1
|
Philips W, Haegeman A, Krešić N, Mostin L, De Regge N. Neethling Strain-Based Homologous Live Attenuated LSDV Vaccines Provide Protection Against Infection with a Clade 2.5 Recombinant LSDV Strain. Vaccines (Basel) 2024; 13:8. [PMID: 39852787 PMCID: PMC11769152 DOI: 10.3390/vaccines13010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Vaccination is the main control measure to prevent Lumpy skin disease (LSD), and Neethling-based homologous vaccines have been shown to be safe and effective against infection with classical clade 1.2 strains. In 2017, recombinant clade 2 LSDV strains originating from a badly produced and insufficiently controlled vaccine were first detected in Russia. A clade 2.5 recombinant strain spread from Russia throughout Southeast Asia and caused a massive epidemic. In this study, the efficacy of three different Neethling strain-based vaccines against the recombinant clade 2.5 LSDV strain was evaluated. METHODS For each vaccine, seven bulls were vaccinated and followed for three weeks to evaluate vaccine safety. Thereafter, vaccinated animals and non-vaccinated controls were challenged with a virulent clade 2.5 strain and followed for three more weeks to evaluate vaccine efficacy. RESULTS Only limited adverse effects were observed after vaccination, and all vaccinated animals seroconverted and showed an LSDV-specific cellular immune response after vaccination. After the challenge, the vaccinated animals developed almost no clinical signs, and no viremia or nasal excretion was detected. This was in sharp contrast with the non-vaccinated controls, where 8 out of 13 animals developed clinical disease with clear nodules. Most of these animals also had a prolonged period of fever, a clear viremia and excreted virus. CONCLUSIONS Neethling-based LSDV vaccines can thus be considered safe and are effective not only against clade 1.2 LSDV strains, as was proven earlier, but also against a clade 2.5 recombinant strain.
Collapse
Affiliation(s)
- Wannes Philips
- Sciensano (Belgium), Service of Exotic and Vector-Borne Diseases (ExoVec), Groeselenberg 99, B-1180 Ukkel, Belgium
| | - Andy Haegeman
- Sciensano (Belgium), Service of Exotic and Vector-Borne Diseases (ExoVec), Groeselenberg 99, B-1180 Ukkel, Belgium
| | - Nina Krešić
- Sciensano (Belgium), Service of Exotic and Vector-Borne Diseases (ExoVec), Groeselenberg 99, B-1180 Ukkel, Belgium
| | - Laurent Mostin
- Sciensano (Belgium), Experimental Center Machelen, Kerklaan 68, B-1830 Machelen, Belgium
| | - Nick De Regge
- Sciensano (Belgium), Service of Exotic and Vector-Borne Diseases (ExoVec), Groeselenberg 99, B-1180 Ukkel, Belgium
| |
Collapse
|
2
|
Ronchi GF, Iorio M, Serroni A, Caporale M, Testa L, Palucci C, Antonucci D, Capista S, Traini S, Pinoni C, Di Matteo I, Laguardia C, Armillotta G, Profeta F, Valleriani F, Di Felice E, Di Teodoro G, Sacchini F, Luciani M, Di Pancrazio C, Podaliri Vulpiani M, Rossi E, Salini R, Morelli D, Ferri N, Mercante MT, Di Ventura M. The Safety and Efficacy of New DIVA Inactivated Vaccines Against Lumpy Skin Disease in Calves. Vaccines (Basel) 2024; 12:1302. [PMID: 39771964 PMCID: PMC11680422 DOI: 10.3390/vaccines12121302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/07/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Lumpy skin disease virus (Poxviridae family-Capripoxvirus genus) is the aetiological agent of LSD, a disease primarily transmitted by hematophagous biting, affecting principally cattle. Currently, only live attenuated vaccines are commercially available, but their use is limited to endemic areas. There is a need for safer vaccines, especially in LSD-free countries. This research aims to develop and test a safe and efficacious inactivated vaccine. Moreover, in this study, we used keyhole limpet hemocyanin (KLH) as a positive marker to distinguish infected from vaccinated animals (DIVA). Methods: Lumpy skin disease virus was propagated on primary lamb testis cells and Madin-Darby bovine kidney cells (PLT and MDBK, respectively), and four inactivated vaccines were produced. The vaccines differed from each other with the addition or not of KLH and in cells used for virus propagation. To evaluate the safety and immunogenicity, the vaccines and two placebos were administered to six groups comprising six male calves each, and antibody response was investigated using both an enzyme-linked immunosorbent assay (ELISA) and a serum neutralization (SN) test. In addition, the LSD/γ-interferon test and KLH (IgM-IgG) ELISA were performed on the collected samples. Furthermore, the use of KLH allowed us to distinguish vaccinated animals in the ELISA results, without any interference on the strength of the immune response against the LSDV. Finally, the efficacy of one of four vaccines was investigated through a challenge, in which one group of vaccinated animals and one animal control group were infected with a live field strain of LSDV. Results: Four out of the six control animals showed severe clinical signs suggestive of LSD, and, therefore, were euthanized for overcoming the predetermined limit of clinical score. By contrast, the vaccinated animals showed only mild symptoms, suggesting a reduction in severe disease notwithstanding the incapability of the vaccine in reducing the virus shedding. Conclusion: The vaccines produced were safe and able to elicit both a humoral and a cellular immune response, characteristics that, together with the demonstrated efficacy, make our vaccine a good candidate for countering the LSD spread in disease-free countries, thus also facilitating disease containment throughout the application of a DIVA strategy.
Collapse
Affiliation(s)
- Gaetano Federico Ronchi
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (G.F.R.); (A.S.); (M.C.); (L.T.); (C.P.); (D.A.); (S.C.); (S.T.); (C.P.); (I.D.M.); (C.L.); (G.A.); (F.P.); (F.V.); (E.D.F.); (G.D.T.); (F.S.); (M.L.); (C.D.P.); (M.P.V.); (E.R.); (R.S.); (D.M.); (N.F.); (M.T.M.); (M.D.V.)
| | - Mariangela Iorio
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (G.F.R.); (A.S.); (M.C.); (L.T.); (C.P.); (D.A.); (S.C.); (S.T.); (C.P.); (I.D.M.); (C.L.); (G.A.); (F.P.); (F.V.); (E.D.F.); (G.D.T.); (F.S.); (M.L.); (C.D.P.); (M.P.V.); (E.R.); (R.S.); (D.M.); (N.F.); (M.T.M.); (M.D.V.)
| | - Anna Serroni
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (G.F.R.); (A.S.); (M.C.); (L.T.); (C.P.); (D.A.); (S.C.); (S.T.); (C.P.); (I.D.M.); (C.L.); (G.A.); (F.P.); (F.V.); (E.D.F.); (G.D.T.); (F.S.); (M.L.); (C.D.P.); (M.P.V.); (E.R.); (R.S.); (D.M.); (N.F.); (M.T.M.); (M.D.V.)
| | - Marco Caporale
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (G.F.R.); (A.S.); (M.C.); (L.T.); (C.P.); (D.A.); (S.C.); (S.T.); (C.P.); (I.D.M.); (C.L.); (G.A.); (F.P.); (F.V.); (E.D.F.); (G.D.T.); (F.S.); (M.L.); (C.D.P.); (M.P.V.); (E.R.); (R.S.); (D.M.); (N.F.); (M.T.M.); (M.D.V.)
| | - Lilia Testa
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (G.F.R.); (A.S.); (M.C.); (L.T.); (C.P.); (D.A.); (S.C.); (S.T.); (C.P.); (I.D.M.); (C.L.); (G.A.); (F.P.); (F.V.); (E.D.F.); (G.D.T.); (F.S.); (M.L.); (C.D.P.); (M.P.V.); (E.R.); (R.S.); (D.M.); (N.F.); (M.T.M.); (M.D.V.)
| | - Cristiano Palucci
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (G.F.R.); (A.S.); (M.C.); (L.T.); (C.P.); (D.A.); (S.C.); (S.T.); (C.P.); (I.D.M.); (C.L.); (G.A.); (F.P.); (F.V.); (E.D.F.); (G.D.T.); (F.S.); (M.L.); (C.D.P.); (M.P.V.); (E.R.); (R.S.); (D.M.); (N.F.); (M.T.M.); (M.D.V.)
| | - Daniela Antonucci
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (G.F.R.); (A.S.); (M.C.); (L.T.); (C.P.); (D.A.); (S.C.); (S.T.); (C.P.); (I.D.M.); (C.L.); (G.A.); (F.P.); (F.V.); (E.D.F.); (G.D.T.); (F.S.); (M.L.); (C.D.P.); (M.P.V.); (E.R.); (R.S.); (D.M.); (N.F.); (M.T.M.); (M.D.V.)
| | - Sara Capista
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (G.F.R.); (A.S.); (M.C.); (L.T.); (C.P.); (D.A.); (S.C.); (S.T.); (C.P.); (I.D.M.); (C.L.); (G.A.); (F.P.); (F.V.); (E.D.F.); (G.D.T.); (F.S.); (M.L.); (C.D.P.); (M.P.V.); (E.R.); (R.S.); (D.M.); (N.F.); (M.T.M.); (M.D.V.)
| | - Sara Traini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (G.F.R.); (A.S.); (M.C.); (L.T.); (C.P.); (D.A.); (S.C.); (S.T.); (C.P.); (I.D.M.); (C.L.); (G.A.); (F.P.); (F.V.); (E.D.F.); (G.D.T.); (F.S.); (M.L.); (C.D.P.); (M.P.V.); (E.R.); (R.S.); (D.M.); (N.F.); (M.T.M.); (M.D.V.)
| | - Chiara Pinoni
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (G.F.R.); (A.S.); (M.C.); (L.T.); (C.P.); (D.A.); (S.C.); (S.T.); (C.P.); (I.D.M.); (C.L.); (G.A.); (F.P.); (F.V.); (E.D.F.); (G.D.T.); (F.S.); (M.L.); (C.D.P.); (M.P.V.); (E.R.); (R.S.); (D.M.); (N.F.); (M.T.M.); (M.D.V.)
| | - Ivano Di Matteo
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (G.F.R.); (A.S.); (M.C.); (L.T.); (C.P.); (D.A.); (S.C.); (S.T.); (C.P.); (I.D.M.); (C.L.); (G.A.); (F.P.); (F.V.); (E.D.F.); (G.D.T.); (F.S.); (M.L.); (C.D.P.); (M.P.V.); (E.R.); (R.S.); (D.M.); (N.F.); (M.T.M.); (M.D.V.)
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
| | - Caterina Laguardia
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (G.F.R.); (A.S.); (M.C.); (L.T.); (C.P.); (D.A.); (S.C.); (S.T.); (C.P.); (I.D.M.); (C.L.); (G.A.); (F.P.); (F.V.); (E.D.F.); (G.D.T.); (F.S.); (M.L.); (C.D.P.); (M.P.V.); (E.R.); (R.S.); (D.M.); (N.F.); (M.T.M.); (M.D.V.)
| | - Gisella Armillotta
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (G.F.R.); (A.S.); (M.C.); (L.T.); (C.P.); (D.A.); (S.C.); (S.T.); (C.P.); (I.D.M.); (C.L.); (G.A.); (F.P.); (F.V.); (E.D.F.); (G.D.T.); (F.S.); (M.L.); (C.D.P.); (M.P.V.); (E.R.); (R.S.); (D.M.); (N.F.); (M.T.M.); (M.D.V.)
| | - Francesca Profeta
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (G.F.R.); (A.S.); (M.C.); (L.T.); (C.P.); (D.A.); (S.C.); (S.T.); (C.P.); (I.D.M.); (C.L.); (G.A.); (F.P.); (F.V.); (E.D.F.); (G.D.T.); (F.S.); (M.L.); (C.D.P.); (M.P.V.); (E.R.); (R.S.); (D.M.); (N.F.); (M.T.M.); (M.D.V.)
| | - Fabrizia Valleriani
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (G.F.R.); (A.S.); (M.C.); (L.T.); (C.P.); (D.A.); (S.C.); (S.T.); (C.P.); (I.D.M.); (C.L.); (G.A.); (F.P.); (F.V.); (E.D.F.); (G.D.T.); (F.S.); (M.L.); (C.D.P.); (M.P.V.); (E.R.); (R.S.); (D.M.); (N.F.); (M.T.M.); (M.D.V.)
| | - Elisabetta Di Felice
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (G.F.R.); (A.S.); (M.C.); (L.T.); (C.P.); (D.A.); (S.C.); (S.T.); (C.P.); (I.D.M.); (C.L.); (G.A.); (F.P.); (F.V.); (E.D.F.); (G.D.T.); (F.S.); (M.L.); (C.D.P.); (M.P.V.); (E.R.); (R.S.); (D.M.); (N.F.); (M.T.M.); (M.D.V.)
