1
|
Maltseva M, Keeshan A, Cooper C, Langlois MA. Immune imprinting: The persisting influence of the first antigenic encounter with rapidly evolving viruses. Hum Vaccin Immunother 2024; 20:2384192. [PMID: 39149872 PMCID: PMC11328881 DOI: 10.1080/21645515.2024.2384192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/08/2024] [Accepted: 07/21/2024] [Indexed: 08/17/2024] Open
Abstract
Immune imprinting is a phenomenon that stems from the fundamentals of immunological memory. Upon recurrent exposures to an evolving pathogen, the immune system must weigh the benefits of rapidly recalling established antibody repertoires with greater affinity to the initial variant or invest additional time and energy in producing de novo responses specific to the emerging variant. In this review, we delve into the mechanistic complexities of immune imprinting and its role in shaping subsequent immune responses, both de novo and recall, against rapidly evolving respiratory viruses such as influenza and coronaviruses. By exploring the duality of immune imprinting, we examine its potential to both enhance or hinder immune protection against disease, while emphasizing the role of host and viral factors. Finally, we explore how different vaccine platforms may affect immune imprinting and comment on vaccine strategies that can favor de novo variant-specific antibody responses.
Collapse
Affiliation(s)
- Mariam Maltseva
- Department of Biochemistry, Microbiology & Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Alexa Keeshan
- School of Epidemiology and Public Health, University of Ottawa Faculty of Medicine, Ottawa, ON, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Curtis Cooper
- School of Epidemiology and Public Health, University of Ottawa Faculty of Medicine, Ottawa, ON, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Medicine, University of Ottawa, Ottawa, ON, Canada
- Division of Infectious Diseases, Ottawa Hospital Research Institute Clinical Epidemiology Program, Ottawa, ON, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology & Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Center for Infection, Immunity, and Inflammation (CI3), University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
2
|
Kawai A, Noda M, Hirata H, Munakata L, Matsuda T, Omata D, Takemura N, Onoe S, Hirose M, Kato T, Saitoh T, Hirai T, Suzuki R, Yoshioka Y. Lipid Nanoparticle with 1,2-Di-O-octadecenyl-3-trimethylammonium-propane as a Component Lipid Confers Potent Responses of Th1 Cells and Antibody against Vaccine Antigen. ACS NANO 2024; 18:16589-16609. [PMID: 38885198 PMCID: PMC11223497 DOI: 10.1021/acsnano.4c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/21/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024]
Abstract
Adjuvants are effective tools to enhance vaccine efficacy and control the type of immune responses such as antibody and T helper 1 (Th1)- or Th2-type responses. Several studies suggest that interferon (IFN)-γ-producing Th1 cells play a significant role against infections caused by intracellular bacteria and viruses; however, only a few adjuvants can induce a strong Th1-type immune response. Recently, several studies have shown that lipid nanoparticles (LNPs) can be used as vaccine adjuvants and that each LNP has a different adjuvant activity. In this study, we screened LNPs to develop an adjuvant that can induce Th1 cells and antibodies using a conventional influenza split vaccine (SV) as an antigen in mice. We observed that LNP with 1,2-di-O-octadecenyl-3-trimethylammonium-propane (DOTMA) as a component lipid (DOTMA-LNP) elicited robust SV-specific IgG1 and IgG2 responses compared with SV alone in mice and was as efficient as SV adjuvanted with other adjuvants in mice. Furthermore, DOTMA-LNPs induced robust IFN-γ-producing Th1 cells without inflammatory responses compared to those of other adjuvants, which conferred strong cross-protection in mice. We also demonstrated the high versatility of DOTMA-LNP as a Th1 cell-inducing vaccine adjuvant using vaccine antigens derived from severe acute respiratory syndrome coronavirus 2 and Streptococcus pneumoniae. Our findings suggest the potential of DOTMA-LNP as a safe and effective Th1 cell-inducing adjuvant and show that LNP formulations are potentially potent adjuvants to enhance the effectiveness of other subunit vaccines.
Collapse
Affiliation(s)
- Atsushi Kawai
- Laboratory
of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research
Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masahiro Noda
- Laboratory
of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research
Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Haruki Hirata
- Laboratory
of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research
Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Lisa Munakata
- Laboratory
of Drug and Gene Delivery Research, Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Teppei Matsuda
- Laboratory
of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research
Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Daiki Omata
- Laboratory
of Drug and Gene Delivery Research, Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Naoki Takemura
- Laboratory
of Bioresponse Regulation, Graduate School
of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Sakura Onoe
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mika Hirose
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takayuki Kato
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center
for Advanced Modalities and DDS, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tatsuya Saitoh
- Laboratory
of Bioresponse Regulation, Graduate School
of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center
for Infectious Disease Education and Research, Osaka University, 3-1
Yamadaoka, Suita, Osaka 565-0871, Japan
- Global
Center for Medical Engineering and Informatics, Osaka University, 3-1
Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshiro Hirai
- Laboratory
of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research
Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ryo Suzuki
- Laboratory
of Drug and Gene Delivery Research, Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Yasuo Yoshioka
- Laboratory
of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research
Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center
for Advanced Modalities and DDS, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center
for Infectious Disease Education and Research, Osaka University, 3-1
Yamadaoka, Suita, Osaka 565-0871, Japan
- Global
Center for Medical Engineering and Informatics, Osaka University, 3-1
Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, The Research Foundation for Microbial Diseases of
Osaka University, 3-1
Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
3
|
Hsueh SCC, Nijland M, Aina A, Plotkin SS. Cyclization Scaffolding for Improved Vaccine Immunogen Stability: Application to Tau Protein in Alzheimer's Disease. J Chem Inf Model 2024; 64:2035-2044. [PMID: 38427576 DOI: 10.1021/acs.jcim.3c01556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Effective scaffolding of immunogens is crucial for generating conformationally selective antibodies through active immunization, particularly in the treatment of protein misfolding diseases such as Alzheimer's and Parkinson's disease. Previous computational work has revealed that a disorder-prone region of the tau protein, when in a stacked form, is predicted to structurally resemble a small, soluble protofibril, having conformational properties similar to those of experimental in vitro tau oligomers. Such an oligomeric structural mimic has the potential to serve as a vaccine immunogen design for Alzheimer's disease. In this study, we developed a cyclization scaffolding method in Rosetta, in which multiple cyclic peptides are stacked into a protofibril. Cyclization results in significant stabilization of protofibril-like structures by constraining the conformational space. Applying this method to the disorder-prone region of the tau fibril, we evaluated the metastability of the cyclized tau immunogen using molecular dynamics simulations, and we identified sequences of two cyclic constructs having high metastability in the protofibril. We then assessed their thermodynamic stability by computing the free energy required to separate a distal chain from the rest of the stacked structure. Our computational results, based on molecular dynamics simulations and free energy calculations, demonstrate that two cyclized constructs, cyclo-(VKSEKLDFKDRVQSKIFyN) and cyclo-(VKSEKLDFKDRVQSKIYvG) (lowercase letters indicate d-form amino acids), possess significantly increased thermodynamic stability in the protofibril over an uncyclized linear construct VKSEKLDFKDRVQSKI. The cyclization scaffolding approach proposed here holds promise as a means to effectively design immunogens for protein misfolding diseases, particularly those involving liposome-conjugated peptide constructs.
