1
|
Kim MI, Lee C. Identification of virus-rich intermediate cells as crucial players in SARS-CoV-2 infection and differentiation dynamics of human airway epithelium. Front Microbiol 2024; 15:1507852. [PMID: 39735182 PMCID: PMC11681626 DOI: 10.3389/fmicb.2024.1507852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/19/2024] [Indexed: 12/31/2024] Open
Abstract
Understanding the early interactions between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and human airway epithelial cells is essential for unraveling viral replication and spread mechanisms. In this study, we investigated the early dynamics of airway epithelial cells during SARS-CoV-2 infection using well-differentiated human nasal and tracheal epithelial cell cultures by incorporating three publicly available single-cell RNA sequencing datasets. We identified a previously uncharacterized cell population, termed virus-rich intermediate (VRI) cells, representing an intermediate differentiation stage between basal and ciliated cells. These VRI cells exhibited high viral loads at all infection time points, strong interferon and inflammatory responses, increased mRNA expression of microvilli-related genes (PAK1, PAK4, VIL1), and suppression of apoptosis markers (BAX, CASP3) alongside increased anti-apoptotic gene expression (BCL2). Cell-cell interaction analysis revealed that VRI cells send signals to basal cells via receptor-ligand pathways such as EPHA and VEGF, likely promoting basal cell differentiation and proliferation through MAPK signaling. These findings suggest that SARS-CoV-2 utilizes VRI cells as a primary site for replication and spread, leveraging these cells' unique differentiation state to evade host cell death and facilitate viral propagation. This study provides insights into the early cellular responses to SARS-CoV-2 infection and highlights potential therapeutic targets to limit viral spread.
Collapse
Affiliation(s)
| | - Choongho Lee
- College of Pharmacy, Dongguk University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Kudryashov DA, Nefedeva MV, Malogolovkin AS, Titov IA. Multigenic family 110 (1 L-5-6 L) of African swine fever virus modulate cytokine genes expression in vitro. Mol Biol Rep 2024; 51:948. [PMID: 39222287 DOI: 10.1007/s11033-024-09884-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND African swine fever (ASF) is a viral disease that affects pigs and wild boars providing economic burden in swine industry. METHODS AND RESULTS In this study, we investigated the effect of deleting the ASFV multigene family 110 (MGF110) fragment (1 L-5-6 L) on apoptosis modulation and the expression of proinflammatory cytokines. Gene expression in swine peripheral blood macrophages infected with either the parental "Volgograd/14c" strain or the gene-deleted "Volgograd/D(1L-5-6L) MGF110" strain was analyzed. Caspase-3 activity was 1.15 times higher in macrophages infected with the parental ASFV strain compared to the gene-deleted strain. Gene expression analysis of Caspase-3 (Cas-3), Interferon-A (IFN-A), Tumor Necrosis Factor A (TNF-A), B-cell Lymphoma-2 (Bcl-2), Nuclear Factor Kappa B (NF-kB), Interleukin-12 (IL-12), and Heat Shock Protein-70 (HSP-70) using RT-qPCR at various time points after infection revealed significant differences in expression profiles between the strains. The peak expression of cytokines (except NF-kB) occurred at 24 h post-infection with the "Volgograd/D(1L-5-6L) MGF110" strain. In samples infected with the ASFV "Volgograd/14c" strain, the most intense expression was observed at 72 and 96 h, except for Bcl-2 and NF-kB, which peaked at 6 h post-infection. The cytokine expression trend for the "Volgograd/D(1L-5-6L) MGF110" strain was more stable with higher expression values. CONCLUSION The expression trend for the parental strain increased over time, reaching maximum values at 72 and 96 h post-infection, but the overall expression level was lower than that of the gene-deleted strain. These findings suggest that deleting the multigene family 110 members (1 L-5-6 L) contributes to ASFV attenuation without affecting virus replication kinetics.
Collapse
Affiliation(s)
- Dmitriy A Kudryashov
- Federal Research Center for Virology and Microbiology, 601125, Volginsky, Russia
| | - Maria V Nefedeva
- Federal Research Center for Virology and Microbiology, 601125, Volginsky, Russia
| | - Alexander S Malogolovkin
- Sirius University of Science and Technology, 354340, Sochi, Russia
- Sechenov First Moscow State Medical University, 119048, Moscow, Russia
| | - Ilya A Titov
- Federal Research Center for Virology and Microbiology, 601125, Volginsky, Russia.
| |
Collapse
|
3
|
Parnian R, Heydarifard F, Mousavi FS, Heydarifard Z, Zandi M. Innate Immune Response to Monkeypox Virus Infection: Mechanisms and Immune Escape. J Innate Immun 2024; 16:413-424. [PMID: 39137733 PMCID: PMC11521483 DOI: 10.1159/000540815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND The reemergence of monkeypox virus (Mpox, formerly monkeypox) in 2022 in non-endemic countries has raised significant concerns for global health due to its high transmissibility and mortality rate. A major challenge in combating Mpox is its ability to evade the host's innate immune system, the first line of defense against viral infections. SUMMARY Mpox encodes various proteins that interfere with key antiviral pathways and mechanisms, such as the nuclear factor kappa B signaling, cytokine production, complement and inflammasome activation, and chemokine binding. These proteins modulate the expression and function of innate immune mediators, such as interferons, interleukins, and Toll-like receptors, and impair the recruitment and activation of innate immune cells, such as natural killer cells. By suppressing or altering these innate immune responses, Mpox enhances its replication and infection in the host tissues and organs, leading to systemic inflammation, tissue damage, and organ failure. KEY MESSAGES This study reveals new insights into the molecular and cellular interactions between Mpox and the host's innate immune system. It identifies potential targets and strategies for antiviral interventions, highlighting the importance of understanding these interactions to develop effective treatments and improve global health responses to Mpox outbreaks.
Collapse
Affiliation(s)
- Reza Parnian
- Department of Virology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Fatemeh Heydarifard
- Department of Veterinary, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Fatemeh Sadat Mousavi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Zahra Heydarifard
- Department of Virology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Milad Zandi
- Department of Microbiology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
4
|
Cooper KN, Potempa J, Bagaitkar J. Dying for a cause: The pathogenic manipulation of cell death and efferocytic pathways. Mol Oral Microbiol 2024; 39:165-179. [PMID: 37786286 PMCID: PMC10985052 DOI: 10.1111/omi.12436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/21/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
Cell death is a natural consequence of infection. However, although the induction of cell death was solely thought to benefit the pathogen, compelling data now show that the activation of cell death pathways serves as a nuanced antimicrobial strategy that couples pathogen elimination with the generation of inflammatory cytokines and the priming of innate and adaptive cellular immunity. Following cell death, the phagocytic uptake of the infected dead cell by antigen-presenting cells and the subsequent lysosomal fusion of the apoptotic body containing the pathogen serve as an important antimicrobial mechanism that furthers the development of downstream adaptive immune responses. Despite the complexity of regulated cell death pathways, pathogens are highly adept at evading them. Here, we provide an overview of the remarkable diversity of cell death and efferocytic pathways and discuss illustrative examples of virulence strategies employed by pathogens, including oral pathogens, to counter their activation and persist within the host.
Collapse
Affiliation(s)
- Kelley N Cooper
- Department of Immunology and Microbiology, University of Louisville, Louisville, KY
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY
| | - Jan Potempa
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Juhi Bagaitkar
- Center for Microbial Pathogenesis, Nationwide Children’s Hospital, Columbus, OH
- Department of Pediatrics, The Ohio State College of Medicine, Columbus, OH
| |
Collapse
|
5
|
Tang M, Zhang Z, Wang P, Zhao F, Miao L, Wang Y, Li Y, Li Y, Gao Z. Advancements in precision nanomedicine design targeting the anoikis-platelet interface of circulating tumor cells. Acta Pharm Sin B 2024; 14:3457-3475. [PMID: 39220884 PMCID: PMC11365446 DOI: 10.1016/j.apsb.2024.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/10/2024] [Accepted: 03/13/2024] [Indexed: 09/04/2024] Open
Abstract
Tumor metastasis, the apex of cancer progression, poses a formidable challenge in therapeutic endeavors. Circulating tumor cells (CTCs), resilient entities originating from primary tumors or their metastases, significantly contribute to this process by demonstrating remarkable adaptability. They survive shear stress, resist anoikis, evade immune surveillance, and thwart chemotherapy. This comprehensive review aims to elucidate the intricate landscape of CTC formation, metastatic mechanisms, and the myriad factors influencing their behavior. Integral signaling pathways, such as integrin-related signaling, cellular autophagy, epithelial-mesenchymal transition, and interactions with platelets, are examined in detail. Furthermore, we explore the realm of precision nanomedicine design, with a specific emphasis on the anoikis‒platelet interface. This innovative approach strategically targets CTC survival mechanisms, offering promising avenues for combatting metastatic cancer with unprecedented precision and efficacy. The review underscores the indispensable role of the rational design of platelet-based nanomedicine in the pursuit of restraining CTC-driven metastasis.
Collapse
Affiliation(s)
- Manqing Tang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhijie Zhang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ping Wang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Feng Zhao
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Miao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuming Wang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yingpeng Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yunfei Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
6
|
Akbar H, Jarosinski KW. Temporal Dynamics of Purinergic Receptor Expression in the Lungs of Marek's Disease (MD) Virus-Infected Chickens Resistant or Susceptible to MD. Viruses 2024; 16:1130. [PMID: 39066292 PMCID: PMC11281646 DOI: 10.3390/v16071130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Marek's disease virus (MDV) is an economic concern for the poultry industry due to its poorly understood pathophysiology. Purinergic receptors (PRs) are potential therapeutic targets for viral infections, including herpesviruses, prompting our investigation into their role in MDV pathogenesis. The current study is part of an experimental series analyzing the expression of PRs during MDV infection. To address the early or short-acting P2 PR responses during natural MDV infection, we performed an "exposure" experiment where age-matched chickens were exposed to experimentally infected shedders to initiate natural infection. In addition, select non-PR regulatory gene responses were measured. Two groups of naïve contact chickens (n = 5/breed/time point) from MD-resistant (White Leghorns: WL) and -susceptible (Pure Columbian) chicken lines were housed separately with experimentally infected PC (×PC) and WL (×WL) chickens for 6 or 24 h. Whole lung lavage cells (WLLC) were collected, RNA was extracted, and RT-qPCR assays were used to measure specific PR responses. In addition, other potentially important markers in pathophysiology were measured. Our study revealed that WL chickens exhibited higher P1 PR expression during natural infection. WL chickens also showed higher expression of P1A3 and P2X3 at 6 and 24 h when exposed to PC-infected chickens. P2X5 and P2Y1 showed higher expression at 6 h, while P2Y5 showed higher expression at 6 and 24 h; regardless of the chicken line, PC chickens exhibited higher expression of P2X2, P2Y8, P2Y10, P2Y13, and P2Y14 when exposed to either group of infected chickens. In addition, MDV infection altered the expression of DDX5 in both WL and PC groups exposed to PC-infected birds only. However, irrespective of the source of exposure, BCL2 and ANGPTL4 showed higher expression in both WL and PC. The expression of STAT1A and STAT5A was influenced by time and breed, with major changes observed in STAT5A. CAT and SOD1 expression significantly increased in both WL and PC birds, regardless of the source of infection. GPX1 and GPX2 expression also increased in both WL and PC, although overall lower expression was observed in PC chickens at 24 h compared to 6 h. Our data suggest systemic changes in the host during early infection, indicated by the altered expression of PRs, DDX5, BCL2, ANGPTL4, and other regulatory genes during early MDV infection. The relative expression of these responses in PC and WL chickens suggests they may play a key role in their response to natural MDV infection in the lungs and long-term pathogenesis and survival.
Collapse
Affiliation(s)
| | - Keith W. Jarosinski
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA;
| |
Collapse
|
7
|
Suraweera CD, Espinoza B, Hinds MG, Kvansakul M. Mastering Death: The Roles of Viral Bcl-2 in dsDNA Viruses. Viruses 2024; 16:879. [PMID: 38932171 PMCID: PMC11209288 DOI: 10.3390/v16060879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Proteins of the Bcl-2 family regulate cellular fate via multiple mechanisms including apoptosis, autophagy, senescence, metabolism, inflammation, redox homeostasis, and calcium flux. There are several regulated cell death (RCD) pathways, including apoptosis and autophagy, that use distinct molecular mechanisms to elicit the death response. However, the same proteins/genes may be deployed in multiple biochemical pathways. In apoptosis, Bcl-2 proteins control the integrity of the mitochondrial outer membrane (MOM) by regulating the formation of pores in the MOM and apoptotic cell death. A number of prosurvival genes populate the genomes of viruses including those of the pro-survival Bcl-2 family. Viral Bcl-2 proteins are sequence and structural homologs of their cellular counterparts and interact with cellular proteins in apoptotic and autophagic pathways, potentially allowing them to modulate these pathways and determine cellular fate.