| | - Giovanni Di Teodoro
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (G.F.R.); (A.S.); (M.C.); (L.T.); (C.P.); (D.A.); (S.C.); (S.T.); (C.P.); (I.D.M.); (C.L.); (G.A.); (F.P.); (F.V.); (E.D.F.); (G.D.T.); (F.S.); (M.L.); (C.D.P.); (M.P.V.); (E.R.); (R.S.); (D.M.); (N.F.); (M.T.M.); (M.D.V.)
| | - Flavio Sacchini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (G.F.R.); (A.S.); (M.C.); (L.T.); (C.P.); (D.A.); (S.C.); (S.T.); (C.P.); (I.D.M.); (C.L.); (G.A.); (F.P.); (F.V.); (E.D.F.); (G.D.T.); (F.S.); (M.L.); (C.D.P.); (M.P.V.); (E.R.); (R.S.); (D.M.); (N.F.); (M.T.M.); (M.D.V.)
| | - Mirella Luciani
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (G.F.R.); (A.S.); (M.C.); (L.T.); (C.P.); (D.A.); (S.C.); (S.T.); (C.P.); (I.D.M.); (C.L.); (G.A.); (F.P.); (F.V.); (E.D.F.); (G.D.T.); (F.S.); (M.L.); (C.D.P.); (M.P.V.); (E.R.); (R.S.); (D.M.); (N.F.); (M.T.M.); (M.D.V.)
| | - Chiara Di Pancrazio
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (G.F.R.); (A.S.); (M.C.); (L.T.); (C.P.); (D.A.); (S.C.); (S.T.); (C.P.); (I.D.M.); (C.L.); (G.A.); (F.P.); (F.V.); (E.D.F.); (G.D.T.); (F.S.); (M.L.); (C.D.P.); (M.P.V.); (E.R.); (R.S.); (D.M.); (N.F.); (M.T.M.); (M.D.V.)
| | - Michele Podaliri Vulpiani
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (G.F.R.); (A.S.); (M.C.); (L.T.); (C.P.); (D.A.); (S.C.); (S.T.); (C.P.); (I.D.M.); (C.L.); (G.A.); (F.P.); (F.V.); (E.D.F.); (G.D.T.); (F.S.); (M.L.); (C.D.P.); (M.P.V.); (E.R.); (R.S.); (D.M.); (N.F.); (M.T.M.); (M.D.V.)
| | - Emanuela Rossi
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (G.F.R.); (A.S.); (M.C.); (L.T.); (C.P.); (D.A.); (S.C.); (S.T.); (C.P.); (I.D.M.); (C.L.); (G.A.); (F.P.); (F.V.); (E.D.F.); (G.D.T.); (F.S.); (M.L.); (C.D.P.); (M.P.V.); (E.R.); (R.S.); (D.M.); (N.F.); (M.T.M.); (M.D.V.)
| | - Romolo Salini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (G.F.R.); (A.S.); (M.C.); (L.T.); (C.P.); (D.A.); (S.C.); (S.T.); (C.P.); (I.D.M.); (C.L.); (G.A.); (F.P.); (F.V.); (E.D.F.); (G.D.T.); (F.S.); (M.L.); (C.D.P.); (M.P.V.); (E.R.); (R.S.); (D.M.); (N.F.); (M.T.M.); (M.D.V.)
| | - Daniela Morelli
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (G.F.R.); (A.S.); (M.C.); (L.T.); (C.P.); (D.A.); (S.C.); (S.T.); (C.P.); (I.D.M.); (C.L.); (G.A.); (F.P.); (F.V.); (E.D.F.); (G.D.T.); (F.S.); (M.L.); (C.D.P.); (M.P.V.); (E.R.); (R.S.); (D.M.); (N.F.); (M.T.M.); (M.D.V.)
| | - Nicola Ferri
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (G.F.R.); (A.S.); (M.C.); (L.T.); (C.P.); (D.A.); (S.C.); (S.T.); (C.P.); (I.D.M.); (C.L.); (G.A.); (F.P.); (F.V.); (E.D.F.); (G.D.T.); (F.S.); (M.L.); (C.D.P.); (M.P.V.); (E.R.); (R.S.); (D.M.); (N.F.); (M.T.M.); (M.D.V.)
| | - Maria Teresa Mercante
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (G.F.R.); (A.S.); (M.C.); (L.T.); (C.P.); (D.A.); (S.C.); (S.T.); (C.P.); (I.D.M.); (C.L.); (G.A.); (F.P.); (F.V.); (E.D.F.); (G.D.T.); (F.S.); (M.L.); (C.D.P.); (M.P.V.); (E.R.); (R.S.); (D.M.); (N.F.); (M.T.M.); (M.D.V.)
| | - Mauro Di Ventura
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (G.F.R.); (A.S.); (M.C.); (L.T.); (C.P.); (D.A.); (S.C.); (S.T.); (C.P.); (I.D.M.); (C.L.); (G.A.); (F.P.); (F.V.); (E.D.F.); (G.D.T.); (F.S.); (M.L.); (C.D.P.); (M.P.V.); (E.R.); (R.S.); (D.M.); (N.F.); (M.T.M.); (M.D.V.)
| |
Collapse
|
3
|
Haider A, Abbas Z, Taqveem A, Ali A, Khurshid M, Naggar RFE, Rohaim MA, Munir M. Lumpy Skin Disease: Insights into Molecular Pathogenesis and Control Strategies. Vet Sci 2024; 11:561. [PMID: 39591335 PMCID: PMC11598853 DOI: 10.3390/vetsci11110561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Lumpy skin disease (LSD) is a viral infection that affects buffaloes and cattle across various regions, including both tropical and temperate climates. Intriguingly, the virus-carrying skin sores remain the primary source of infection for extended periods, exacerbated by the abundance of vectors in disease-endemic countries. Recent scientific advances have revealed the molecular aspects of LSD and offered improved vaccines and valuable antiviral targets. This review summarizes the molecular features of LSD and its effect on various livestock species. We then provide an extensive discussion on the transmission dynamics of LSD and the roles of vectors in its continued spread among livestock populations. Additionally, this review critically analyses the rationales behind, as well as the affordability and effectiveness, of current control strategies worldwide.
Collapse
Affiliation(s)
- Ali Haider
- Department of Allied Health Sciences, The University of Lahore, Gujrat Campus, Gujrat 50700, Pakistan; (A.H.); (Z.A.)
| | - Zaheer Abbas
- Department of Allied Health Sciences, The University of Lahore, Gujrat Campus, Gujrat 50700, Pakistan; (A.H.); (Z.A.)
| | - Ahsen Taqveem
- Institute of Microbiology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.T.); (M.K.)
| | - Abid Ali
- Department of Allied Health Sciences, The University of Chenab, Gujrat 50700, Pakistan;
| | - Mohsin Khurshid
- Institute of Microbiology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.T.); (M.K.)
| | - Rania F. El Naggar
- Department of Virology, Faculty of Veterinary Medicine, University of Sadat City, Sadat 32897, Egypt;
| | - Mohammed A. Rohaim
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK
| |
Collapse
|
4
|
Kim GH, Yoo DS, Chu KS, Cho EH, Wi SI, Song KO, Ra DK, Kim WH, Park CK, Tark D, Oh Y, Cho HS. Assessing Post-Vaccination Seroprevalence and Enhancing Strategies for Lumpy Skin Disease Vaccination in Korean Cattle. Animals (Basel) 2024; 14:3236. [PMID: 39595289 PMCID: PMC11591538 DOI: 10.3390/ani14223236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/04/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
Lumpy skin disease (LSD), caused by the LSD virus (LSDV), a dsDNA virus of the genus Capripoxvirus, represents a significant cross-border infectious threat, particularly impacting cattle and water buffaloes through transmission by blood-feeding insects. Traditionally endemic to Southern Africa, LSD has rapidly spread over the past decade through the Middle East to Eastern Europe and China, reaching Korea in October 2023. This outbreak prompted a nationwide vaccination campaign, addressing both the disease's severe economic impact and its status as a notifiable disease under the World Organisation for Animal Health. This study assesses the seropositivity of the LSD vaccine in cattle across four Korean provinces 2-3 months post-vaccination, aiming to inform improvements in biosecurity and vaccination strategies. Overall, 30.59% of the cattle tested (1196 out of 3910) exhibited positive antibody responses, comparable to international post-vaccination findings. Analysis further revealed differences in the antibody positivity between farm types and management practices. Specifically, farms where vaccines were administered by veterinarians showed no significant difference in antibody positivity between Korean native cattle and dairy cattle, regardless of the presence of restraint facilities. However, on farms where vaccinations were conducted by the owners, dairy cattle demonstrated a higher seropositivity (43.30 ± 33.39%) compared to Korean native cattle (21.97 ± 20.79%) in the absence of restraint facilities. Further comparisons underscored the impact of restraint facilities on vaccination efficacy, with dairy farms generally achieving higher antibody positivity (29.43 ± 30.61%) than farms with Korean native cattle (23.02 ± 23.33%) (p < 0.05), suggesting that consistent vaccine delivery methods enhance immunogenic responses. Contrarily, no significant difference was noted in antibody positivity between large- and small-scale farms, indicating that farm size did not notably impact the effectiveness of the vaccinator. These findings emphasize that while current vaccines are sufficiently inducing immunity, enhancing vaccination strategies, particularly through trained personnel and improved restraint facilities, is crucial. This study's insights into the impact of vaccination and farm management practices provide valuable guidance for refining LSD control measures in Korea and potentially other affected regions.
Collapse
Affiliation(s)
- Geun-Ho Kim
- College of Veterinary Medicine & Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Republic of Korea;
- Jeollabuk-do Institute of Livestock & Veterinary Research, Jangsu 55632, Republic of Korea;
| | - Dae-Sung Yoo
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Keum-Suk Chu
- Jeollabuk-do Institute of Livestock & Veterinary Research, Jangsu 55632, Republic of Korea;
| | - Eun-Hyo Cho
- Jeollanamdo Veterinary Service Laboratory, Gangjin 59213, Republic of Korea; (E.-H.C.); (S.-I.W.)
| | - Seung-Il Wi
- Jeollanamdo Veterinary Service Laboratory, Gangjin 59213, Republic of Korea; (E.-H.C.); (S.-I.W.)
| | - Kyung-Ok Song
- Animal Health Division, Jeju 63344, Republic of Korea;
| | - Do Kyung Ra
- Incheon Metropolitan City Institute of Health & Environment, Incheon 22320, Republic of Korea;
| | - Woo H. Kim
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Choi-Kyu Park
- Animal Disease Intervention Center, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Dongseob Tark
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea;
| | - Yeonsu Oh
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ho-Seong Cho
- College of Veterinary Medicine & Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Republic of Korea;
| |
Collapse
|
5
|
Makoga FT, Chang'a JS, Meki IK, Mayenga C, Settypalli TBK, Bitanyi S, Magidanga B, Peter E, Chengula A, Cattoli G, Lamien CE. Detection and molecular characterization of lumpy skin disease and bovine papular stomatitis viruses in lumpy skin disease-suspected outbreaks in Tanzania. Virol J 2024; 21:276. [PMID: 39501408 PMCID: PMC11539547 DOI: 10.1186/s12985-024-02558-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Lumpy Skin Disease (LSD) is endemic in sub-Saharan countries and is currently a global threat to the cattle industry. Information on the circulating Capripoxvirus lumpyskinpox, formerly known as Lumpy Skin Disease Virus (LSDV), and other poxviruses infecting cattle is very scant in Tanzania. The current study aimed to confirm and characterize LSDV and other poxviruses infecting cattle, from LSD suspected outbreaks in Tanzania. METHODS A total of 24 samples were collected from four LSD suspected outbreaks reported in Tanzania between February and May 2023. Samples were screened for LSDV genome by real-time PCR and then subjected to a high-resolution multiplex melting (HRM) assay where 10 samples were positive for Capripoxvirus (CaPV) and one sample was Parapoxvirus (PPV) positive. Four LSDV genes; RPO30, GPCR, EEV glycoprotein and B22R and the partial B2L gene of PPVs were analyzed. RESULTS All targeted LSDV genes from the Tanzanian isolates showed 100% similarity and isolates clustered with commonly circulating LSDV field isolates. Furthermore, the single nucleotide polymorphism (SNP) at position 240 (A-> G) of the EEV gene differentiates the Tanzanian LSDVs from the group of ancient Kenyan LSDV isolates while the B22R sequences of the Tanzanian LSDV isolates differed from the LSDV Neethling and LSDV KSGP-0240 derived vaccines. Sequence analysis of the partial B2L gene of the Tanzanian parapoxvirus bovinestomatitis, formerly known as Bovine papular stomatitis virus (BPSV) showed a different BPSV strain circulating compared to publicly available sequences. CONCLUSION These findings confirm the presence of LSDV in Tanzania, which suggesting the need for establishing an effective control program and continuous monitoring. The presence of a typical profile for Tanzania BPSV is an indication that, although never reported before, BPSV is established in the country therefore this virus should be included in the differential diagnosis of LSDV.
