1
|
Yun T, Hua J, Chen L, Ye W, Ni Z, Zhu Y, Zhang C. Infection with novel duck reovirus induces stress granule and methylation-mediated host translational shutoff in Muscovy ducklings. Commun Biol 2024; 7:1549. [PMID: 39572728 PMCID: PMC11582818 DOI: 10.1038/s42003-024-07259-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024] Open
Abstract
The recently identified novel duck reovirus (NDRV) is a waterfowl reovirus that can seriously harm or kill various waterfowl species. However, how NDRV interacts with host cells in Muscovy ducklings beyond the typical pathogenesis resulting from a viral infection is unknown. The current study examined the global translation efficiency of the Fabricius bursa of Muscovy ducklings infected with NDRV HN10 using mass spectrometry and ribosome footprint sequencing. Protein-protein interactions were investigated using immunogold labeling, transmission electron microscopy, and immunocytochemistry. An analysis of the relationship between m6A and translation was performed using RNA immunoprecipitation and m6A methylation immunoprecipitation. We found that both in vivo and in vitro, the translation efficiency of RNA modified with m6A could be significantly reduced by σB, a structural protein component of NDRV HN10. Furthermore, σB might simultaneously interact with the stress granule complex CAPRIN1 and G3BP1 and the m6A reader protein YTHDF1/3. Significant overlap was observed between m6A-modified and G3BP1-enriched RNA, indicating that granule stress could capture m6A-methylated RNA. We discovered a new function for NDRV HN10 in translational shutoff by recruiting m6A-modified RNA into stress granules located in the Fabricius bursa of Muscovy ducklings.
Collapse
Affiliation(s)
- Tao Yun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Jionggang Hua
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Liu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Weicheng Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zheng Ni
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yinchu Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Cun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
2
|
Keiser PT, Zhang W, Ricca M, Wacquiez A, Grimins A, Cencic R, Patten JJ, Shah P, Padilha E, Connor JH, Pelletier J, Lyons SM, Saeed M, Brown LE, Porco JA, Davey RA. Amidino-rocaglates (ADRs), a class of synthetic rocaglates, are potent inhibitors of SARS-CoV-2 replication through inhibition of viral protein synthesis. Antiviral Res 2024; 230:105976. [PMID: 39117283 PMCID: PMC11434215 DOI: 10.1016/j.antiviral.2024.105976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/12/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Coronaviruses are highly transmissible respiratory viruses that cause symptoms ranging from mild congestion to severe respiratory distress. The recent outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has underscored the need for new antivirals with broad-acting mechanisms to combat increasing emergence of new variants. Currently, there are only a few antivirals approved for treatment of SARS-CoV-2. Previously, the rocaglate natural product silvestrol and synthetic rocaglates such as CR-1-31b were shown to have antiviral effects by inhibiting eukaryotic translation initiation factor 4A1 (eIF4A) function and virus protein synthesis. In this study, we evaluated amidino-rocaglates (ADRs), a class of synthetic rocaglates with the most potent eIF4A-inhibitory activity to-date, for inhibition of SARS-CoV-2 infection. This class of compounds showed low nanomolar potency against multiple SARS-CoV-2 variants and in multiple cell types, including human lung-derived cells, with strong inhibition of virus over host protein synthesis and low cytotoxicity. The most potent ADRs were also shown to be active against two highly pathogenic and distantly related coronaviruses, SARS-CoV and MERS-CoV. Mechanistically, cells with mutations of eIF4A1, which are known to reduce rocaglate interaction displayed reduced ADR-associated loss of cellular function, consistent with targeting of protein synthesis. Overall, ADRs and derivatives may offer new potential treatments for SARS-CoV-2 with the goal of developing a broad-acting anti-coronavirus agent.
Collapse
Affiliation(s)
- Patrick T Keiser
- Department of Virology, Immunology, and Microbiology, Boston University Medical School, Boston, MA, 02118, USA; National Emerging Infectious Diseases Laboratories, Boston University, MA, 02118, USA
| | - Wenhan Zhang
- Boston University Center for Molecular Discovery (BU-CMD), Department of Chemistry, Boston University, Boston, MA, 02215, USA
| | - Michael Ricca
- Boston University Center for Molecular Discovery (BU-CMD), Department of Chemistry, Boston University, Boston, MA, 02215, USA
| | - Alan Wacquiez
- National Emerging Infectious Diseases Laboratories, Boston University, MA, 02118, USA; Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, 02118, USA
| | - Autumn Grimins
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, 02118, USA
| | - Regina Cencic
- Department of Biochemistry, Department of Oncology and Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada, H3G 1Y6
| | - J J Patten
- Department of Virology, Immunology, and Microbiology, Boston University Medical School, Boston, MA, 02118, USA; National Emerging Infectious Diseases Laboratories, Boston University, MA, 02118, USA
| | - Pranav Shah
- National Institutes of Health, National Center for Advancing Translational Sciences, Bethesda, MD, 20892, USA
| | - Elias Padilha
- National Institutes of Health, National Center for Advancing Translational Sciences, Bethesda, MD, 20892, USA
| | - John H Connor
- Department of Virology, Immunology, and Microbiology, Boston University Medical School, Boston, MA, 02118, USA; National Emerging Infectious Diseases Laboratories, Boston University, MA, 02118, USA
| | - Jerry Pelletier
- Department of Biochemistry, Department of Oncology and Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada, H3G 1Y6
| | - Shawn M Lyons
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, 02118, USA
| | - Mohsan Saeed
- National Emerging Infectious Diseases Laboratories, Boston University, MA, 02118, USA; Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, 02118, USA
| | - Lauren E Brown
- Boston University Center for Molecular Discovery (BU-CMD), Department of Chemistry, Boston University, Boston, MA, 02215, USA
| | - John A Porco
- Boston University Center for Molecular Discovery (BU-CMD), Department of Chemistry, Boston University, Boston, MA, 02215, USA
| | - Robert A Davey
- Department of Virology, Immunology, and Microbiology, Boston University Medical School, Boston, MA, 02118, USA; National Emerging Infectious Diseases Laboratories, Boston University, MA, 02118, USA.
| |
Collapse
|
3
|
Park YH, Cho HS, Moon S, Namkoong S, Jung HS. Enhancement of Stress Granule Formation by a Chiral Compound Targeting G3BP1 via eIF2α Phosphorylation. Int J Mol Sci 2024; 25:10571. [PMID: 39408899 PMCID: PMC11476476 DOI: 10.3390/ijms251910571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/24/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
The chirality of a chemical differentiates it from its mirror-image counterpart. This unique property has significant implications in chemistry, biology, and drug discovery, where chiral chemicals display high selectivity and activity in achieving target specificity and reducing attrition rates in drug development. Stress granules (SGs) are dynamic assemblies of proteins and RNA that form in the cytoplasm of cells under stress conditions. Modulating their formation or disassembly could offer a novel approach to treating a wide range of diseases. This has led to significant interest in SGs as potential therapeutic targets. This study examined the NTF2-like domain of G3BP1 as a possible target for SG modulation. Molecular docking was used to simulate the interactions of compounds with the domain, and a potential candidate with a chiral structure was identified. The experiments showed that the compound induced the formation of SG-like granules. Importantly, the ability of this compound to modulate SG offers valuable insights into a new mechanism underlying the dynamics and promoting the assembly of SGs, and this new mechanism, in turn, holds potential for the development of drugs with diverse mechanisms of action and potentially synergistic effects.
Collapse
Affiliation(s)
- Yoon Ho Park
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, Republic of Korea; (Y.H.P.); (H.S.C.)
| | - Hyun Suh Cho
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, Republic of Korea; (Y.H.P.); (H.S.C.)
| | - Sungjin Moon
- Department of Biological Science, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Sim Namkoong
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, Republic of Korea; (Y.H.P.); (H.S.C.)
| | - Hyun Suk Jung
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, Republic of Korea; (Y.H.P.); (H.S.C.)
| |
Collapse
|
4
|
Saito H, Handa Y, Chen M, Schneider-Poetsch T, Shichino Y, Takahashi M, Romo D, Yoshida M, Fürstner A, Ito T, Fukuzawa K, Iwasaki S. DMDA-PatA mediates RNA sequence-selective translation repression by anchoring eIF4A and DDX3 to GNG motifs. Nat Commun 2024; 15:7418. [PMID: 39223140 PMCID: PMC11369270 DOI: 10.1038/s41467-024-51635-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 08/11/2024] [Indexed: 09/04/2024] Open
Abstract
Small-molecule compounds that elicit mRNA-selective translation repression have attracted interest due to their potential for expansion of druggable space. However, only a limited number of examples have been reported to date. Here, we show that desmethyl desamino pateamine A (DMDA-PatA) represses translation in an mRNA-selective manner by clamping eIF4A, a DEAD-box RNA-binding protein, onto GNG motifs. By systematically comparing multiple eIF4A inhibitors by ribosome profiling, we found that DMDA-PatA has unique mRNA selectivity for translation repression. Unbiased Bind-n-Seq reveals that DMDA-PatA-targeted eIF4A exhibits a preference for GNG motifs in an ATP-independent manner. This unusual RNA binding sterically hinders scanning by 40S ribosomes. A combination of classical molecular dynamics simulations and quantum chemical calculations, and the subsequent development of an inactive DMDA-PatA derivative reveals that the positive charge of the tertiary amine on the trienyl arm induces G selectivity. Moreover, we identified that DDX3, another DEAD-box protein, is an alternative DMDA-PatA target with the same effects on eIF4A. Our results provide an example of the sequence-selective anchoring of RNA-binding proteins and the mRNA-selective inhibition of protein synthesis by small-molecule compounds.