Collapse
Affiliation(s)
- Chathura D. Suraweera
- Genome Sciences and Cancer Division, The John Curtin School of Medical Research, Australian National University, Canberra 2601, Australia;
| | - Benjamin Espinoza
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Mark G. Hinds
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Marc Kvansakul
- Genome Sciences and Cancer Division, The John Curtin School of Medical Research, Australian National University, Canberra 2601, Australia;
| |
Collapse
|
8
|
Tang-Siegel GG, Maughan DW, Frownfelter MB, Light AR. Mitochondrial DNA Missense Mutations ChrMT: 8981A > G and ChrMT: 6268C > T Identified in a Caucasian Female with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Triggered by the Epstein-Barr Virus. Case Rep Genet 2024; 2024:6475425. [PMID: 38756740 PMCID: PMC11098598 DOI: 10.1155/2024/6475425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/18/2024] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a multisystem disabling disease with unclear etiology and pathophysiology, whose typical symptoms include prolonged debilitating recovery from fatigue or postexertional malaise (PEM). Disrupted production of adenosine triphosphate (ATP), the intracellular energy that fuels cellular activity, is a cause for fatigue. Here, we present a long-term case of ME/CFS: a 75-year-old Caucasian female patient, whose symptoms of ME/CFS were clearly triggered by an acute infection of the Epstein-Barr virus 24 years ago (mononucleosis). Before then, the patient was a healthy professional woman. A recent DNA sequence analysis identified missense variants of mitochondrial respiratory chain enzymes, including ATP6 (ChrMT: 8981A > G; Q152R) and Cox1 (ChrMT: 6268C > T; A122V). Protein subunits ATP6 and Cox1 are encoded by mitochondrial DNA outside of the nucleus: the Cox1 gene encodes subunit 1 of complex IV (CIV: cytochrome c oxidase) and the ATP6 gene encodes subunit A of complex V (CV: ATP synthase). CIV and CV are the last two of five essential enzymes that perform the mitochondrial electron transport respiratory chain reaction to generate ATP. Further analysis of the blood sample using transmission electron microscopy demonstrated abnormal, circulating, extracellular mitochondria. These results indicate that the patient had dysfunctional mitochondria, which may contribute directly to her major symptoms, including PEM and neurological and cognitive changes. Furthermore, the identified variants of ATP6 (ChrMT: 8981A > G; Q152R) and Cox1 (ChrMT: 6268C > T; A122V), functioning at a later stage of mitochondrial ATP production, may play a role in the abnormality of the patient's mitochondria and the development of her ME/CFS symptoms.
Collapse
Affiliation(s)
- Gaoyan G. Tang-Siegel
- Department of Molecular Physiology and Biophysics, College of Medicine, University of Vermont, Burlington, VT, USA
| | - David W. Maughan
- Department of Molecular Physiology and Biophysics, College of Medicine, University of Vermont, Burlington, VT, USA
| | | | - Alan R. Light
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
9
|
González R, Félix MA. Caenorhabditis elegans immune responses to microsporidia and viruses. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 154:105148. [PMID: 38325500 DOI: 10.1016/j.dci.2024.105148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
The model organism Caenorhabditis elegans is susceptible to infection by obligate intracellular pathogens, specifically microsporidia and viruses. These intracellular pathogens infect intestinal cells, or, for some microsporidia, epidermal cells. Strikingly, intestinal cell infections by viruses or microsporidia trigger a common transcriptional response, activated in part by the ZIP-1 transcription factor. Among the strongest activated genes in this response are ubiquitin-pathway members and members of the pals family, an intriguing gene family with cross-regulations of different members of genomic clusters. Some of the induced genes participate in host defense against the pathogens, for example through ubiquitin-mediated inhibition. Other mechanisms defend the host specifically against viral infections, including antiviral RNA interference and uridylation. These various immune responses are altered by environmental factors and by intraspecific genetic variation of the host. These pathogens were first isolated 15 years ago and much remains to be discovered using C. elegans genetics; also, other intracellular pathogens of C. elegans may yet to be discovered.
Collapse
Affiliation(s)
- Rubén González
- Institut de Biologie de l'École Normale Supérieure, CNRS, INSERM, 75005, Paris, France.
| | - Marie-Anne Félix
- Institut de Biologie de l'École Normale Supérieure, CNRS, INSERM, 75005, Paris, France
| |
Collapse
|
10
|
Leclerc S, Gupta A, Ruokolainen V, Chen JH, Kunnas K, Ekman AA, Niskanen H, Belevich I, Vihinen H, Turkki P, Perez-Berna AJ, Kapishnikov S, Mäntylä E, Harkiolaki M, Dufour E, Hytönen V, Pereiro E, McEnroe T, Fahy K, Kaikkonen MU, Jokitalo E, Larabell CA, Weinhardt V, Mattola S, Aho V, Vihinen-Ranta M. Progression of herpesvirus infection remodels mitochondrial organization and metabolism. PLoS Pathog 2024; 20:e1011829. [PMID: 38620036 PMCID: PMC11045090 DOI: 10.1371/journal.ppat.1011829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/25/2024] [Accepted: 03/12/2024] [Indexed: 04/17/2024] Open
Abstract
Viruses target mitochondria to promote their replication, and infection-induced stress during the progression of infection leads to the regulation of antiviral defenses and mitochondrial metabolism which are opposed by counteracting viral factors. The precise structural and functional changes that underlie how mitochondria react to the infection remain largely unclear. Here we show extensive transcriptional remodeling of protein-encoding host genes involved in the respiratory chain, apoptosis, and structural organization of mitochondria as herpes simplex virus type 1 lytic infection proceeds from early to late stages of infection. High-resolution microscopy and interaction analyses unveiled infection-induced emergence of rough, thin, and elongated mitochondria relocalized to the perinuclear area, a significant increase in the number and clustering of endoplasmic reticulum-mitochondria contact sites, and thickening and shortening of mitochondrial cristae. Finally, metabolic analyses demonstrated that reactivation of ATP production is accompanied by increased mitochondrial Ca2+ content and proton leakage as the infection proceeds. Overall, the significant structural and functional changes in the mitochondria triggered by the viral invasion are tightly connected to the progression of the virus infection.
Collapse
Affiliation(s)
- Simon Leclerc
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Alka Gupta
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Visa Ruokolainen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Jian-Hua Chen
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Kari Kunnas
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Axel A. Ekman
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Henri Niskanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ilya Belevich
- Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Finland
| | - Helena Vihinen
- Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Finland
| | - Paula Turkki
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ana J. Perez-Berna
- MISTRAL Beamline-Experiments Division, ALBA Synchrotron Light Source, Cerdanyola del Valles, Barcelona, Spain
| | | | - Elina Mäntylä
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Maria Harkiolaki
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK; Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford, United Kingdom
| | - Eric Dufour
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Vesa Hytönen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab laboratories, Tampere, Finland
| | - Eva Pereiro
- MISTRAL Beamline-Experiments Division, ALBA Synchrotron Light Source, Cerdanyola del Valles, Barcelona, Spain
| | | | | | - Minna U. Kaikkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Eija Jokitalo
- Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Finland
| | - Carolyn A. Larabell
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Department of Anatomy, University of California San Francisco, San Francisco, California, United States of America
| | - Venera Weinhardt
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Salla Mattola
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Vesa Aho
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Maija Vihinen-Ranta
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| |
Collapse
|
11
|
Li C, Yang Y, Chen G, Yin X, Deng B, Wei W, Zhang H, Yuan M, Xu Y, Cao Z, Zhang H. Cuttlefish ink nanoparticles against oxidative stress: Alleviation of TBHP-induced oxidative damage in Caco-2 cells and DSS-induced ulcerative colitis in C57BL/6. J Funct Foods 2024; 112:105989. [DOI: 10.1016/j.jff.2023.105989] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2024] Open
|
12
|
Ferrara G, Longobardi C, Sgadari MF, Restucci B, Iovane G, Ciarcia R, Pagnini U, Montagnaro S. Apoptosis is mediated by FeHV-1 through the intrinsic pathway and interacts with the autophagic process. Virol J 2023; 20:295. [PMID: 38087282 PMCID: PMC10716993 DOI: 10.1186/s12985-023-02267-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/09/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Although FeHV-1 is a primary feline pathogen, little is known about its interactions with host cells. Its relationship with several cellular pathways has recently been described, whereas its interplay with the apoptotic process, unlike other herpesviruses, has not yet been clarified. The aim of this work was to evaluate whether FeHV-1 induces apoptosis in its permissive cells, as well as the pathway involved and the effects of induction and inhibition of apoptosis on viral replication. METHODS Monolayers of CRFK cells were infected at different times with different viral doses. A cytofluorimetric approach allowed the quantification of cells in early and late apoptosis. All infections and related controls were also subjected to Western blot analysis to assess the expression of apoptotic markers (caspase 3-8-9, Bcl-2, Bcl-xL, NF-κB). An inhibitor (Z-VAD-FMK) and an inducer (ionomycin) were used to evaluate the role of apoptosis in viral replication. Finally, the expression of autophagy markers during the apoptosis inhibition/induction and the expression of apoptosis markers during autophagy inhibition/induction were evaluated to highlight any crosstalk between the two pathways. RESULTS FeHV-1 triggered apoptosis in a time- and dose-dependent manner. Caspase 3 cleavage was evident 48 h after infection, indicating the completeness of the process at this stage. While caspase 8 was not involved, caspase 9 cleavage started 24 h post-infection. The expression of other mitochondrial damage markers also changed, suggesting that apoptosis was induced via the intrinsic pathway. NF- κB was up-regulated at 12 h, followed by a gradual decrease in levels up to 72 h. The effects of apoptosis inhibitors and inducers on viral replication and autophagy were also investigated. Inhibition of caspases resulted in an increase in viral glycoprotein expression, higher titers, and enhanced autophagy, whereas induction of apoptosis resulted in a decrease in viral protein expression, lower viral titer, and attenuated autophagy. On the other hand, the induction of autophagy reduced the cleavage of caspase 3. CONCLUSIONS In this study, we established how FeHV-1 induces the apoptotic process, contributing to the understanding of the relationship between FeHV-1 and this pathway.
Collapse
Affiliation(s)
- Gianmarco Ferrara
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, Naples, 80137, Italy.
| | - Consiglia Longobardi
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, Naples, 80137, Italy
| | - Maria Francesca Sgadari
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, Naples, 80137, Italy
| | - Brunella Restucci
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, Naples, 80137, Italy
| | - Giuseppe Iovane
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, Naples, 80137, Italy
| | - Roberto Ciarcia
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, Naples, 80137, Italy
| | - Ugo Pagnini
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, Naples, 80137, Italy
| | - Serena Montagnaro
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, Naples, 80137, Italy
| |
Collapse
|
13
|
Sobhi Amjad Z, Shojaeian A, Sadri Nahand J, Bayat M, Taghizadieh M, Rostamian M, Babaei F, Moghoofei M. Oncoviruses: Induction of cancer development and metastasis by increasing anoikis resistance. Heliyon 2023; 9:e22598. [PMID: 38144298 PMCID: PMC10746446 DOI: 10.1016/j.heliyon.2023.e22598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 12/26/2023] Open
Abstract
The phenomenon of cell death is a vital aspect in the regulation of aberrant cells such as cancer cells. Anoikis is a kind of cell death that occurs when cells get separated from the extracellular matrix. Some cancer cells can inhibit anoikis in order to progress metastasis. One of the key variables that might be implicated in anoikis resistance (AR) is viral infections. The most important viruses involved in this process are Epstein-Barr virus, human papillomavirus, hepatitis B virus, human herpes virus 8, human T-cell lymphotropic virus type 1, and hepatitis C virus. A better understanding of how carcinogenic viruses suppress anoikis might be helpful in developing an effective treatment for virus-associated cancers. In the current study, we review the role of the mentioned viruses and their gene products in anoikis inhibition.