Collapse
Affiliation(s)
- Shawn C C Hsueh
- Department of Physics and Astronomy, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Mark Nijland
- Laboratory of Physical Chemistry, Wageningen University, Wageningen 6708 WG, The Netherlands
| | - Adekunle Aina
- Department of Physics and Astronomy, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Steven S Plotkin
- Department of Physics and Astronomy, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
- Genome Science and Technology Program, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
4
|
Barbey C, Su J, Billmeier M, Stefan N, Bester R, Carnell G, Temperton N, Heeney J, Protzer U, Breunig M, Wagner R, Peterhoff D. Immunogenicity of a silica nanoparticle-based SARS-CoV-2 vaccine in mice. Eur J Pharm Biopharm 2023; 192:41-55. [PMID: 37774890 DOI: 10.1016/j.ejpb.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/12/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Safe and effective vaccines have been regarded early on as critical in combating the COVID-19 pandemic. Among the deployed vaccine platforms, subunit vaccines have a particularly good safety profile but may suffer from a lower immunogenicity compared to mRNA based or viral vector vaccines. In fact, this phenomenon has also been observed for SARS-CoV-2 subunit vaccines comprising the receptor-binding domain (RBD) of the spike (S) protein. Therefore, RBD-based vaccines have to rely on additional measures to enhance the immune response. It is well accepted that displaying antigens on nanoparticles can improve the quantity and quality of vaccine-mediated both humoral and cell-mediated immune responses. Based on this, we hypothesized that SARS-CoV-2 RBD as immunogen would benefit from being presented to the immune system via silica nanoparticles (SiNPs). Herein we describe the preparation, in vitro characterization, antigenicity and in vivo immunogenicity of SiNPs decorated with properly oriented RBD in mice. We found our RBD-SiNP conjugates show narrow, homogeneous particle distribution with optimal size of about 100 nm for efficient transport to and into the lymph node. The colloidal stability and binding of the antigen was stable for at least 4 months at storage- and in vivo-temperatures. The antigenicity of the RBD was maintained upon binding to the SiNP surface, and the receptor-binding motif was readily accessible due to the spatial orientation of the RBD. The particles were efficiently taken up in vitro by antigen-presenting cells. In a mouse immunization study using an mRNA vaccine and spike protein as benchmarks, we found that the SiNP formulation was able to elicit a stronger RBD-specific humoral response compared to the soluble protein. For the adjuvanted RBD-SiNP we found strong S-specific multifunctional CD4+ T cell responses, a balanced T helper response, improved auto- and heterologous virus neutralization capacity, and increased serum avidity, suggesting increased affinity maturation. In summary, our results provide further evidence for the possibility of optimizing the cellular and humoral immune response through antigen presentation on SiNP.
Collapse
Affiliation(s)
- Clara Barbey
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Germany
| | - Jinpeng Su
- Institute of Virology, Technical University of Munich / Helmholtz Munich, Munich, Germany
| | - Martina Billmeier
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Nadine Stefan
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Romina Bester
- Institute of Virology, Technical University of Munich / Helmholtz Munich, Munich, Germany
| | - George Carnell
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Chatham ME4 4BF, United Kingdom
| | - Jonathan Heeney
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Ulrike Protzer
- Institute of Virology, Technical University of Munich / Helmholtz Munich, Munich, Germany; German Center for Infection Research (DZIF), Munich Partner Site, Germany
| | - Miriam Breunig
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Germany
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany; Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - David Peterhoff
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany; Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany.
| |
Collapse
|
5
|
Zhang W, Pfeifle A, Lansdell C, Frahm G, Cecillon J, Tamming L, Gravel C, Gao J, Thulasi Raman SN, Wang L, Sauve S, Rosu-Myles M, Li X, Johnston MJW. The Expression Kinetics and Immunogenicity of Lipid Nanoparticles Delivering Plasmid DNA and mRNA in Mice. Vaccines (Basel) 2023; 11:1580. [PMID: 37896985 PMCID: PMC10610642 DOI: 10.3390/vaccines11101580] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
In recent years, lipid nanoparticles (LNPs) have emerged as a revolutionary technology for vaccine delivery. LNPs serve as an integral component of mRNA vaccines by protecting and transporting the mRNA payload into host cells. Despite their prominence in mRNA vaccines, there remains a notable gap in our understanding of the potential application of LNPs for the delivery of DNA vaccines. In this study, we sought to investigate the suitability of leading LNP formulations for the delivery of plasmid DNA (pDNA). In addition, we aimed to explore key differences in the properties of popular LNP formulations when delivering either mRNA or DNA. To address these questions, we compared three leading LNP formulations encapsulating mRNA- or pDNA-encoding firefly luciferase based on potency, expression kinetics, biodistribution, and immunogenicity. Following intramuscular injection in mice, we determined that RNA-LNPs formulated with either SM-102 or ALC-0315 lipids were the most potent (all p-values < 0.01) and immunogenic (all p-values < 0.05), while DNA-LNPs formulated with SM-102 or ALC-0315 demonstrated the longest duration of signal. Additionally, all LNP formulations were found to induce expression in the liver that was proportional to the signal at the injection site (SM102: r = 0.8787, p < 0.0001; ALC0315: r = 0.9012, p < 0.0001; KC2: r = 0.9343, p < 0.0001). Overall, this study provides important insights into the differences between leading LNP formulations and their applicability to DNA- and RNA-based vaccinations.
