1
|
Tabatabaei FS, Shafeghat M, Azimi A, Akrami A, Rezaei N. Endosomal Toll-Like Receptors intermediate negative impacts of viral diseases, autoimmune diseases, and inflammatory immune responses on the cardiovascular system. Expert Rev Clin Immunol 2024:1-13. [PMID: 39137281 DOI: 10.1080/1744666x.2024.2392815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/17/2024] [Accepted: 08/12/2024] [Indexed: 08/15/2024]
Abstract
INTRODUCTION Cardiovascular disease (CVD) is the leading cause of morbidity globally, with chronic inflammation as a key modifiable risk factor. Toll-like receptors (TLRs), pivotal components of the innate immune system, including TLR-3, -7, -8, and -9 within endosomes, trigger intracellular cascades, leading to inflammatory cytokine production by various cell types, contributing to systemic inflammation and atherosclerosis. Recent research highlights the role of endosomal TLRs in recognizing self-derived nucleic acids during sterile inflammation, implicated in autoimmune conditions like myocarditis. AREAS COVERED This review explores the impact of endosomal TLRs on viral infections, autoimmunity, and inflammatory responses, shedding light on their intricate involvement in cardiovascular health and disease by examining literature on TLR-mediated mechanisms and their roles in CVD pathophysiology. EXPERT OPINION Removal of endosomal TLRs mitigates myocardial damage and immune reactions, applicable in myocardial injury. Targeting TLRs with agonists enhances innate immunity against fatal viruses, lowering viral loads and mortality. Prophylactic TLR agonist administration upregulates TLRs, protecting against fatal viruses and improving survival. TLRs play a complex role in CVDs like atherosclerosis and myocarditis, with therapeutic potential in modulating TLR reactions for cardiovascular health.
Collapse
Affiliation(s)
- Fatemeh Sadat Tabatabaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Melika Shafeghat
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirali Azimi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashley Akrami
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
2
|
Arefinia N, Banafi P, Zarezadeh MA, Mousawi HS, Yaghobi R, Farokhnia M, Sarvari J. TLR3, TLR7, and TLR8 genes expression datasets in COVID-19 patients: Influences of the disease severity and gender. Data Brief 2024; 54:110498. [PMID: 38868379 PMCID: PMC11166686 DOI: 10.1016/j.dib.2024.110498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 06/14/2024] Open
Abstract
The prognosis of COVID-19 could influence by innate immune sensors such as toll-like receptors (TLRs). The purpose of this data was to investigate TLR3, 7, and 8 expression levels in COVID-19 patients and their relationship to outcome of disease. 75 confirm COVID-19 were included sequentially and separated into three groups: mild, severe, and critical. Peripheral blood mononuclear cells were isolated from the whole blood, and RNA was then extracted. The qRT-PCR technique was used to examine the expression of TLR3, TLR7, and TLR8 genes. The patients average ages were 52.69 ± 1.9 and 13 of the 25 individuals in each group were male. TLR3 (p < 0.001), TLR7 (p < 0.001), and TLR8 (p < 0.001) expression levels were considerably greater in COVID-19 patients compared to the control group. The findings also showed that individuals with critical and severe COVID-19 disease had significantly greater TLR7 and TLR8 gene expression levels than patients in mild stage of disease (p < 0.05). The data showed a significant difference (p = 0.01) in the TLR3 transcript levels between critical and mild COVID-19 patients. Furthermore, male severe (p = 0.02) and critical (p = 0.008) patients had significantly higher TLR8 expression levels than female patients in terms of gender. TLR3 (p = 0.2) and TLR7 (p = 0.08) transcripts were more elevated in males than females, but not significantly.