Collapse
Affiliation(s)
- Fredy T Makoga
- Tanzania Veterinary Laboratory Agency, P.O.BOX 9254, Dar es salaam, Tanzania
| | - Jelly S Chang'a
- Tanzania Veterinary Laboratory Agency, P.O.BOX 9254, Dar es salaam, Tanzania.
| | - Irene K Meki
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Wagramer Strasse 5, P.O. Box 100, Vienna, A-1400, Austria
| | - Charles Mayenga
- Tanzania Veterinary Laboratory Agency, P.O.BOX 9254, Dar es salaam, Tanzania
| | - Tirumala B K Settypalli
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Wagramer Strasse 5, P.O. Box 100, Vienna, A-1400, Austria
| | - Stella Bitanyi
- Tanzania Veterinary Laboratory Agency, P.O.BOX 9254, Dar es salaam, Tanzania
| | - Bishop Magidanga
- Tanzania Veterinary Laboratory Agency, P.O.BOX 9254, Dar es salaam, Tanzania
| | - Emma Peter
- Department of Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P.O.BOX 3020, Morogoro, Tanzania
| | - Augustino Chengula
- Department of Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P.O.BOX 3020, Morogoro, Tanzania
| | - Giovanni Cattoli
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Wagramer Strasse 5, P.O. Box 100, Vienna, A-1400, Austria
| | - Charles E Lamien
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Wagramer Strasse 5, P.O. Box 100, Vienna, A-1400, Austria
| |
Collapse
|
6
|
Davis SK, Jia F, Wright QG, Islam MT, Bean A, Layton D, Williams DT, Lynch SE. Defining correlates of protection for mammalian livestock vaccines against high-priority viral diseases. Front Immunol 2024; 15:1397780. [PMID: 39100679 PMCID: PMC11294087 DOI: 10.3389/fimmu.2024.1397780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/28/2024] [Indexed: 08/06/2024] Open
Abstract
Enhancing livestock biosecurity is critical to safeguard the livelihoods of farmers, global and local economies, and food security. Vaccination is fundamental to the control and prevention of exotic and endemic high-priority infectious livestock diseases. Successful implementation of vaccination in a biosecurity plan is underpinned by a strong understanding of correlates of protection-those elements of the immune response that can reliably predict the level of protection from viral challenge. While correlates of protection have been successfully characterized for many human viral vaccines, for many high-priority livestock viral diseases, including African swine fever and foot and mouth disease, they remain largely uncharacterized. Current literature provides insights into potential correlates of protection that should be assessed during vaccine development for these high-priority mammalian livestock viral diseases. Establishment of correlates of protection for biosecurity purposes enables immune surveillance, rationale for vaccine development, and successful implementation of livestock vaccines as part of a biosecurity strategy.
Collapse
Affiliation(s)
- Samantha K. Davis
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Shumilova I, Shalina K, Abed Alhussen M, Prutnikov P, Krotova A, Byadovskaya O, Prokhvatilova L, Chvala I, Sprygin A. An Attenuated Vaccine Virus of the Neethling Lineage Protects Cattle against the Virulent Recombinant Vaccine-like Isolate of the Lumpy Skin Disease Virus Belonging to the Currently Established Cluster 2.5. Vaccines (Basel) 2024; 12:598. [PMID: 38932327 PMCID: PMC11209201 DOI: 10.3390/vaccines12060598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Lumpy skin disease (LSD) is an emerging transboundary and highly infectious viral disease mainly affecting cattle. The fact that it was initially confined to Africa and then spread beyond its geographical range to other regions, including the Middle East, Turkey, Europe, the Balkans, Russia and Asia, is an indication of the underestimation and neglect of this disease. Vaccination is considered the most effective way to control the spread of LSDV, when combined with other control measures. LSD is now on the rise in Southeast Asia, where the circulating virus belongs to recombinant lineage 2.5. In this study, we evaluated the efficacy of an attenuated LSDV strain belonging to the Neethling cluster 1.1 by challenge with a virulent recombinant vaccine-like LSDV isolate "Mongolia/2021" belonging to cluster 2.5. Some of the vaccinated animals showed an increase in body temperature of 1-1.5 °C above the physiological norm, without clinical signs, local reactions, vaccine-induced viremia or generalization, demonstrating the efficacy and safety of the vaccine strain against a recombinant strain. Furthermore, all the vaccinated animals showed strong immune responses, indicating a high level of immunogenicity. However, the control group challenged with "Mongolia/2021" LSD showed moderate to severe clinical signs seen in an outbreak, with high levels of virus shedding in blood samples and nasal swabs. Overall, the results of the present study demonstrate that the attenuated LSDV Neethling strain vaccine has a promising protective phenotype against the circulating strains, suggesting its potential as an effective tool for the containment and control of LSD in affected countries from Southeast Asia.
Collapse
|
8
|
Makalo MJR, Settypalli TBK, Meki IK, Bakhoum MT, Ahmed HO, Phalatsi MS, Ramatla T, Onyiche TE, Nionzima-Bohloa L, Metlin A, Dhingra M, Cattoli G, Lamien CE, Thekisoe OMM. Genetic Characterization of Lumpy Skin Disease Viruses Circulating in Lesotho Cattle. Viruses 2024; 16:762. [PMID: 38793643 PMCID: PMC11125814 DOI: 10.3390/v16050762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Lumpy skin disease is one of the fast-spreading viral diseases of cattle and buffalo that can potentially cause severe economic impact. Lesotho experienced LSD for the first time in 1947 and episodes of outbreaks occurred throughout the decades. In this study, eighteen specimens were collected from LSD-clinically diseased cattle between 2020 and 2022 from Mafeteng, Leribe, Maseru, Berea, and Mohales' Hoek districts of Lesotho. A total of 11 DNA samples were analyzed by PCR and sequencing of the extracellular enveloped virus (EEV) glycoprotein, G-protein-coupled chemokine receptor (GPCR), 30 kDa RNA polymerase subunit (RPO30), and B22R genes. All nucleotide sequences of the above-mentioned genes confirmed that the PCR amplicons of clinical samples are truly LSDV, as they were identical to respective LSDV isolates on the NCBI GenBank. Two of the elevem samples were further characterized by whole-genome sequencing. The analysis, based on both CaPV marker genes and complete genome sequences, revealed that the LSDV isolates from Lesotho cluster with the NW-like LSDVs, which includes the commonly circulating LSDV field isolates from Africa, the Middle East, the Balkans, Turkey, and Eastern Europe.
Collapse
Affiliation(s)
- Mabusetsa Joseph Raporoto Makalo
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa; (T.R.); (T.E.O.); (O.M.M.T.)
- Department of Livestock Services, Ministry of Agriculture, Food Security, and Nutrition, Private A82, Maseru, Lesotho;
| | - Tirumala Bharani Kumar Settypalli
- Animal Production and Health Laboratory, Animal Production and Health Section, Joint FAO/IAEA Division, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, P.O. Box 100, 1400 Vienna, Austria; (T.B.K.S.); (I.K.M.); (H.O.A.); (G.C.); (C.E.L.)
| | - Irene Kasindi Meki
- Animal Production and Health Laboratory, Animal Production and Health Section, Joint FAO/IAEA Division, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, P.O. Box 100, 1400 Vienna, Austria; (T.B.K.S.); (I.K.M.); (H.O.A.); (G.C.); (C.E.L.)
| | - Mame Thierno Bakhoum
- Laboratoire National de l’Elevage et de Recherches Vétérinaires ISRA/LNERV(LNERV), BP 2057, Dakar, Senegal;
| | - Hatem Ouled Ahmed
- Animal Production and Health Laboratory, Animal Production and Health Section, Joint FAO/IAEA Division, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, P.O. Box 100, 1400 Vienna, Austria; (T.B.K.S.); (I.K.M.); (H.O.A.); (G.C.); (C.E.L.)
| | | | - Tsepo Ramatla
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa; (T.R.); (T.E.O.); (O.M.M.T.)
| | - ThankGod Emmanuel Onyiche
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa; (T.R.); (T.E.O.); (O.M.M.T.)
- Department of Veterinary Parasitology and Entomology, University of Maiduguri, P. M. B. 1069, Maiduguri 600230, Nigeria
| | - Lineo Nionzima-Bohloa
- Department of Livestock Services, Ministry of Agriculture, Food Security, and Nutrition, Private A82, Maseru, Lesotho;
| | - Artem Metlin
- Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00153 Rome, Italy; (A.M.); (M.D.)
| | - Madhur Dhingra
- Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00153 Rome, Italy; (A.M.); (M.D.)
| | - Giovanni Cattoli
- Animal Production and Health Laboratory, Animal Production and Health Section, Joint FAO/IAEA Division, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, P.O. Box 100, 1400 Vienna, Austria; (T.B.K.S.); (I.K.M.); (H.O.A.); (G.C.); (C.E.L.)
| | - Charles Euloge Lamien
- Animal Production and Health Laboratory, Animal Production and Health Section, Joint FAO/IAEA Division, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, P.O. Box 100, 1400 Vienna, Austria; (T.B.K.S.); (I.K.M.); (H.O.A.); (G.C.); (C.E.L.)
| | - Oriel Matlhahane Molifi Thekisoe
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa; (T.R.); (T.E.O.); (O.M.M.T.)
| |
Collapse
|
9
|
Zia S, Sumon MM, Ashik MA, Basar A, Lim S, Oh Y, Park Y, Rahman MM. Potential Inhibitors of Lumpy Skin Disease's Viral Protein (DNA Polymerase): A Combination of Bioinformatics Approaches. Animals (Basel) 2024; 14:1283. [PMID: 38731287 PMCID: PMC11083254 DOI: 10.3390/ani14091283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/07/2024] [Accepted: 04/13/2024] [Indexed: 05/13/2024] Open
Abstract
Lumpy skin disease (LSD), caused by a virus within the Poxviridae family and Capripoxvirus genus, induces nodular skin lesions in cattle. This spreads through direct contact and insect vectors, significantly affecting global cattle farming. Despite the availability of vaccines, their efficacy is limited by poor prophylaxis and adverse effects. Our study aimed to identify the potential inhibitors targeting the LSDV-encoded DNA polymerase protein (gene LSDV039) for further investigation through comprehensive analysis and computational methods. Virtual screening revealed rhein and taxifolin as being potent binders among 380 phytocompounds, with respective affinities of -8.97 and -7.20 kcal/mol. Canagliflozin and tepotinib exhibited strong affinities (-9.86 and -8.86 kcal/mol) among 718 FDA-approved antiviral drugs. Simulating the molecular dynamics of canagliflozin, tepotinib, rhein, and taxifolin highlighted taxifolin's superior stability and binding energy. Rhein displayed compactness in RMSD and RMSF, but fluctuated in Rg and SASA, while canagliflozin demonstrated stability compared to tepotinib. This study highlights the promising potential of using repurposed drugs and phytocompounds as potential LSD therapeutics. However, extensive validation through in vitro and in vivo testing and clinical trials is crucial for their practical application.