Collapse
Affiliation(s)
- Wanyue Zhang
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (W.Z.); (A.P.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Annabelle Pfeifle
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (W.Z.); (A.P.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Casey Lansdell
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (W.Z.); (A.P.)
| | - Grant Frahm
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (W.Z.); (A.P.)
| | - Jonathon Cecillon
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (W.Z.); (A.P.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Levi Tamming
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (W.Z.); (A.P.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Caroline Gravel
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (W.Z.); (A.P.)
| | - Jun Gao
- Centre for Vaccines, Clinical Trials and Biostatistics, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada
| | - Sathya N. Thulasi Raman
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (W.Z.); (A.P.)
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Simon Sauve
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (W.Z.); (A.P.)
| | - Michael Rosu-Myles
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (W.Z.); (A.P.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Xuguang Li
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (W.Z.); (A.P.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Michael J. W. Johnston
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (W.Z.); (A.P.)
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
6
|
Takanashi A, Pouton CW, Al-Wassiti H. Delivery and Expression of mRNA in the Secondary Lymphoid Organs Drive Immune Responses to Lipid Nanoparticle-mRNA Vaccines after Intramuscular Injection. Mol Pharm 2023; 20:3876-3885. [PMID: 37491979 PMCID: PMC10411422 DOI: 10.1021/acs.molpharmaceut.2c01024] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 07/27/2023]
Abstract
Lipid nanoparticles (LNPs) are the prime delivery vehicle for mRNA vaccines. Previous hypotheses suggested that LNPs contribute to innate reactogenicity and lead to the establishment of a vaccine adaptive response. It has not been clear whether LNP adjuvancy in the muscle is the prime driver of adaptive immune responses or whether delivery to secondary lymphatic organs is necessary to induce strong adaptive responses. To address this, we formulated reporter gene (NLuc) or OVA mRNA into LNP or coadministered the mRNA with empty LNP. After IM injection, we correlated the delivery with adaptive immune responses. Additionally, we investigated humoral responses to modified mRNA encoding the SARS-CoV-2 spike protein. Compared to unformulated mRNA encoding nanoluciferase, with or without co-administered empty LNPs, LNP-formulated mRNA resulted in high levels of nanoluciferase in the secondary lymphoid organs. Similarly, LNP-mRNA encoding ovalbumin led to a cellular immune response against OVA while free mRNA, with or without empty adjuvanted LNPs, caused little or no immune response. Finally, only mice injected with LNP-formulated mRNA encoding SARS-CoV-2 spike protein elicited robust cellular and humoral immune responses. Our results suggest that the mRNA delivery and transfection of secondary lymphatic organs, not LNP adjuvancy or RNA expression in muscle, are the main drivers for adaptive immune response in mice. This work informs the design of next-generation mRNA delivery systems where better delivery to secondary lymphatic organs should lead to a better vaccine response.
Collapse
Affiliation(s)
- Asuka Takanashi
- Drug Delivery, Disposition
and Dynamics (D4), Monash Institute of Pharmaceutical
Sciences, Monash University (Parkville Campus), Parkville, VIC 3052, Australia
| | - Colin W. Pouton
- Drug Delivery, Disposition
and Dynamics (D4), Monash Institute of Pharmaceutical
Sciences, Monash University (Parkville Campus), Parkville, VIC 3052, Australia
| | - Hareth Al-Wassiti
- Drug Delivery, Disposition
and Dynamics (D4), Monash Institute of Pharmaceutical
Sciences, Monash University (Parkville Campus), Parkville, VIC 3052, Australia
| |
Collapse
|
7
|
Touray BJ, Hanafy M, Phanse Y, Hildebrand R, Talaat AM. Protective RNA nanovaccines against Mycobacterium avium subspecies hominissuis. Front Immunol 2023; 14:1188754. [PMID: 37359562 PMCID: PMC10286238 DOI: 10.3389/fimmu.2023.1188754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
The induction of an effective immune response is critical for the success of mRNA-based therapeutics. Here, we developed a nanoadjuvant system compromised of Quil-A and DOTAP (dioleoyl 3 trimethylammonium propane), hence named QTAP, for the efficient delivery of mRNA vaccine constructs into cells. Electron microscopy indicated that the complexation of mRNA with QTAP forms nanoparticles with an average size of 75 nm and which have ~90% encapsulation efficiency. The incorporation of pseudouridine-modified mRNA resulted in higher transfection efficiency and protein translation with low cytotoxicity than unmodified mRNA. When QTAP-mRNA or QTAP alone transfected macrophages, pro-inflammatory pathways (e.g., NLRP3, NF-kb, and MyD88) were upregulated, an indication of macrophage activation. In C57Bl/6 mice, QTAP nanovaccines encoding Ag85B and Hsp70 transcripts (QTAP-85B+H70) were able to elicit robust IgG antibody and IFN- ɣ, TNF-α, IL-2, and IL-17 cytokines responses. Following aerosol challenge with a clinical isolate of M. avium ss. hominissuis (M.ah), a significant reduction of mycobacterial counts was observed in lungs and spleens of only immunized animals at both 4- and 8-weeks post-challenge. As expected, reduced levels of M. ah were associated with diminished histological lesions and robust cell-mediated immunity. Interestingly, polyfunctional T-cells expressing IFN- ɣ, IL-2, and TNF- α were detected at 8 but not 4 weeks post-challenge. Overall, our analysis indicated that QTAP is a highly efficient transfection agent and could improve the immunogenicity of mRNA vaccines against pulmonary M. ah, an infection of significant public health importance, especially to the elderly and to those who are immune compromised.