Collapse
Grants
- Incentive Research Projects MEXT | RIKEN
- JP23gm1410001 Japan Agency for Medical Research and Development (AMED)
- JP23H00095 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP23H04268 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP18H05503 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- S10 OD018174 NIH HHS
- R01 GM052964 NIGMS NIH HHS
- JP21H05281 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- Pioneering Projects MEXT | RIKEN
- JP23K05648 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP19H05640 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP21H05734 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- R37 GM052964 NIGMS NIH HHS
- JP23H02415 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP24H02307 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP20H05784 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- R29 GM052964 NIGMS NIH HHS
Collapse
Affiliation(s)
- Hironori Saito
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Yuma Handa
- School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Shinagawa, Tokyo, Japan
| | - Mingming Chen
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Tilman Schneider-Poetsch
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Mari Takahashi
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama, Japan
| | - Daniel Romo
- Department of Chemistry & Biochemistry and Baylor Synthesis and Drug-Lead Discovery Laboratory, Baylor University, Waco, TX, USA
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- Office of University Professors, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, Mülheim/Ruhr, Germany
| | - Takuhiro Ito
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama, Japan
| | - Kaori Fukuzawa
- School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Shinagawa, Tokyo, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan.
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan.
| |
Collapse
|
5
|
Magari F, Messner H, Salisch F, Schmelzle SM, van Zandbergen G, Fürstner A, Ziebuhr J, Heine A, Müller-Ruttloff C, Grünweller A. Potent anti-coronaviral activity of pateamines and new insights into their mode of action. Heliyon 2024; 10:e33409. [PMID: 39035482 PMCID: PMC11259845 DOI: 10.1016/j.heliyon.2024.e33409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/23/2024] Open
Abstract
Pateamines, derived from the sponge Mycale hentscheli, function as inhibitors of the RNA helicase eIF4A and exhibit promising antiviral and anticancer properties. eIF4A plays a pivotal role in unwinding stable RNA structures within the 5'-UTR of selected mRNAs, facilitating the binding of the 43S preinitiation complex during translation initiation. Pateamines function by clamping RNA substrates onto the eIF4A surface, effectively preventing eIF4A from carrying out the unwinding step. Rocaglates, a compound class isolated from plants of the genus Aglaia, target the same binding pocket on eIF4A, and based on structural data, a similar mode of action has been proposed for pateamines and rocaglates. In this study, we conducted a detailed characterization of pateamines' binding mode and assessed their antiviral activity against human pathogenic coronaviruses (human coronavirus 229E (HCoV-229E), Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)). Our findings reveal significant differences in the binding behavior of pateamines compared to rocaglates when interacting with an eIF4A-RNA complex. We also observed that pateamines do not depend on the presence of a polypurine tract in the RNA substrate for efficient RNA clamping, as it is the case for rocaglates. Most notably, pateamines demonstrate potent antiviral activity against coronaviruses in the low nanomolar range. Consequently, pateamines broaden our toolbox for combating viruses that rely on the host enzyme eIF4A to conduct their viral protein synthesis, indicating a possible future treatment strategy against new or re-emerging pathogenic viruses.
Collapse
Affiliation(s)
- Francesca Magari
- Institute of Pharmaceutical Chemistry, Philipps University Marburg, 35032, Marburg, Germany
| | - Henri Messner
- Institute of Pharmaceutical Chemistry, Philipps University Marburg, 35032, Marburg, Germany
| | - Florian Salisch
- Institute of Medical Virology, Justus Liebig University Giessen, 35392, Giessen, Germany
| | | | - Ger van Zandbergen
- Division of Immunology, Paul-Ehrlich-Institute, 63225, Langen, Germany
- Institute for Immunology, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, 45470, Mülheim Ruhr, Germany
| | - John Ziebuhr
- Institute of Medical Virology, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Andreas Heine
- Institute of Pharmaceutical Chemistry, Philipps University Marburg, 35032, Marburg, Germany
| | | | - Arnold Grünweller
- Institute of Pharmaceutical Chemistry, Philipps University Marburg, 35032, Marburg, Germany
| |
Collapse
|
6
|
He Y, Zhou J, Gao H, Liu C, Zhan P, Liu X. Broad-spectrum antiviral strategy: Host-targeting antivirals against emerging and re-emerging viruses. Eur J Med Chem 2024; 265:116069. [PMID: 38160620 DOI: 10.1016/j.ejmech.2023.116069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/06/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
Viral infections are amongst the most prevalent diseases that pose a significant threat to human health. Targeting viral proteins or host factors represents two primary strategies for the development of antiviral drugs. In contrast to virus-targeting antivirals (VTAs), host-targeting antivirals (HTAs) offer advantages in terms of overcoming drug resistance and effectively combating a wide range of viruses, including newly emerging ones. Therefore, targeting host factors emerges as an extremely promising strategy with the potential to address critical challenges faced by VTAs. In recent years, extensive research has been conducted on the discovery and development of HTAs, leading to the approval of maraviroc, a chemokine receptor type 5 (CCR5) antagonist used for the treatment of HIV-1 infected individuals, with several other potential treatments in various stages of development for different viral infections. This review systematically summarizes advancements made in medicinal chemistry regarding various host targets and classifies them into four distinct catagories based on their involvement in the viral life cycle: virus attachment and entry, biosynthesis, nuclear import and export, and viral release.
Collapse
Affiliation(s)
- Yong He
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China
| | - Jiahui Zhou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China
| | - Huizhan Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China
| | - Chuanfeng Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China.
| |
Collapse
|
7
|
Haque S, Kumar P, Mathkor DM, Bantun F, Jalal NA, Mufti AH, Prakash A, Kumar V. In silico evaluation of the inhibitory potential of nucleocapsid inhibitors of SARS-CoV-2: a binding and energetic perspective. J Biomol Struct Dyn 2023; 41:9797-9807. [PMID: 36379684 DOI: 10.1080/07391102.2022.2146752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/07/2022] [Indexed: 11/17/2022]
Abstract
The COVID-19 outbreak brought on by the SARS-CoV-2 virus continued to infect a sizable population worldwide. The SARS-CoV-2 nucleocapsid (N) protein is the most conserved RNA-binding structural protein and is a desirable target because of its involvement in viral transcription and replication. Based on this aspect, this study focused to repurpose antiviral compounds approved or in development for treating COVID-19. The inhibitors chosen are either FDA-approved or are currently being studied in clinical trials against COVID-19. Initially, they were designed to target stress granules and other RNA biology. We have utilized structure-based molecular docking and all-atom molecular dynamics (MD) simulation approach to investigate in detail the binding energy and binding modes of the different anti-N inhibitors to N protein. The result showed that five drugs including Silmitasterib, Ninetanidinb, Ternatin, Luteolin, Fedratinib, PJ34, and Zotatafin were found interacting with RNA binding sites as well as to predicted protein interface with higher binding energy. Overall, drug binding increases the stability of the complex with maximum stability found in the order, Silmitasertib > PJ34 > Zotatatafin. In addition, the frustration changes due to drug binding brings a decrease in local frustration and this decrease is mainly observed in α-helix, β3, β5, and β6 strands and are important for drug binding. Our in-silico data suggest that an effective interaction occurs for some of the tested drugs and prompt their further validation to reduce the rapid outspreading of SARS-CoV-2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Pawan Kumar
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Farkad Bantun
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Naif A Jalal
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmad Hasan Mufti
- Medical Genetics Department, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Amresh Prakash
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurgaon, India
| | - Vijay Kumar
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
8
|
Guan Y, Wang Y, Fu X, Bai G, Li X, Mao J, Yan Y, Hu L. Multiple functions of stress granules in viral infection at a glance. Front Microbiol 2023; 14:1138864. [PMID: 36937261 PMCID: PMC10014870 DOI: 10.3389/fmicb.2023.1138864] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/08/2023] [Indexed: 03/05/2023] Open
Abstract
Stress granules (SGs) are distinct RNA granules induced by various stresses, which are evolutionarily conserved across species. In general, SGs act as a conservative and essential self-protection mechanism during stress responses. Viruses have a long evolutionary history and viral infections can trigger a series of cellular stress responses, which may interact with SG formation. Targeting SGs is believed as one of the critical and conservative measures for viruses to tackle the inhibition of host cells. In this systematic review, we have summarized the role of SGs in viral infection and categorized their relationships into three tables, with a particular focus on Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. Moreover, we have outlined several kinds of drugs targeting SGs according to different pathways, most of which are potentially effective against SARS-CoV-2. We believe this review would offer a new view for the researchers and clinicians to attempt to develop more efficacious treatments for virus infection, particularly for the treatment of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yuelin Guan
- The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yan Wang
- The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xudong Fu
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Guannan Bai
- The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xue Li
- Department of Big Data in Health Science School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianhua Mao
- The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yongbin Yan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China
- *Correspondence: Yongbin Yan,
| | - Lidan Hu
- The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Lidan Hu,
| |
Collapse
|
9
|
Lee JI, Namkoong S. Stress granules dynamics: benefits in cancer. BMB Rep 2022; 55:577-586. [PMID: 36330685 PMCID: PMC9813431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Indexed: 12/29/2022] Open
Abstract
Stress granules (SGs) are stress-induced subcellular compartments, which carry out a particular function to cope with stress. These granules protect cells from stress-related damage and cell death through dynamic sequestration of numerous ribonucleoproteins (RNPs) and signaling proteins, thereby promoting cell survival under both physiological and pathological condition. During tumorigenesis, cancer cells are repeatedly exposed to diverse stress stimuli from the tumor microenvironment, and the dynamics of SGs is often modulated due to the alteration of gene expression patterns in cancer cells, leading to tumor progression as well as resistance to anticancer treatment. In this mini review, we provide a brief discussion about our current understanding of the fundamental roles of SGs during physiological stress and the effect of dysregulated SGs on cancer cell fitness and cancer therapy. [BMB Reports 2022; 55(12): 577-586].