Collapse
Affiliation(s)
- Sabbir Zia
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh; (S.Z.); (M.-M.S.); (M.-A.A.); (A.B.)
| | - Md-Mehedi Sumon
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh; (S.Z.); (M.-M.S.); (M.-A.A.); (A.B.)
| | - Md-Ashiqur Ashik
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh; (S.Z.); (M.-M.S.); (M.-A.A.); (A.B.)
| | - Abul Basar
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh; (S.Z.); (M.-M.S.); (M.-A.A.); (A.B.)
| | - Sangjin Lim
- College of Forest & Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Yeonsu Oh
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Yungchul Park
- College of Forest & Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Md-Mafizur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh; (S.Z.); (M.-M.S.); (M.-A.A.); (A.B.)
| |
Collapse
|
10
|
Moudgil G, Chadha J, Khullar L, Chhibber S, Harjai K. Lumpy skin disease: Insights into current status and geographical expansion of a transboundary viral disease. Microb Pathog 2024; 186:106485. [PMID: 38052279 DOI: 10.1016/j.micpath.2023.106485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023]
Abstract
Lumpy skin disease (LSD) is an emerging transboundary viral disease of livestock animals which was first reported in 1929 in Zambia. Although LSD is a neglected disease of economic importance, it extends a direct impact on the international trade and economy in livestock-dependent countries. Lumpy skin disease virus (LSDV) has been endemic in African countries, where several outbreaks have been reported previously. However, the virus has spread rapidly across the Middle East in the past two decades, reaching Russia and, recently, the Asian subcontinent. With unprecedented cluster outbreaks being reported across Asian countries like India, China, Nepal, Bangladesh, and Pakistan, LSDV is certainly undergoing an epidemiological shift and expanding its geographical footprint worldwide. Due to high mortality among livestock animals, the recent LSD outbreaks have gained attention from global regulatory authorities and raised serious concerns among epidemiologists and veterinary researchers. Despite networked global surveillance of the disease, recurrent LSD cases pose a threat to the livestock industry. Hence, this review provides recent insights into the LSDV biology by augmenting the latest literature associated with its pathogenesis, transmission, current intervention strategies, and economic implications. The review critically examines the changing epidemiological footprint of LSDV globally, especially in relation to developing countries of the Asian subcontinent. We also speculate the possible reasons contributing to the ongoing LSD outbreaks, including illegal animal trade, climate change, genetic recombination events between wild-type and vaccine strains, reversion of vaccine strains to virulent phenotype, and deficiencies in active monitoring during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Gaurav Moudgil
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Jatin Chadha
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Lavanya Khullar
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Sanjay Chhibber
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh, India.
| |
Collapse
|
11
|
Yadav D, Rao GSNK, Paliwal D, Singh A, Alam A, Sharma PK, Surendra AV, Varshney P, Kumar Y. Cracking the Code of Lumpy Skin Disease: Identifying Causes, Symptoms and Treatment Options for Livestock Farmers. Infect Disord Drug Targets 2024; 24:e150124225632. [PMID: 38231058 DOI: 10.2174/0118715265261364231120053105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 01/18/2024]
Abstract
The novel bovine viral infection known as lumpy skin disease is common in most African and Middle Eastern countries, with a significant likelihood of disease transfer to Asia and Europe. Recent rapid disease spread in formerly disease-free zones highlights the need of understanding disease limits and distribution mechanisms. Capripox virus, the causal agent, may also cause sheeppox and Goatpox. Even though the virus is expelled through several bodily fluids and excretions, the most common causes of infection include sperm and skin sores. Thus, vulnerable hosts are mostly infected mechanically by hematophagous arthropods such as biting flies, mosquitoes, and ticks. As a result, milk production lowers, abortions, permanent or temporary sterility, hide damage, and mortality occur, contributing to a massive financial loss for countries that raise cattle. These illnesses are economically significant because they affect international trade. The spread of Capripox viruses appears to be spreading because to a lack of effectual vaccinations and poverty in rural areas. Lumpy skin disease has reached historic levels; as a consequence, vaccination remains the only viable option to keep the illness from spreading in endemic as well as newly impacted areas. This study is intended to offer a full update on existing knowledge of the disease's pathological characteristics, mechanisms of spread, transmission, control measures, and available vaccinations.
Collapse
Affiliation(s)
- Devdhar Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - G S N Koteswara Rao
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai- 400056, India
| | - Deepika Paliwal
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Amit Singh
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Aftab Alam
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Pramod Kumar Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Amareswarapu V Surendra
- K L College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, India
| | - Prachi Varshney
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Yogesh Kumar
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
12
|
Van Borm S, Dellicour S, Martin DP, Lemey P, Agianniotaki EI, Chondrokouki ED, Vidanovic D, Vaskovic N, Petroviċ T, Laziċ S, Koleci X, Vodica A, Djadjovski I, Krstevski K, Vandenbussche F, Haegeman A, De Clercq K, Mathijs E. Complete genome reconstruction of the global and European regional dispersal history of the lumpy skin disease virus. J Virol 2023; 97:e0139423. [PMID: 37905838 PMCID: PMC10688313 DOI: 10.1128/jvi.01394-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE Lumpy skin disease virus (LSDV) has a complex epidemiology involving multiple strains, recombination, and vaccination. Its DNA genome provides limited genetic variation to trace outbreaks in space and time. Sequencing of LSDV whole genomes has also been patchy at global and regional scales. Here, we provide the first fine-grained whole genome sequence sampling of a constrained LSDV outbreak (southeastern Europe, 2015-2017), which we analyze along with global publicly available genomes. We formally evaluate the past occurrence of recombination events as well as the temporal signal that is required for calibrating molecular clock models and subsequently conduct a time-calibrated spatially explicit phylogeographic reconstruction. Our study further illustrates the importance of accounting for recombination events before reconstructing global and regional dynamics of DNA viruses. More LSDV whole genomes from endemic areas are needed to obtain a comprehensive understanding of global LSDV dispersal dynamics.
Collapse
Affiliation(s)
- Steven Van Borm
- Scientific Directorate Animal Infectious Diseases, Sciensano, Brussels, Belgium
| | - Simon Dellicour
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels, Belgium
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Darren P. Martin
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Philippe Lemey
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Eirini I. Agianniotaki
- National Reference Laboratory for Capripoxviruses, Department of Molecular Diagnostics, FMD, Virological, Rickettsial and Exotic Diseases, Directorate of Athens Veterinary Center, Ministry of Rural Development and Food, Athens, Greece
| | - Eleni D. Chondrokouki
- National Reference Laboratory for Capripoxviruses, Department of Molecular Diagnostics, FMD, Virological, Rickettsial and Exotic Diseases, Directorate of Athens Veterinary Center, Ministry of Rural Development and Food, Athens, Greece
| | - Dejan Vidanovic
- Department for laboratory diagnostics, Veterinary Specialized Institute, Kraljevo, Serbia
| | - Nikola Vaskovic
- Department for laboratory diagnostics, Veterinary Specialized Institute, Kraljevo, Serbia
| | - Tamaš Petroviċ
- Department for Virology, Scientific Veterinary Institute, Novi Sad, Serbia
| | - Sava Laziċ
- Department for Virology, Scientific Veterinary Institute, Novi Sad, Serbia
| | - Xhelil Koleci
- Faculty of Veterinary Medicine, The Agricultural University of Tirana, Tirana, Albania
| | - Ani Vodica
- Animal Health Department, Food Safety and Veterinary Institute, Tirana, Albania
| | - Igor Djadjovski
- Faculty of Veterinary Medicine, Ss. Cyril and Methodius University in Skopje, Skopje, Macedonia
| | - Kiril Krstevski
- Faculty of Veterinary Medicine, Ss. Cyril and Methodius University in Skopje, Skopje, Macedonia
| | - Frank Vandenbussche
- Scientific Directorate Animal Infectious Diseases, Sciensano, Brussels, Belgium
| | - Andy Haegeman
- Scientific Directorate Animal Infectious Diseases, Sciensano, Brussels, Belgium
| | - Kris De Clercq
- Scientific Directorate Animal Infectious Diseases, Sciensano, Brussels, Belgium
| | - Elisabeth Mathijs
- Scientific Directorate Animal Infectious Diseases, Sciensano, Brussels, Belgium
| |
Collapse
|
13
|
Desingu PA, Rubeni TP, Nagarajan K, Sundaresan NR. Sign of APOBEC editing, purifying selection, frameshift, and in-frame nonsense mutations in the microevolution of lumpy skin disease virus. Front Microbiol 2023; 14:1214414. [PMID: 38033577 PMCID: PMC10682384 DOI: 10.3389/fmicb.2023.1214414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
The lumpy skin disease virus (LSDV), which mostly affects ruminants and causes huge-economic loss, was endemic in Africa, caused outbreaks in the Middle East, and was recently detected in Russia, Serbia, Greece, Bulgaria, Kazakhstan, China, Taiwan, Vietnam, Thailand, and India. However, the role of evolutionary drivers such as codon selection, negative/purifying selection, APOBEC editing, and genetic variations such as frameshift and in-frame nonsense mutations in the LSDVs, which cause outbreaks in cattle in various countries, are still largely unknown. In the present study, a frameshift mutation in LSDV035, LSDV019, LSDV134, and LSDV144 genes and in-frame non-sense mutations in LSDV026, LSDV086, LSDV087, LSDV114, LSDV130, LSDV131, LSDV145, LSDV154, LSDV155, LSDV057, and LSDV081 genes were revealed among different clusters. Based on the available complete genome sequences, the prototype wild-type cluster-1.2.1 virus has been found in other than Africa only in India, the wild-type cluster-1.2.2 virus found in Africa were spread outside Africa, and the recombinant viruses spreading only in Asia and Russia. Although LSD viruses circulating in different countries form a specific cluster, the viruses detected in each specific country are distinguished by frameshift and in-frame nonsense mutations. Furthermore, the present study has brought to light that the selection pressure for codons usage bias is mostly exerted by purifying selection, and this process is possibly caused by APOBEC editing. Overall, the present study sheds light on microevolutions in LSDV, expected to help in future studies towards disturbed ORFs, epidemiological diagnostics, attenuation/vaccine reverts, and predicting the evolutionary direction of LSDVs.
Collapse
Affiliation(s)
| | - T. P. Rubeni
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - K. Nagarajan
- Department of Veterinary Pathology, Madras Veterinary College, Chennai, India
- Veterinary and Animal Sciences University (TANUVAS), Chennai, India
| | | |
Collapse
|
14
|
Mazloum A, Van Schalkwyk A, Babiuk S, Venter E, Wallace DB, Sprygin A. Lumpy skin disease: history, current understanding and research gaps in the context of recent geographic expansion. Front Microbiol 2023; 14:1266759. [PMID: 38029115 PMCID: PMC10652407 DOI: 10.3389/fmicb.2023.1266759] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023] Open
Abstract
Lumpy skin disease is recognized as a transboundary and emerging disease of cattle, buffaloes and other wild ruminants. Being initially restricted to Africa, and since 1989 the Middle East, the unprecedented recent spread across Eurasia demonstrates how underestimated and neglected this disease is. The initial identification of the causative agent of LSD as a poxvirus called LSD virus, was well as findings on LSDV transmission and epidemiology were pioneered at Onderstepoort, South Africa, from as early as the 1940s by researchers such as Weiss, Haig and Alexander. As more data emerges from an ever-increasing number of epidemiological studies, previously emphasized research gaps are being revisited and discussed. The currently available knowledge is in agreement with the previously described South African research experience that LSDV transmission can occur by multiple routes, including indirect contact, shared water sources and arthropods. The virus population is prone to molecular evolution, generating novel phylogenetically distinct variants resulting from a diverse range of selective pressures, including recombination between field and homologous vaccine strains in cell culture that produce virulent recombinants which pose diagnostic challenges. Host restriction is not limited to livestock, with certain wild ruminants being susceptible, with unknown consequences for the epidemiology of the disease.
Collapse
Affiliation(s)
- Ali Mazloum
- Federal Center for Animal Health, Vladimir, Russia
| | - Antoinette Van Schalkwyk
- Agricultural Research Council – Onderstepoort Veterinary Institute, Onderstepoort, South Africa
- Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Shawn Babiuk
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Estelle Venter
- College of Public Health, Medical and Veterinary Sciences, Discipline Veterinary Science, James Cook University, Townsville, QLD, Australia
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - David B. Wallace
- Agricultural Research Council – Onderstepoort Veterinary Institute, Onderstepoort, South Africa
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | | |
Collapse
|
15
|
Schlosser-Perrin L, Holzmuller P, Fernandez B, Miotello G, Dahmani N, Neyret A, Bertagnoli S, Armengaud J, Caufour P. Constitutive proteins of lumpy skin disease virion assessed by next-generation proteomics. J Virol 2023; 97:e0072323. [PMID: 37737587 PMCID: PMC10617387 DOI: 10.1128/jvi.00723-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/10/2023] [Indexed: 09/23/2023] Open
Abstract
IMPORTANCE Lumpy skin disease virus (LSDV) is the causative agent of an economically important cattle disease which is notifiable to the World Organisation for Animal Health. Over the past decades, the disease has spread at an alarming rate throughout the African continent, the Middle East, Eastern Europe, the Russian Federation, and many Asian countries. While multiple LDSV whole genomes have made further genetic comparative analyses possible, knowledge on the protein composition of the LSDV particle remains lacking. This study provides for the first time a comprehensive proteomic analysis of an infectious LSDV particle, prompting new efforts toward further proteomic LSDV strain characterization. Furthermore, this first incursion within the capripoxvirus proteome represents one of very few proteomic studies beyond the sole Orthopoxvirus genus, for which most of the proteomics studies have been performed. Providing new information about other chordopoxviruses may contribute to shedding new light on protein composition within the Poxviridae family.