Collapse
Affiliation(s)
- Zahra Sobhi Amjad
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Shojaeian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mosayeb Rostamian
- Nosocomial Infections Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farhad Babaei
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Infectious Diseases Research Center, Health Research Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
14
|
Ke F, Zhang QY. Advances on genomes studies of large DNA viruses in aquaculture: A minireview. Genomics 2023; 115:110720. [PMID: 37757975 DOI: 10.1016/j.ygeno.2023.110720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 09/29/2023]
Abstract
Genomic studies of viral diseases in aquaculture have received more and more attention with the growth of the aquaculture industry, especially the emerging and re-emerging viruses whose genome could contain recombination, mutation, insertion, and so on, and may lead to more severe diseases and more widespread infections in aquaculture animals. The present review is focused on aquaculture viruses, which is belonged to two clades, Varidnaviria and Duplodnaviria, and one class Naldaviricetes, and respectively three families: Iridoviridae (ranaviruses), Alloherpesviridae (fish herpesviruses), and Nimaviridae (whispoviruses). The viruses possessed DNA genomes nearly or larger than 100 kbp with gene numbers more than 100 and were considered large DNA viruses. Genome analysis and experimental investigation have identified several genes involved in genome replication, transcription, and virus-host interactions. In addition, some genes involved in virus genetic variation or specificity were also discussed. A summary of these advances would provide reference to future discovery and research on emerging or re-emerging aquaculture viruses.
Collapse
Affiliation(s)
- Fei Ke
- Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qi-Ya Zhang
- Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
15
|
Li Y, Xue M, Dai Y, Xie Y, Wei Y, Wang C, Tian M, Fan Y, Jiang N, Xu C, Liu W, Meng Y, Zhou Y. Chinese giant salamander Bcl-w: An inhibitory role in iridovirus-induced mitochondrial apoptosis and virus replication. Virus Res 2023; 335:199196. [PMID: 37597665 PMCID: PMC10445403 DOI: 10.1016/j.virusres.2023.199196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023]
Abstract
B-cell lymphoma-2 (BCL-2) superfamily molecules play crucial roles in mitochondrial apoptosis induced by Chinese giant salamander iridovirus (GSIV). As an anti-apoptotic molecule in the BCL-2 family, the molecular mechanism of Bcl-w during GSIV infection remains unknown. In this study, we characterized for the first time an amphibian Bcl-w from Chinese giant salamander Andrias davidianus (AdBcl-w), and its function and regulatory mechanism during GSIV infection were investigated. AdBcl-w possesses the conserved structural features of Bcl-w and shares 35-54% sequence identities with other Bcl-w. mRNA expression of AdBcl-w was most abundant in liver and muscle. The AdBcl-w mRNA expression was regulated during GSIV infection. Western blotting assays revealed that the level of Bcl-w protein was downregulated markedly as the infection progresses. Confocal microscopy showed that overexpressed AdBcl-w was translocated to the mitochondria after infection with GSIV. Flow cytometry analysis demonstrated that compared with control, the apoptotic progress in cells transfected with AdBcl-w was reduced while that in cells transfected with AdBcl-w siRNA was enhanced. The number of virus major capsid protein gene copies was lower and protein synthesis was reduced in AdBcl-w overexpressing cells. In addition, AdBcl-w could bind directly to the pro-apoptotic molecule AdBak, while this interaction was weakened with GSIV infection. Moreover, p53 level was reduced and the mRNA expression levels of crucial regulatory molecules in the p53 pathway were regulated in AdBcl-w overexpressing cells during GSIV infection. These results suggested that AdBcl-w inhibit GSIV replication by regulating the virus induced mitochondrial apoptosis.
Collapse
Affiliation(s)
- Yiqun Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences 8 Wudayuan First Road, Wuhan 430223, China.
| | - Mingyang Xue
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences 8 Wudayuan First Road, Wuhan 430223, China
| | - Yanlin Dai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences 8 Wudayuan First Road, Wuhan 430223, China
| | - Yixing Xie
- Zhangjiajie Giant Salamander National Nature Reserve Affairs Center, Zhangjiajie, Hunan 427400, China
| | - Ying Wei
- Zhangjiajie Giant Salamander National Nature Reserve Affairs Center, Zhangjiajie, Hunan 427400, China
| | - Cheng Wang
- Zhangjiajie Giant Salamander National Nature Reserve Affairs Center, Zhangjiajie, Hunan 427400, China
| | - Mingzhu Tian
- Zhangjiajie Giant Salamander National Nature Reserve Affairs Center, Zhangjiajie, Hunan 427400, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences 8 Wudayuan First Road, Wuhan 430223, China
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences 8 Wudayuan First Road, Wuhan 430223, China
| | - Chen Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences 8 Wudayuan First Road, Wuhan 430223, China
| | - Wenzhi Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences 8 Wudayuan First Road, Wuhan 430223, China
| | - Yan Meng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences 8 Wudayuan First Road, Wuhan 430223, China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences 8 Wudayuan First Road, Wuhan 430223, China.
| |
Collapse
|
16
|
Liu N, Lyu X, Zhang X, Zhang F, Chen Y, Li G. Astaxanthin attenuates cognitive deficits in Alzheimer's disease models by reducing oxidative stress via the SIRT1/PGC-1α signaling pathway. Cell Biosci 2023; 13:173. [PMID: 37710272 PMCID: PMC10503143 DOI: 10.1186/s13578-023-01129-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023] Open
Abstract
OBJECTIVE Oxidative stress plays a pivotal role in neurodegenerative diseases. Astaxanthin (AST) can play a neuroprotective role owing to its long-chain conjugated unsaturated double bond, which imparts potent antioxidant, anti-neuroinflammatory, and anti-apoptotic properties. However, the biological mechanisms underlying these effects remain unknown. Therefore, this study aimed to investigate and validate the protective effect of AST on neuronal senescence and apoptosis caused by oxidative stress induced by Aβ25-35 peptide, with the goal of preventing the onset of cognitive dysfunction. METHODS Alzheimer's disease models comprising ICR mice and PC12 cells were established using Aβ25-35. The Morris water maze test was used to assess mouse behavior. Nissl staining revealed morphological changes in the mouse hippocampal neurons. To elucidate the mechanism of action of AST, ICR mice and PC12 cells were treated with the silent information regulator 1 (SIRT1) inhibitor nicotinamide (NAM). Additionally, immunofluorescence, western blotting, and reverse transcription polymerase chain reaction were used to evaluate changes in the expression of Bcl-2 and Bax in the mouse hippocampus, and SIRT1/PGC-1α signaling pathway proteins were detected. Moreover, the oxidative stress markers in ICR mice and PC12 cells were evaluated. Further, CCK-8 assays, Annexin V/PI double staining, and β-galactosidase activity assays were performed in PC12 cells to evaluate the anti-senescence and apoptotic effects of AST. RESULTS In vivo experiments showed that Aβ25-35 impaired cognitive function, promoted morphological changes in hippocampal neurons, decreased Bcl-2 expression, increased Bax expression, decreased superoxide dismutase and GSH-px levels, and increased reactive oxygen species and malondialdehyde levels. Conversely, AST alleviated the impact of Aβ25-35 in mice, with reversed outcomes. NAM administration reduced SIRT1 and PGC-1α expression in the hippocampus. This decrease was accompanied by cognitive dysfunction and hippocampal neuron atrophy, which were also evident in the mice. Additionally, in vitro experiments showed that Aβ25-35 could promote oxidative stress and induce the senescence and apoptosis of PC12 cells. Nonetheless, AST treatment counteracted this effect by inhibiting oxidative stress and altering the state of PC12 cells. Notably, the Aβ + NAM group exhibited the most significant rates of senescence and apoptosis in PC12 cells following NAM treatment. CONCLUSION AST can improve cellular senescence and apoptosis mediated by oxidative stress via the SIRT1/PGC-1α signaling pathway and plays a vital role in inhibiting neuronal senescence and apoptosis and enhancing cognitive ability.
Collapse
Affiliation(s)
- Ning Liu
- Department of Radiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Xiaohong Lyu
- Department of Radiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China.
| | - Xianglin Zhang
- Department of Radiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Fan Zhang
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Yiming Chen
- Department of Radiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Gang Li
- Department of Radiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| |
Collapse
|
17
|
Liu T, Zhou X, Zhang Z, Qin Y, Wang R, Qin Y, Huang Y, Mo Y, Huang T. The role of EBV-encoded miRNA in EBV-associated gastric cancer. Front Oncol 2023; 13:1204030. [PMID: 37388232 PMCID: PMC10301731 DOI: 10.3389/fonc.2023.1204030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
Epstein-Barr virus (human herpesvirus 4, EBV) is a linear double-stranded DNA virus that infects over 90% of the population worldwide. However, our understanding of EBV's contribution to tumorigenesis of EBV-associated GC (EBVaGC) remains incomplete. Recent advancements in EBVaGC research have highlighted that EBV-encoded microRNAs (miRNAs) play prominent roles in critical cellular processes such as migration, cell cycle, apoptosis, cell proliferation, immune response, and autophagy. Notably, the largest group of EBV-encoded miRNAs, known as BamHI-A rightward transcripts (BARTs), exhibit bidirectional effects in EBVaGC. For instance, they present both anti-apoptotic and pro-apoptotic functions and enhance chemosensitivity while also conferring resistance to 5-fluorouracil. Despite these findings, the comprehensive mechanisms through which miRNAs contribute to EBVaGC are yet to be fully elucidated. In this work, we summarize the current evidence of the roles of miRNA in EBVaGC, particularly with the application of multi-omic techniques. Additionally, we discuss the application of miRNA in EBVaGC in retrospective analyses and provide novel perspectives on the use of miRNA in EBVaGC in translational medicine.
Collapse
Affiliation(s)
- Ting Liu
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoying Zhou
- Guangxi Key Laboratory of High-Incidence-Tumor Prevention and Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
| | - Zhe Zhang
- Guangxi Key Laboratory of High-Incidence-Tumor Prevention and Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yutao Qin
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Rensheng Wang
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of High-Incidence-Tumor Prevention and Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
| | - Yanning Qin
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Yuqi Huang
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Yingxi Mo
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Tingting Huang
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of High-Incidence-Tumor Prevention and Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
| |
Collapse
|
18
|
Xu W, Yang K, Zheng Y, Cao S, Yan Q, Huang X, Wen Y, Zhao Q, Du S, Lang Y, Zhao S, Wu R. BAK-Mediated Pyroptosis Promotes Japanese Encephalitis Virus Proliferation in Porcine Kidney 15 Cells. Viruses 2023; 15:v15040974. [PMID: 37112954 PMCID: PMC10142372 DOI: 10.3390/v15040974] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/08/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
As a zoonotic virus, Japanese Encephalitis virus (JEV) poses a serious threat to human health and the breeding industry. Regarding the mechanism and complications of tissue inflammation caused by JEV, such as encephalitis and orchitis, there is no effective drug treatment currently, and the mechanism of occurrence has not been thoroughly studied. Therefore, it is necessary to study the mechanism of the inflammatory pathway caused by JEV. As one of the key proteins regulating cell death, BCL2 antagonist/killer (BAK) is also a necessary prerequisite for the release of cellular inflammatory factors. We found that after JEV infection, BAK-knockdown cells died less than normal cells, and the transcription levels of inflammatory factors such as TNF, IFNα, and IL-1β and their corresponding regulatory genes were also significantly reduced. By further verifying protein expression on the cell death pathway, it was found that pyroptotic activation and virus titer were also significantly reduced in BAK.KD cells, suggesting that JEV proliferation might be related to BAK-induced cell death. From our data, we could conclude that JEV utilized the BAK-promoted pyroptotic pathway to release more virions after the final Gasdermin D-N (GSDMD-N) protein pore formation for the purpose of JEV proliferation. Therefore, the study of the endogenous cell death activator protein BAK and the final release pathway of JEV, is expected to provide some new theoretical basis for future research on the screening of targeted drugs for the treatment of inflammatory diseases caused by JEV.
Collapse
Affiliation(s)
- Weimin Xu
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ke Yang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yi Zheng
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Sanjie Cao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Qigui Yan
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaobo Huang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yiping Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Qin Zhao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Senyan Du
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yifei Lang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Shan Zhao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Rui Wu
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
19
|
Maekawa T, Kashkar H, Coll NS. Dying in self-defence: a comparative overview of immunogenic cell death signalling in animals and plants. Cell Death Differ 2023; 30:258-268. [PMID: 36195671 PMCID: PMC9950082 DOI: 10.1038/s41418-022-01060-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 11/05/2022] Open
Abstract
Host organisms utilise a range of genetically encoded cell death programmes in response to pathogen challenge. Host cell death can restrict pathogen proliferation by depleting their replicative niche and at the same time dying cells can alert neighbouring cells to prepare environmental conditions favouring future pathogen attacks. As expected, many pathogenic microbes have strategies to subvert host cell death to promote their virulence. The structural and lifestyle differences between animals and plants have been anticipated to shape very different host defence mechanisms. However, an emerging body of evidence indicates that several components of the host-pathogen interaction machinery are shared between the two major branches of eukaryotic life. Many proteins involved in cell death execution or cell death-associated immunity in plants and animals exert direct effects on endomembrane and loss of membrane integrity has been proposed to explain the potential immunogenicity of dying cells. In this review we aim to provide a comparative view on how cell death processes are linked to anti-microbial defence mechanisms in plants and animals and how pathogens interfere with these cell death programmes. In comparison to the several well-defined cell death programmes in animals, immunogenic cell death in plant defence is broadly defined as the hypersensitive response. Our comparative overview may help discerning whether specific types of immunogenic cell death exist in plants, and correspondingly, it may provide new hints for previously undiscovered cell death mechanism in animals.