Collapse
Affiliation(s)
- Jeong In Lee
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, Korea
| | - Sim Namkoong
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, Korea,Corresponding author. Tel: +82-33-250-8512; Fax: +82-33-259-5664; E-mail:
| |
Collapse
|
10
|
Dolliver SM, Kleer M, Bui-Marinos MP, Ying S, Corcoran JA, Khaperskyy DA. Nsp1 proteins of human coronaviruses HCoV-OC43 and SARS-CoV2 inhibit stress granule formation. PLoS Pathog 2022; 18:e1011041. [PMID: 36534661 PMCID: PMC9810206 DOI: 10.1371/journal.ppat.1011041] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/03/2023] [Accepted: 12/03/2022] [Indexed: 12/23/2022] Open
Abstract
Stress granules (SGs) are cytoplasmic condensates that often form as part of the cellular antiviral response. Despite the growing interest in understanding the interplay between SGs and other biological condensates and viral replication, the role of SG formation during coronavirus infection remains poorly understood. Several proteins from different coronaviruses have been shown to suppress SG formation upon overexpression, but there are only a handful of studies analyzing SG formation in coronavirus-infected cells. To better understand SG inhibition by coronaviruses, we analyzed SG formation during infection with the human common cold coronavirus OC43 (HCoV-OC43) and the pandemic SARS-CoV2. We did not observe SG induction in infected cells and both viruses inhibited eukaryotic translation initiation factor 2α (eIF2α) phosphorylation and SG formation induced by exogenous stress. Furthermore, in SARS-CoV2 infected cells we observed a sharp decrease in the levels of SG-nucleating protein G3BP1. Ectopic overexpression of nucleocapsid (N) and non-structural protein 1 (Nsp1) from both HCoV-OC43 and SARS-CoV2 inhibited SG formation. The Nsp1 proteins of both viruses inhibited arsenite-induced eIF2α phosphorylation, and the Nsp1 of SARS-CoV2 alone was sufficient to cause a decrease in G3BP1 levels. This phenotype was dependent on the depletion of cytoplasmic mRNA mediated by Nsp1 and associated with nuclear accumulation of the SG-nucleating protein TIAR. To test the role of G3BP1 in coronavirus replication, we infected cells overexpressing EGFP-tagged G3BP1 with HCoV-OC43 and observed a significant decrease in virus replication compared to control cells expressing EGFP. The antiviral role of G3BP1 and the existence of multiple SG suppression mechanisms that are conserved between HCoV-OC43 and SARS-CoV2 suggest that SG formation may represent an important antiviral host defense that coronaviruses target to ensure efficient replication.
Collapse
Affiliation(s)
- Stacia M. Dolliver
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Canada
| | - Mariel Kleer
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
- Snyder Institute for Chronic Diseases and Charbonneau Institute for Cancer Research, University of Calgary, Calgary, Canada
| | - Maxwell P. Bui-Marinos
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
- Snyder Institute for Chronic Diseases and Charbonneau Institute for Cancer Research, University of Calgary, Calgary, Canada
| | - Shan Ying
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Canada
| | - Jennifer A. Corcoran
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
- Snyder Institute for Chronic Diseases and Charbonneau Institute for Cancer Research, University of Calgary, Calgary, Canada
| | - Denys A. Khaperskyy
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Canada
- * E-mail:
| |
Collapse
|
11
|
Lee JI, Namkoong S. Stress granules dynamics: benefits in cancer. BMB Rep 2022; 55:577-586. [PMID: 36330685 PMCID: PMC9813431 DOI: 10.5483/bmbrep.2022.55.12.141] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 07/30/2023] Open
Abstract
Stress granules (SGs) are stress-induced subcellular compartments, which carry out a particular function to cope with stress. These granules protect cells from stress-related damage and cell death through dynamic sequestration of numerous ribonucleoproteins (RNPs) and signaling proteins, thereby promoting cell survival under both physiological and pathological condition. During tumorigenesis, cancer cells are repeatedly exposed to diverse stress stimuli from the tumor microenvironment, and the dynamics of SGs is often modulated due to the alteration of gene expression patterns in cancer cells, leading to tumor progression as well as resistance to anticancer treatment. In this mini review, we provide a brief discussion about our current understanding of the fundamental roles of SGs during physiological stress and the effect of dysregulated SGs on cancer cell fitness and cancer therapy. [BMB Reports 2022; 55(12): 577-586].
Collapse
Affiliation(s)
- Jeong In Lee
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, Korea
| | - Sim Namkoong
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
12
|
Feng Y, Grotegut S, Jovanovic P, Gandin V, Olson SH, Murad R, Beall A, Colayco S, De-Jesus P, Chanda S, English BP, Singer RH, Jackson M, Topisirovic I, Ronai ZA. Inhibition of coronavirus HCoV-OC43 by targeting the eIF4F complex. Front Pharmacol 2022; 13:1029093. [PMID: 36532738 PMCID: PMC9751428 DOI: 10.3389/fphar.2022.1029093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022] Open
Abstract
The translation initiation complex 4F (eIF4F) is a rate-limiting factor in protein synthesis. Alterations in eIF4F activity are linked to several diseases, including cancer and infectious diseases. To this end, coronaviruses require eIF4F complex activity to produce proteins essential for their life cycle. Efforts to target coronaviruses by abrogating translation have been largely limited to repurposing existing eIF4F complex inhibitors. Here, we report the results of a high throughput screen to identify small molecules that disrupt eIF4F complex formation and inhibit coronavirus RNA and protein levels. Of 338,000 small molecules screened for inhibition of the eIF4F-driven, CAP-dependent translation, we identified SBI-1232 and two structurally related analogs, SBI-5844 and SBI-0498, that inhibit human coronavirus OC43 (HCoV-OC43; OC43) with minimal cell toxicity. Notably, gene expression changes after OC43 infection of Vero E6 or A549 cells were effectively reverted upon treatment with SBI-5844 or SBI-0498. Moreover, SBI-5844 or SBI-0498 treatment effectively impeded the eIF4F complex assembly, with concomitant inhibition of newly synthesized OC43 nucleocapsid protein and OC43 RNA and protein levels. Overall, we identify SBI-5844 and SBI-0498 as small molecules targeting the eIF4F complex that may limit coronavirus transcripts and proteins, thereby representing a basis for developing novel therapeutic modalities against coronaviruses.
Collapse
Affiliation(s)
- Yongmei Feng
- Cancer Center at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Stefan Grotegut
- Conrad Prebys Center for Chemical Genomics at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Predrag Jovanovic
- Lady Davis Institute, SMBD Jewish General Hospital, Gerald Bronfman Department of Oncology and Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Valentina Gandin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Steven H. Olson
- Conrad Prebys Center for Chemical Genomics at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Rabi Murad
- Cancer Center at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Anne Beall
- Immunology and Infectious Disease Center at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Sharon Colayco
- Immunology and Infectious Disease Center at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Paul De-Jesus
- Immunology and Infectious Disease Center at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Sumit Chanda
- Immunology and Infectious Disease Center at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Brian P. English
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Robert H. Singer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Michael Jackson
- Conrad Prebys Center for Chemical Genomics at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Ivan Topisirovic
- Lady Davis Institute, SMBD Jewish General Hospital, Gerald Bronfman Department of Oncology and Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Ze’ev A. Ronai
- Cancer Center at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| |
Collapse
|
13
|
Zhu X, Yao Q, Yang P, Zhao D, Yang R, Bai H, Ning K. Multi-omics approaches for in-depth understanding of therapeutic mechanism for Traditional Chinese Medicine. Front Pharmacol 2022; 13:1031051. [PMID: 36506559 PMCID: PMC9732109 DOI: 10.3389/fphar.2022.1031051] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
Traditional Chinese Medicine (TCM) is extensively utilized in clinical practice due to its therapeutic and preventative treatments for various diseases. With the development of high-throughput sequencing and systems biology, TCM research was transformed from traditional experiment-based approaches to a combination of experiment-based and omics-based approaches. Numerous academics have explored the therapeutic mechanism of TCM formula by omics approaches, shifting TCM research from the "one-target, one-drug" to "multi-targets, multi-components" paradigm, which has greatly boosted the digitalization and internationalization of TCM. In this review, we concentrated on multi-omics approaches in principles and applications to gain a better understanding of TCM formulas against various diseases from several aspects. We first summarized frequently used TCM quality assessment methods, and suggested that incorporating both chemical and biological ingredients analytical methods could lead to a more comprehensive assessment of TCM. Secondly, we emphasized the significance of multi-omics approaches in deciphering the therapeutic mechanism of TCM formulas. Thirdly, we focused on TCM network analysis, which plays a vital role in TCM-diseases interaction, and serves for new drug discovery. Finally, as an essential source for storing multi-omics data, we evaluated and compared several TCM databases in terms of completeness and reliability. In summary, multi-omics approaches have infiltrated many aspects of TCM research. With the accumulation of omics data and data-mining resources, deeper understandings of the therapeutic mechanism of TCM have been acquired or will be gained in the future.
Collapse
Affiliation(s)
- Xue Zhu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qi Yao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Pengshuo Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dan Zhao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ronghua Yang
- Dovetree Synbio Company Limited, Shenyang, China
| | - Hong Bai
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kang Ning
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
14
|
Byun WG, Lim D, Park SB. Small-molecule modulators of protein–RNA interactions. Curr Opin Chem Biol 2022; 68:102149. [DOI: 10.1016/j.cbpa.2022.102149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022]
|
15
|
In Silico Identification of Potential Inhibitors of the SARS-CoV-2 Nucleocapsid Through Molecular Docking-Based Drug Repurposing. DR. SULAIMAN AL HABIB MEDICAL JOURNAL 2022. [PMCID: PMC9153216 DOI: 10.1007/s44229-022-00004-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
AbstractSARS-CoV-2 is the virus responsible for the COVID-19 pandemic, and its effects on people worldwide continue to grow. Protein-targeted therapeutics are currently unavailable for this virus. As with other coronaviruses, the nucleocapsid (N) protein is the most conserved RNA-binding structural protein of SARS-CoV-2. The N protein is an appealing target because of its functional role in viral transcription and replication. Therefore, molecular docking method for structure-based drug design was used to investigate the binding energy and binding modes of various anti-N inhibitors in depth. The inhibitors selected were originally developed to target stress granules and other molecules involved in RNA biology, and were either FDA-approved or in the process of clinical trials for COVID-19. We aimed at targeting the N-terminal RNA binding domain (NTD) for molecular docking-based screening, on the basis of the first resolved crystal structure of SARS-CoV-2 N protein (PDB ID: 6M3M) and C-terminal domain (CTD) dimerization of the nucleocapsid phosphoprotein of SARS-COV-2 (PDB ID: 6WJI). Silmitasertib, nintedanib, ternatin, luteolin, and fedratinib were found to interact with RNA binding sites and to form a predicted protein interface with high binding energy. Similarly, silmitasertib, sirolimus-rapamycin, dovitinib, nintedanib, and fedratinib were found to interact with the SARS-CoV-2 N protein at its CTD dimerization sites, according to previous studies. In addition, we investigated an information gap regarding the relationships among the energetic landscape and stability and drug binding of the SARS-CoV-2 N NTD and CTD. Our in silico results clearly indicated that several tested drugs as potent putative inhibitors for COVID-19 therapeutics, thus indicating that they should be further validated as treatments to slow the spread of SARS-CoV-2.