Collapse
Affiliation(s)
- Bubacarr J.B. Touray
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, United States
| | - Mostafa Hanafy
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, United States
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | | | - Rachel Hildebrand
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, United States
| | - Adel M. Talaat
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, United States
- Pan Genome Systems, Madison, WI, United States
- Vireo Vaccines International, LLC, Madison, Wisconsin, United States
| |
Collapse
|
8
|
Tregoning JS, Stirling DC, Wang Z, Flight KE, Brown JC, Blakney AK, McKay PF, Cunliffe RF, Murugaiah V, Fox CB, Beattie M, Tam YK, Johansson C, Shattock RJ. Formulation, inflammation, and RNA sensing impact the immunogenicity of self-amplifying RNA vaccines. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:29-42. [PMID: 36589712 PMCID: PMC9794906 DOI: 10.1016/j.omtn.2022.11.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
To be effective, RNA vaccines require both in situ translation and the induction of an immune response to recruit cells to the site of immunization. These factors can pull in opposite directions with the inflammation reducing expression of the vaccine antigen. We investigated how formulation affects the acute systemic cytokine response to a self-amplifying RNA (saRNA) vaccine. We compared a cationic polymer (pABOL), a lipid emulsion (nanostructured lipid carrier, NLC), and three lipid nanoparticles (LNP). After immunization, we measured serum cytokines and compared the response to induced antibodies against influenza virus. Formulations that induced a greater cytokine response induced a greater antibody response, with a significant correlation between IP-10, MCP-1, KC, and antigen-specific antibody titers. We then investigated how innate immune sensing and signaling impacted the adaptive immune response to vaccination with LNP-formulated saRNA. Mice that lacked MAVS and are unable to signal through RIG-I-like receptors had an altered cytokine response to saRNA vaccination and had significantly greater antibody responses than wild-type mice. This indicates that the inflammation induced by formulated saRNA vaccines is not solely deleterious in the induction of antibody responses and that targeting specific aspects of RNA vaccine sensing might improve the quality of the response.
Collapse
Affiliation(s)
- John S. Tregoning
- Department of Infectious Disease, Imperial College London, St. Mary’s Campus, London, UK
| | - David C. Stirling
- Department of Infectious Disease, Imperial College London, St. Mary’s Campus, London, UK
| | - Ziyin Wang
- Department of Infectious Disease, Imperial College London, St. Mary’s Campus, London, UK
| | - Katie E. Flight
- Department of Infectious Disease, Imperial College London, St. Mary’s Campus, London, UK
| | - Jonathan C. Brown
- Department of Infectious Disease, Imperial College London, St. Mary’s Campus, London, UK
| | - Anna K. Blakney
- Department of Infectious Disease, Imperial College London, St. Mary’s Campus, London, UK
| | - Paul F. McKay
- Department of Infectious Disease, Imperial College London, St. Mary’s Campus, London, UK
| | - Robert F. Cunliffe
- Department of Infectious Disease, Imperial College London, St. Mary’s Campus, London, UK
| | - Valarmathy Murugaiah
- Department of Infectious Disease, Imperial College London, St. Mary’s Campus, London, UK
| | - Christopher B. Fox
- IDRI, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Mitchell Beattie
- Acuitas Therapeutics, 6190 Agronomy Road, Ste 405, Vancouver, BC, Canada
| | - Ying K. Tam
- Acuitas Therapeutics, 6190 Agronomy Road, Ste 405, Vancouver, BC, Canada
| | - Cecilia Johansson
- National Heart and Lung Institute, Imperial College London, St. Mary’s Campus, London, UK
| | - Robin J. Shattock
- Department of Infectious Disease, Imperial College London, St. Mary’s Campus, London, UK
| |
Collapse
|
9
|
Lam AK, Roshan R, Miley W, Labo N, Zhen J, Kurland AP, Cheng C, Huang H, Teng PL, Harelson C, Gong D, Tam YK, Radu CG, Epeldegui M, Johnson JR, Zhou ZH, Whitby D, Wu TT. Immunization of Mice with Virus-Like Vesicles of Kaposi Sarcoma-Associated Herpesvirus Reveals a Role for Antibodies Targeting ORF4 in Activating Complement-Mediated Neutralization. J Virol 2023; 97:e0160022. [PMID: 36757205 PMCID: PMC9972917 DOI: 10.1128/jvi.01600-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/11/2023] [Indexed: 02/10/2023] Open
Abstract
Infection by Kaposi sarcoma-associated herpesvirus (KSHV) can cause severe consequences, such as cancers and lymphoproliferative diseases. Whole inactivated viruses (WIV) with chemically destroyed genetic materials have been used as antigens in several licensed vaccines. During KSHV productive replication, virus-like vesicles (VLVs) that lack capsids and viral genomes are generated along with virions. Here, we investigated the immunogenicity of KSHV VLVs produced from a viral mutant that was defective in capsid formation and DNA packaging. Mice immunized with adjuvanted VLVs generated KSHV-specific T cell and antibody responses. Neutralization of KSHV infection by the VLV immune serum was low but was markedly enhanced in the presence of the complement system. Complement-enhanced neutralization and complement deposition on KSHV-infected cells was dependent on antibodies targeting viral open reading frame 4 (ORF4). However, limited complement-mediated enhancement was detected in the sera of a small cohort of KSHV-infected humans which contained few neutralizing antibodies. Therefore, vaccination that induces antibody effector functions can potentially improve infection-induced humoral immunity. Overall, our study highlights a potential benefit of engaging complement-mediated antibody functions in future KSHV vaccine development. IMPORTANCE KSHV is a virus that can lead to cancer after infection. A vaccine that prevents KSHV infection or transmission would be helpful in preventing the development of these cancers. We investigated KSHV VLV as an immunogen for vaccination. We determined that antibodies targeting the viral protein ORF4 induced by VLV immunization could engage the complement system and neutralize viral infection. However, ORF4-specific antibodies were seldom detected in the sera of KSHV-infected humans. Moreover, these human sera did not potently trigger complement-mediated neutralization, indicating an improvement that immunization can confer. Our study suggests a new antibody-mediated mechanism to control KSHV infection and underscores the benefit of activating the complement system in a future KSHV vaccine.