Collapse
Affiliation(s)
- Léo Schlosser-Perrin
- UMR ASTRE, CIRAD, INRAE, University of Montpellier (I-MUSE), Montpellier, France
| | - Philippe Holzmuller
- UMR ASTRE, CIRAD, INRAE, University of Montpellier (I-MUSE), Montpellier, France
| | - Bernard Fernandez
- UMR ASTRE, CIRAD, INRAE, University of Montpellier (I-MUSE), Montpellier, France
| | - Guylaine Miotello
- Département Médicaments et Technologies pour la Santé, Université Paris Saclay, CEA, INRAE, Bagnols-sur-Cèze, France
| | - Noureddine Dahmani
- UMR ASTRE, CIRAD, INRAE, University of Montpellier (I-MUSE), Montpellier, France
| | - Aymeric Neyret
- CEMIPAI, University of Montpellier, UAR3725 CNRS, Montpellier, France
| | | | - Jean Armengaud
- Département Médicaments et Technologies pour la Santé, Université Paris Saclay, CEA, INRAE, Bagnols-sur-Cèze, France
| | - Philippe Caufour
- UMR ASTRE, CIRAD, INRAE, University of Montpellier (I-MUSE), Montpellier, France
| |
Collapse
|
16
|
Breman FC, Haegeman A, Krešić N, Philips W, De Regge N. Lumpy Skin Disease Virus Genome Sequence Analysis: Putative Spatio-Temporal Epidemiology, Single Gene versus Whole Genome Phylogeny and Genomic Evolution. Viruses 2023; 15:1471. [PMID: 37515159 PMCID: PMC10385495 DOI: 10.3390/v15071471] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Lumpy Skin Disease virus is a poxvirus from the genus Capripox that mainly affects bovines and it causes severe economic losses to livestock holders. The Lumpy Skin Disease virus is currently dispersing in Asia, but little is known about detailed phylogenetic relations between the strains and genome evolution. We reconstructed a whole-genome-sequence (WGS)-based phylogeny and compared it with single-gene-based phylogenies. To study population and spatiotemporal patterns in greater detail, we reconstructed networks. We determined that there are strains from multiple clades within the previously defined cluster 1.2 that correspond with recorded outbreaks across Eurasia and South Asia (Indian subcontinent), while strains from cluster 2.5 spread in Southeast Asia. We concluded that using only a single gene (cheap, fast and easy to routinely use) for sequencing lacks phylogenetic and spatiotemporal resolution and we recommend to create at least one WGS whenever possible. We also found that there are three gene regions, highly variable, across the genome of LSDV. These gene regions are located in the 5' and 3' flanking regions of the LSDV genome and they encode genes that are involved in immune evasion strategies of the virus. These may provide a starting point to further investigate the evolution of the virus.
Collapse
Affiliation(s)
- Floris C Breman
- Sciensano, Unit Exotic and Vector Borne Diseases (ExoVec), Groesselenberg 99, B-2800 Ukkel, Belgium
| | - Andy Haegeman
- Sciensano, Unit Exotic and Vector Borne Diseases (ExoVec), Groesselenberg 99, B-2800 Ukkel, Belgium
| | - Nina Krešić
- Sciensano, Unit Exotic and Vector Borne Diseases (ExoVec), Groesselenberg 99, B-2800 Ukkel, Belgium
| | - Wannes Philips
- Sciensano, Unit Exotic and Vector Borne Diseases (ExoVec), Groesselenberg 99, B-2800 Ukkel, Belgium
| | - Nick De Regge
- Sciensano, Unit Exotic and Vector Borne Diseases (ExoVec), Groesselenberg 99, B-2800 Ukkel, Belgium
| |
Collapse
|
17
|
Haegeman A, Sohier C, Mostin L, De Leeuw I, Van Campe W, Philips W, De Regge N, De Clercq K. Evidence of Lumpy Skin Disease Virus Transmission from Subclinically Infected Cattle by Stomoxys calcitrans. Viruses 2023; 15:1285. [PMID: 37376585 DOI: 10.3390/v15061285] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 06/29/2023] Open
Abstract
Lumpy skin disease virus (LSDV) is a vector-transmitted capripox virus that causes disease in cattle. Stomoxys calcitrans flies are considered to be important vectors as they are able to transmit viruses from cattle with the typical LSDV skin nodules to naive cattle. No conclusive data are, however, available concerning the role of subclinically or preclinically infected cattle in virus transmission. Therefore, an in vivo transmission study with 13 donors, experimentally inoculated with LSDV, and 13 naïve acceptor bulls was performed whereby S. calcitrans flies were fed on either subclinical- or preclinical-infected donor animals. Transmission of LSDV from subclinical donors showing proof of productive virus replication but without formation of skin nodules was demonstrated in two out of five acceptor animals, while no transmission was seen from preclinical donors that developed nodules after Stomoxys calcitrans flies had fed. Interestingly, one of the acceptor animals which became infected developed a subclinical form of the disease. Our results show that subclinical animals can contribute to virus transmission. Therefore, stamping out only clinically diseased LSDV-infected cattle could be insufficient to completely halt the spread and control of the disease.
Collapse
Affiliation(s)
- Andy Haegeman
- Sciensano, Infectious Diseases in Animals, Exotic and Vector-Borne Diseases, Groeselenberg 99, B-1180 Brussels, Belgium
| | - Charlotte Sohier
- Sciensano, Infectious Diseases in Animals, Exotic and Vector-Borne Diseases, Groeselenberg 99, B-1180 Brussels, Belgium
| | - Laurent Mostin
- Sciensano, Experimental Center Machelen, Kerklaan 68, B-1830 Machelen, Belgium
| | - Ilse De Leeuw
- Sciensano, Infectious Diseases in Animals, Exotic and Vector-Borne Diseases, Groeselenberg 99, B-1180 Brussels, Belgium
| | - Willem Van Campe
- Sciensano, Experimental Center Machelen, Kerklaan 68, B-1830 Machelen, Belgium
| | - Wannes Philips
- EURL for Diseases Caused by Capripox Viruses, Sciensano, Groeselenberg 99, B-1180 Brussels, Belgium
| | - Nick De Regge
- Sciensano, Infectious Diseases in Animals, Exotic and Vector-Borne Diseases, Groeselenberg 99, B-1180 Brussels, Belgium
| | - Kris De Clercq
- Sciensano, Infectious Diseases in Animals, Exotic and Vector-Borne Diseases, Groeselenberg 99, B-1180 Brussels, Belgium
| |
Collapse
|
18
|
Haegeman A, De Leeuw I, Philips W, De Regge N. Development and Validation of a New DIVA Real-Time PCR Allowing to Differentiate Wild-Type Lumpy Skin Disease Virus Strains, Including the Asian Recombinant Strains, from Neethling-Based Vaccine Strains. Viruses 2023; 15:v15040870. [PMID: 37112850 PMCID: PMC10146157 DOI: 10.3390/v15040870] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/09/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
The current epidemic in Asia, driven by LSDV recombinants, poses difficulties to existing DIVA PCR tests, as these do not differentiate between homologous vaccine strains and the recombinant strains. We, therefore, developed and validated a new duplex real-time PCR capable of differentiating Neethling-based vaccine strains from classical and recombinant wild-type strains that are currently circulating in Asia. The DIVA potential of this new assay, seen in the in silico evaluation, was confirmed on samples from LSDV infected and vaccinated animals and on isolates of LSDV recombinants (n = 12), vaccine (n = 5), and classic wild-type strains (n = 6). No cross-reactivity or a-specificity with other capripox viruses was observed under field conditions in non-capripox viral stocks and negative animals. The high analytical sensitivity is translated into a high diagnostic specificity as more than 70 samples were all correctly detected with Ct values very similar to those of a published first-line pan capripox real-time PCR. Finally, the low inter- and intra-run variability observed shows that the new DIVA PCR is very robust which facilitates its implementation in the lab. All validation parameters that are mentioned above indicate the potential of the newly developed test as a promising diagnostic tool which could help to control the current LSDV epidemic in Asia.
Collapse
Affiliation(s)
- Andy Haegeman
- Sciensano, Infectious Diseases in Animals, Exotic and Vector-Borne Diseases, Groeselenberg 99, B-1180 Brussels, Belgium
- Correspondence:
| | - Ilse De Leeuw
- Sciensano, Infectious Diseases in Animals, Exotic and Vector-Borne Diseases, Groeselenberg 99, B-1180 Brussels, Belgium
| | - Wannes Philips
- Sciensano, EURL for Diseases Caused by Capripox Viruses, Groeselenberg 99, B-1180 Brussels, Belgium
| | - Nick De Regge
- Sciensano, Infectious Diseases in Animals, Exotic and Vector-Borne Diseases, Groeselenberg 99, B-1180 Brussels, Belgium
| |
Collapse
|
19
|
Lumpy Skin Disease—An Emerging Cattle Disease in Europe and Asia. Vaccines (Basel) 2023; 11:vaccines11030578. [PMID: 36992162 DOI: 10.3390/vaccines11030578] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Lumpy skin disease virus (LSDV) is a member of the Capripoxvirus genus, mainly infecting cattle and buffalo, which until relatively recently was only endemic in parts of Africa and then spread to the Middle East and lately Europe and Asia. Lumpy skin disease (LSD) is a notifiable disease with a serious impact on the beef industry as it causes mortality of up to 10% and has impacts on milk and meat production, as well as fertility. The close serological relationship between LSDV, goat poxvirus (GTPV) and sheep poxvirus (SPPV) has led to live attenuated GTPV and SPPV vaccines being used to protect against LSD in some countries. There is evidence that the SPPV vaccine does not protect from LSD as well as the GTPV and LSDV vaccines. One of the LSD vaccines used in Eastern Europe was found to be a combination of different Capripoxviruses, and a series of recombination events in the manufacturing process resulted in cattle being vaccinated with a range of recombinant LSDVs resulting in virulent LSDV which spread throughout Asia. It is likely that LSD will become endemic throughout Asia as it will be very challenging to control the spread of the virus without widespread vaccination.
Collapse
|
20
|
Kumar A, Venkatesan G, Kushwaha A, Poulinlu G, Saha T, Ramakrishnan MA, Dhar P, Kumar GS, Singh RK. Genomic characterization of Lumpy Skin Disease virus (LSDV) from India: Circulation of Kenyan-like LSDV strains with unique kelch-like proteins. Acta Trop 2023; 241:106838. [PMID: 36796571 DOI: 10.1016/j.actatropica.2023.106838] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/18/2022] [Accepted: 01/15/2023] [Indexed: 02/17/2023]
Abstract
Lumpy skin disease (LSD) is an economically important poxviral disease endemic to Asia, Europe, and Africa. Recently, LSD has spread to naïve countries, including India, China, Bangladesh, Pakistan, Myanmar, Vietnam, and Thailand. Here, we describe the complete genomic characterization of LSDV from India, LSDV-WB/IND/19 isolated from an LSD affected calf in 2019 determined by Illumina next-generation sequencing (NGS). The LSDV-WB/IND/19 has a genome size of 150,969 bp encoding 156 putative ORFs. Phylogenetic analysis based on complete genome sequence suggested that LSDV-WB/IND/19 is closely related to Kenyan LSDV strains with 10-12 variants with non-synonymous changes confined to LSD_019, LSD_049, LSD_089, LSD_094, LSD_096, LSD_140, and LSD_144 genes. In contrast to complete kelch-like proteins in Kenyan LSDV strains, LSDV-WB/IND/19 LSD_019 and LSD_144 genes were found to encode truncated versions (019a, 019b, and 144a, 144b). LSD_019a and LSD_019b proteins of LSDV-WB/IND/19 resemble that of wild-type LSDV strains based on SNPs and the C-terminal part of LSD_019b except for deletion at K229, whereas the LSD_144a and LSD_144b proteins resemble that of Kenyan LSDV strains based on SNPs, however, C-terminal part of LSD_144a resembles that of vaccine-associated LSDV strains due to premature truncation. The NGS findings were confirmed by Sanger sequencing of these genes in Vero cell isolate as well as in the original skin scab along with similar findings in another Indian LSDV from scab specimen. LSD_019 and LSD_144 genes are thought to modulate virulence and host range in capripoxviruses. This study demonstrates the circulation of unique LSDV strains in India and highlights the importance of constant monitoring of the molecular evolution of LSDV and associated factors in the region in light of the emergence of recombinant LSDV strains.