Collapse
Affiliation(s)
- Takaki Maekawa
- Department of Biology, Institute for Plant Sciences, University of Cologne, 50674, Cologne, Germany.
- CEPLAS Cluster of Excellence on Plant Sciences at the University of Cologne, Cologne, Germany.
| | - Hamid Kashkar
- Faculty of Medicine and University Hospital of Cologne, Institute for Molecular Immunology, University of Cologne, 50931, Cologne, Germany.
- Faculty of Medicine and University Hospital of Cologne, Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany.
| | - Núria S Coll
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193, Bellaterra, Spain.
- Consejo Superior de Investigaciones Científicas (CSIC), 08001, Barcelona, Spain.
| |
Collapse
|
20
|
Xu J, Yin X, Zhang Y, Zhang F, Tian X, Wu Q, Hu J, Wang K, Zhang Z, Su S, Liu Z. Bradykinin protects against DDP-induced GP-H1 cell damage via activation of PI3K/Akt/NO signaling pathway. Am J Transl Res 2023; 15:745-754. [PMID: 36915772 PMCID: PMC10006811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/27/2022] [Indexed: 03/16/2023]
Abstract
OBJECTIVE To investigate the effect of bradykinin (BK) on cisplatin (DDP)-induced cardiotoxicity at the cellular level and its cytological mechanism. METHODS The toxic effects of DDP on GP-H1 cells, and the effects of BK on DDP cardiomyocyte survival rate, DDP-induced malondialdehyde (MDA), lactate dehydrogenase (LDH), superoxide dismutase (SOD), reactive oxygen species (ROS), mitochondria membrane potential (MMP) and apoptosis were explored. RESULTS DDP at different concentrations inhibited GP-H1 cells at 12 h after administration, and the inhibitory effect was more prominent at 24 h after administration and continued until 72 h after administration. The severity of GP-H1 cell damage induced by DDP was reduced by 0.1 μM, 1 μM, and 10 μM BK. After GP-H1 cells were treated with DDP, ROS levels increased and MMP levels decreased, while BK intervention inhibited these effects. At 24 h after DDP treatment, Bax/bcl-2 increased in GP-H1 cells, and the expressions of Caspase-3, p-NF-κB, p-p38 and p-Smad2 decreased. After intervention with BK, it was shown that Bax/Bcl-2 was significantly reduced, and the expressions of Caspase-3, p-NF-κB, p-p38 and p-Smad2 decreased. Bax/Bcl-2 and the expressions of Caspase-3, p-NF-κB, p-p38 and p-Smad2 of GP-H1 cells were basically not affected by BK alone. CONCLUSION The protective effect of BK on DDP-induced GP-H1 cell damage in guinea pig is related to the activation of PI3K/Akt/NO signaling pathway by BK, which reduces oxidative stress levels in cardiomyocytes and also acts as an anti-apoptotic agent.
Collapse
Affiliation(s)
- Jingfang Xu
- Department of Pharmacy, The Third Hospital of Shijiazhuang Shijiazhuang, Hebei, China
| | - Xinjuan Yin
- Department of Pharmacy, The Third Hospital of Shijiazhuang Shijiazhuang, Hebei, China
| | - Yanan Zhang
- Department of Pharmacy, The Third Hospital of Shijiazhuang Shijiazhuang, Hebei, China
| | - Feng Zhang
- Department of Pharmacy, The Third Hospital of Shijiazhuang Shijiazhuang, Hebei, China
| | - Xiaobei Tian
- Department of Pharmacy, The Third Hospital of Shijiazhuang Shijiazhuang, Hebei, China
| | - Qiaona Wu
- Department of Pharmacy, The Third Hospital of Shijiazhuang Shijiazhuang, Hebei, China
| | - Jie Hu
- Department of Imaging, The Third Hospital of Shijiazhuang Shijiazhuang, Hebei, China
| | - Kexin Wang
- Department of Pharmacy, The Second Hospital of Hebei Medical University Shijiazhuang, Hebei, China
| | - Zehua Zhang
- Student of Hebei Medical University Shijiazhuang, Hebei, China
| | - Suwen Su
- School of Basic Medical Sciences, Hebei Medical University Shijiazhuang, Hebei, China
| | - Zengjuan Liu
- Department of Pharmacy, The Third Hospital of Shijiazhuang Shijiazhuang, Hebei, China
| |
Collapse
|
21
|
Liu Z, Fu Y, Huang Y, Zeng F, Rao J, Xiao X, Sun X, Jin H, Li J, Yang J, Du W, Liu L. Ubiquitination of SARS-CoV-2 ORF7a Prevents Cell Death Induced by Recruiting BclXL To Activate ER Stress. Microbiol Spectr 2022; 10:e0150922. [PMID: 36326498 PMCID: PMC9769937 DOI: 10.1128/spectrum.01509-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19), which has emerged in the last 2 years. The accessory protein ORF7a has been proposed as an immunomodulating factor that can cause dramatic inflammatory responses, but it is unknown how ORF7a interacts with host cells. We show that ORF7a induces cell apoptosis by recruiting the prosurvival factor BclXL to the endoplasmic reticulum (ER) via the exposed C-terminal residues Lys117 and Lys119. Simultaneously, ORF7a activates ER stress via the PERK-elF2α-CHOP pathway and inhibits the expression of endogenous BclXL, resulting in enhanced cell apoptosis. Ubiquitination of ORF7a interrupts the interaction with BclXL in the ER and weakens the activation of ER stress, which to some extent rescues the cells. Our work demonstrates that SARS-CoV-2 ORF7a hires antiapoptosis protein and aggregates on the ER, resulting in ER stress and apoptosis initiation. On the other hand, ORF7a utilizes the ubiquitin system to impede and escape host elimination, providing a promising potential target for developing strategies for minimizing the COVID-19 pandemic. IMPORTANCE Viruses struggle to reproduce after infecting cells, and the host eliminates infected cells through apoptosis to prevent virus spread. Cells adopt a special ubiquitination code to protect against viral infection, while ORF7a manipulates and exploits the ubiquitin system to eliminate host cells' effect on apoptosis and redirect cellular pathways in favor of virus survival. Our results revealed that SARS-CoV-2-encoded accessory protein ORF7a recruits prosurvival factor BclXL to the ER and activates the cellular ER stress response resulting in the initiation of programmed death to remove virus-infected cells. Ubiquitination of ORF7a blocked the recruitment of BclXL and suppressed the ER stress response, which helps to counteract cell apoptosis and rescue cell fate. These findings help us understand the mechanism of SARS-CoV-2 invasion and contribute to a theoretical foundation for the clinical prevention of COVID-19.
Collapse
Affiliation(s)
- Zhixin Liu
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Institute of Virology, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Yanan Fu
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Institute of Virology, Hubei University of Medicine, Shiyan, China
| | - Yanping Huang
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Institute of Virology, Hubei University of Medicine, Shiyan, China
| | - Feng Zeng
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Institute of Virology, Hubei University of Medicine, Shiyan, China
| | - Jingjing Rao
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Institute of Virology, Hubei University of Medicine, Shiyan, China
| | - Xiao Xiao
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Institute of Virology, Hubei University of Medicine, Shiyan, China
| | - Xiaoguang Sun
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Institute of Virology, Hubei University of Medicine, Shiyan, China
| | - Hao Jin
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Jian Li
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Institute of Virology, Hubei University of Medicine, Shiyan, China
| | - Jing Yang
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Institute of Virology, Hubei University of Medicine, Shiyan, China
| | - Weixing Du
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Long Liu
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Institute of Virology, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
22
|
Madhu P, Davey NE, Ivarsson Y. How viral proteins bind short linear motifs and intrinsically disordered domains. Essays Biochem 2022; 66:EBC20220047. [PMID: 36504386 DOI: 10.1042/ebc20220047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 02/11/2024]
Abstract
Viruses are the obligate intracellular parasites that exploit the host cellular machinery to replicate their genome. During the viral life cycle viruses manipulate the host cell through interactions with host proteins. Many of these protein-protein interactions are mediated through the recognition of host globular domains by short linear motifs (SLiMs), or longer intrinsically disordered domains (IDD), in the disordered regions of viral proteins. However, viruses also employ their own globular domains for binding to SLiMs and IDDs present in host proteins or virus proteins. In this review, we focus on the different strategies adopted by viruses to utilize proteins or protein domains for binding to the disordered regions of human or/and viral ligands. With a set of examples, we describe viral domains that bind human SLiMs. We also provide examples of viral proteins that bind to SLiMs, or IDDs, of viral proteins as a part of complex assembly and regulation of protein functions. The protein-protein interactions are often crucial for viral replication, and may thus offer possibilities for innovative inhibitor design.
Collapse
Affiliation(s)
- Priyanka Madhu
- Department of Chemistry, BMC, Uppsala University, Uppsala, Sweden
| | - Norman E Davey
- Division of Cancer Biology, The Institute of Cancer Research, London, U.K
| | - Ylva Ivarsson
- Department of Chemistry, BMC, Uppsala University, Uppsala, Sweden
| |
Collapse
|
23
|
Martínez Cuesta L, Nieto Farías MV, Romeo F, Verna A, Pérez S. Expression of apoptosis-related genes at different stages of BoHV-1 and 5 infection of bovine neural tissue. Comp Immunol Microbiol Infect Dis 2022; 90-91:101906. [DOI: 10.1016/j.cimid.2022.101906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
|
24
|
Madushani KP, Shanaka KASN, Wijerathna HMSM, Lim C, Jeong T, Jung S, Lee J. Molecular characterization and expression analysis of B-cell lymphoma-2 protein in Amphiprion clarkii and its role in virus infections. FISH & SHELLFISH IMMUNOLOGY 2022; 130:206-214. [PMID: 36100068 DOI: 10.1016/j.fsi.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 08/14/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Amphiprion clarkii is increasingly being used as a captive-bred ornamental fish in South Korea. However, its breeding has recently been greatly hindered by destructive diseases due to pathogens. B-cell lymphoma-2 (Bcl2), a mitochondrial apoptosis regulatory gene involved in immune responses, has not been investigated in anemonefish, including A. clarkii. Herein, we aimed to annotate Bcl2 in the A. clarkii transcriptome and examined its role against virus infections. Sequence analysis indicated that Bcl2 in A. clarkii (AcBcl2) contained all four Bcl-2 homology domains. The structure of AcBcl2 closely resembled those of previously analyzed anti-apoptotic Bcl2 proteins in mammals. Expression analysis showed that the highest level of AcBcl2 was expressed in blood. AcBcl2 expression in the blood was downregulated within 24 hpi when challenged with immune stimulants poly I:C and lipopolysaccharides. AcBcl2 reduced poly I:C-induced cell death. The propagation of viral hemorrhagic septicemia virus (VHSV) was higher in the presence of AcBcl2. Cell mortality was higher in AcBcl2 when transfected cells were infected with VHSV, and a higher viral transcript was observed compared to their respective controls. In conclusion, AcBcl2 is an anti-apoptotic protein, and its activity may facilitate the propagation of VHSV.
Collapse
Affiliation(s)
- K P Madushani
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea
| | - K A S N Shanaka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea
| | - H M S M Wijerathna
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea
| | - Chaehyeon Lim
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - Taehyug Jeong
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea
| | - Sumi Jung
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea.
| |
Collapse
|
25
|
Suraweera CD, Hinds MG, Kvansakul M. Crystal Structures of Epstein-Barr Virus Bcl-2 Homolog BHRF1 Bound to Bid and Puma BH3 Motif Peptides. Viruses 2022; 14:v14102222. [PMID: 36298777 PMCID: PMC9609553 DOI: 10.3390/v14102222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022] Open
Abstract
Apoptosis is a powerful defense mechanism used by multicellular organisms to counteract viral infection. In response to premature host cell suicide, viruses have evolved numerous countermeasures to ensure cell viability to optimize their replication by encoding proteins homologous in structure and function to cellular pro-survival Bcl-2 proteins. Epstein-Barr virus (EBV), a member of the Gammaherpesviridae, encodes the Bcl-2 homolog BHRF1, a potent inhibitor of Bcl-2-mediated apoptosis. BHRF1 acts by directly targeting Bid and Puma, two proapoptotic proteins of the Bcl-2 family. Here, we determined the crystal structures of BHRF1 bound to peptides spanning the Bcl-2 binding motifs (Bcl-2 homology 3 motif, BH3) of Bid and Puma. BHRF1 engages BH3 peptides using the canonical ligand-binding groove of its Bcl-2 fold and maintains a salt bridge between an Arg residue with a conserved Asp residue in the BH3 motif mimicking the canonical ionic interaction seen in host Bcl-2:BH3 motif complexes. Furthermore, both Bid and Puma utilize a fifth binding pocket in the canonical ligand binding groove of BHRF1 to provide an additional hydrophobic interaction distinct from the interactions previously seen with Bak and Bim. These findings provide a structural basis for EBV-mediated suppression of host cell apoptosis and reveal the flexibility of virus encoded Bcl-2 proteins in mimicking key interactions from the endogenous host signaling pathways.