Collapse
Affiliation(s)
- Nasir Arefinia
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Bio Environmental Health Hazards Research Center, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Parsa Banafi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Amin Zarezadeh
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hawra Shah Mousawi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ramin Yaghobi
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrdad Farokhnia
- Department of Internal Medicine, Faculty of Medicine, Afzalipour Hospital, Kerman University of Medical School, Kerman, Iran
| | - Jamal Sarvari
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Altoukhi SM, Zamkah MM, Alharbi RA, Alghamdi SK, Aldawsari LS, Tarabulsi M, Rizk H, Sandokji Y. Understanding the effects of COVID-19 on patients with diabetic nephropathy: a systematic review. Ann Med Surg (Lond) 2024; 86:3478-3486. [PMID: 38846830 PMCID: PMC11152851 DOI: 10.1097/ms9.0000000000002053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/30/2024] [Indexed: 06/09/2024] Open
Abstract
Background Diabetic nephropathy is one of the consequences of diabetes mellitus that causes a continuous decline in the eGFR. After the COVID-19 pandemic, studies have shown that patients with diabetic nephropathy who had contracted COVID-19 have higher rates of morbidity and disease progression. The aim of this study was to systematically review the literature to determine and understand the effects and complications of SARS-CoV-2 on patients with diabetic nephropathy. Materials and methods The authors' research protocol encompassed the study selection process, search strategy, inclusion/exclusion criteria, and a data extraction plan. A systematic review was conducted by a team of five reviewers, with an additional reviewer assigned to address any discrepancies. To ensure comprehensive coverage, the authors employed multiple search engines including PubMed, ResearchGate, ScienceDirect, SDL, Ovid, and Google Scholar. Results A total of 14 articles meeting the inclusion criteria revealed that COVID-19 directly affects the kidneys by utilizing ACE2 receptors for cell entry, which is significant because ACE2 receptors are widely expressed in the kidney. Conclusion COVID-19 affects kidney health, especially in individuals with diabetic nephropathy. The mechanisms include direct viral infection and immune-mediated injury. Early recognition and management are vital for improving the outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hisham Rizk
- General Surgery, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Yousif Sandokji
- General Surgery, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
4
|
Mobley JA, Molyvdas A, Kojima K, Ahmad I, Jilling T, Li JL, Garantziotis S, Matalon S. The SARS-CoV-2 spike S1 protein induces global proteomic changes in ATII-like rat L2 cells that are attenuated by hyaluronan. Am J Physiol Lung Cell Mol Physiol 2023; 324:L413-L432. [PMID: 36719087 PMCID: PMC10042596 DOI: 10.1152/ajplung.00282.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/29/2022] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
The COVID-19 pandemic continues to impose a major impact on global health and economy since its identification in early 2020, causing significant morbidity and mortality worldwide. Caused by the SARS-CoV-2 virus, along with a growing number of variants, COVID-19 has led to 651,918,402 confirmed cases and 6,656,601 deaths worldwide (as of December 27, 2022; https://covid19.who.int/). Despite advances in our understanding of COVID-19 pathogenesis, the precise mechanism by which SARS-CoV2 causes epithelial injury is incompletely understood. In this current study, robust application of global-discovery proteomics identified highly significant induced changes by the Spike S1 protein of SARS-CoV-2 in the proteome of alveolar type II (ATII)-like rat L2 cells that lack ACE2 receptors. Systems biology analysis revealed that the S1-induced proteomics changes were associated with three significant network hubs: E2F1, CREB1/RelA, and ROCK2/RhoA. We also found that pretreatment of L2 cells with high molecular weight hyaluronan (HMW-HA) greatly attenuated the S1 effects on the proteome. Western blotting analysis and cell cycle measurements confirmed the S1 upregulation of E2F1 and ROCK2/RhoA in L2 cells and the protective effects of HMW-HA. Taken as a whole, our studies revealed profound and novel biological changes that contribute to our current understanding of both S1 and hyaluronan biology. These data show that the S1 protein may contribute to epithelial injury induced by SARS-CoV-2. In addition, our work supports the potential benefit of HMW-HA in ameliorating SARS CoV-2-induced cell injury.
Collapse
Affiliation(s)
- James A Mobley
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Adam Molyvdas
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Kyoko Kojima
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Israr Ahmad
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Tamas Jilling
- Division of Neonatology, Department of Pediatrics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Jian-Liang Li
- National Institute of Environmental Health Sciences, Durham, North Carolina, United States
| | - Stavros Garantziotis
- National Institute of Environmental Health Sciences, Durham, North Carolina, United States
| | - Sadis Matalon
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
5
|
Yang Y, Zou S, Xu G. An update on the interaction between COVID-19, vaccines, and diabetic kidney disease. Front Immunol 2022; 13:999534. [DOI: 10.3389/fimmu.2022.999534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/03/2022] [Indexed: 01/08/2023] Open
Abstract
Up to now, coronavirus disease 2019 (COVID-19) is still affecting worldwide due to its highly infectious nature anrapid spread. Diabetic kidney disease (DKD) is an independent risk factor for severe COVID-19 outcomes, and they have a certain correlation in some aspects. Particularly, the activated renin–angiotensin–aldosterone system, chronic inflammation, endothelial dysfunction, and hypercoagulation state play an important role in the underlying mechanism linking COVID-19 to DKD. The dipeptidyl peptidase-4 inhibitor is considered a potential therapy for COVID-19 and has similarly shown organ protection in DKD. In addition, neuropilin-1 as an alternative pathway for angiotensin-converting enzyme 2 also contributes to severe acute respiratory syndrome coronavirus 2 entering the host cells, and its decreased expression can affect podocyte migration and adhesion. Here, we review the pathogenesis and current evidence of the interaction of DKD and COVID-19, as well as focus on elevated blood glucose following vaccination and its possible mechanism. Grasping the pathophysiology of DKD patients with COVID-19 is of great clinical significance for the formulation of therapeutic strategies.