Collapse
Affiliation(s)
- Amit Kumar
- Pox Virus Laboratory, Division of Virology, ICAR-Indian Veterinary Research Institute (IVRI), Mukteswar, Uttarakhand, India.
| | - Gnanavel Venkatesan
- ICAR-Indian Veterinary Research Institute (IVRI), Bengaluru campus, Karnataka, India
| | - Anand Kushwaha
- Pox Virus Laboratory, Division of Virology, ICAR-Indian Veterinary Research Institute (IVRI), Mukteswar, Uttarakhand, India
| | - G Poulinlu
- Pox Virus Laboratory, Division of Virology, ICAR-Indian Veterinary Research Institute (IVRI), Mukteswar, Uttarakhand, India
| | - Tapabrata Saha
- Block Animal Health Centre, Chhatna, Bankura, West Bengal, India
| | - M A Ramakrishnan
- ICAR-Indian Veterinary Research Institute (IVRI), Bengaluru campus, Karnataka, India
| | - Pronab Dhar
- ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Uttar Pradesh, India
| | - G Sai Kumar
- ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Uttar Pradesh, India
| | - R K Singh
- ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Uttar Pradesh, India
| |
Collapse
|
21
|
Duration of Immunity Induced after Vaccination of Cattle with a Live Attenuated or Inactivated Lumpy Skin Disease Virus Vaccine. Microorganisms 2023; 11:microorganisms11010210. [PMID: 36677502 PMCID: PMC9864976 DOI: 10.3390/microorganisms11010210] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Vaccines have proven themselves as an efficient way to control and eradicate lumpy skin disease (LSD). In addition to the safety and efficacy aspects, it is important to know the duration for which the vaccines confer protective immunity, as this impacts the design of an efficient control and eradication program. We evaluated the duration of immunity induced by a live attenuated vaccine (LSDV LAV) and an inactivated vaccine (LSDV Inac), both based on LSDV. Cattle were vaccinated and challenged after 6, 12 and 18 months for LSDV LAV or after 6 and 12 months for the LSDV Inac. The LSDV LAV elicited a strong immune response and protection for up to 18 months, as no clinical signs or viremia could be observed after a viral LSDV challenge in any of the vaccinated animals. A good immune response and protection were similarly seen for the LSDV Inac after 6 months. However, two animals developed clinical signs and viremia when challenged after 12 months. In conclusion, our data support the annual booster vaccination when using the live attenuated vaccine, as recommended by the manufacturer, which could potentially even be prolonged. In contrast, a bi-annual vaccination seems necessary when using the inactivated vaccine.
Collapse
|
22
|
Liang Z, Yao K, Wang S, Yin J, Ma X, Yin X, Wang X, Sun Y. Understanding the research advances on lumpy skin disease: A comprehensive literature review of experimental evidence. Front Microbiol 2022; 13:1065894. [PMID: 36519172 PMCID: PMC9742232 DOI: 10.3389/fmicb.2022.1065894] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/27/2022] [Indexed: 10/28/2023] Open
Abstract
Lumpy skin disease is caused by lumpy skin disease virus (LSDV), which can induce cattle with high fever and extensive nodules on the mucosa or the scarfskin, seriously influencing the cattle industry development and international import and export trade. Since 2013, the disease has spread rapidly and widely throughout the Russia and Asia. In the past few decades, progress has been made in the study of LSDV. It is mainly transmitted by blood-sucking insects, and various modes of transmission with distinct seasonality. Figuring out how the virus spreads will help eradicate LSDV at its source. In the event of an outbreak, selecting the most effective vaccine to block and eliminate the threat posed by LSDV in a timely manner is the main choice for farmers and authorities. At present, a variety of vaccines for LSDV have been developed. The available vaccine products vary in quality, protection rate, safety and side effects. Early detection of LSDV can help reduce the cost of disease. In addition, because LSDV has a huge genome, it is currently also used as a vaccine carrier, forming a new complex with other viral genes through homologous recombination. The vaccine prepared based on this can have a certain preventive effect on many kinds of diseases. Clinical detection of disease including nucleic acid and antigen level. Each method varies in convenience, accuracy, cost, time and complexity of equipment. This article reviews our current understanding of the mode of transmission of LSDV and advances in vaccine types and detection methods, providing a background for further research into various aspects of LSDV in the future.
Collapse
Affiliation(s)
- Zhengji Liang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Kaishen Yao
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shasha Wang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Juanbin Yin
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaoqin Ma
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangping Yin
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangwei Wang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yuefeng Sun
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
23
|
Vandenbussche F, Mathijs E, Philips W, Saduakassova M, De Leeuw I, Sultanov A, Haegeman A, De Clercq K. Recombinant LSDV Strains in Asia: Vaccine Spillover or Natural Emergence? Viruses 2022; 14:v14071429. [PMID: 35891412 PMCID: PMC9318037 DOI: 10.3390/v14071429] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/23/2022] Open
Abstract
From 2017 to 2019, several vaccine-like recombinant strains of lumpy skin disease virus (LSDV) were discovered in Kazakhstan and neighbouring regions of Russia and China. Shortly before their emergence, the authorities in Kazakhstan launched a mass vaccination campaign with the Neethling-based Lumpivax vaccine. Since none of the other countries in the affected region had used a homologous LSDV vaccine, it was soon suspected that the Lumpivax vaccine was the cause of these unusual LSDV strains. In this study, we performed a genome-wide molecular analysis to investigate the composition of two Lumpivax vaccine batches and to establish a possible link between the vaccine and the recent outbreaks. Although labelled as a pure Neethling-based LSDV vaccine, the Lumpivax vaccine appears to be a complex mixture of multiple CaPVs. Using an iterative enrichment/assembly strategy, we obtained the complete genomes of a Neethling-like LSDV vaccine strain, a KSGP-like LSDV vaccine strain and a Sudan-like GTPV strain. The same analysis also revealed the presence of several recombinant LSDV strains that were (almost) identical to the recently described vaccine-like LSDV strains. Based on their InDel/SNP signatures, the vaccine-like recombinant strains can be divided into four groups. Each group has a distinct breakpoint pattern resulting from multiple recombination events, with the number of genetic exchanges ranging from 126 to 146. The enormous divergence of the recombinant strains suggests that they arose during seed production. The recent emergence of vaccine-like LSDV strains in large parts of Asia is, therefore, most likely the result of a spillover from animals vaccinated with the Lumpivax vaccine.
Collapse
Affiliation(s)
- Frank Vandenbussche
- EURL for Diseases Caused by Capripoxviruses, Scientific Directorate Infectious Diseases in Animals, Sciensano, Groeselenberg 99, B-1180 Brussels, Belgium; (F.V.); (E.M.); (W.P.)
| | - Elisabeth Mathijs
- EURL for Diseases Caused by Capripoxviruses, Scientific Directorate Infectious Diseases in Animals, Sciensano, Groeselenberg 99, B-1180 Brussels, Belgium; (F.V.); (E.M.); (W.P.)
| | - Wannes Philips
- EURL for Diseases Caused by Capripoxviruses, Scientific Directorate Infectious Diseases in Animals, Sciensano, Groeselenberg 99, B-1180 Brussels, Belgium; (F.V.); (E.M.); (W.P.)
| | - Meruyert Saduakassova
- Kazakh Scientific Research Veterinary Institute (KazSRVI/KazNIVI), Raiymbek ave. 223, Almaty 050016, Kazakhstan; (M.S.); (A.S.)
| | - Ilse De Leeuw
- Unit of Exotic and Particular Diseases, Scientific Directorate Infectious Diseases in Animals, Sciensano, Groeselenberg 99, B-1180 Brussels, Belgium; (I.D.L.); (A.H.)
| | - Akhmetzhan Sultanov
- Kazakh Scientific Research Veterinary Institute (KazSRVI/KazNIVI), Raiymbek ave. 223, Almaty 050016, Kazakhstan; (M.S.); (A.S.)
| | - Andy Haegeman
- Unit of Exotic and Particular Diseases, Scientific Directorate Infectious Diseases in Animals, Sciensano, Groeselenberg 99, B-1180 Brussels, Belgium; (I.D.L.); (A.H.)
| | - Kris De Clercq
- Unit of Exotic and Particular Diseases, Scientific Directorate Infectious Diseases in Animals, Sciensano, Groeselenberg 99, B-1180 Brussels, Belgium; (I.D.L.); (A.H.)
- Correspondence:
| |
Collapse
|
24
|
Shoulah SA, Elshafae SM, Gaballa MMS, Moussa MA, Selim A, Attia K, AlKahtani MDF, Albohairy FM. Adverse effect of vaccination in xenogeneic animals. Microb Pathog 2022; 166:105541. [PMID: 35469999 DOI: 10.1016/j.micpath.2022.105541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 12/24/2022]
Abstract
Lumpy skin disease (LSD) is a devastating, emerging viral disease of cattle. It causes significant economic losses due to trade restrictions that are placed on infected animals and the biological effects of the disease: infertility, dramatic loss in milk production, induction of abortion and mortality. It is caused by lumpy skin disease virus (LSDV), which belongs to the Poxviridae family. Vaccination has been determined to be the most effective way to control LSD infection among livestock. However, some adverse effects have been reported in animals vaccinated with live vaccines. To the best of our knowledge, this is the first study to report the systemic lesions that are associated with LSD vaccination in xenogeneic animals. The aim of our study was to compare the immunogenicity and pathogenicity of a live attenuated vaccine of Romanian strain of sheeppox virus (SPPV) through study of two different routes of administration in xenogeneic animals (mice). Swiss male mice were inoculated with two doses of SPPV vaccine by two different routes intranasal (IN, through nebulisation), and intraperitoneal (IP) injection) and the levels of immunoglobulins and histopathological findings were reported. Our results showed marked increases in levels of immunoglobulins (Ig) dependent on the administration route: IgG in IP-inoculated mice and IgA in IN-vaccinated mice. IgM levels became markedly high after vaccination via both routes. Histologically, nebulisation of mice with SPPV vaccine caused more pulmonary lesions than did IP injection and promoted the proliferation of megakaryocytes in splenic tissues. In contrast, IP injection had less effect on pulmonary tissues and induced activation of extramedullary haematopoiesis (EH) in the hepatic tissues. LSD vaccination in xenogeneic animals caused serious systemic complications and the severity of the lesions caused to tissue depended on the route of administration.
Collapse
Affiliation(s)
- Salma A Shoulah
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Moshtohor, Tukh, Qalyobiya, 13736, Egypt
| | - Said M Elshafae
- Department of Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Tukh, Qalyobiya, 13736, Egypt
| | - Mohamed M S Gaballa
- Department of Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Tukh, Qalyobiya, 13736, Egypt
| | - Maha A Moussa
- Department of Statistics, Faculty of Commerce, Benha University, Benha, Qalyobiya, 13511, Egypt
| | - Abdelfattah Selim
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Moshtohor, Tukh, Qalyobiya, 13736, Egypt.
| | - Kotb Attia
- Center of Excellence in Biotechnology Research, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Muneera D F AlKahtani
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 102275, Riyadh 11675, Saudi Arabia
| | - Fatima M Albohairy
- Electron Microscope Research Unit, Health Sciences Research Center, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
25
|
Development and Evaluation of a Combined Contagious Bovine Pleuropneumonia (CBPP) and Lumpy Skin Disease (LSD) Live Vaccine. Viruses 2022; 14:v14020372. [PMID: 35215965 PMCID: PMC8880402 DOI: 10.3390/v14020372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/22/2022] [Accepted: 01/30/2022] [Indexed: 12/10/2022] Open
Abstract
Mycoplasma mycoides subsp. mycoides (Mmm) is the causative agent of contagious bovine pleuropneumonia (CBPP). Lumpy skin disease (LSD) is a viral disease of cattle caused by lumpy skin disease virus (LSDV). LSD and CBPP are both transboundary diseases spreading in the same areas of Africa and Asia. A combination vaccine to control CBPP and LSD offers significant value to small-scale livestock keepers as a single administration. Access to a bivalent vaccine may improve vaccination rates for both pathogens. In the present study, we evaluated the LSDV/CBPP live combined vaccine by testing the generation of virus neutralizing antibodies, immunogenicity, and safety on target species. In-vitro assessment of the Mycoplasma effect on LSDV growth in cell culture was evaluated by infectious virus titration and qPCR during 3 serial passages, whereas in-vivo interference was assessed through the antibody response to vaccination. This combined Mmm/LSDV vaccine could be used to protect cattle against both diseases with a single vaccination in the endemic countries. There were no adverse reactions detected in this study and inoculated cattle produced high levels of specific antibodies starting from day 7 post-vaccination, suggesting that this combination vaccine is both safe and effective.