Collapse
Affiliation(s)
- Alex K. Lam
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Romin Roshan
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Wendell Miley
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Nazzarena Labo
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - James Zhen
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Andrew P. Kurland
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Celine Cheng
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Haigen Huang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Pu-Lin Teng
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Claire Harelson
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Danyang Gong
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Ying K. Tam
- Acuitas Therapeutics, Vancouver, British Columbia, Canada
| | - Caius G. Radu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Marta Epeldegui
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Jeffrey R. Johnson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Z. Hong Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Denise Whitby
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Ting-Ting Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| |
Collapse
|
10
|
Connors J, Joyner D, Mege NJ, Cusimano GM, Bell MR, Marcy J, Taramangalam B, Kim KM, Lin PJC, Tam YK, Weissman D, Kutzler MA, Alameh MG, Haddad EK. Lipid nanoparticles (LNP) induce activation and maturation of antigen presenting cells in young and aged individuals. Commun Biol 2023; 6:188. [PMID: 36805684 PMCID: PMC9936473 DOI: 10.1038/s42003-023-04555-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/03/2023] [Indexed: 02/19/2023] Open
Abstract
Herein, we studied the impact of empty LNP (eLNP), component of mRNA-based vaccine, on anti-viral pathways and immune function of cells from young and aged individuals. eLNP induced maturation of monocyte derived dendritic cells (MDDCs). We further show that eLNP upregulated CD40 and induced cytokine production in multiple DC subsets and monocytes. This coincided with phosphorylation of TANK binding kinase 1 (pTBK1) and interferon response factor 7 (pIRF7). In response to eLNP, healthy older adults (>65 yrs) have decreased CD40 expression, and IFN-γ output compared to young adults (<65 yrs). Additionally, cells from older adults have a dysregulated anti-viral signaling response to eLNP stimulation, measured by the defect in type I IFN production, and phagocytosis. Overall, our data show function of eLNP in eliciting DC maturation and innate immune signaling pathways that is impaired in older adults resulting in lower immune responses to SARS-CoV-2 mRNA-based vaccines.
Collapse
Affiliation(s)
- Jennifer Connors
- Drexel University College of Medicine, Department of Microbiology and Immunology, Philadelphia, PA, USA
- Drexel University College of Medicine, Department of Medicine, Philadelphia, PA, USA
| | - David Joyner
- Drexel University College of Medicine, Department of Medicine, Philadelphia, PA, USA
- Drexel University College of Medicine, Department of Molecular and Cellular Biology, Philadelphia, PA, USA
| | | | - Gina M Cusimano
- Drexel University College of Medicine, Department of Microbiology and Immunology, Philadelphia, PA, USA
- Drexel University College of Medicine, Department of Medicine, Philadelphia, PA, USA
| | - Matthew R Bell
- Drexel University College of Medicine, Department of Microbiology and Immunology, Philadelphia, PA, USA
- Drexel University College of Medicine, Department of Medicine, Philadelphia, PA, USA
| | - Jennifer Marcy
- Drexel University College of Medicine, Department of Molecular and Cellular Biology, Philadelphia, PA, USA
| | - Bhavani Taramangalam
- Drexel University College of Medicine, Department of Microbiology and Immunology, Philadelphia, PA, USA
- Drexel University College of Medicine, Department of Medicine, Philadelphia, PA, USA
| | - Kenneth M Kim
- Drexel University College of Medicine, Department of Microbiology and Immunology, Philadelphia, PA, USA
| | | | | | - Drew Weissman
- University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- University of Pennsylvania, Penn Institute for RNA Innovation, Philadelphia, PA, USA
| | - Michele A Kutzler
- Drexel University College of Medicine, Department of Microbiology and Immunology, Philadelphia, PA, USA
- Drexel University College of Medicine, Department of Medicine, Philadelphia, PA, USA
| | - Mohamad-Gabriel Alameh
- University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
- University of Pennsylvania, Penn Institute for RNA Innovation, Philadelphia, PA, USA.
| | - Elias K Haddad
- Drexel University College of Medicine, Department of Microbiology and Immunology, Philadelphia, PA, USA.
- Drexel University College of Medicine, Department of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Nano-Encapsulated Antioxidant: Retinoic Acid as a Natural Mucosal Adjuvant for Intranasal Immunization against Chronic Experimental Toxoplasmosis. Trop Med Infect Dis 2023; 8:tropicalmed8020106. [PMID: 36828522 PMCID: PMC9962073 DOI: 10.3390/tropicalmed8020106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/12/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
The tight relationship between immunity and retinoid levels provides evidence on the critical role of retinoic acid (RA) in regulating immune activity, especially the mucosal one. Mucosal immune response is the key for determination of the outcome of infection, particularly against intracellular mucosal pathogens such as Toxoplasma gondii, where it plays a crucial role as a sentinel against parasite invasion. Herein, the immunomodulatory adjuvant role of RA was evaluated for prophylactic vaccination against chronic Toxoplasma infection. A quantity of 15 µg of RA pre-encapsulated with lipid-based nanoparticles (SLNs) was intranasally used in three doses, two weeks apart, as an adjuvant to the Toxoplasma lysate antigen (TLA). Afterward, mice were infected with 20 cysts of T. gondii (ME49 strain) and were sacrificed at the 4th week post-infection. Parasitological, immunological, biochemical, and histopathological studies were applied as vaccine efficacy measures. The protective role of the tested vaccine was noted using the statistically marked reduction in brain cyst count, accompanied by remarkable levels of protective IFN-γ and antibodies, with amelioration of infection-induced oxidative stress and brain pathology. Ultimately, this experiment outlined the prospective role of a novel, natural, nano-encapsulated and mucosal vaccine adjuvant RA-SLNs as a propitious candidate against chronic toxoplasmosis.