Collapse
|
16
|
Rocaglates as Antivirals: Comparing the Effects on Viral Resistance, Anti-Coronaviral Activity, RNA-Clamping on eIF4A and Immune Cell Toxicity. Viruses 2022; 14:v14030519. [PMID: 35336926 PMCID: PMC8950828 DOI: 10.3390/v14030519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 12/12/2022] Open
Abstract
Rocaglates are potent broad-spectrum antiviral compounds with a promising safety profile. They inhibit viral protein synthesis for different RNA viruses by clamping the 5′-UTRs of mRNAs onto the surface of the RNA helicase eIF4A. Apart from the natural rocaglate silvestrol, synthetic rocaglates like zotatifin or CR-1-31-B have been developed. Here, we compared the effects of rocaglates on viral 5′-UTR-mediated reporter gene expression and binding to an eIF4A-polypurine complex. Furthermore, we analyzed the cytotoxicity of rocaglates on several human immune cells and compared their antiviral activities in coronavirus-infected cells. Finally, the potential for developing viral resistance was evaluated by passaging human coronavirus 229E (HCoV-229E) in the presence of increasing concentrations of rocaglates in MRC-5 cells. Importantly, no decrease in rocaglate-sensitivity was observed, suggesting that virus escape mutants are unlikely to emerge if the host factor eIF4A is targeted. In summary, all three rocaglates are promising antivirals with differences in cytotoxicity against human immune cells, RNA-clamping efficiency, and antiviral activity. In detail, zotatifin showed reduced RNA-clamping efficiency and antiviral activity compared to silvestrol and CR-1-31-B, but was less cytotoxic for immune cells. Our results underline the potential of rocaglates as broad-spectrum antivirals with no indications for the emergence of escape mutations in HCoV-229E.
Collapse
|
17
|
Byun WG, Lee J, Kim S, Park SB. Harnessing stress granule formation by small molecules to inhibit the cellular replication of SARS-CoV-2. Chem Commun (Camb) 2021; 57:12476-12479. [PMID: 34734602 DOI: 10.1039/d1cc05508a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We identified small-molecule enhancers of cellular stress granules by observing molecular crowding of proteins and RNAs in a time-dependent manner. Hit molecules sensitized the IRF3-mediated antiviral mechanism in the presence of poly(I:C) and inhibited the replication of SARS-CoV-2 by inducing stress granule formation. Thus, modulating multimolecular crowding can be a promising strategy against SARS-CoV-2.
Collapse
Affiliation(s)
- Wan Gi Byun
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul, 08826, Korea.
| | - Jihye Lee
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam 13488, Korea
| | - Seungtaek Kim
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam 13488, Korea
| | - Seung Bum Park
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
18
|
Hyperosmotic Stress Induces a Specific Pattern for Stress Granule Formation in Human-Induced Pluripotent Stem Cells. Stem Cells Int 2021; 2021:8274936. [PMID: 34697543 PMCID: PMC8538399 DOI: 10.1155/2021/8274936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/18/2022] Open
Abstract
Stress granules (SGs) are assemblies of selective messenger RNAs (mRNAs), translation factors, and RNA-binding proteins in small untranslated messenger ribonucleoprotein (mRNP) complexes in the cytoplasm. Evidence indicates that different types of cells have shown different mechanisms to respond to stress and the formation of SGs. In the present work, we investigated how human-induced pluripotent stem cells (hiPSCs/IMR90-1) overcome hyperosmotic stress compared to a cell line that does not harbor pluripotent characteristics (SH-SY5Y cell line). Gradient concentrations of NaCl showed a different pattern of SG formation between hiPSCs/IMR90-1 and the nonpluripotent cell line SH-SY5Y. Other pluripotent stem cell lines (hiPSCs/CRTD5 and hESCs/H9 (human embryonic stem cell line)) as well as nonpluripotent cell lines (BHK-21 and MCF-7) were used to confirm this phenomenon. Moreover, the formation of hyperosmotic SGs in hiPSCs/IMR90-1 was independent of eIF2α phosphorylation and was associated with low apoptosis levels. In addition, a comprehensive proteomics analysis was performed to identify proteins involved in regulating this specific pattern of hyperosmotic SG formation in hiPSCs/IMR90-1. We found possible implications of microtubule organization on the response to hyperosmotic stress in hiPSCs/IMR90-1. We have also unveiled a reduced expression of tubulin that may protect cells against hyperosmolarity stress while inhibiting SG formation without affecting stem cell self-renewal and pluripotency. Our observations may provide a possible cellular mechanism to better understand SG dynamics in pluripotent stem cells.
Collapse
|
19
|
Agarwal G, Chang LS, Soejarto DD, Kinghorn AD. Update on Phytochemical and Biological Studies on Rocaglate Derivatives from Aglaia Species. PLANTA MEDICA 2021; 87:937-948. [PMID: 33784769 PMCID: PMC8481333 DOI: 10.1055/a-1401-9562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
With about 120 species, Aglaia is one of the largest genera of the plant family Meliaceae (the mahogany plants). It is native to the tropical rainforests of the Indo-Australian region, ranging from India and Sri Lanka eastward to Polynesia and Micronesia. Various Aglaia species have been investigated since the 1960s for their phytochemical constituents and biological properties, with the cyclopenta[b]benzofurans (rocaglates or flavaglines) being of particular interest. Phytochemists, medicinal chemists, and biologists have conducted extensive research in establishing these secondary metabolites as potential lead compounds with antineoplastic and antiviral effects, among others. The varied biological properties of rocaglates can be attributed to their unusual structures and their ability to act as inhibitors of the eukaryotic translation initiation factor 4A (eIF4A), affecting protein translation. The present review provides an update on the recently reported phytochemical constituents of Aglaia species, focusing on rocaglate derivatives. Furthermore, laboratory work performed on investigating the biological activities of these chemical constituents is also covered.
Collapse
Affiliation(s)
- Garima Agarwal
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States
| | - Long-Sheng Chang
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University College of Medicine, Columbus, Ohio, United States
- Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio, United States
| | - Djaja Doel Soejarto
- College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States
- Science and Education, Field Museum, Chicago, Illinois, United States
| | - A. Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
20
|
Raj K, Kaur K, Gupta GD, Singh S. Current understanding on molecular drug targets and emerging treatment strategy for novel coronavirus-19. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:1383-1402. [PMID: 33961065 PMCID: PMC8102151 DOI: 10.1007/s00210-021-02091-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/11/2021] [Indexed: 12/26/2022]
Abstract
SARS-CoV-2 is an enveloped positive-sense RNA virus, contain crown-like spikes on its surface, exceptional of large RNA genome, and a special replication machinery. Common symptoms of SARS-CoV-2 include cough, common cold, fever, sore throat, and a variety of severe acute respiratory disease (SARD) such as pneumonia. SARS-CoV-2 infects epithelial cells, T-cells, macrophages, and dendritic cells and also influences the production and implantation of pro-inflammatory cytokines and chemokines. Repurposing of various drugs during this emergency condition can reduce the rate of mortality as well as time and cost. Two druggable protein and enzyme targets have been selected in this review article due to their crucial role in the viral life cycle. The eukaryotic translation initiation factor (eIF4A), cyclophilin, nucleocapsid protein, spike protein, Angiotensin-converting enzyme 2 (ACE2), 3-chymotrypsin-like cysteine protease (3CLpro), and RNA-dependent RNA polymerase (RdRp) play significant role in early and late phase of SARS-CoV-2 replication and translation. This review paper is based on the rationale of inhibiting of various SARS-CoV-2 proteins and enzymes as novel therapeutic approaches for the management and treatment of patients with SARS-CoV-2 infection. We also discussed the structural and functional relationship of different proteins and enzymes to develop therapeutic approaches for novel coronavirus SARS-CoV-2.
Collapse
Affiliation(s)
- Khadga Raj
- Neuroscience Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Karamjeet Kaur
- Neuroscience Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - G D Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Shamsher Singh
- Neuroscience Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
| |
Collapse
|
21
|
Thiopurines activate an antiviral unfolded protein response that blocks influenza A virus glycoprotein accumulation. J Virol 2021; 95:JVI.00453-21. [PMID: 33762409 PMCID: PMC8139708 DOI: 10.1128/jvi.00453-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Influenza A viruses (IAVs) utilize host shutoff mechanisms to limit antiviral gene expression and redirect translation machinery to the synthesis of viral proteins. Previously, we showed that IAV replication is sensitive to protein synthesis inhibitors that block translation initiation and induce formation of cytoplasmic condensates of untranslated messenger ribonucleoprotein complexes called stress granules (SGs). In this study, using an image-based high-content screen, we identified two thiopurines, 6-thioguanine (6-TG) and 6-thioguanosine (6-TGo), that triggered SG formation in IAV-infected cells and blocked IAV replication in a dose-dependent manner without eliciting SG formation in uninfected cells. 6-TG and 6-TGo selectively disrupted the synthesis and maturation of IAV glycoproteins hemagglutinin (HA) and neuraminidase (NA) without affecting the levels of the viral RNAs that encode them. By contrast, these thiopurines had minimal effect on other IAV proteins or the global host protein synthesis. Disruption of IAV glycoprotein accumulation by 6-TG and 6-TGo correlated with activation of unfolded protein response (UPR) sensors activating transcription factor-6 (ATF6), inositol requiring enzyme-1 (IRE1) and PKR-like endoplasmic reticulum kinase (PERK), leading to downstream UPR gene expression. Treatment of infected cells with the chemical chaperone 4-phenylbutyric acid diminished thiopurine-induced UPR activation and partially restored the processing and accumulation of HA and NA. By contrast, chemical inhibition of the integrated stress response downstream of PERK restored accumulation of NA monomers but did not restore processing of viral glycoproteins. Genetic deletion of PERK enhanced the antiviral effect of 6-TG without causing overt cytotoxicity, suggesting that while UPR activation correlates with diminished viral glycoprotein accumulation, PERK could limit the antiviral effects of drug-induced ER stress. Taken together, these data indicate that 6-TG and 6-TGo are effective host-targeted antivirals that trigger the UPR and selectively disrupt accumulation of viral glycoproteins.IMPORTANCESecreted and transmembrane proteins are synthesized in the endoplasmic reticulum (ER), where they are folded and modified prior to transport. Many viruses rely on the ER for the synthesis and processing of viral glycoproteins that will ultimately be incorporated into viral envelopes. Viral burden on the ER can trigger the unfolded protein response (UPR). Much remains to be learned about how viruses co-opt the UPR to ensure efficient synthesis of viral glycoproteins. Here, we show that two FDA-approved thiopurine drugs, 6-TG and 6-TGo, induce the UPR, which represents a previously unrecognized effect of these drugs on cell physiology. This thiopurine-mediated UPR activation blocks influenza virus replication by impeding viral glycoprotein accumulation. Our findings suggest that 6-TG and 6-TGo may have broad antiviral effect against enveloped viruses that require precise tuning of the UPR to support viral glycoprotein synthesis.