Collapse
Affiliation(s)
- Chathura D. Suraweera
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Mark G. Hinds
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence: (M.G.H.); (M.K.)
| | - Marc Kvansakul
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
- Correspondence: (M.G.H.); (M.K.)
| |
Collapse
|
26
|
Aerobic Exercise Regulates Apoptosis through the PI3K/Akt/GSK-3β Signaling Pathway to Improve Cognitive Impairment in Alzheimer’s Disease Mice. Neural Plast 2022; 2022:1500710. [PMID: 36124291 PMCID: PMC9482542 DOI: 10.1155/2022/1500710] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 06/29/2022] [Accepted: 07/29/2022] [Indexed: 11/25/2022] Open
Abstract
Neuronal apoptosis is an important factor in the etiology of Alzheimer's disease (AD). Aerobic exercise (AE) enhances learning and memory, improves cognitive impairment, increases telomere binding protein expression, and decreases apoptosis regulators, but it remains unclear whether it can improve cognitive impairment caused by neuronal apoptosis in AD. Therefore, this study investigated whether an 8-week running table exercise intervention could reduce apoptosis and improve cognitive function in the hippocampal neurons of AD model mice. After the exercise intervention, we evaluated the learning memory ability (positioning, navigation, and spatial search) of mice using a Morris water labyrinth, Nissl staining, immunohistochemistry, and protein application to detect hippocampal PI3K/Akt/GSK-3β signaling pathway protein and hippocampal neuronal cell apoptosis protein B cell lymphoma 2 (Bcl-2) and apoptosis-promoting protein bcl-2-related X (Bax) protein expression. The results showed that aerobic exercise improved the location and spatial exploration ability of mice, increased the number of PI3K- and p-Akt-positive cells, increased the expression of PI3K, p-Akt, and bcl-2 proteins, decreased the expression of GSK-3β and Bax proteins, and increased the bcl-2/Bax ratio of mice. The results suggest that aerobic exercise can reduce apoptosis and improve cognitive function in AD mice. The molecular mechanism may involve activation of the PI3K/Akt/GSK-3β signaling pathway.
Collapse
|
27
|
Abstract
Viruses are obligate intracellular parasites. Despite their dependence on host cells, viruses are evolutionarily autonomous, with their own genomes and evolutionary trajectories locked in arms races with the hosts. Here, we discuss a simple functional logic to explain virus macroevolution that appears to define the course of virus evolution. A small core of virus hallmark genes that are responsible for genome replication apparently descended from primordial replicators, whereas most virus genes, starting with those encoding capsid proteins, were subsequently acquired from hosts. The oldest of these acquisitions antedate the last universal cellular ancestor (LUCA). Host gene capture followed two major routes: convergent recruitment of genes with functions that directly benefit virus reproduction and exaptation when host proteins are repurposed for unique virus functions. These forms of host protein recruitment by viruses result in different levels of similarity between virus and host homologs, with the exapted ones often changing beyond easy recognition.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA.
| | - Valerian V Dolja
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA; Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, F-75015 Paris, France.
| |
Collapse
|
28
|
Potential Proteins Interactions with Bombyx mori Nucleopolyhedrovirus Revealed by Co-Immunoprecipitation. INSECTS 2022; 13:insects13070575. [PMID: 35886751 PMCID: PMC9324236 DOI: 10.3390/insects13070575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 12/04/2022]
Abstract
Virus–host interactions are critical for virus replication, virulence, and pathogenicity. The Bombyx mori nucleopolyhedrovirus (BmNPV) is a typical model baculovirus, representing one of the most common and harmful pathogens in sericulture. Herein, we used co-immunoprecipitation to identify candidate proteins with potential interactions with BmNPV. First, a recombinant BV virus particle rBmBV-egfp-p64-3×flag-gp64sp was constructed using a MultiBac baculovirus multigene expression system. Co-immunoprecipitation experiments were then performed with the recombinant BV virus infected with BmN cells and Dazao silkworms. LC-MS/MS analysis revealed a total of 845 and 1368 candidate proteins were obtained from BmN cells and silkworm samples, respectively. Bioinformatics analysis (Gene Ontology, KEGG Pathway) was conducted for selection of proteins with significant enrichment for further confirmation of the effects on BmNPV replication. Overall, the results showed that SEC61 and PIC promoted the replication of BmNPV, while FABP1 inhibited the replication of BmNPV. In summary, this study reveals the potential proteins involved in BmNPV invasion and proliferation in the host and provides a platform for identifying the potential receptor proteins of BmNPV.
Collapse
|
29
|
Meng X, Li L, An H, Deng Y, Ling C, Lu T, Song G, Wang Y. Lycopene Alleviates Titanium Dioxide Nanoparticle-Induced Testicular Toxicity by Inhibiting Oxidative Stress and Apoptosis in Mice. Biol Trace Elem Res 2022; 200:2825-2837. [PMID: 34396458 DOI: 10.1007/s12011-021-02881-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE The research was carried out to investigate the possible ameliorative effect of lycopene on TiO2 NPs-induced male reproductive toxicity and explore the possible mechanism. METHODS Ninety-six healthy male Institute of Cancer Research (ICR) mice were equally divided into eight groups (control group, 50 mg/kg TiO2 NPs group, 5 mg/kg LYC group, 20 mg/kg LYC group, 40 mg/kg LYC group, 50 mg/kg TiO2 NPs + 5 mg/kg LYC group, 50 mg/kg TiO2 NPs + 20 mg/kg LYC group, 50 mg/kg TiO2 NPs + 40 mg/kg LYC group), and the mice were treated by intragastric administration every day for 30 days in this research. Sperm parameters, testicular histopathology, oxidant and antioxidant enzymes, and cell apoptosis-related protein expression in the testicular tissue were analyzed. RESULTS The results showed that TiO2 NPs exposure significantly decreased sperm count and motility, and TiO2 NPs also increased sperm malformation in the epididymis; these characteristics were improved when co-administration with LYC. Testicular histopathological lesions like disorder of germ cells arrange, detachment, atrophy, and vacuolization were observed after TiO2 NPs exposure, and these abnormalities were effectively ameliorated by co-administration with LYC. Oxidative stress was induced by TiO2 NPs exposure as evidenced by increased the level of MDA and decreased the activity of SOD as well as the level of anti-O2-, and these alterations were effectively prevented by co-administration with LYC. LYC also alleviated TiO2 NPs-induced germ cell apoptosis by inhibiting mitochondrial apoptotic pathway, as shown by the upregulation of Bcl-2, the downregulation of Bax, Cleaved Caspase 3, and Cleaved Caspase 9. CONCLUSION LYC could ameliorate TiO2 NPs-induced testicular damage via inhibiting oxidative stress and apoptosis, which could be used to alleviate the testicular toxicity associated with TiO2 NPs intake.
Collapse
Affiliation(s)
- Xiaojia Meng
- School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Li Li
- School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Hongmei An
- School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Yaxin Deng
- School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Chunmei Ling
- School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Tianjiao Lu
- School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Guanling Song
- School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China.
| | - Yan Wang
- School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China.
| |
Collapse
|
30
|
Liu Q, Han C, Wu X, Zhou J, Zang W. F‑box and WD repeat‑containing protein 7 ameliorates angiotensin II‑induced myocardial hypertrophic injury via the mTOR‑mediated autophagy pathway. Exp Ther Med 2022; 24:464. [PMID: 35747152 PMCID: PMC9204530 DOI: 10.3892/etm.2022.11391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/23/2022] [Indexed: 11/05/2022] Open
Abstract
Myocardial hypertrophy is a common heart disease that is closely associated with heart failure. The expression of F-box and WD repeat-containing protein 7 (FBW7) is significantly downregulated in angiotensin (Ang) II-induced cardiac fibroblasts, suggesting that it may possess an important function in cardiac development. The present study attempted to explore the role of FBW7 in Ang II-induced myocardial hypertrophic injury and its associated mechanism of action. Reverse transcription-quantitative PCR and western blotting were used to determine the expression levels of FBW7 in Ang II-induced H9C2 cells. The expression levels of autophagy-related and mTOR signaling pathway-related proteins were detected using western blotting. Cell viability was assessed using the Cell Counting Kit-8 assay. The apoptosis rate of H9C2 cells was detected using TUNEL assay and western blotting. Cellular hypertrophy and fibrosis were assessed using phalloidin staining and western blotting. Levels of inflammatory factors were examined using ELISA and western blotting, whereas levels of oxidative stress-related markers were detected by corresponding kits. The results indicated that FBW7 expression was downregulated in Ang II-induced H9C2 cells. FBW7 upregulation enhanced the expression levels of autophagy-related proteins and activated mTOR-mediated cellular autophagy. FBW7 overexpression promoted the cell viability, inhibited Ang II-induced apoptosis, cellular hypertrophy and fibrosis in H9C2 cells via the autophagic pathway, as well as inflammation and oxidative stress. Overall, the data indicated that FBW7 overexpression ameliorated Ang II-induced hypertrophic myocardial injury via the mTOR-mediated autophagic pathway.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Cardio‑Thoracic Surgery, Shanghai Tenth People's Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai 200072, P.R. China
| | - Chenjun Han
- Department of Cardio‑Thoracic Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Xiaoyun Wu
- Department of Cardio‑Thoracic Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Jian Zhou
- Department of Cardio‑Thoracic Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Wangfu Zang
- Department of Cardio‑Thoracic Surgery, Shanghai Tenth People's Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai 200072, P.R. China
| |
Collapse
|
31
|
Gao Y, Cheng J, Xu X, Li X, Zhang J, Ma D, Jiang G, Liao Y, Fan S, Niu Z, Yue R, Chang P, Zeng F, Duan S, Meng Z, Xu X, Li X, Li D, Yu L, Ping L, Zhao H, Guo M, Wang L, Wang Y, Zhang Y, Li Q. HSV-1 Infection of Epithelial Dendritic Cells Is a Critical Strategy for Interfering with Antiviral Immunity. Viruses 2022; 14:1046. [PMID: 35632787 PMCID: PMC9147763 DOI: 10.3390/v14051046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1), an α subgroup member of the human herpesvirus family, infects cells via the binding of its various envelope glycoproteins to cellular membrane receptors, one of which is herpes virus entry mediator (HVEM), expressed on dendritic cells. Here, HVEM gene-deficient mice were used to investigate the immunologic effect elicited by the HSV-1 infection of dendritic cells. Dendritic cells expressing the surface marker CD11c showed an abnormal biological phenotype, including the altered transcription of various immune signaling molecules and inflammatory factors associated with innate immunity after viral replication. Furthermore, the viral infection of dendritic cells interfered with dendritic cell function in the lymph nodes, where these cells normally play roles in activating the T-cell response. Additionally, the mild clinicopathological manifestations observed during the acute phase of HSV-1 infection were associated with viral replication in dendritic cells.