Collapse
|
26
|
Arjkumpa O, Suwannaboon M, Boonrod M, Punyawan I, Liangchaisiri S, Laobannue P, Lapchareonwong C, Sansri C, Kuatako N, Panyasomboonying P, Uttarak P, Buamithup N, Sansamur C, Punyapornwithaya V. The First Lumpy Skin Disease Outbreak in Thailand (2021): Epidemiological Features and Spatio-Temporal Analysis. Front Vet Sci 2022; 8:799065. [PMID: 35071388 PMCID: PMC8782428 DOI: 10.3389/fvets.2021.799065] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
The first outbreak of lumpy skin disease (LSD) in Thailand was reported in March 2021, but information on the epidemiological characteristics of the outbreak is very limited. The objectives of this study were to describe the epidemiological features of LSD outbreaks and to identify the outbreak spatio-temporal clusters. The LSD-affected farms located in Roi Et province were investigated by veterinary authorities under the outbreak response program. A designed questionnaire was used to obtain the data. Space-time permutation (STP) and Poisson space-time (Poisson ST) models were used to detect areas of high LSD incidence. The authorities identified 293 LSD outbreak farms located in four different districts during the period of March and the first week of April 2021. The overall morbidity and mortality of the affected cattle were 40.5 and 1.2%, respectively. The STP defined seven statistically significant clusters whereas only one cluster was identified by the Poisson ST model. Most of the clusters (n = 6) from the STP had a radius <7 km, and the number of LSD cases in those clusters varied in range of 3-51. On the other hand, the most likely cluster from the Poisson ST included LSD cases (n = 361) from 198 cattle farms with a radius of 17.07 km. This is the first report to provide an epidemiological overview and determine spatio-temporal clusters of the first LSD outbreak in cattle farms in Thailand. The findings from this study may serve as a baseline information for future epidemiological studies and support authorities to establish effective control programs for LSD in Thailand.
Collapse
Affiliation(s)
- Orapun Arjkumpa
- Animal Health Section, The 4th Regional Livestock Office, Department of Livestock Development, Khon Kaen, Thailand
| | - Minta Suwannaboon
- Animal Health Section, The 4th Regional Livestock Office, Department of Livestock Development, Khon Kaen, Thailand
| | - Manoch Boonrod
- Animal Health Section, The 4th Regional Livestock Office, Department of Livestock Development, Khon Kaen, Thailand
| | - Issara Punyawan
- Animal Health Section, The 4th Regional Livestock Office, Department of Livestock Development, Khon Kaen, Thailand
| | - Supawadee Liangchaisiri
- Animal Health Section, The 4th Regional Livestock Office, Department of Livestock Development, Khon Kaen, Thailand
| | - Patchariya Laobannue
- Animal Health Section, Roi Et Provincial Livestock Office, Department of Livestock Development, Bangkok, Thailand
| | - Chayanun Lapchareonwong
- Animal Health Section, Roi Et Provincial Livestock Office, Department of Livestock Development, Bangkok, Thailand
| | - Chaiwat Sansri
- Animal Health Section, Roi Et Provincial Livestock Office, Department of Livestock Development, Bangkok, Thailand
| | - Noppasorn Kuatako
- Bureau of Disease Control and Veterinary Services, Department of Livestock Development, Bangkok, Thailand
| | - Pawares Panyasomboonying
- Bureau of Disease Control and Veterinary Services, Department of Livestock Development, Bangkok, Thailand
| | - Ponkrit Uttarak
- Bureau of Disease Control and Veterinary Services, Department of Livestock Development, Bangkok, Thailand
| | - Noppawan Buamithup
- Bureau of Disease Control and Veterinary Services, Department of Livestock Development, Bangkok, Thailand
| | - Chalutwan Sansamur
- Akkhararatchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, Thailand
| | - Veerasak Punyapornwithaya
- Veterinary Public Health and Food Safety Centre for Asia Pacific (VPHCAP), Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
27
|
Fay PC, Wijesiriwardana N, Munyanduki H, Sanz-Bernardo B, Lewis I, Haga IR, Moffat K, van Vliet AHM, Hope J, Graham SP, Beard PM. The immune response to lumpy skin disease virus in cattle is influenced by inoculation route. Front Immunol 2022; 13:1051008. [PMID: 36518761 PMCID: PMC9742517 DOI: 10.3389/fimmu.2022.1051008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/31/2022] [Indexed: 11/29/2022] Open
Abstract
Lumpy skin disease virus (LSDV) causes severe disease in cattle and water buffalo and is transmitted by hematophagous arthropod vectors. Detailed information of the adaptive and innate immune response to LSDV is limited, hampering the development of tools to control the disease. This study provides an in-depth analysis of the immune responses of calves experimentally inoculated with LSDV via either needle-inoculation or arthropod-inoculation using virus-positive Stomoxys calcitrans and Aedes aegypti vectors. Seven out of seventeen needle-inoculated calves (41%) developed clinical disease characterised by multifocal necrotic cutaneous nodules. In comparison 8/10 (80%) of the arthropod-inoculated calves developed clinical disease. A variable LSDV-specific IFN-γ immune response was detected in the needle-inoculated calves from 5 days post inoculation (dpi) onwards, with no difference between clinical calves (developed cutaneous lesions) and nonclinical calves (did not develop cutaneous lesions). In contrast a robust and uniform cell-mediated immune response was detected in all eight clinical arthropod-inoculated calves, with little response detected in the two nonclinical arthropod-inoculated calves. Neutralising antibodies against LSDV were detected in all inoculated cattle from 5-7 dpi. Comparison of the production of anti-LSDV IgM and IgG antibodies revealed no difference between clinical and nonclinical needle-inoculated calves, however a strong IgM response was evident in the nonclinical arthropod-inoculated calves but absent in the clinical arthropod-inoculated calves. This suggests that early IgM production is a correlate of protection in LSD. This study presents the first evidence of differences in the immune response between clinical and nonclinical cattle and highlights the importance of using a relevant transmission model when studying LSD.
Collapse
Affiliation(s)
- Petra C Fay
- The Pirbright Institute, Pirbright, United Kingdom
| | - Najith Wijesiriwardana
- The Pirbright Institute, Pirbright, United Kingdom.,School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| | | | | | - Isabel Lewis
- The Pirbright Institute, Pirbright, United Kingdom
| | - Ismar R Haga
- The Pirbright Institute, Pirbright, United Kingdom
| | - Katy Moffat
- The Pirbright Institute, Pirbright, United Kingdom
| | | | - Jayne Hope
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Simon P Graham
- The Pirbright Institute, Pirbright, United Kingdom.,School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| | | |
Collapse
|
28
|
Characterization of a Nigerian Lumpy Skin Disease Virus Isolate after Experimental Infection of Cattle. Pathogens 2021; 11:pathogens11010016. [PMID: 35055963 PMCID: PMC8780012 DOI: 10.3390/pathogens11010016] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/15/2022] Open
Abstract
Lumpy skin disease virus (LSDV), together with sheeppox virus and goatpox virus, belong to the genus Capripoxvirus within the family Poxviridae. Collectively, they are considered the most serious poxvirus diseases of agricultural livestock. Due to their severe clinical course and consequent loss of production, as well as high mortality of naïve small and large ruminant populations, they are known to have a significant impact on the economy and global trade restrictions of affected countries. Therefore, all capripox diseases are classified as notifiable under the guidelines of the World Organization of Animal Health (OIE). Since the 1970s, several outbreaks of LSD have been recorded in Nigeria. Until now, only a little information on the virus strains leading to the reported outbreaks have been published, dealing mainly with the phylogenetic relationship of those strains and the description of field outbreaks. During the present study, we experimentally infected cattle with a low-passage Nigerian LSDV strain isolated from a skin sample of LSD positive cattle in Nigeria in 2018. Clinical, molecular and serological data indicate that this LSDV isolate is highly pathogenic in cattle since it induced a severe clinical course and approximately 33% mortality in naïve Holstein Friesian cattle after experimental infection.
Collapse
|
29
|
Azeem S, Sharma B, Shabir S, Akbar H, Venter E. Lumpy skin disease is expanding its geographic range: A challenge for Asian livestock management and food security. Vet J 2021; 279:105785. [PMID: 34915159 DOI: 10.1016/j.tvjl.2021.105785] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 12/01/2022]
Abstract
In recent years, lumpy skin disease virus has extended its geographical range outside of endemic sub-Saharan countries to the Middle East and Asia indicating transboundary spread. Recently, lumpy skin disease (LSD) outbreaks have been reported in Asian countries such as Bangladesh, India, China, Nepal, Bhutan, Vietnam, Myanmar, Sri Lanka, Thailand, Malaysia, Laos and for the first time and represent a cause of serious concern for their livestock and dairy industries. This report summarizes information on the recent outbreaks of LSD in southern Asia and emphasizes the threat it poses to neighbouring countries. Various strategies and actions needed to control outbreaks of this emerging disease in Asia are also suggested.
Collapse
Affiliation(s)
- Shahan Azeem
- Institute of Microbiology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan.
| | - Banshi Sharma
- Food and Agriculture Organization Country Office for Nepal, United Nations Building, Pulchowk, Lalitpur, Kathmandu, Nepal
| | - Shafqat Shabir
- Department of Parasitology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Haroon Akbar
- Department of Parasitology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Estelle Venter
- College of Public Health, Medical and Veterinary Sciences, Discipline Veterinary Science, James Cook University, Townsville, Australia; Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, South Africa
| |
Collapse
|
30
|
Agianniotaki EI, Chaintoutis SC, Haegeman A, De Clercq K, Chondrokouki E, Dovas CI. A TaqMan probe-based multiplex real-time PCR method for the specific detection of wild type lumpy skin disease virus with beta-actin as internal amplification control. Mol Cell Probes 2021; 60:101778. [PMID: 34774743 DOI: 10.1016/j.mcp.2021.101778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/22/2021] [Accepted: 11/09/2021] [Indexed: 11/28/2022]
Abstract
Lumpy skin disease (LSD) is a transboundary disease of economic importance affecting cattle and buffaloes. In South-Eastern Europe, immunization of cattle with homologous live attenuated vaccines for LSD control has prevented outbreaks since 2017, but has been associated with adverse reactions resembling disease symptoms. Thus, a diagnostic method suitable for disease surveillance in farms during vaccination campaigns with Neethling (Onderstepoort) and SIS type (Lumpyvax) live attenuated LSDV vaccines in Europe should be able to detect the wild type (WT) LSDV in animals with adverse reactions to the vaccines and samples with potentially high titers of the vaccine LSDV. To this end, a real-time PCR method targeting the EEV gene of LSDV was developed for the specific detection of WT strains, along with the use of beta-actin gene as an internal amplification control (IAC). Amplification efficiency of the WT virus target was 99.0% and 98.6%, in the presence and in the absence of high loads of vaccine LSDV, respectively. In the presence of 105.6 vaccine LSDV DNA copies, the limit of detection for WT LSDV was 12.6 DNA copies per reaction. The inter-assay CV was 0.04% for WT LSDV and 0.13% for beta-actin. The method can confirm diagnosis in suspect cases irrespective of the presence of the vaccine LSDV DNA by overcoming the masking effect of the WT LSDV. The simultaneous amplification of the beta-actin gene further assures the quality of diagnostic testing. The new method is a surveillance tool, complementing the DIVA real-time PCR during vaccination campaigns and can provide rapid insight on the targeted EEV gene in countries with novel and recombinant LSDV strains.
Collapse
Affiliation(s)
- Eirini I Agianniotaki
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece; National Reference Laboratory for Capripoxviruses, Department of Molecular Diagnostics, FMD, Virological, Rickettsial & Exotic Diseases, Directorate of Athens Veterinary Center, Ministry of Rural Development and Food, Athens, Greece
| | - Serafeim C Chaintoutis
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Andy Haegeman
- Exotic Viruses and Particular Diseases Unit, Sciensano, Ukkel, Belgium
| | - Kris De Clercq
- Exotic Viruses and Particular Diseases Unit, Sciensano, Ukkel, Belgium
| | - Eleni Chondrokouki
- National Reference Laboratory for Capripoxviruses, Department of Molecular Diagnostics, FMD, Virological, Rickettsial & Exotic Diseases, Directorate of Athens Veterinary Center, Ministry of Rural Development and Food, Athens, Greece
| | - Chrysostomos I Dovas
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
31
|
Douglass N, Omar R, Munyanduki H, Suzuki A, de Moor W, Mutowembwa P, Pretorius A, Nefefe T, van Schalkwyk A, Kara P, Heath L, Williamson AL. The Development of Dual Vaccines against Lumpy Skin Disease (LSD) and Bovine Ephemeral Fever (BEF). Vaccines (Basel) 2021; 9:vaccines9111215. [PMID: 34835146 PMCID: PMC8621795 DOI: 10.3390/vaccines9111215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 12/21/2022] Open
Abstract
Dual vaccines (n = 6) against both lumpy skin disease (LSD) and bovine ephemeral fever (BEF) were constructed, based on the BEFV glycoprotein (G) gene, with or without the BEFV matrix (M) protein gene, inserted into one of two different LSDV backbones, nLSDV∆SOD-UCT or nLSDVSODis-UCT. The inserted gene cassettes were confirmed by PCR; and BEFV protein was shown to be expressed by immunofluorescence. The candidate dual vaccines were initially tested in a rabbit model; neutralization assays using the South African BEFV vaccine (B-Phemeral) strain showed an African consensus G protein gene (Gb) to give superior neutralization compared to the Australian (Ga) gene. The two LSDV backbones expressing both Gb and M BEFV genes were tested in cattle and shown to elicit neutralizing responses to LSDV as well as BEFV after two inoculations 4 weeks apart. The vaccines were safe in cattle and all vaccinated animals were protected against virulent LSDV challenge, unlike a group of control naïve animals, which developed clinical LSD. Both neutralizing and T cell responses to LSDV were stimulated upon challenge. After two inoculations, all vaccinated animals produced BEFV neutralizing antibodies ≥ 1/20, which is considered protective for BEF.