Collapse
|
12
|
Jin GW, Rejinold NS, Choy JH. Polyphosphazene-Based Biomaterials for Biomedical Applications. Int J Mol Sci 2022; 23:15993. [PMID: 36555633 PMCID: PMC9781794 DOI: 10.3390/ijms232415993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/28/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Recently, synthetic polymers have attracted great interest in the field of biomedical science. Among these, polyphosphazenes (PPZs) are regarded as one of the most promising materials, due to their structural flexibility and biodegradability compared to other materials. PPZs have been developed through numerous studies. In particular, multi-functionalized PPZs have been proven to be potential biomaterials in various forms, such as nanoparticles (NPs) and hydrogels, through the introduction of various functional groups. Thus, PPZs have been applied for the delivery of therapeutic molecules (low molecular weight drugs, genes and proteins), bioimaging, phototherapy, bone regeneration, dental liners, modifiers and medical devices. The main goal of the present review is to highlight the recent and the most notable existing PPZ-based biomaterials for aforementioned applications, with future perspectives in mind.
Collapse
Affiliation(s)
- Geun-Woo Jin
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea
- R&D Center, CnPharm Co., Ltd., Seoul 03759, Republic of Korea
| | - N. Sanoj Rejinold
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea
| | - Jin-Ho Choy
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea
- Department of Pre-Medical Course, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
- International Research Frontier Initiative (IRFI), Tokyo Institute of Technology, Yokohama 226-8503, Japan
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| |
Collapse
|
13
|
Said DE, Amer EI, Sheta E, Makled S, Diab HE, Arafa FM. Nano-Encapsulated Melatonin: A Promising Mucosal Adjuvant in Intranasal Immunization against Chronic Experimental T. gondii Infection. Trop Med Infect Dis 2022; 7:tropicalmed7120401. [PMID: 36548656 PMCID: PMC9785012 DOI: 10.3390/tropicalmed7120401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Melatonin (MLT) is now emerging as one of the universally accepted immunostimulators with broad applications in medicine. It is a biological manipulator of the immune system, including mucosal ones. MLT was encapsulated in solid lipid nanoparticles (SLNs), then 100 mg/kg/dose of MLT-SLNs was used as an adjuvant of Toxoplasma lysate antigen (TLA). Experimental mice were intra-nasally inoculated with three doses of different regimens every two weeks, then challenged with 20 cysts of T. gondii Me49 strain, where they were sacrificed four weeks post-infection. Protective vaccine efficacy was evident via the significant brain cyst count reduction of 58.6%, together with remarkably high levels of humoral systemic and mucosal anti-Toxoplasma antibodies (Ig G, Ig A), supported by a reduced tachyzoites invasion of Vero cells in vitro upon incubation with sera obtained from these vaccinated mice. A cellular immune response was evident through the induction of significant levels of interferon-gamma (IFN γ), associated with morphological deteriorations of cysts harvested from the brains of vaccinated mice. Furthermore, the amelioration of infection-induced oxidative stress (OS) and histopathological changes were evident in mice immunized with TLA/MLT-SLNs. In conclusion, the present study highlighted the promising role of intranasal MLT-SLNs as a novel mucosal adjuvant candidate against chronic toxoplasmosis.
Collapse
Affiliation(s)
- Doaa E. Said
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria 5424041, Egypt
| | - Eglal I. Amer
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria 5424041, Egypt
| | - Eman Sheta
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria 5424041, Egypt
| | - Shaimaa Makled
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Hala E. Diab
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria 5424041, Egypt
- Correspondence:
| | - Fadwa M. Arafa
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria 5424041, Egypt
| |
Collapse
|
14
|
Feng H, Sun R, Song G, Zhu S, Nie Z, Lin L, Yi R, Wu S, Wang G, He Y, Wang S, Wang P, Wu L, Shu J. A Glycolipid α-GalCer Derivative, 7DW8-5 as a Novel Mucosal Adjuvant for the Split Inactivated Influenza Vaccine. Viruses 2022; 14:v14061174. [PMID: 35746644 PMCID: PMC9230830 DOI: 10.3390/v14061174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/15/2022] [Accepted: 05/27/2022] [Indexed: 12/10/2022] Open
Abstract
Influenza virus infects the host and transmits through the respiratory tract (i.e., the mouth and nose); therefore, the development of intranasal influenza vaccines that mimic the natural infection, coupled with an efficient mucosal adjuvant, is an attractive alternative to current parenteral vaccines. However, with the withdrawal of cholera toxin and Escherichia coli heat-labile endotoxin from clinical use due to side effects, there are no approved adjuvants for intranasal vaccines. Therefore, safe and effective mucosal adjuvants are urgently needed. Previously, we reported that one derivative of α-Galactosylceramide (α-GalCer), 7DW8-5, could enhance the protective efficacy of split influenza vaccine by injection administration. However, the mucosal adjuvanticity of 7DW8-5 is still unclear. In this study, we found that 7DW8-5 promotes the production of secret IgA antibodies and IgG antibodies and enhances the protective efficacy of the split influenza vaccine by intranasal administration. Furthermore, co-administration of 7DW8-5 with the split influenza vaccine significantly reduces the virus shedding in the upper and lower respiratory tract after lethal challenge. Our results demonstrate that 7DW8-5 is a novel mucosal adjuvant for the split influenza vaccine.
Collapse
Affiliation(s)
- Huapeng Feng
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.S.); (G.S.); (S.Z.); (Z.N.); (L.L.); (R.Y.); (S.W.); (G.W.); (Y.H.); (S.W.); (P.W.)