Collapse
|
6
|
Correlations between Cytokine Levels, Liver Function Markers, and Neuropilin-1 Expression in Patients with COVID-19. Vaccines (Basel) 2022; 10:vaccines10101636. [PMID: 36298501 PMCID: PMC9611321 DOI: 10.3390/vaccines10101636] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/14/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Aim: The study evaluated the correlations between cytokine levels, liver function markers, and neuropilin-1 (NRP-1) expression in patients with COVID-19 in Egypt. The study also aimed to evaluate the accuracy sensitivity, specificity, and area under the curve (AUC) of the tested laboratory parameters in identifying COVID-19 infection and its severity. Patients and Methods: Fifty healthy subjects and 100 confirmed patients with COVID-19 were included in this study. COVID-19 patients were separated into two groups based on the severity of their symptoms. Serum ALT, AST, albumin, C-reactive protein (CRP), interleukin (IL)-1β, IL-4, IL-6, IL-18, IL-35, prostaglandin E2 (PGE2), and thromboxane A2 (TXA2) were estimated. We measured the gene expression for nuclear factor-kappa B p50 (NF-κB p50) and nuclear factor-kappa B p65 (NF-κB p65) and NRP-1 in blood samples using quantitative real-time polymerase chain reaction (qRT-PCR). AUC and sensitivity and specificity for cytokine levels and NF-κB p50 and NF-κB p65 and NRP-1 in identifying COVID-19 infection were also determined in both moderate and severe patient groups using receiver-operating characteristic curve (ROC) analysis. Results: All patients with COVID-19 showed higher serum activities of liver enzymes, levels of CRP, IL-1β, IL-4, IL-6, IL-18, IL-35 PGE2, and TXA2, and mRNA expression of NF-κB p50, NF-κB p65, and NRP-1 than healthy subjects. The severe group exhibited a significant increase in serum ALT, AST and IL-6 and a significant decrease in albumin, IL-1β, TXA2, and NF-κB p65 levels compared to the moderate group. In all patients (moderate and severe), all cytokines were positively correlated with NF-κB p50, NF-κB p65 and NRP-1 expression levels. Serum ALT and AST were positively correlated with CRP, cytokines (IL-4, IL-6, IL-18, IL-35 and TXA2), and NF-κB p50 and NF-κB p65 expression levels in both moderate and severe groups. They were also positively correlated with serum IL-1β level in the severe COVID-19 patient group and with NRP-1 expression in the moderate group. Using the logistic regression analysis, the most important four statistically significant predictors associated with COVID-19 infection in the study were found to be IL-6, TAX2, NF-κB p50 and NF-κB p65. ROC analysis of these variables revealed that three of them had AUC > 0.8. In moderate cases, AUC of the serum TXA2 level and NF-κB p65 expression were 0.843 (95% CI 0.517−0.742, p < 0.001) and 0.806 (95% CI 0.739−0.874, p < 0.001), respectively. In the severe group, AUC of serum IL-6 level was 0.844 (95% CI 0.783−0.904, p < 0.001). Moreover, Il-6 had a sensitivity of 100% in both moderate and severe groups. Conclusions: This study concluded that liver injury in patients with COVID-19 may be strongly attributed to the cytokines storm, especially IL-6, which was positively correlated to NF-κB p50, NF-κB p65 and NRP-1 mRNA expression levels. Moreover, ROC analysis revealed that IL-6, TXA2, and NF-κB p65 could be useful in predicting the possibility of infection with COVID-19, and IL-6 could be of possible significance as a good predictor of the severity and disease progress. However, RT-qPCR for SARS-CoV-2 detection is essential to confirm infection and further clinical studies are required to confirm this elucidation.
Collapse
|