Collapse
|
22
|
Musarra-Pizzo M, Pennisi R, Ben-Amor I, Mandalari G, Sciortino MT. Antiviral Activity Exerted by Natural Products against Human Viruses. Viruses 2021; 13:v13050828. [PMID: 34064347 PMCID: PMC8147851 DOI: 10.3390/v13050828] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/01/2021] [Indexed: 12/13/2022] Open
Abstract
Viral infections are responsible for several chronic and acute diseases in both humans and animals. Despite the incredible progress in human medicine, several viral diseases, such as acquired immunodeficiency syndrome, respiratory syndromes, and hepatitis, are still associated with high morbidity and mortality rates in humans. Natural products from plants or other organisms are a rich source of structurally novel chemical compounds including antivirals. Indeed, in traditional medicine, many pathological conditions have been treated using plant-derived medicines. Thus, the identification of novel alternative antiviral agents is of critical importance. In this review, we summarize novel phytochemicals with antiviral activity against human viruses and their potential application in treating or preventing viral disease.
Collapse
Affiliation(s)
- Maria Musarra-Pizzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale SS. Annunziata, 98168 Messina, Italy; (M.M.-P.); (R.P.); (I.B.-A.)
| | - Rosamaria Pennisi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale SS. Annunziata, 98168 Messina, Italy; (M.M.-P.); (R.P.); (I.B.-A.)
- Shenzhen International Institute for Biomedical Research, 1301 Guanguang Rd. 3F Building 1-B, Silver Star Hi-Tech Park Longhua District, Shenzhen 518116, China
| | - Ichrak Ben-Amor
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale SS. Annunziata, 98168 Messina, Italy; (M.M.-P.); (R.P.); (I.B.-A.)
- Unit of Biotechnology and Pathologies, Higher Institute of Biotechnology of Sfax, University of Sfax, Sfax 3029, Tunisia
| | - Giuseppina Mandalari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale SS. Annunziata, 98168 Messina, Italy; (M.M.-P.); (R.P.); (I.B.-A.)
- Correspondence: (G.M.); (M.T.S.); Tel.: +39-090-6767-5217 (G.M. & M.T.S.)
| | - Maria Teresa Sciortino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale SS. Annunziata, 98168 Messina, Italy; (M.M.-P.); (R.P.); (I.B.-A.)
- Correspondence: (G.M.); (M.T.S.); Tel.: +39-090-6767-5217 (G.M. & M.T.S.)
| |
Collapse
|
23
|
Gold(I)-catalyzed, one-pot, oxidative formation of 2,4-disubstituted thiazoles: Application to the synthesis of a pateamine-related macrodiolide. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Targeting the DEAD-Box RNA Helicase eIF4A with Rocaglates-A Pan-Antiviral Strategy for Minimizing the Impact of Future RNA Virus Pandemics. Microorganisms 2021; 9:microorganisms9030540. [PMID: 33807988 PMCID: PMC8001013 DOI: 10.3390/microorganisms9030540] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022] Open
Abstract
The increase in pandemics caused by RNA viruses of zoonotic origin highlights the urgent need for broad-spectrum antivirals against novel and re-emerging RNA viruses. Broad-spectrum antivirals could be deployed as first-line interventions during an outbreak while virus-specific drugs and vaccines are developed and rolled out. Viruses depend on the host’s protein synthesis machinery for replication. Several natural compounds that target the cellular DEAD-box RNA helicase eIF4A, a key component of the eukaryotic translation initiation complex eIF4F, have emerged as potential broad-spectrum antivirals. Rocaglates, a group of flavaglines of plant origin that clamp mRNAs with highly structured 5′ untranslated regions (5′UTRs) onto the surface of eIF4A through specific stacking interactions, exhibit the largest selectivity and potential therapeutic indices among all known eIF4A inhibitors. Their unique mechanism of action limits the inhibitory effect of rocaglates to the translation of eIF4A-dependent viral mRNAs and a minor fraction of host mRNAs exhibiting stable RNA secondary structures and/or polypurine sequence stretches in their 5′UTRs, resulting in minimal potential toxic side effects. Maintaining a favorable safety profile while inducing efficient inhibition of a broad spectrum of RNA viruses makes rocaglates into primary candidates for further development as pan-antiviral therapeutics.
Collapse
|
25
|
Terracciano R, Preianò M, Fregola A, Pelaia C, Montalcini T, Savino R. Mapping the SARS-CoV-2-Host Protein-Protein Interactome by Affinity Purification Mass Spectrometry and Proximity-Dependent Biotin Labeling: A Rational and Straightforward Route to Discover Host-Directed Anti-SARS-CoV-2 Therapeutics. Int J Mol Sci 2021; 22:E532. [PMID: 33430309 PMCID: PMC7825748 DOI: 10.3390/ijms22020532] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Protein-protein interactions (PPIs) are the vital engine of cellular machinery. After virus entry in host cells the global organization of the viral life cycle is strongly regulated by the formation of virus-host protein interactions. With the advent of high-throughput -omics platforms, the mirage to obtain a "high resolution" view of virus-host interactions has come true. In fact, the rapidly expanding approaches of mass spectrometry (MS)-based proteomics in the study of PPIs provide efficient tools to identify a significant number of potential drug targets. Generation of PPIs maps by affinity purification-MS and by the more recent proximity labeling-MS may help to uncover cellular processes hijacked and/or altered by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), providing promising therapeutic targets. The possibility to further validate putative key targets from high-confidence interactions between viral bait and host protein through follow-up MS-based multi-omics experiments offers an unprecedented opportunity in the drug discovery pipeline. In particular, drug repurposing, making use of already existing approved drugs directly targeting these identified and validated host interactors, might shorten the time and reduce the costs in comparison to the traditional drug discovery process. This route might be promising for finding effective antiviral therapeutic options providing a turning point in the fight against the coronavirus disease-2019 (COVID-19) outbreak.
Collapse
Affiliation(s)
- Rosa Terracciano
- Department of Experimental and Clinical Medicine, University “Magna Græcia”, 88100 Catanzaro, Italy;
| | - Mariaimmacolata Preianò
- Department of Health Sciences, University “Magna Græcia”, 88100 Catanzaro, Italy; (M.P.); (A.F.)
| | - Annalisa Fregola
- Department of Health Sciences, University “Magna Græcia”, 88100 Catanzaro, Italy; (M.P.); (A.F.)
| | - Corrado Pelaia
- Respiratory Medicine Unit, University “Magna Græcia”, 88100 Catanzaro, Italy;
| | - Tiziana Montalcini
- Department of Experimental and Clinical Medicine, University “Magna Græcia”, 88100 Catanzaro, Italy;
| | - Rocco Savino
- Department of Medical and Surgical Sciences, University “Magna Græcia”, 88100 Catanzaro, Italy
| |
Collapse
|
26
|
Terrier O, Slama-Schwok A. Anti-Influenza Drug Discovery and Development: Targeting the Virus and Its Host by All Possible Means. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1322:195-218. [PMID: 34258742 DOI: 10.1007/978-981-16-0267-2_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Infections by influenza virus constitute a major and recurrent threat for human health. Together with vaccines, antiviral drugs play a key role in the prevention and treatment of influenza virus infection and disease. Today, the number of antiviral molecules approved for the treatment of influenza is relatively limited, and their use is threatened by the emergence of viral strains with resistance mutations. There is therefore a real need to expand the prophylactic and therapeutic arsenal. This chapter summarizes the state of the art in drug discovery and development for the treatment of influenza virus infections, with a focus on both virus-targeting and host cell-targeting strategies. Novel antiviral strategies targeting other viral proteins or targeting the host cell, some of which are based on drug repurposing, may be used in combination to strengthen our therapeutic arsenal against this major pathogen.
Collapse
Affiliation(s)
- Olivier Terrier
- CIRI, Centre International de Recherche en Infectiologie, (Team VirPath), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Anny Slama-Schwok
- Sorbonne Université, Centre de Recherche Saint-Antoine, INSERM U938, Biologie et Thérapeutique du Cancer, Paris, France.
| |
Collapse
|
27
|
Wang F, Li J, Fan S, Jin Z, Huang C. Targeting stress granules: A novel therapeutic strategy for human diseases. Pharmacol Res 2020; 161:105143. [PMID: 32814168 PMCID: PMC7428673 DOI: 10.1016/j.phrs.2020.105143] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/16/2022]
Abstract
Stress granules (SGs) are assemblies of mRNA and proteins that form from mRNAs stalled in translation initiation in response to stress. Chronic stress might even induce formation of cytotoxic pathological SGs. SGs participate in various biological functions including response to apoptosis, inflammation, immune modulation, and signalling pathways; moreover, SGs are involved in pathogenesis of neurodegenerative diseases, viral infection, aging, cancers and many other diseases. Emerging evidence has shown that small molecules can affect SG dynamics, including assembly, disassembly, maintenance and clearance. Thus, targeting SGs is a potential therapeutic strategy for the treatment of human diseases and the promotion of health. The established methods for detecting SGs provided ready tools for large-scale screening of agents that alter the dynamics of SGs. Here, we describe the effects of small molecules on SG assembly, disassembly, and their roles in the disease. Moreover, we provide perspective for the possible application of small molecules targeting SGs in the treatment of human diseases.