- Correspondence: (H.F.); (L.W.); (J.S.)
| | - Ruolin Sun
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.S.); (G.S.); (S.Z.); (Z.N.); (L.L.); (R.Y.); (S.W.); (G.W.); (Y.H.); (S.W.); (P.W.)
| | - Guanru Song
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.S.); (G.S.); (S.Z.); (Z.N.); (L.L.); (R.Y.); (S.W.); (G.W.); (Y.H.); (S.W.); (P.W.)
| | - Shunfan Zhu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.S.); (G.S.); (S.Z.); (Z.N.); (L.L.); (R.Y.); (S.W.); (G.W.); (Y.H.); (S.W.); (P.W.)
| | - Zhenyu Nie
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.S.); (G.S.); (S.Z.); (Z.N.); (L.L.); (R.Y.); (S.W.); (G.W.); (Y.H.); (S.W.); (P.W.)
| | - Liming Lin
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.S.); (G.S.); (S.Z.); (Z.N.); (L.L.); (R.Y.); (S.W.); (G.W.); (Y.H.); (S.W.); (P.W.)
| | - Ruonan Yi
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.S.); (G.S.); (S.Z.); (Z.N.); (L.L.); (R.Y.); (S.W.); (G.W.); (Y.H.); (S.W.); (P.W.)
| | - Shixiang Wu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.S.); (G.S.); (S.Z.); (Z.N.); (L.L.); (R.Y.); (S.W.); (G.W.); (Y.H.); (S.W.); (P.W.)
| | - Genzhu Wang
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.S.); (G.S.); (S.Z.); (Z.N.); (L.L.); (R.Y.); (S.W.); (G.W.); (Y.H.); (S.W.); (P.W.)
| | - Yulong He
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.S.); (G.S.); (S.Z.); (Z.N.); (L.L.); (R.Y.); (S.W.); (G.W.); (Y.H.); (S.W.); (P.W.)
| | - Siquan Wang
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.S.); (G.S.); (S.Z.); (Z.N.); (L.L.); (R.Y.); (S.W.); (G.W.); (Y.H.); (S.W.); (P.W.)
| | - Pei Wang
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.S.); (G.S.); (S.Z.); (Z.N.); (L.L.); (R.Y.); (S.W.); (G.W.); (Y.H.); (S.W.); (P.W.)
| | - Li Wu
- Department of Biology, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Correspondence: (H.F.); (L.W.); (J.S.)
| | - Jianhong Shu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.S.); (G.S.); (S.Z.); (Z.N.); (L.L.); (R.Y.); (S.W.); (G.W.); (Y.H.); (S.W.); (P.W.)
- Correspondence: (H.F.); (L.W.); (J.S.)
| |
Collapse
|
15
|
Alameh MG, Tombácz I, Bettini E, Lederer K, Sittplangkoon C, Wilmore JR, Gaudette BT, Soliman OY, Pine M, Hicks P, Manzoni TB, Knox JJ, Johnson JL, Laczkó D, Muramatsu H, Davis B, Meng W, Rosenfeld AM, Strohmeier S, Lin PJC, Mui BL, Tam YK, Karikó K, Jacquet A, Krammer F, Bates P, Cancro MP, Weissman D, Luning Prak ET, Allman D, Locci M, Pardi N. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity 2021; 54:2877-2892.e7. [PMID: 34852217 PMCID: PMC8566475 DOI: 10.1016/j.immuni.2021.11.001] [Citation(s) in RCA: 326] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 07/29/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022]
Abstract
Adjuvants are critical for improving the quality and magnitude of adaptive immune responses to vaccination. Lipid nanoparticle (LNP)-encapsulated nucleoside-modified mRNA vaccines have shown great efficacy against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but the mechanism of action of this vaccine platform is not well-characterized. Using influenza virus and SARS-CoV-2 mRNA and protein subunit vaccines, we demonstrated that our LNP formulation has intrinsic adjuvant activity that promotes induction of strong T follicular helper cell, germinal center B cell, long-lived plasma cell, and memory B cell responses that are associated with durable and protective antibodies in mice. Comparative experiments demonstrated that this LNP formulation outperformed a widely used MF59-like adjuvant, AddaVax. The adjuvant activity of the LNP relies on the ionizable lipid component and on IL-6 cytokine induction but not on MyD88- or MAVS-dependent sensing of LNPs. Our study identified LNPs as a versatile adjuvant that enhances the efficacy of traditional and next-generation vaccine platforms.
Collapse
Affiliation(s)
| | - István Tombácz
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Emily Bettini
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katlyn Lederer
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chutamath Sittplangkoon
- Center of Excellence in Vaccine Research and Development, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Joel R Wilmore
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian T Gaudette
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ousamah Y Soliman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew Pine
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Philip Hicks
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tomaz B Manzoni
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - James J Knox
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John L Johnson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dorottya Laczkó
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hiromi Muramatsu
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin Davis
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wenzhao Meng
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aaron M Rosenfeld
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shirin Strohmeier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Ying K Tam
- Acuitas Therapeutics, Vancouver, BC, Canada
| | - Katalin Karikó
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA; BioNTech RNA Pharmaceuticals, Mainz, Germany
| | - Alain Jacquet
- Center of Excellence in Vaccine Research and Development, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paul Bates
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael P Cancro
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eline T Luning Prak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Allman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michela Locci
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Norbert Pardi
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
16
|
Stater EP, Sonay AY, Hart C, Grimm J. The ancillary effects of nanoparticles and their implications for nanomedicine. NATURE NANOTECHNOLOGY 2021; 16:1180-1194. [PMID: 34759355 PMCID: PMC9031277 DOI: 10.1038/s41565-021-01017-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 09/22/2021] [Indexed: 05/12/2023]
Abstract
Nanoparticles are often engineered as a scaffolding system to combine targeting, imaging and/or therapeutic moieties into a unitary agent. However, mostly overlooked, the nanomaterial itself interacts with biological systems exclusive of application-specific particle functionalization. This nanoparticle biointerface has been found to elicit specific biological effects, which we term 'ancillary effects'. In this Review, we describe the current state of knowledge of nanobiology gleaned from existing studies of ancillary effects with the objectives to describe the potential of nanoparticles to modulate biological effects independently of any engineered function; evaluate how these effects might be relevant for nanomedicine design and functional considerations, particularly how they might be useful to inform clinical decision-making; identify potential clinical harm that arises from adverse nanoparticle interactions with biology; and, finally, highlight the current lack of knowledge in this area as both a barrier and an incentive to the further development of nanomedicine.