Collapse
Affiliation(s)
- Yang Gao
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650000, China; (X.X.); (X.L.); (J.Z.); (D.M.); (G.J.); (Y.L.); (S.F.); (Z.N.); (R.Y.); (P.C.); (F.Z.); (S.D.); (Z.M.); (X.X.); (X.L.); (D.L.); (L.Y.); (L.P.); (H.Z.); (M.G.); (L.W.); (Y.W.); (Y.Z.); (Q.L.)
| | - Jishuai Cheng
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650000, China; (X.X.); (X.L.); (J.Z.); (D.M.); (G.J.); (Y.L.); (S.F.); (Z.N.); (R.Y.); (P.C.); (F.Z.); (S.D.); (Z.M.); (X.X.); (X.L.); (D.L.); (L.Y.); (L.P.); (H.Z.); (M.G.); (L.W.); (Y.W.); (Y.Z.); (Q.L.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Liu T, Lin S, Du Y, Gong Y, Li S. SpBAG3 assisted WSSV infection in mud crab (Scylla paramamosain) by inhibiting apoptosis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 129:104349. [PMID: 35007655 DOI: 10.1016/j.dci.2022.104349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
The function of B-cell lymphoma-2 (Bcl-2) family proteins can be divided into two categories: anti-apoptotic and pro-apoptotic. As an anti-apoptotic protein, Bcl2-associated athanogene 3 (BAG3) plays a key role in regulating apoptosis, development, cell movement, and autophagy, and mediating the adaptability of cells to stimulation. However, SpBAG3 has not been reported in mud crab (Scylla paramamosain), and the regulatory effect of SpBAG3 on apoptosis in mud crab and its function in antiviral immunity is still unknown. In this study, SpBAG3 was found, and characterized, which encoded a total of 175 amino acid (molecular mass 19.3 kDa), including a specific conserved domain of the BAG family. SpBAG3 was significantly down-regulated at 0-48 h post-infection with WSSV in vivo. The antiviral effect of SpBAG3 was investigated using RNA interference. The results indicated that SpBAG3 might be involved in assisting the replication of WSSV in the host. SpBAG3 could change the mitochondrial membrane potential (△ψm), and affect cell apoptosis through mitochondrial apoptotic pathways. Therefore, the results of this study suggested that SpBAG3 could assist WSSV infection by inhibiting the apoptosis of the hemocytes in mud crab.
Collapse
Affiliation(s)
- Ting Liu
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Shanmeng Lin
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Yaoyao Du
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Yi Gong
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China.
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China.
| |
Collapse
|
33
|
Suraweera CD, Hinds MG, Kvansakul M. Structural Insight into KsBcl-2 Mediated Apoptosis Inhibition by Kaposi Sarcoma Associated Herpes Virus. Viruses 2022; 14:v14040738. [PMID: 35458468 PMCID: PMC9027176 DOI: 10.3390/v14040738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 02/05/2023] Open
Abstract
Numerous large DNA viruses have evolved sophisticated countermeasures to hijack the premature programmed cell death of host cells post-infection, including the expression of proteins homologous in sequence, structure, or function to cellular Bcl-2 proteins. Kaposi sarcoma herpes virus (KSHV), a member of the gammaherpesvirinae, has been shown to encode for KsBcl-2, a potent inhibitor of Bcl-2 mediated apoptosis. KsBcl-2 acts by directly engaging host pro-apoptotic Bcl-2 proteins including Bak, Bax and Bok, the BH3-only proteins; Bim, Bid, Bik, Hrk, Noxa and Puma. Here we determined the crystal structures of KsBcl-2 bound to the BH3 motif of pro-apoptotic proteins Bid and Puma. The structures reveal that KsBcl-2 engages pro-apoptotic BH3 motif peptides using the canonical ligand binding groove. Thus, the presence of the readily identifiable conserved BH1 motif sequence “NWGR” of KsBcl-2, as well as highly conserved Arg residue (R86) forms an ionic interaction with the conserved Asp in the BH3 motif in a manner that mimics the canonical ionic interaction seen in host Bcl-2:BH3 motif complexes. These findings provide a structural basis for KSHV mediated inhibition of host cell apoptosis and reveal the flexibility of virus encoded Bcl-2 proteins to mimic key interactions from endogenous host signalling pathways.
Collapse
Affiliation(s)
- Chathura D. Suraweera
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia;
| | - Mark G. Hinds
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
- Correspondence: (M.G.H.); (M.K.)
| | - Marc Kvansakul
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia;
- Correspondence: (M.G.H.); (M.K.)
| |
Collapse
|
34
|
Suraweera CD, Banjara S, Hinds MG, Kvansakul M. Metazoans and Intrinsic Apoptosis: An Evolutionary Analysis of the Bcl-2 Family. Int J Mol Sci 2022; 23:ijms23073691. [PMID: 35409052 PMCID: PMC8998228 DOI: 10.3390/ijms23073691] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 01/12/2023] Open
Abstract
The B-cell lymphoma-2 (Bcl-2) family is a group of genes regulating intrinsic apoptosis, a process controlling events such as development, homeostasis and the innate and adaptive immune responses in metazoans. In higher organisms, Bcl-2 proteins coordinate intrinsic apoptosis through their regulation of the integrity of the mitochondrial outer membrane; this function appears to have originated in the basal metazoans. Bcl-2 genes predate the cnidarian-bilaterian split and have been identified in porifera, placozoans and cnidarians but not ctenophores and some nematodes. The Bcl-2 family is composed of two groups of proteins, one with an α-helical Bcl-2 fold that has been identified in porifera, placozoans, cnidarians, and almost all higher bilaterians. The second group of proteins, the BH3-only group, has little sequence conservation and less well-defined structures and is found in cnidarians and most bilaterians, but not porifera or placozoans. Here we examine the evolutionary relationships between Bcl-2 proteins. We show that the structures of the Bcl-2-fold proteins are highly conserved over evolutionary time. Some metazoans such as the urochordate Oikopleura dioica have lost all Bcl-2 family members. This gene loss indicates that Bcl-2 regulated apoptosis is not an absolute requirement in metazoans, a finding mirrored in recent gene deletion studies in mice. Sequence analysis suggests that at least some Bcl-2 proteins lack the ability to bind BH3-only antagonists and therefore potentially have other non-apoptotic functions. By examining the foundations of the Bcl-2 regulated apoptosis, functional relationships may be clarified that allow us to understand the role of specific Bcl-2 proteins in evolution and disease.
Collapse
Affiliation(s)
- Chathura D. Suraweera
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia; (C.D.S.); (S.B.)
| | - Suresh Banjara
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia; (C.D.S.); (S.B.)
| | - Mark G. Hinds
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
- Correspondence: (M.G.H.); (M.K.)
| | - Marc Kvansakul
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia; (C.D.S.); (S.B.)
- Correspondence: (M.G.H.); (M.K.)
| |
Collapse
|
35
|
Kumar S, Ramamurthy C, Choudhary D, Sekar A, Patra A, Bhavesh NS, Vivekanandan P. Contrasting roles for G-quadruplexes in regulating human Bcl-2 and virus homologues KSHV KS-Bcl-2 and EBV BHRF1. Sci Rep 2022; 12:5019. [PMID: 35322051 PMCID: PMC8943185 DOI: 10.1038/s41598-022-08161-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/03/2022] [Indexed: 01/14/2023] Open
Abstract
Herpesviruses are known to acquire several genes from their hosts during evolution. We found that a significant proportion of virus homologues encoded by HSV-1, HSV-2, EBV and KSHV and their human counterparts contain G-quadruplex motifs in their promoters. We sought to understand the role of G-quadruplexes in the regulatory regions of viral Bcl-2 homologues encoded by KSHV (KS-Bcl-2) and EBV (BHRF1). We demonstrate that the KSHV KS-Bcl-2 and the EBV BHRF1 promoter G-quadruplex motifs (KSHV-GQ and EBV-GQ) form stable intramolecular G-quadruplexes. Ligand-mediated stabilization of KS-Bcl-2 and BHRF1 promoter G-quadruplexes significantly increased the promoter activity resulting in enhanced transcription of these viral Bcl-2 homologues. Mutations disrupting KSHV-GQ and EBV-GQ inhibit promoter activity and render the KS-Bcl-2 and the BHRF1 promoters non-responsive to G-quadruplex ligand. In contrast, promoter G-quadruplexes of human bcl-2 gene inhibit promoter activity. Further, KS-Bcl-2 and BHRF1 promoter G-quadruplexes augment RTA (a virus-encoded transcription factor)-mediated increase in viral bcl-2 promoter activity. In sum, this work highlights how human herpesviruses have evolved to exploit promoter G-quadruplexes to regulate virus homologues to counter their cellular counterparts.
Collapse
Affiliation(s)
- Shivani Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Chitteti Ramamurthy
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Divya Choudhary
- Department of Chemical Engineering, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Aashika Sekar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Anupam Patra
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology, Delhi, New Delhi, 110067, India
| | - Neel Sarovar Bhavesh
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology, Delhi, New Delhi, 110067, India
| | - Perumal Vivekanandan
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India.
| |
Collapse
|
36
|
Abstract
Mitochondria are dynamic organelles vital for energy production with now appreciated roles in immune defense. During microbial infection, mitochondria serve as signaling hubs to induce immune responses to counteract invading pathogens like viruses. Mitochondrial functions are central to a variety of antiviral responses including apoptosis and type I interferon signaling (IFN-I). While apoptosis and IFN-I mediated by mitochondrial antiviral signaling (MAVS) are well-established defenses, new dimensions of mitochondrial biology are emerging as battlefronts during viral infection. Increasingly, it has become apparent that mitochondria serve as reservoirs for distinct cues that trigger immune responses and that alterations in mitochondrial morphology may also tip infection outcomes. Furthermore, new data are foreshadowing pivotal roles for classic, homeostatic facets of this organelle as host-virus interfaces, namely, the tricarboxylic acid (TCA) cycle and electron transport chain (ETC) complexes like respiratory supercomplexes. Underscoring the importance of "housekeeping" mitochondrial activities in viral infection is the growing list of viral-encoded inhibitors including mimics derived from cellular genes that antagonize these functions. For example, virologs for ETC factors and several enzymes from the TCA cycle have been recently identified in DNA virus genomes and serve to pinpoint new vulnerabilities during infection. Here, we highlight recent advances for known antiviral functions associated with mitochondria as well as where the next battlegrounds may be based on viral effectors. Collectively, new methodology and mechanistic insights over the coming years will strengthen our understanding of how an ancient molecular truce continues to defend cells against viruses.
Collapse
Affiliation(s)
- Mahsa Sorouri
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tyron Chang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Genetics, Disease, and Development Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Dustin C Hancks
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
37
|
Kroemer G, Galassi C, Zitvogel L, Galluzzi L. Immunogenic cell stress and death. Nat Immunol 2022; 23:487-500. [PMID: 35145297 DOI: 10.1038/s41590-022-01132-2] [Citation(s) in RCA: 577] [Impact Index Per Article: 192.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/07/2022] [Indexed: 12/20/2022]
Abstract
Dying mammalian cells emit numerous signals that interact with the host to dictate the immunological correlates of cellular stress and death. In the absence of reactive antigenic determinants (which is generally the case for healthy cells), such signals may drive inflammation but cannot engage adaptive immunity. Conversely, when cells exhibit sufficient antigenicity, as in the case of infected or malignant cells, their death can culminate with adaptive immune responses that are executed by cytotoxic T lymphocytes and elicit immunological memory. Suggesting a key role for immunogenic cell death (ICD) in immunosurveillance, both pathogens and cancer cells evolved strategies to prevent the recognition of cell death as immunogenic. Intriguingly, normal cells succumbing to conditions that promote the formation of post-translational neoantigens (for example, oxidative stress) can also drive at least some degree of antigen-specific immunity, pointing to a novel implication of ICD in the etiology of non-infectious, non-malignant disorders linked to autoreactivity.
Collapse
Affiliation(s)
- Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, Centre de Recherche des Cordeliers, INSERM U1138, Sorbonne Université, Université de Paris, Institut Universitaire de France, Paris, France. .,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France. .,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - Claudia Galassi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Université Paris Saclay, Faculty of Medicine, Le Kremlin-Bicêtre, France.,INSERM U1015, Villejuif, France.,Equipe labellisée par la Ligue contre le cancer, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) BIOTHERIS, Villejuif, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA. .,Sandra and Edward Meyer Cancer Center, New York, NY, USA. .,Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
38
|
Wu Q, Yang H, Tai R, Li C, Xia T, Liu Y, Sun C. Lnc-hipk1 inhibits mouse adipocyte apoptosis as a sponge of miR-497. Biofactors 2022; 48:135-147. [PMID: 34856026 DOI: 10.1002/biof.1807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/02/2021] [Indexed: 11/06/2022]
Abstract
Noncoding RNAs (ncRNAs) such as microRNAs (miRNAs), long noncoding RNAs (lncRNA), and circular RNAs are closely related to the biological processes related to obesity. As a miRNA that widely present in different cell types, miR497 is proved to be involved in cell development. However, research on the role of miR-497 as a key factor in regulating the development of adipocytes is still in gap. The role of miR-497 in the apoptosis and proliferation of mouse-derived adipocytes was detected by RNA-seq analysis, RT-qPCR, Western blot, immunofluorescence, and dual-luciferase reporter assay. Using miR-497 mimics to treat 3T3-L1 cells, we found that miR-497 targeted Bcl-2 to promote adipocyte apoptosis through the mitochondrial pathway, and this effect was consistent in the apoptosis model composed of palmitic acid (PA) and hydrogen peroxide (H2 O2 ). LncRNA homeodomain-interacting protein kinase 1 (lnc-hipk1) sponged miR-148b to weaken its silencing of Bcl-2, forming the competitive endogenous RNAs (CeRNAs) regulatory network. Furthermore, overexpression of lnc-hipk1 inhibited the apoptosis of adipocytes by targeting miR-497/Bcl-2. Co-treatment of miR-497 and lnc-hipk1 showed that lnc-hipk1 reversed the apoptosis of adipocytes caused by miR-497 overexpression. And in vivo experiments further confirmed that this effect was also achieved by the CeRNA system of lnc-hipk1/miR-497/Bcl-2. In summary, lnc-hipk1 targets miR-497/Bcl-2 to regulate adipocyte apoptosis through the mitochondrial pathway. This research enriches the research content of ncRNAs and CeRNA in adipocyte development, and provides new targets for the treatment of obesity and other metabolic syndromes.