Collapse
Affiliation(s)
- Fei Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Juan Li
- College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, Zhejiang, 321004, China
| | - Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Zhigang Jin
- College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, Zhejiang, 321004, China.
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
28
|
Nebigil CG, Moog C, Vagner S, Benkirane-Jessel N, Smith DR, Désaubry L. Flavaglines as natural products targeting eIF4A and prohibitins: From traditional Chinese medicine to antiviral activity against coronaviruses. Eur J Med Chem 2020; 203:112653. [PMID: 32693294 PMCID: PMC7362831 DOI: 10.1016/j.ejmech.2020.112653] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022]
Abstract
Flavaglines are cyclopenta[b]benzofurans found in plants of the genus Aglaia, several species of which are used in traditional Chinese medicine. These compounds target the initiation factor of translation eIF4A and the scaffold proteins prohibitins-1 and 2 (PHB1/2) to exert various pharmacological activities, including antiviral effects against several types of viruses, including coronaviruses. This review is focused on the antiviral effects of flavaglines and their therapeutic potential against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Collapse
Affiliation(s)
- Canan G Nebigil
- INSERM U 1260, Regenerative Nanomedicine (RNM), FMTS, 11 Rue Humann, 67000, Strasbourg, France
| | - Christiane Moog
- INSERM U1109, LabEx TRANSPLANTEX, Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), University of Strasbourg, Strasbourg, France
| | - Stéphan Vagner
- Institut Curie, PSL Research University, CNRS UMR 3348, INSERM U1278, Orsay, France; Université Paris-Sud, Université Paris-Saclay, CNRS UMR 3348, INSERM U1278, Orsay, France
| | - Nadia Benkirane-Jessel
- INSERM U 1260, Regenerative Nanomedicine (RNM), FMTS, 11 Rue Humann, 67000, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, Hôpitaux Universitaires de Strasbourg, 8 Rue de Ste Elisabeth, 67000, Strasbourg, France
| | - Duncan R Smith
- Institute of Molecular Biosciences, Mahidol University, Salaya, 73170, Thailand
| | - Laurent Désaubry
- INSERM U 1260, Regenerative Nanomedicine (RNM), FMTS, 11 Rue Humann, 67000, Strasbourg, France.
| |
Collapse
|
29
|
Fasnall Induces Atypically Transient Stress Granules Independently of FASN Inhibition. iScience 2020; 23:101550. [PMID: 33083719 PMCID: PMC7516299 DOI: 10.1016/j.isci.2020.101550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/23/2020] [Accepted: 09/04/2020] [Indexed: 12/31/2022] Open
Abstract
Stress Granule formation has been linked to the resistance of some cancer cells to chemotherapeutic intervention. A number of studies have proposed that certain anti-tumor compounds promote cancer cell survival by inducing Stress Granule formation, leading to increased cellular fitness and apoptosis avoidance. Here we show that a potent fatty acid synthase inhibitor, fasnall, known for its anti-tumor capabilities, triggers the formation of atypical Stress Granules, independently of fatty acid synthase inhibition, characterized by high internal mobility and rapid turnover.
Collapse
|
30
|
Cascarina SM, Ross ED. A proposed role for the SARS-CoV-2 nucleocapsid protein in the formation and regulation of biomolecular condensates. FASEB J 2020; 34:9832-9842. [PMID: 32562316 PMCID: PMC7323129 DOI: 10.1096/fj.202001351] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 05/31/2020] [Indexed: 02/06/2023]
Abstract
To date, the recently discovered SARS-CoV-2 virus has afflicted >6.9 million people worldwide and disrupted the global economy. Development of effective vaccines or treatments for SARS-CoV-2 infection will be aided by a molecular-level understanding of SARS-CoV-2 proteins and their interactions with host cell proteins. The SARS-CoV-2 nucleocapsid (N) protein is highly homologous to the N protein of SARS-CoV, which is essential for viral RNA replication and packaging into new virions. Emerging models indicate that nucleocapsid proteins of other viruses can form biomolecular condensates to spatiotemporally regulate N protein localization and function. Our bioinformatic analyses, in combination with pre-existing experimental evidence, suggest that the SARS-CoV-2 N protein is capable of forming or regulating biomolecular condensates in vivo by interaction with RNA and key host cell proteins. We discuss multiple models, whereby the N protein of SARS-CoV-2 may harness this activity to regulate viral life cycle and host cell response to viral infection.
Collapse
Affiliation(s)
- Sean M. Cascarina
- Department of Biochemistry and Molecular BiologyColorado State UniversityFort CollinsCOUSA
| | - Eric D. Ross
- Department of Biochemistry and Molecular BiologyColorado State UniversityFort CollinsCOUSA
| |
Collapse
|
31
|
Li C, Wang T, Zhang Y, Wei F. Evasion mechanisms of the type I interferons responses by influenza A virus. Crit Rev Microbiol 2020; 46:420-432. [PMID: 32715811 DOI: 10.1080/1040841x.2020.1794791] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The type I interferons (IFNs) represent the first line of host defense against influenza virus infection, and the precisely control of the type I IFNs responses is a central event of the immune defense against influenza viral infection. Influenza viruses are one of the leading causes of respiratory tract infections in human and are responsible for seasonal epidemics and occasional pandemics, leading to a serious threat to global human health due to their antigenic variation and interspecies transmission. Although the host cells have evolved sophisticated antiviral mechanisms based on sensing influenza viral products and triggering of signalling cascades resulting in secretion of the type I IFNs (IFN-α/β), influenza viruses have developed many strategies to counteract this mechanism and circumvent the type I IFNs responses, for example, by inducing host shut-off, or by regulating the polyubiquitination of viral and host proteins. This review will summarise the current knowledge of how the host cells recognise influenza viruses to induce the type I IFNs responses and the strategies that influenza viruses exploited to evade the type I IFNs signalling pathways, which will be helpful for the development of antivirals and vaccines.
Collapse
Affiliation(s)
- Chengye Li
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China.,College of Agriculture, Ningxia University, Yinchuan, China
| | - Tong Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Yuying Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Fanhua Wei
- College of Agriculture, Ningxia University, Yinchuan, China
| |
Collapse
|
32
|
Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, O'Meara MJ, Rezelj VV, Guo JZ, Swaney DL, Tummino TA, Hüttenhain R, Kaake RM, Richards AL, Tutuncuoglu B, Foussard H, Batra J, Haas K, Modak M, Kim M, Haas P, Polacco BJ, Braberg H, Fabius JM, Eckhardt M, Soucheray M, Bennett MJ, Cakir M, McGregor MJ, Li Q, Meyer B, Roesch F, Vallet T, Mac Kain A, Miorin L, Moreno E, Naing ZZC, Zhou Y, Peng S, Shi Y, Zhang Z, Shen W, Kirby IT, Melnyk JE, Chorba JS, Lou K, Dai SA, Barrio-Hernandez I, Memon D, Hernandez-Armenta C, Lyu J, Mathy CJP, Perica T, Pilla KB, Ganesan SJ, Saltzberg DJ, Rakesh R, Liu X, Rosenthal SB, Calviello L, Venkataramanan S, Liboy-Lugo J, Lin Y, Huang XP, Liu Y, Wankowicz SA, Bohn M, Safari M, Ugur FS, Koh C, Savar NS, Tran QD, Shengjuler D, Fletcher SJ, O'Neal MC, Cai Y, Chang JCJ, Broadhurst DJ, Klippsten S, Sharp PP, Wenzell NA, Kuzuoglu-Ozturk D, Wang HY, Trenker R, Young JM, Cavero DA, Hiatt J, Roth TL, Rathore U, Subramanian A, Noack J, Hubert M, Stroud RM, Frankel AD, Rosenberg OS, Verba KA, Agard DA, Ott M, Emerman M, Jura N, von Zastrow M, Verdin E, Ashworth A, Schwartz O, d'Enfert C, Mukherjee S, Jacobson M, Malik HS, Fujimori DG, Ideker T, Craik CS, Floor SN, Fraser JS, Gross JD, Sali A, Roth BL, Ruggero D, Taunton J, Kortemme T, Beltrao P, Vignuzzi M, García-Sastre A, Shokat KM, Shoichet BK, Krogan NJ. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 2020; 583:459-468. [PMID: 32353859 PMCID: PMC7431030 DOI: 10.1038/s41586-020-2286-9] [Citation(s) in RCA: 3064] [Impact Index Per Article: 612.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
A newly described coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is the causative agent of coronavirus disease 2019 (COVID-19), has infected over 2.3 million people, led to the death of more than 160,000 individuals and caused worldwide social and economic disruption1,2. There are no antiviral drugs with proven clinical efficacy for the treatment of COVID-19, nor are there any vaccines that prevent infection with SARS-CoV-2, and efforts to develop drugs and vaccines are hampered by the limited knowledge of the molecular details of how SARS-CoV-2 infects cells. Here we cloned, tagged and expressed 26 of the 29 SARS-CoV-2 proteins in human cells and identified the human proteins that physically associated with each of the SARS-CoV-2 proteins using affinity-purification mass spectrometry, identifying 332 high-confidence protein-protein interactions between SARS-CoV-2 and human proteins. Among these, we identify 66 druggable human proteins or host factors targeted by 69 compounds (of which, 29 drugs are approved by the US Food and Drug Administration, 12 are in clinical trials and 28 are preclinical compounds). We screened a subset of these in multiple viral assays and found two sets of pharmacological agents that displayed antiviral activity: inhibitors of mRNA translation and predicted regulators of the sigma-1 and sigma-2 receptors. Further studies of these host-factor-targeting agents, including their combination with drugs that directly target viral enzymes, could lead to a therapeutic regimen to treat COVID-19.