Collapse
Affiliation(s)
- Evan P Stater
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Ali Y Sonay
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cassidy Hart
- Department of General Surgery, Lankenau Medical Center, Wynnewood, PA, USA
| | - Jan Grimm
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA.
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
17
|
Lipid Nanoparticles for Organ-Specific mRNA Therapeutic Delivery. Pharmaceutics 2021; 13:pharmaceutics13101675. [PMID: 34683969 PMCID: PMC8538155 DOI: 10.3390/pharmaceutics13101675] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary This article belongs to the Special Issue mRNA Therapeutics: A Themed Issue in Honor of Professor Katalin Karikó. Abstract Advances in the using in vitro transcribed (IVT) modRNA in the past two decades, especially the tremendous recent success of mRNA vaccines against SARS-CoV-2, have brought increased attention to IVT mRNA technology. Despite its well-known use in infectious disease vaccines, IVT modRNA technology is being investigated mainly in cancer immunotherapy and protein replacement therapy, with ongoing clinical trials in both areas. One of the main barriers to progressing mRNA therapeutics to the clinic is determining how to deliver mRNA to target cells and protect it from degradation. Over the years, many different vehicles have been developed to tackle this issue. Desirable vehicles must be safe, stable and preferably organ specific for successful mRNA delivery to clinically relevant cells and tissues. In this review we discuss various mRNA delivery platforms, with particular focus on attempts to create organ-specific vehicles for therapeutic mRNA delivery.
Collapse
|
18
|
Thi TTH, Suys EJA, Lee JS, Nguyen DH, Park KD, Truong NP. Lipid-Based Nanoparticles in the Clinic and Clinical Trials: From Cancer Nanomedicine to COVID-19 Vaccines. Vaccines (Basel) 2021; 9:359. [PMID: 33918072 PMCID: PMC8069344 DOI: 10.3390/vaccines9040359] [Citation(s) in RCA: 238] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/04/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
COVID-19 vaccines have been developed with unprecedented speed which would not have been possible without decades of fundamental research on delivery nanotechnology. Lipid-based nanoparticles have played a pivotal role in the successes of COVID-19 vaccines and many other nanomedicines, such as Doxil® and Onpattro®, and have therefore been considered as the frontrunner in nanoscale drug delivery systems. In this review, we aim to highlight the progress in the development of these lipid nanoparticles for various applications, ranging from cancer nanomedicines to COVID-19 vaccines. The lipid-based nanoparticles discussed in this review are liposomes, niosomes, transfersomes, solid lipid nanoparticles, and nanostructured lipid carriers. We particularly focus on the innovations that have obtained regulatory approval or that are in clinical trials. We also discuss the physicochemical properties required for specific applications, highlight the differences in requirements for the delivery of different cargos, and introduce current challenges that need further development. This review serves as a useful guideline for designing new lipid nanoparticles for both preventative and therapeutic vaccines including immunotherapies.
Collapse
Affiliation(s)
- Thai Thanh Hoang Thi
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam;
| | - Estelle J. A. Suys
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia;
| | - Jung Seok Lee
- Biomedical Engineering, Malone Engineering Center 402A, Yale University, 55 Prospect St., New Haven, CT 06511, USA;
| | - Dai Hai Nguyen
- Vietnam Academy of Science and Technology, Graduate University of Science and Technology, Hanoi 100000, Vietnam;
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 01 TL29 District 12, Ho Chi Minh City 700000, Vietnam
| | - Ki Dong Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea;
| | - Nghia P. Truong
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia;
| |
Collapse
|
19
|
Derakhshan MA, Amani A, Faridi-Majidi R. State-of-the-Art of Nanodiagnostics and Nanotherapeutics against SARS-CoV-2. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14816-14843. [PMID: 33779135 PMCID: PMC8028022 DOI: 10.1021/acsami.0c22381] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/17/2021] [Indexed: 05/02/2023]
Abstract
The pandemic outbreak of SARS-CoV-2, with millions of infected patients worldwide, has severely challenged all aspects of public health. In this regard, early and rapid detection of infected cases and providing effective therapeutics against the virus are in urgent demand. Along with conventional clinical protocols, nanomaterial-based diagnostics and therapeutics hold a great potential against coronavirus disease 2019 (COVID-19). Indeed, nanoparticles with their outstanding characteristics would render additional advantages to the current approaches for rapid and accurate diagnosis and also developing prophylactic vaccines or antiviral therapeutics. In this review, besides presenting an overview of the coronaviruses and SARS-CoV-2, we discuss the introduced nanomaterial-based detection assays and devices and also antiviral formulations and vaccines for coronaviruses.
Collapse
Affiliation(s)
- Mohammad Ali Derakhshan
- Department
of Medical Nanotechnology, School of Advanced Medical Sciences and
Technologies, Shiraz University of Medical
Sciences, Shiraz, Iran
- Nanomedicine
and Nanobiology Research Center, Shiraz
University of Medical Sciences, Shiraz Iran
| | - Amir Amani
- Natural
Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Reza Faridi-Majidi
- Department
of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Wollner CJ, Richner JM. mRNA Vaccines against Flaviviruses. Vaccines (Basel) 2021; 9:148. [PMID: 33673131 PMCID: PMC7918459 DOI: 10.3390/vaccines9020148] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/15/2022] Open
Abstract
Numerous vaccines have now been developed using the mRNA platform. In this approach, mRNA coding for a viral antigen is in vitro synthesized and injected into the host leading to exogenous protein expression and robust immune responses. Vaccines can be rapidly developed utilizing the mRNA platform in the face of emerging pandemics. Additionally, the mRNA coding region can be easily manipulated to test novel hypotheses in order to combat viral infections which have remained refractory to traditional vaccine approaches. Flaviviruses are a diverse family of viruses that cause widespread disease and have pandemic potential. In this review, we discuss the mRNA vaccines which have been developed against diverse flaviviruses.
Collapse
Affiliation(s)
| | - Justin M. Richner
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612, USA;
| |
Collapse
|