Collapse
Affiliation(s)
- Qiong Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Department of Pathophysiology, Medical College, Qinghai University, Xining, China
| | - Hong Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Ruiqing Tai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chaowei Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Tianyu Xia
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yongnian Liu
- Department of Pathophysiology, Medical College, Qinghai University, Xining, China
| | - Chao Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
39
|
Sadri Nahand J, Salmaninejad A, Mollazadeh S, Tamehri Zadeh SS, Rezaee M, Sheida AH, Sadoughi F, Dana PM, Rafiyan M, Zamani M, Taghavi SP, Dashti F, Mirazimi SMA, Bannazadeh Baghi H, Moghoofei M, Karimzadeh M, Vosough M, Mirzaei H. Virus, Exosome, and MicroRNA: New Insights into Autophagy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1401:97-162. [DOI: 10.1007/5584_2022_715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Xiao Q, Dong ZQ, Zhu Y, Zhang Q, Yang X, Xiao M, Chen P, Lu C, Pan MH. Bombyx mori Nucleopolyhedrovirus (BmNPV) Induces G2/M Arrest to Promote Viral Multiplication by Depleting BmCDK1. INSECTS 2021; 12:insects12121098. [PMID: 34940186 PMCID: PMC8708760 DOI: 10.3390/insects12121098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 01/01/2023]
Abstract
Simple Summary Baculoviruses arrest the cell cycle in the S or G2/M phase in insect cells, but the exact mechanism of this process still remains obscure. Bombyx mori nucleopolyhedrovirus (BmNPV), one of the best characterized baculoviruses, is an important pathogen in silkworms. In the present study, we determined that downregulation of BmCDK1 and BmCyclin B expression was required for BmNPV-mediated G2/M phase arrest, which plays an essential role in facilitating BmNPV replication. Further investigations showed that BmNPV IAP1 interacted with BmCDK1. The overexpression of the BmNPV iap1 gene led to the accumulation of cells in the G2/M phase, and BmNPV iap1 gene knockdown attenuated the effect of BmNPV-mediated G2/M phase arrest. These findings enhance the understanding of BmNPV pathogenesis, and indicate a novel mechanism through which baculoviruses impact the cell cycle progression. Abstract Understanding virus–host interaction is very important for delineating the mechanism involved in viral replication and host resistance. Baculovirus, an insect virus, can cause S or G2/M phase arrest in insect cells. However, the roles and mechanism of Baculovirus-mediated S or G2/M phase arrest are not fully understood. Our results, obtained using flow cytometry (FCM), tubulin-labeling, BrdU-labeling, and CellTiter 96® AQueous One Solution Cell Proliferation Assay (MTS), showed that Bombyx mori nucleopolyhedrovirus (BmNPV) induced G2/M phase arrest and inhibited cellular DNA replication as well as cell proliferation in BmN-SWU1 cells. We found that BmNPV induced G2/M arrest to support its replication and proliferation by reducing the expression of BmCDK1 and BmCyclin B. Co-immunoprecipitation assays confirmed that BmNPV IAP1 interacted with BmCDK1. BmNPV iap1 was involved in the process of BmNPV-induced G2/M arrest by reducing the content of BmCDK1. Taken together, our results improve the understanding of the virus–host interaction network, and provide a potential target gene that connects apoptosis and the cell cycle.
Collapse
Affiliation(s)
- Qin Xiao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (Q.X.); (Z.-Q.D.); (Y.Z.); (Q.Z.); (X.Y.); (M.X.); (P.C.)
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Zhan-Qi Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (Q.X.); (Z.-Q.D.); (Y.Z.); (Q.Z.); (X.Y.); (M.X.); (P.C.)
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Yan Zhu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (Q.X.); (Z.-Q.D.); (Y.Z.); (Q.Z.); (X.Y.); (M.X.); (P.C.)
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Qian Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (Q.X.); (Z.-Q.D.); (Y.Z.); (Q.Z.); (X.Y.); (M.X.); (P.C.)
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Xiu Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (Q.X.); (Z.-Q.D.); (Y.Z.); (Q.Z.); (X.Y.); (M.X.); (P.C.)
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Miao Xiao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (Q.X.); (Z.-Q.D.); (Y.Z.); (Q.Z.); (X.Y.); (M.X.); (P.C.)
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (Q.X.); (Z.-Q.D.); (Y.Z.); (Q.Z.); (X.Y.); (M.X.); (P.C.)
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (Q.X.); (Z.-Q.D.); (Y.Z.); (Q.Z.); (X.Y.); (M.X.); (P.C.)
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
- Correspondence: (C.L.); (M.-H.P.); Tel.: +86-23-6825-0346 (C.L.); +86-23-6825-0076 (M.-H.P.); Fax: +86-23-6825-1128 (C.L. & M.-H.P.)
| | - Min-Hui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (Q.X.); (Z.-Q.D.); (Y.Z.); (Q.Z.); (X.Y.); (M.X.); (P.C.)
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
- Correspondence: (C.L.); (M.-H.P.); Tel.: +86-23-6825-0346 (C.L.); +86-23-6825-0076 (M.-H.P.); Fax: +86-23-6825-1128 (C.L. & M.-H.P.)
| |
Collapse
|
41
|
Zhou Y, Wei W, Shen J, Lu L, Lu T, Wang H, Xue X. Alisol A 24-acetate protects oxygen-glucose deprivation-induced brain microvascular endothelial cells against apoptosis through miR-92a-3p inhibition by targeting the B-cell lymphoma-2 gene. PHARMACEUTICAL BIOLOGY 2021; 59:513-524. [PMID: 33905668 PMCID: PMC8081307 DOI: 10.1080/13880209.2021.1912117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
CONTEXT Alisol A 24-acetate has been used to treat vascular diseases. However, the underlying mechanisms still remain unclear. OBJECTIVE The present study evaluated the antiapoptotic effect of alisol A 24-acetate on brain microvascular endothelial cells (BMECs) and explored the underlying mechanisms. MATERIALS AND METHODS BMECs were injured through oxygen -glucose deprivation (OGD) after alisol A 24-acetate treatment. Cell viability and half-maximal inhibitory concentration (IC50) were measured using CCK-8, whereas inflammatory factors and oxidative stress indicators were measured using enzyme linked immunosorbent assay. Cell invasion and wound healing assays were detected. Cell apoptosis was assessed using flow cytometry. B-cell lymphoma-2 (Bcl-2) and Bcl-2 associated X (Bax) expression were analyzed using Western blotting. Dual-luciferase assay was applied to detect target genes of miR-92a-3p. RESULT Alisol A 24-acetate had an IC50 of 98.53 mg/L and inhibited cell viability at concentrations over 50mg/L. OGD induced apoptosis and promoted miR-92a-3p overexpression in BMECs. However, alisol A 24-acetate treatment suppressed inflammation, improved migration and invasion abilities, increased Bcl-2 expression, inhibited Bax expression, and repressed apoptosis and miR92a-3p overexpression in OGD-induced BMECs. MiR-92a-3p overexpression promoted cell apoptosis and suppressed Bcl-2 expression, whereas its inhibitor reversed the tendency. Alisol A 24-acetate treatment relieved the effects of miR-92a-3p overexpression. Dual-luciferase assay confirmed that miR-92a-3p negatively regulated the Bcl-2 expression. CONCLUSIONS These findings suggest that alisol A 24-acetate exerts antiapoptotic effects on OGD-induced BMECs through miR-92a-3p inhibition by targeting the Bcl-2 gene, indicating its potential for BMECs protection and as a novel therapeutic agent for the treatment of cerebrovascular disease.
Collapse
Affiliation(s)
- Yangjie Zhou
- The Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Wei Wei
- The Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Julian Shen
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lu Lu
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Taotao Lu
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Hong Wang
- The Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiehua Xue
- The Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- CONTACT Xiehua Xue No. 13, Hudongzhi Road, Gulou District, Fuzhou350122, China
| |
Collapse
|
42
|
Li T, Zhao G, Zhang T, Zhang Z, Chen X, Song J, Wang X, Li J, Huang L, Wen L, Li C, Zhao D, He X, Bu Z, Zheng J, Weng C. African Swine Fever Virus pE199L Induces Mitochondrial-Dependent Apoptosis. Viruses 2021; 13:2240. [PMID: 34835046 PMCID: PMC8617669 DOI: 10.3390/v13112240] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/31/2021] [Accepted: 11/04/2021] [Indexed: 12/11/2022] Open
Abstract
African swine fever (ASF) is a severe hemorrhagic disease in swine characterized by massive lymphocyte depletion and cell death, with apoptosis and necrosis in infected lymphoid tissues. However, the molecular mechanism regarding ASFV-induced cell death remains largely unknown. In this study, 94 ASFV-encoded proteins were screened to determine the viral proteins involved in cell death in vitro, and pE199L showed the most significant effect. Ectopic expression of pE199L in porcine cells (CRL-2843) and human cells (HEK293T and HeLa cells) induced cell death remarkably, showing obvious shrinking, blistering, apoptotic bodies, and nuclear DNA fragments. Meanwhile, cell death was markedly alleviated when the expression of pE199L was knocked down during ASFV infection. Additionally, the expression of pE199L caused a loss of mitochondrial membrane potential, release of cytochrome C, and caspase-9 and -3/7 activation, indicating that the mitochondrial apoptotic pathway was involved in pE199L-induced apoptosis. Further investigations showed that pE199L interacted with several anti-apoptotic BCL-2 subfamily members (such as BCL-XL, MCL-1, BCL-W, and BCL-2A1) and competed with BAK for BCL-XL, which promoted BAK and BAX activation. Taken together, ASFV pE199L induces the mitochondrial-dependent apoptosis, which may provide clues for a comprehensive understanding of ASFV pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jun Zheng
- Division of Fundamental Immunology, National African Swine Fever Para-Reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin 150069, China; (T.L.); (G.Z.); (T.Z.); (Z.Z.); (X.C.); (J.S.); (X.W.); (J.L.); (L.H.); (L.W.); (C.L.); (D.Z.); (X.H.); (Z.B.)
| | - Changjiang Weng
- Division of Fundamental Immunology, National African Swine Fever Para-Reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin 150069, China; (T.L.); (G.Z.); (T.Z.); (Z.Z.); (X.C.); (J.S.); (X.W.); (J.L.); (L.H.); (L.W.); (C.L.); (D.Z.); (X.H.); (Z.B.)
| |
Collapse
|
43
|
Li Y, Fan Y, Zhou Y, Jiang N, Xue M, Meng Y, Liu W, Zhang J, Lin G, Zeng L. Bcl-xL Reduces Chinese Giant Salamander Iridovirus-Induced Mitochondrial Apoptosis by Interacting with Bak and Inhibiting the p53 Pathway. Viruses 2021; 13:v13112224. [PMID: 34835028 PMCID: PMC8622046 DOI: 10.3390/v13112224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 01/22/2023] Open
Abstract
Chinese giant salamander iridovirus (GSIV) infection could lead to mitochondrial apoptosis in this animal, a process that involves B-cell lymphoma-2 (BCL-2) superfamily molecules. The mRNA expression level of Bcl-xL, a crucial antiapoptotic molecule in the BCL-2 family, was reduced in early infection and increased in late infection. However, the molecular mechanism remains unknown. In this study, the function and regulatory mechanisms of Chinese giant salamander (Andrias davidianus) Bcl-xL (AdBcl-xL) during GSIV infection were investigated. Western blotting assays revealed that the level of Bcl-xL protein was downregulated markedly as the infection progressed. Plasmids expressing AdBcl-xL or AdBcl-xL short interfering RNAs were separately constructed and transfected into Chinese giant salamander muscle cells. Confocal microscopy showed that overexpressed AdBcl-xL was translocated to the mitochondria after infection with GSIV. Additionally, flow cytometry analysis demonstrated that apoptotic progress was reduced in both AdBcl-xL-overexpressing cells compared with those in the control, while apoptotic progress was enhanced in cells silenced for AdBcl-xL. A lower number of copies of virus major capsid protein genes and a reduced protein synthesis were confirmed in AdBcl-xL-overexpressing cells. Moreover, AdBcl-xL could bind directly to the proapoptotic molecule AdBak with or without GSIV infection. In addition, the p53 level was inhibited and the mRNA expression levels of crucial regulatory molecules in the p53 pathway were regulated in AdBcl-xL-overexpressing cells during GSIV infection. These results suggest that AdBcl-xL plays negative roles in GSIV-induced mitochondrial apoptosis and virus replication by binding to AdBak and inhibiting p53 activation.