Collapse
Affiliation(s)
- David E Gordon
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Gwendolyn M Jang
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Mehdi Bouhaddou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Jiewei Xu
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Kirsten Obernier
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Kris M White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew J O'Meara
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Veronica V Rezelj
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Jeffrey Z Guo
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Danielle L Swaney
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Tia A Tummino
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Ruth Hüttenhain
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Robyn M Kaake
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Alicia L Richards
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Beril Tutuncuoglu
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Helene Foussard
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Jyoti Batra
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Kelsey Haas
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Maya Modak
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Minkyu Kim
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Paige Haas
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Benjamin J Polacco
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Hannes Braberg
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Jacqueline M Fabius
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Manon Eckhardt
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Margaret Soucheray
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Melanie J Bennett
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Merve Cakir
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Michael J McGregor
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Qiongyu Li
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Bjoern Meyer
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Ferdinand Roesch
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Thomas Vallet
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Alice Mac Kain
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elena Moreno
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zun Zar Chi Naing
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Yuan Zhou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Shiming Peng
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Ying Shi
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA
| | - Ziyang Zhang
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA
| | - Wenqi Shen
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA
| | - Ilsa T Kirby
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA
| | - James E Melnyk
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA
| | - John S Chorba
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA
| | - Kevin Lou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA
| | - Shizhong A Dai
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA
| | - Inigo Barrio-Hernandez
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
| | - Danish Memon
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
| | - Claudia Hernandez-Armenta
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
| | - Jiankun Lyu
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Christopher J P Mathy
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA, USA
| | - Tina Perica
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Kala Bharath Pilla
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Sai J Ganesan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Daniel J Saltzberg
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Ramachandran Rakesh
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Xi Liu
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Sara B Rosenthal
- Center for Computational Biology and Bioinformatics, Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Lorenzo Calviello
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| | - Srivats Venkataramanan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| | - Jose Liboy-Lugo
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| | - Yizhu Lin
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| | - Xi-Ping Huang
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - YongFeng Liu
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Stephanie A Wankowicz
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Biophysics Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Markus Bohn
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Maliheh Safari
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Fatima S Ugur
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Cassandra Koh
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Nastaran Sadat Savar
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Quang Dinh Tran
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Djoshkun Shengjuler
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Sabrina J Fletcher
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, Paris, France
| | | | | | | | | | | | - Phillip P Sharp
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Nicole A Wenzell
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Duygu Kuzuoglu-Ozturk
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Urology, University of California San Francisco, San Francisco, CA, USA
| | - Hao-Yuan Wang
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Raphael Trenker
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Janet M Young
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Devin A Cavero
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- George William Hooper Foundation, Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Joseph Hiatt
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Medical Scientist Training Program, University of California San Francisco, San Francisco, CA, USA
| | - Theodore L Roth
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- George William Hooper Foundation, Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, University of California San Francisco, San Francisco, CA, USA
| | - Ujjwal Rathore
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- George William Hooper Foundation, Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Advait Subramanian
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- George William Hooper Foundation, Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Julia Noack
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- George William Hooper Foundation, Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Mathieu Hubert
- Virus and Immunity Unit, Institut Pasteur, Paris, France
| | - Robert M Stroud
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Alan D Frankel
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Oren S Rosenberg
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Kliment A Verba
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - David A Agard
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Melanie Ott
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Michael Emerman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Natalia Jura
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Mark von Zastrow
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA
| | - Eric Verdin
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Alan Ashworth
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | | | | | - Shaeri Mukherjee
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- George William Hooper Foundation, Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Matt Jacobson
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Danica G Fujimori
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Trey Ideker
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Division of Genetics, Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Charles S Craik
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Stephen N Floor
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - James S Fraser
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - John D Gross
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Andrej Sali
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Davide Ruggero
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Urology, University of California San Francisco, San Francisco, CA, USA
| | - Jack Taunton
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Tanja Kortemme
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA, USA
| | - Pedro Beltrao
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
| | - Marco Vignuzzi
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, Paris, France.
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Kevan M Shokat
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA.
| | - Brian K Shoichet
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA.
| | - Nevan J Krogan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.
- J. David Gladstone Institutes, San Francisco, CA, USA.
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
33
|
Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, O'Meara MJ, Guo JZ, Swaney DL, Tummino TA, Huettenhain R, Kaake RM, Richards AL, Tutuncuoglu B, Foussard H, Batra J, Haas K, Modak M, Kim M, Haas P, Polacco BJ, Braberg H, Fabius JM, Eckhardt M, Soucheray M, Bennett MJ, Cakir M, McGregor MJ, Li Q, Naing ZZC, Zhou Y, Peng S, Kirby IT, Melnyk JE, Chorba JS, Lou K, Dai SA, Shen W, Shi Y, Zhang Z, Barrio-Hernandez I, Memon D, Hernandez-Armenta C, Mathy CJP, Perica T, Pilla KB, Ganesan SJ, Saltzberg DJ, Ramachandran R, Liu X, Rosenthal SB, Calviello L, Venkataramanan S, Liboy-Lugo J, Lin Y, Wankowicz SA, Bohn M, Sharp PP, Trenker R, Young JM, Cavero DA, Hiatt J, Roth TL, Rathore U, Subramanian A, Noack J, Hubert M, Roesch F, Vallet T, Meyer B, White KM, Miorin L, Rosenberg OS, Verba KA, Agard D, Ott M, Emerman M, Ruggero D, García-Sastre A, Jura N, von Zastrow M, Taunton J, Ashworth A, Schwartz O, Vignuzzi M, d'Enfert C, Mukherjee S, Jacobson M, Malik HS, Fujimori DG, Ideker T, Craik CS, Floor S, Fraser JS, Gross J, Sali A, Kortemme T, Beltrao P, Shokat K, Shoichet BK, Krogan NJ. A SARS-CoV-2-Human Protein-Protein Interaction Map Reveals Drug Targets and Potential Drug-Repurposing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.03.22.002386. [PMID: 32511329 PMCID: PMC7239059 DOI: 10.1101/2020.03.22.002386] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An outbreak of the novel coronavirus SARS-CoV-2, the causative agent of COVID-19 respiratory disease, has infected over 290,000 people since the end of 2019, killed over 12,000, and caused worldwide social and economic disruption1,2. There are currently no antiviral drugs with proven efficacy nor are there vaccines for its prevention. Unfortunately, the scientific community has little knowledge of the molecular details of SARS-CoV-2 infection. To illuminate this, we cloned, tagged and expressed 26 of the 29 viral proteins in human cells and identified the human proteins physically associated with each using affinity-purification mass spectrometry (AP-MS), which identified 332 high confidence SARS-CoV-2-human protein-protein interactions (PPIs). Among these, we identify 67 druggable human proteins or host factors targeted by 69 existing FDA-approved drugs, drugs in clinical trials and/or preclinical compounds, that we are currently evaluating for efficacy in live SARS-CoV-2 infection assays. The identification of host dependency factors mediating virus infection may provide key insights into effective molecular targets for developing broadly acting antiviral therapeutics against SARS-CoV-2 and other deadly coronavirus strains.
