessments for commodities listed in Commission Implementing Regulation EU/2018/2019 as 'High risk plants, plant products and other objects'. This Scientific Opinion covers all plant health risks posed by unrooted cuttings of Jasminum polyanthum produced in a protected environment (greenhouse) that are imported from Israel, taking into account the available scientific information, including the technical information provided by the NPPO of Israel by 15 March 2020. The relevance of an EU quarantine pest for this opinion was based on evidence that: (i) the pest is present in Israel; (ii) Jasminum is a host of the pest; and (iii) the pest can be associated with the commodity. The relevance of any other pest, not regulated in the EU, was based on evidence that: (i) the pest is present in Israel; (ii) the pest is absent in the EU; (iii) Jasminum is a host of the pest; (iv) the pest can be associated with the commodity and (v) the pest may have an impact and can pose a potential risk for the EU territory. Six species, the EU-quarantine pest Scirtothrips dorsalis, and the EU non-regulated pests Aonidiella orientalis, Milviscutulus mangiferae, Paracoccus marginatus, Pulvinaria psidii and Colletotrichum siamense fulfilled all relevant criteria and were selected for further evaluation. For these pests, the risk mitigation measures proposed in the technical dossier from Israel were evaluated taking into account the possible limiting factors. For these pests, an expert judgement is given on the likelihood of pest freedom taking into consideration the risk mitigation measures acting on the pest, including uncertainties associated with the assessment. The estimated degree of pest freedom varies among the pests evaluated, with S. dorsalis being the pest most frequently expected on the imported plants. The Expert Knowledge Elicitation indicated, with 95% certainty, that between 9,958 and 10,000 bags per 10,000 would be free of S. dorsalis.
Collapse
|
50
|
Bragard C, Dehnen-Schmutz K, Di Serio F, Gonthier P, Jacques MA, Jaques Miret JA, Justesen AF, MacLeod A, Magnusson CS, Milonas P, Navas-Cortes JA, Parnell S, Potting R, Reignault PL, Thulke HH, Van der Werf W, Vicent Civera A, Yuen J, Zappalà L, Candresse T, Chatzivassiliou E, Winter S, Bottex B. Pest categorisation of tomato leaf curl New Delhi virus. EFSA J 2020; 18:e06179. [PMID: 32665794 PMCID: PMC7339215 DOI: 10.2903/j.efsa.2020.6179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Following a request from the European Commission, the Panel on Plant Health performed a pest categorisation on tomato leaf curl New Delhi virus (ToLCNDV). ToLCNDV is a well-defined bipartite Begomovirus species, sometimes associated with satellite molecules. It is transmitted by Bemisia tabaci to a wide range of hosts. ToLCNDV is reported from Estonia, Greece, Italy, Portugal and Spain, with limited distribution. The prevalent strain (ToLCNDV-ES) in these countries is particularly adapted to cucurbits and is different from isolates reported outside the EU, which are better adapted to solanaceous crops and could therefore pose additional risk for EU agriculture. The virus is regulated under Commission Implementing Regulation (EU) 2019/2072. The main pathway of entry identified is plants for planting of susceptible hosts, even if entry could also occur via commodities carrying viruliferous B. tabaci and possibly by seeds. While establishment and local spread rely on B. tabaci, the virus can also be dispersed over long distances by movement of infected plants for planting. Establishment and spread are limited to regions with ecoclimatic conditions suitable for the establishment of vector populations (southern regions of Europe) or can occur as outbreaks wherever crops are grown under protected cultivation. The main uncertainties associated with this pest categorisation are the distribution and prevalence of ToLCNDV in the EU, the magnitude of the virus impact particularly on hosts different from Cucurbitaceae, and seed transmission. ToLCNDV meets all the criteria evaluated by EFSA to qualify as potential Union Quarantine Pest (QP); conversely, ToLCNDV does not meet the criterion of being widespread in the EU to qualify as a Regulated Non-Quarantine Pest (RNQP). Should new data show that ToLCNDV is widespread in the EU, the possibility would exist for non-EU isolates to qualify as QP, while ToLCNDV EU isolates (ToLCNDV-ES) could qualify as RNQP.
Collapse
|