Collapse
Affiliation(s)
- Yiqun Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Y.L.); (Y.F.); (Y.Z.); (N.J.); (M.X.); (Y.M.); (W.L.); (J.Z.); (G.L.)
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Y.L.); (Y.F.); (Y.Z.); (N.J.); (M.X.); (Y.M.); (W.L.); (J.Z.); (G.L.)
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Y.L.); (Y.F.); (Y.Z.); (N.J.); (M.X.); (Y.M.); (W.L.); (J.Z.); (G.L.)
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Y.L.); (Y.F.); (Y.Z.); (N.J.); (M.X.); (Y.M.); (W.L.); (J.Z.); (G.L.)
| | - Mingyang Xue
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Y.L.); (Y.F.); (Y.Z.); (N.J.); (M.X.); (Y.M.); (W.L.); (J.Z.); (G.L.)
| | - Yan Meng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Y.L.); (Y.F.); (Y.Z.); (N.J.); (M.X.); (Y.M.); (W.L.); (J.Z.); (G.L.)
| | - Wenzhi Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Y.L.); (Y.F.); (Y.Z.); (N.J.); (M.X.); (Y.M.); (W.L.); (J.Z.); (G.L.)
| | - Jingjing Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Y.L.); (Y.F.); (Y.Z.); (N.J.); (M.X.); (Y.M.); (W.L.); (J.Z.); (G.L.)
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Ge Lin
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Y.L.); (Y.F.); (Y.Z.); (N.J.); (M.X.); (Y.M.); (W.L.); (J.Z.); (G.L.)
| | - Lingbing Zeng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Y.L.); (Y.F.); (Y.Z.); (N.J.); (M.X.); (Y.M.); (W.L.); (J.Z.); (G.L.)
- Correspondence: ; Tel.: +86-027-81785190
| |
Collapse
|
44
|
Reddy C, Sankararamakrishnan R. Designing BH3-Mimetic Peptide Inhibitors for the Viral Bcl-2 Homologues A179L and BHRF1: Importance of Long-Range Electrostatic Interactions. ACS OMEGA 2021; 6:26976-26989. [PMID: 34693118 PMCID: PMC8529603 DOI: 10.1021/acsomega.1c03385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Viruses have evolved strategies to prevent apoptosis of infected cells at early stages of infection. The viral proteins (vBcl-2s) from specific viral genes adopt a helical fold that is structurally similar to that of mammalian antiapoptotic Bcl-2 proteins and exhibit little sequence similarity. Hence, vBcl-2 homologues are attractive targets to prevent viral infection. However, very few studies have focused on developing inhibitors for vBcl-2 homologues. In this study, we have considered two vBcl-2 homologues, A179L from African swine fever virus and BHRF1 from Epstein-Barr virus. We generated two sets of 8000 randomized BH3-like sequences from eight wild-type proapoptotic BH3 peptides. During this process, the four conserved hydrophobic residues and an Asp residue were retained at their respective positions, and all other positions were substituted randomly without any bias. We constructed 8000 structures each for A179L and BHRF1 in complex with BH3-like sequences. Histograms of interaction energies calculated between the peptide and the protein resulted in negatively skewed distributions. The BH3-like peptides with high helical propensities selected from the negative tail of the respective interaction energy distributions exhibited more favorable interactions with A179L and BHRF1, and they are rich in basic residues. Molecular dynamics studies and electrostatic potential maps further revealed that both acidic and basic residues favorably interact with A179L, while only basic residues have the most favorable interactions with BHRF1. As in mammalian homologues, the role of long-range interactions and nonhotspot residues has to be taken into account while designing specific BH3-mimetic inhibitors for vBcl-2 homologues.
Collapse
Affiliation(s)
- Chinthakunta
Narendra Reddy
- Department
of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Ramasubbu Sankararamakrishnan
- Department
of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
- Mehta
Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
45
|
Yang G, Zhang J, Wang S, Wang J, Wang J, Zhu Y, Wang J. Gypenoside Inhibits Bovine Viral Diarrhea Virus Replication by Interfering with Viral Attachment and Internalization and Activating Apoptosis of Infected Cells. Viruses 2021; 13:v13091810. [PMID: 34578391 PMCID: PMC8473207 DOI: 10.3390/v13091810] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/18/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV) causes a severe threat to the cattle industry due to ineffective control measures. Gypenoside is the primary component of Gynostemma pentaphyllum, which has potential medicinal value and has been widely applied as a food additive and herbal supplement. However, little is known about the antiviral effects of gypenoside. The present study aimed to explore the antiviral activities of gypenoside against BVDV infection. The inhibitory activity of gypenoside against BVDV was assessed by using virus titration and performing Western blotting, quantitative reverse transcription PCR (RT-qPCR), and immunofluorescence assays in MDBK cells. We found that gypenoside exhibited high anti-BVDV activity by interfering with the viral attachment to and internalization in cells. The study showed that BVDV infection inhibits apoptosis of infected cells from escaping the innate defense of host cells. Our data further demonstrated that gypenoside inhibited BVDV infection by electively activating the apoptosis of BVDV-infected cells for execution, as evidenced by the regulation of the expression of the apoptosis-related protein, promotion of caspase-3 activation, and display of positive TUNEL staining; no toxicity was observed in non-infected cells. Collectively, the data identified that gypenoside exerts an anti-BVDV-infection role by inhibiting viral attachment and internalization and selectively purging virally infected cells. Therefore, our study will contribute to the development of a novel prophylactic and therapeutic strategy against BVDV infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jiufeng Wang
- Correspondence: ; Tel.: +86-010-6273-1094; Fax: +86-010-6273-1274
| |
Collapse
|
46
|
Structural Investigation of Orf Virus Bcl-2 Homolog ORFV125 Interactions with BH3-Motifs from BH3-Only Proteins Puma and Hrk. Viruses 2021; 13:v13071374. [PMID: 34372579 PMCID: PMC8310162 DOI: 10.3390/v13071374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/21/2022] Open
Abstract
Numerous viruses have evolved sophisticated countermeasures to hijack the early programmed cell death of host cells in response to infection, including the use of proteins homologous in sequence or structure to Bcl-2. Orf virus, a member of the parapoxviridae, encodes for the Bcl-2 homolog ORFV125, a potent inhibitor of Bcl-2-mediated apoptosis in the host. ORFV125 acts by directly engaging host proapoptotic Bcl-2 proteins including Bak and Bax as well as the BH3-only proteins Hrk and Puma. Here, we determined the crystal structures of ORFV125 bound to the BH3 motif of proapoptotic proteins Puma and Hrk. The structures reveal that ORFV125 engages proapoptotic BH3 motif peptides using the canonical ligand binding groove. An Arg located in the structurally equivalent BH1 region of ORFV125 forms an ionic interaction with the conserved Asp in the BH3 motif in a manner that mimics the canonical ionic interaction seen in host Bcl-2:BH3 motif complexes. These findings provide a structural basis for Orf virus-mediated inhibition of host cell apoptosis and reveal the flexibility of virus encoded Bcl-2 proteins to mimic key interactions from endogenous host signalling pathways.
Collapse
|
47
|
Fang Y, Peng K. Regulation of innate immune responses by cell death-associated caspases during virus infection. FEBS J 2021; 289:4098-4111. [PMID: 34089572 DOI: 10.1111/febs.16051] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/04/2021] [Accepted: 06/03/2021] [Indexed: 01/04/2023]
Abstract
Viruses are obligate intracellular pathogens that rely on cellular machinery for successful replication and dissemination. The host cells encode a number of different strategies to sense and restrict the invading viral pathogens. Caspase-mediated programmed cell death pathways that are triggered by virus infection, such as apoptosis and pyroptosis, provide a means for the infected cells to limit viral proliferation, leading to suicidal cell death (apoptosis) or lytic cell death and alerting uninfected cells to mount anti-viral responses (pyroptosis). However, some viruses can employ activated caspases to dampen the anti-viral responses and facilitate viral replication through cleavage of critical molecules of the innate immune pathways. The regulation of innate immune responses by caspase activation during virus infection has recently become an important topic. In this review, we briefly introduce the characteristics of different classes of caspases and the cell death pathways regulated by these caspases. We then describe how viruses trigger or dampen caspase activation during infection and how these activated caspases regulate three major innate immune response pathways of viral infections: the retinoic acid-inducible gene I-like receptor, toll-like receptor and cyclic GMP-AMP synthase-stimulator of interferon genes pathways.
Collapse
Affiliation(s)
- Yujie Fang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ke Peng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
48
|
Zhou CM, Yu XJ. Unraveling the Underlying Interaction Mechanism Between Dabie bandavirus and Innate Immune Response. Front Immunol 2021; 12:676861. [PMID: 34122440 PMCID: PMC8190332 DOI: 10.3389/fimmu.2021.676861] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/10/2021] [Indexed: 12/22/2022] Open
Abstract
The genus Bandavirus consists of seven tick-borne bunyaviruses, among which four are known to infect humans. Dabie bandavirus, severe fever with thrombocytopenia syndrome virus (SFTSV), poses serious threats to public health worldwide. SFTSV is a tick-borne virus mainly reported in China, South Korea, and Japan with a mortality rate of up to 30%. To date, most immunology-related studies focused on the antagonistic role of SFTSV non-structural protein (NSs) in sequestering RIG-I-like-receptors (RLRs)-mediated type I interferon (IFN) induction and type I IFN mediated signaling pathway. It is still elusive whether the interaction of SFTSV and other conserved innate immune responses exists. As of now, no specific vaccines or therapeutics are approved for SFTSV prevention or treatments respectively, in part due to a lack of comprehensive understanding of the molecular interactions occurring between SFTSV and hosts. Hence, it is necessary to fully understand the host-virus interactions including antiviral responses and viral evasion mechanisms. In this review, we highlight the recent progress in understanding the pathogenesis of SFTS and speculate underlying novel mechanisms in response to SFTSV infection.
Collapse
Affiliation(s)
- Chuan-min Zhou
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan, China
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xue-jie Yu
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
49
|
Pogmore JP, Uehling D, Andrews DW. Pharmacological Targeting of Executioner Proteins: Controlling Life and Death. J Med Chem 2021; 64:5276-5290. [PMID: 33939407 DOI: 10.1021/acs.jmedchem.0c02200] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Small-molecule mediated modulation of protein interactions of Bcl-2 (B-cell lymphoma-2) family proteins was clinically validated in 2015 when Venetoclax, a selective inhibitor of the antiapoptotic protein BCL-2, achieved breakthrough status designation by the FDA for treatment of lymphoid malignancies. Since then, substantial progress has been made in identifying inhibitors of other interactions of antiapoptosis proteins. However, targeting their pro-apoptotic counterparts, the "executioners" BAX, BAK, and BOK that both initiate and commit the cell to dying, has lagged behind. However, recent publications demonstrate that these proteins can be positively or negatively regulated using small molecule tool compounds. The results obtained with these molecules suggest that pharmaceutical regulation of apoptosis will have broad implications that extend beyond activating cell death in cancer. We review recent advances in identifying compounds and their utility in the exogenous control of life and death by regulating executioner proteins, with emphasis on the prototype BAX.
Collapse
Affiliation(s)
- Justin P Pogmore
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1J7, Canada.,Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario M4N 3M5, Canada
| | - David Uehling
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario M5G 1M1, Canada
| | - David W Andrews
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1J7, Canada.,Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario M4N 3M5, Canada
| |
Collapse
|
50
|
Herpesvirus Regulation of Selective Autophagy. Viruses 2021; 13:v13050820. [PMID: 34062931 PMCID: PMC8147283 DOI: 10.3390/v13050820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/18/2022] Open
Abstract
Selective autophagy has emerged as a key mechanism of quality and quantity control responsible for the autophagic degradation of specific subcellular organelles and materials. In addition, a specific type of selective autophagy (xenophagy) is also activated as a line of defense against invading intracellular pathogens, such as viruses. However, viruses have evolved strategies to counteract the host’s antiviral defense and even to activate some proviral types of selective autophagy, such as mitophagy, for their successful infection and replication. This review discusses the current knowledge on the regulation of selective autophagy by human herpesviruses.
Collapse
|