Collapse
Affiliation(s)
- David E Gordon
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Gwendolyn M Jang
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Mehdi Bouhaddou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Jiewei Xu
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Kirsten Obernier
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Matthew J O'Meara
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jeffrey Z Guo
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Danielle L Swaney
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Tia A Tummino
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco
| | - Ruth Huettenhain
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Robyn M Kaake
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Alicia L Richards
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Beril Tutuncuoglu
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Helene Foussard
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Jyoti Batra
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Kelsey Haas
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Maya Modak
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Minkyu Kim
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Paige Haas
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Benjamin J Polacco
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Hannes Braberg
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Jacqueline M Fabius
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Manon Eckhardt
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Margaret Soucheray
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Melanie J Bennett
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Merve Cakir
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Michael J McGregor
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Qiongyu Li
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Zun Zar Chi Naing
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Yuan Zhou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Shiming Peng
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco
| | - Ilsa T Kirby
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
- Howard Hughes Medical Institute
| | - James E Melnyk
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
- Howard Hughes Medical Institute
| | - John S Chorba
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
- Howard Hughes Medical Institute
| | - Kevin Lou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
- Howard Hughes Medical Institute
| | - Shizhong A Dai
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
- Howard Hughes Medical Institute
| | - Wenqi Shen
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
- Howard Hughes Medical Institute
| | - Ying Shi
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
- Howard Hughes Medical Institute
| | - Ziyang Zhang
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
- Howard Hughes Medical Institute
| | - Inigo Barrio-Hernandez
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Danish Memon
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Claudia Hernandez-Armenta
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Christopher J P Mathy
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco
- The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
| | - Tina Perica
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco
| | - Kala B Pilla
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco
| | - Sai J Ganesan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco
| | - Daniel J Saltzberg
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco
| | - Rakesh Ramachandran
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco
| | - Xi Liu
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco
| | - Sara B Rosenthal
- Center for Computational Biology and Bioinformatics, Department of Medicine, University of California San Diego
| | - Lorenzo Calviello
- Department of Cell and Tissue Biology, University of California, San Francisco
| | | | - Jose Liboy-Lugo
- Department of Cell and Tissue Biology, University of California, San Francisco
| | - Yizhu Lin
- Department of Cell and Tissue Biology, University of California, San Francisco
| | - Stephanie A Wankowicz
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- Biophysics Graduate Program, University of California, San Francisco
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco
| | - Markus Bohn
- Department of Pharmaceutical Chemistry, University of California, San Francisco
| | - Phillip P Sharp
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Raphael Trenker
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Janet M Young
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center
| | - Devin A Cavero
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Joseph Hiatt
- Medical Scientist Training Program, University of California, San Francisco, CA 94143, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Theodore L Roth
- Medical Scientist Training Program, University of California, San Francisco, CA 94143, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Ujjwal Rathore
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Advait Subramanian
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- George William Hooper Foundation, Department of Microbiology and Immunology, UC San Francisco
| | - Julia Noack
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- George William Hooper Foundation, Department of Microbiology and Immunology, UC San Francisco
| | - Mathieu Hubert
- Virus and Immunity Unit, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Ferdinand Roesch
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris cedex 15, France
| | - Thomas Vallet
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris cedex 15, France
| | - Björn Meyer
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris cedex 15, France
| | - Kris M White
- Department for Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Lisa Miorin
- Department for Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Oren S Rosenberg
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Chan-Zuckerberg Biohub
| | - Kliment A Verba
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco
| | - David Agard
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- Biochemistry & Biophysics and Quantitative Biosciences Institute UCSF 600 16th St San Francisco, CA 94143
| | - Melanie Ott
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Michael Emerman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98103
| | - Davide Ruggero
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Adolfo García-Sastre
- Department for Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Natalia Jura
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Mark von Zastrow
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
- University of California San Francisco, Department of Psychiatry, San Francisco, CA, 94158, USA
| | - Jack Taunton
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Alan Ashworth
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94158, USA
| | - Olivier Schwartz
- Virus and Immunity Unit, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Marco Vignuzzi
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris cedex 15, France
| | - Christophe d'Enfert
- Direction Scientifique, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris cedex 15, France
| | - Shaeri Mukherjee
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- George William Hooper Foundation, Department of Microbiology and Immunology, UC San Francisco
| | - Matt Jacobson
- Department of Pharmaceutical Chemistry, University of California, San Francisco
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center
| | - Danica G Fujimori
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco
| | - Trey Ideker
- Division of Genetics, Department of Medicine, University of California San Diego
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94158, USA
| | - Stephen Floor
- Department of Cell and Tissue Biology, University of California, San Francisco
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94158, USA
| | - James S Fraser
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco
| | - John Gross
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco
| | - Andrej Sali
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco
| | - Tanja Kortemme
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco
- The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
| | - Pedro Beltrao
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Kevan Shokat
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
- Howard Hughes Medical Institute
| | - Brian K Shoichet
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco
| | - Nevan J Krogan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| |
Collapse
|
34
|
A simple and rapid pipeline for identification of receptor-binding sites on the surface proteins of pathogens. Sci Rep 2020; 10:1163. [PMID: 31980725 PMCID: PMC6981161 DOI: 10.1038/s41598-020-58305-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/14/2020] [Indexed: 12/02/2022] Open
Abstract
Ligand-receptor interactions play a crucial role in the plethora of biological processes. Several methods have been established to reveal ligand-receptor interface, however, the majority of methods are time-consuming, laborious and expensive. Here we present a straightforward and simple pipeline to identify putative receptor-binding sites on the pathogen ligands. Two model ligands (bait proteins), domain III of protein E of West Nile virus and NadA of Neisseria meningitidis, were incubated with the proteins of human brain microvascular endothelial cells immobilized on nitrocellulose or PVDF membrane, the complex was trypsinized on-membrane, bound peptides of the bait proteins were recovered and detected on MALDI-TOF. Two peptides of DIII (~916 Da and ~2003 Da) and four peptides of NadA (~1453 Da, ~1810 Da, ~2051 Da and ~2433 Da) were identified as plausible receptor-binders. Further, binding of the identified peptides to the proteins of endothelial cells was corroborated using biotinylated synthetic analogues in ELISA and immunocytochemistry. Experimental pipeline presented here can be upscaled easily to map receptor-binding sites on several ligands simultaneously. The approach is rapid, cost-effective and less laborious. The proposed experimental pipeline could be a simpler alternative or complementary method to the existing techniques used to reveal amino-acids involved in the ligand-receptor interface.
Collapse
|
35
|
Kikkert M. Innate Immune Evasion by Human Respiratory RNA Viruses. J Innate Immun 2019; 12:4-20. [PMID: 31610541 PMCID: PMC6959104 DOI: 10.1159/000503030] [Citation(s) in RCA: 245] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023] Open
Abstract
The impact of respiratory virus infections on the health of children and adults can be very significant. Yet, in contrast to most other childhood infections as well as other viral and bacterial diseases, prophylactic vaccines or effective antiviral treatments against viral respiratory infections are either still not available, or provide only limited protection. Given the widespread prevalence, a general lack of natural sterilizing immunity, and/or high morbidity and lethality rates of diseases caused by influenza, respiratory syncytial virus, coronaviruses, and rhinoviruses, this difficult situation is a genuine societal challenge. A thorough understanding of the virus-host interactions during these respiratory infections will most probably be pivotal to ultimately meet these challenges. This review attempts to provide a comparative overview of the knowledge about an important part of the interaction between respiratory viruses and their host: the arms race between host innate immunity and viral innate immune evasion. Many, if not all, viruses, including the respiratory viruses listed above, suppress innate immune responses to gain a window of opportunity for efficient virus replication and setting-up of the infection. The consequences for the host's immune response are that it is often incomplete, delayed or diminished, or displays overly strong induction (after the delay) that may cause tissue damage. The affected innate immune response also impacts subsequent adaptive responses, and therefore viral innate immune evasion often undermines fully protective immunity. In this review, innate immune responses relevant for respiratory viruses with an RNA genome will briefly be summarized, and viral innate immune evasion based on shielding viral RNA species away from cellular innate immune sensors will be discussed from different angles. Subsequently, viral enzymatic activities that suppress innate immune responses will be discussed, including activities causing host shut-off and manipulation of stress granule formation. Furthermore, viral protease-mediated immune evasion and viral manipulation of the ubiquitin system will be addressed. Finally, perspectives for use of the reviewed knowledge for the development of novel antiviral strategies will be sketched.
Collapse
Affiliation(s)
- Marjolein Kikkert
- Department of Medical Microbiology, Leiden University Medical Center, Molecular Virology Laboratory, Leiden, The Netherlands,
| |
Collapse
|
36
|
Li CC, Wang XJ, Wang HCR. Repurposing host-based therapeutics to control coronavirus and influenza virus. Drug Discov Today 2019; 24:726-736. [PMID: 30711575 PMCID: PMC7108273 DOI: 10.1016/j.drudis.2019.01.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/11/2019] [Accepted: 01/28/2019] [Indexed: 12/11/2022]
Abstract
Drug repositioning is a cost- and time-efficient approach for new indications. Targeting host machineries, used by viruses, could develop broad-spectrum antivirals. Repurposing existing drugs could efficiently identify antiviral agents.
The development of highly effective antiviral agents has been a major objective in virology and pharmaceutics. Drug repositioning has emerged as a cost-effective and time-efficient alternative approach to traditional drug discovery and development. This new shift focuses on the repurposing of clinically approved drugs and promising preclinical drug candidates for the therapeutic development of host-based antiviral agents to control diseases caused by coronavirus and influenza virus. Host-based antiviral agents target host cellular machineries essential for viral infections or innate immune responses to interfere with viral pathogenesis. This review discusses current knowledge, prospective applications and challenges in the repurposing of clinically approved and preclinically studied drugs for newly indicated antiviral therapeutics.
Collapse
Affiliation(s)
- Cui-Cui Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiao-Jia Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| | - Hwa-Chain Robert Wang
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, USA.
| |
Collapse
|
37
|
Yip TF, Selim ASM, Lian I, Lee SMY. Advancements in Host-Based Interventions for Influenza Treatment. Front Immunol 2018; 9:1547. [PMID: 30042762 PMCID: PMC6048202 DOI: 10.3389/fimmu.2018.01547] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/22/2018] [Indexed: 12/15/2022] Open
Abstract
Influenza is a major acute respiratory infection that causes mortality and morbidity worldwide. Two classes of conventional antivirals, M2 ion channel blockers and neuraminidase inhibitors, are mainstays in managing influenza disease to lessen symptoms while minimizing hospitalization and death in patients with severe influenza. However, the development of viral resistance to both drug classes has become a major public health concern. Vaccines are prophylaxis mainstays but are limited in efficacy due to the difficulty in matching predicted dominant viral strains to circulating strains. As such, other potential interventions are being explored. Since viruses rely on host cellular functions to replicate, recent therapeutic developments focus on targeting host factors involved in virus replication. Besides controlling virus replication, potential targets for drug development include controlling virus-induced host immune responses such as the recently suggested involvement of innate lymphoid cells and NADPH oxidases in influenza virus pathogenesis and immune cell metabolism. In this review, we will discuss the advancements in novel host-based interventions for treating influenza disease.
Collapse
Affiliation(s)
- Tsz-Fung Yip
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong
| | - Aisha Sami Mohammed Selim
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong
| | - Ida Lian
- School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, Singapore, Singapore
| | - Suki Man-Yan Lee
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
38
|
Zhai X, Wu S, Lin L, Wang T, Zhong X, Chen Y, Xu W, Tong L, Wang Y, Zhao W, Zhong Z. Stress Granule Formation is One of the Early Antiviral Mechanisms for Host Cells Against Coxsackievirus B Infection. Virol Sin 2018; 33:314-322. [PMID: 29959686 DOI: 10.1007/s12250-018-0040-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 05/25/2018] [Indexed: 12/11/2022] Open
Abstract
Stress granules (SGs) are intracellular granules formed when cellular translation is blocked and have been reported to be involved in a variety of viral infections. Our previous studies revealed that SGs are involved in the coxsackievirus B (CVB) infection process, but the role of SGs in CVB infection has not been fully explored. In this study, we found that CVB type 3 (CVB3) could induce SG formation in the early phase of infection. Results showed that levels of CVB3 RNA and protein were significantly inhibited during the early stage of CVB3 infection by the elevated formation of SGs, while viral RNA and protein synthesis were significantly promoted when SG formation was blocked. Our findings suggest that SG formation is one of the early antiviral mechanisms for host cells against CVB infection.
Collapse
Affiliation(s)
- Xia Zhai
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China
| | - Shuo Wu
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China
| | - Lexun Lin
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China
| | - Tianying Wang
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China
| | - Xiaoyan Zhong
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China
| | - Yang Chen
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China
| | - Weizhen Xu
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China
| | - Lei Tong
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China
| | - Yan Wang
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China
| | - Wenran Zhao
- Department of Cell Biology, Harbin Medical University, Harbin, 150081, China.
| | - Zhaohua Zhong
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|