Collapse
Affiliation(s)
- Nicola Douglass
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (R.O.); (H.M.); (A.S.); (W.d.M.); (A.-L.W.)
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
- Correspondence: ; Tel.: +27-832-310-553
| | - Ruzaiq Omar
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (R.O.); (H.M.); (A.S.); (W.d.M.); (A.-L.W.)
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Henry Munyanduki
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (R.O.); (H.M.); (A.S.); (W.d.M.); (A.-L.W.)
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Akiko Suzuki
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (R.O.); (H.M.); (A.S.); (W.d.M.); (A.-L.W.)
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Warren de Moor
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (R.O.); (H.M.); (A.S.); (W.d.M.); (A.-L.W.)
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Paidamwoyo Mutowembwa
- Onderstepoort Veterinary Institute, ARC, Pretoria 0110, South Africa; (P.M.); (A.P.); (T.N.); (A.v.S.); (P.K.); (L.H.)
| | - Alri Pretorius
- Onderstepoort Veterinary Institute, ARC, Pretoria 0110, South Africa; (P.M.); (A.P.); (T.N.); (A.v.S.); (P.K.); (L.H.)
| | - Tshifhiwa Nefefe
- Onderstepoort Veterinary Institute, ARC, Pretoria 0110, South Africa; (P.M.); (A.P.); (T.N.); (A.v.S.); (P.K.); (L.H.)
| | - Antoinette van Schalkwyk
- Onderstepoort Veterinary Institute, ARC, Pretoria 0110, South Africa; (P.M.); (A.P.); (T.N.); (A.v.S.); (P.K.); (L.H.)
| | - Pravesh Kara
- Onderstepoort Veterinary Institute, ARC, Pretoria 0110, South Africa; (P.M.); (A.P.); (T.N.); (A.v.S.); (P.K.); (L.H.)
| | - Livio Heath
- Onderstepoort Veterinary Institute, ARC, Pretoria 0110, South Africa; (P.M.); (A.P.); (T.N.); (A.v.S.); (P.K.); (L.H.)
| | - Anna-Lise Williamson
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (R.O.); (H.M.); (A.S.); (W.d.M.); (A.-L.W.)
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
32
|
Aerts L, Haegeman A, De Leeuw I, Philips W, Van Campe W, Behaeghel I, Mostin L, De Clercq K. Detection of Clinical and Subclinical Lumpy Skin Disease Using Ear Notch Testing and Skin Biopsies. Microorganisms 2021; 9:2171. [PMID: 34683492 PMCID: PMC8541182 DOI: 10.3390/microorganisms9102171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/28/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
Lumpy skin disease (LSD) diagnosis is primarily based on clinical surveillance complemented by PCR of lesion crusts or nodule biopsies. Since LSD can be subclinical, the sensitivity of clinical surveillance could be lower than expected. Furthermore, real-time PCR for the detection of LSD viral DNA in blood samples from subclinical animals is only intermittently positive. Therefore, this study aimed to investigate an acceptable, easily applicable and more sensitive testing method for the detection of clinical and subclinical LSD. An animal experiment was conducted to investigate ear notches and biopsies from unaffected skin taken from the neck and dorsal back as alternatives to blood samples. It was concluded that for early LSD confirmation, normal skin biopsies and ear notches are less fit for purpose, as LSDV DNA is only detectable in these samples several days after it is detectable in blood samples. On the other hand, blood samples are less advisable for the detection of subclinical animals, while ear notches and biopsies were positive for LSD viral DNA in all subclinically infected animals by 16 days post infection. In conclusion, ear notches could be used for surveillance to detect subclinical animals after removing the clinical animals from a herd, to regain trade by substantiating the freedom of disease or to support research on LSDV transmission from subclinical animals.
Collapse
Affiliation(s)
- Laetitia Aerts
- European Reference Laboratory (EURL) for Diseases Caused by Capripox Viruses, Scientific Directorate Infectious Diseases in Animals, Sciensano, Groeselenberg 99, B-1180 Brussels, Belgium; (L.A.); (W.P.)
| | - Andy Haegeman
- Unit of Exotic and Particular Diseases, Scientific Directorate Infectious Diseases in Animals, Sciensano, Groeselenberg 99, B-1180 Brussels, Belgium; (A.H.); (I.D.L.)
| | - Ilse De Leeuw
- Unit of Exotic and Particular Diseases, Scientific Directorate Infectious Diseases in Animals, Sciensano, Groeselenberg 99, B-1180 Brussels, Belgium; (A.H.); (I.D.L.)
| | - Wannes Philips
- European Reference Laboratory (EURL) for Diseases Caused by Capripox Viruses, Scientific Directorate Infectious Diseases in Animals, Sciensano, Groeselenberg 99, B-1180 Brussels, Belgium; (L.A.); (W.P.)
| | - Willem Van Campe
- Experimental Center Machelen, Scientific Directorate Infectious Diseases in Animals, Sciensano, Kerklaan 68, B-1830 Machelen, Belgium; (W.V.C.); (L.M.)
| | - Isabelle Behaeghel
- Scientific Directorate Infectious Diseases in Animals, Sciensano, Groeselenberg 99, B-1180 Brussels, Belgium;
| | - Laurent Mostin
- Experimental Center Machelen, Scientific Directorate Infectious Diseases in Animals, Sciensano, Kerklaan 68, B-1830 Machelen, Belgium; (W.V.C.); (L.M.)
| | - Kris De Clercq
- Unit of Exotic and Particular Diseases, Scientific Directorate Infectious Diseases in Animals, Sciensano, Groeselenberg 99, B-1180 Brussels, Belgium; (A.H.); (I.D.L.)
| |
Collapse
|
33
|
Tuppurainen E, Dietze K, Wolff J, Bergmann H, Beltran-Alcrudo D, Fahrion A, Lamien CE, Busch F, Sauter-Louis C, Conraths FJ, De Clercq K, Hoffmann B, Knauf S. Review: Vaccines and Vaccination against Lumpy Skin Disease. Vaccines (Basel) 2021; 9:1136. [PMID: 34696244 PMCID: PMC8539040 DOI: 10.3390/vaccines9101136] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022] Open
Abstract
The geographical distribution of lumpy skin disease (LSD), an economically important cattle disease caused by a capripoxvirus, has reached an unprecedented extent. Vaccination is the only way to prevent the spread of the infection in endemic and newly affected regions. Yet, in the event of an outbreak, selection of the best vaccine is a major challenge for veterinary authorities and farmers. Decision makers need sound scientific information to support their decisions and subsequent actions. The available vaccine products vary in terms of quality, efficacy, safety, side effects, and price. The pros and cons of different types of live attenuated and inactivated vaccines, vaccination strategies, and associated risks are discussed. Seroconversion, which typically follows vaccination, places specific demands on the tools and methods used to evaluate the effectiveness of the LSD vaccination campaigns in the field. We aimed to give a comprehensive update on available vaccines and vaccination against LSD, to better prepare affected and at-risk countries to control LSD and ensure the safe trade of cattle.
Collapse
Affiliation(s)
- Eeva Tuppurainen
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany; (K.D.); (A.F.); (F.B.); (S.K.)
| | - Klaas Dietze
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany; (K.D.); (A.F.); (F.B.); (S.K.)
| | - Janika Wolff
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany; (J.W.); (B.H.)
| | - Hannes Bergmann
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany; (H.B.); (C.S.-L.); (F.J.C.)
| | - Daniel Beltran-Alcrudo
- Regional Office for Europe and Central Asia, Food and Agriculture Organization, 20 Kalman Imre utca, H-1054 Budapest, Hungary;
| | - Anna Fahrion
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany; (K.D.); (A.F.); (F.B.); (S.K.)
| | - Charles Euloge Lamien
- FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency (IAEA), Friedenstrasse 1, A-2444 Seibersdorf, Austria;
| | - Frank Busch
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany; (K.D.); (A.F.); (F.B.); (S.K.)
| | - Carola Sauter-Louis
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany; (H.B.); (C.S.-L.); (F.J.C.)
| | - Franz J. Conraths
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany; (H.B.); (C.S.-L.); (F.J.C.)
| | - Kris De Clercq
- Unit of Exotic and Particular Diseases, Scientific Directorate Infectious Diseases in Animals, Sciensano, Groeselenberg 99, B-1180 Brussels, Belgium;
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany; (J.W.); (B.H.)
| | - Sascha Knauf
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany; (K.D.); (A.F.); (F.B.); (S.K.)
| |
Collapse
|
34
|
van Diepen M, Chapman R, Douglass N, Whittle L, Chineka N, Galant S, Cotchobos C, Suzuki A, Williamson AL. Advancements in the Growth and Construction of Recombinant Lumpy Skin Disease Virus (LSDV) for Use as a Vaccine Vector. Vaccines (Basel) 2021; 9:vaccines9101131. [PMID: 34696239 PMCID: PMC8539341 DOI: 10.3390/vaccines9101131] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 01/13/2023] Open
Abstract
Attenuated vaccine strains of lumpy skin disease virus (LSDV) have become increasingly popular as recombinant vaccine vectors, to target both LSDV, as well as other pathogens, including human infectious agents. Historically, these vaccine strains and recombinants were generated in primary (lamb) testis (LT) cells, Madin–Darby bovine kidney (MDBK) cells or in eggs. Growth in eggs is a laborious process, the use of primary cells has the potential to introduce pathogens and MDBK cells are known to harbor bovine viral diarrhea virus (BVDV). In this study, data is presented to show the growth of an attenuated LSDV strain in baby hamster kidney (BHK-21) cells. Subsequently, a recombinant LSDV vaccine was generated in BHK-21 cells. Partial growth was also observed in rabbit kidney cells (RK13), but only when the vaccinia virus host range gene K1L was expressed. Despite the limited growth, the expression of K1L was enough to serve as a positive selection marker for the generation of recombinant LSDV vaccines in RK13 cells. The simplification of generating (recombinant) LSDV vaccines shown here should increase the interest for this platform for future livestock vaccine development and, with BHK-21 cells approved for current good manufacturing practice, this can be expanded to human vaccines as well.
Collapse
Affiliation(s)
- Michiel van Diepen
- Department of Pathology, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (M.v.D.); (R.C.); (L.W.); (N.C.); (S.G.); (C.C.); (A.S.)
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Rosamund Chapman
- Department of Pathology, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (M.v.D.); (R.C.); (L.W.); (N.C.); (S.G.); (C.C.); (A.S.)
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Nicola Douglass
- Department of Pathology, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (M.v.D.); (R.C.); (L.W.); (N.C.); (S.G.); (C.C.); (A.S.)
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
- Correspondence: (N.D.); (A.-L.W.); Tel.: +27-832310553 (N.D.)
| | - Leah Whittle
- Department of Pathology, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (M.v.D.); (R.C.); (L.W.); (N.C.); (S.G.); (C.C.); (A.S.)
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Nicole Chineka
- Department of Pathology, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (M.v.D.); (R.C.); (L.W.); (N.C.); (S.G.); (C.C.); (A.S.)
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Shireen Galant
- Department of Pathology, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (M.v.D.); (R.C.); (L.W.); (N.C.); (S.G.); (C.C.); (A.S.)
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Christian Cotchobos
- Department of Pathology, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (M.v.D.); (R.C.); (L.W.); (N.C.); (S.G.); (C.C.); (A.S.)
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Akiko Suzuki
- Department of Pathology, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (M.v.D.); (R.C.); (L.W.); (N.C.); (S.G.); (C.C.); (A.S.)
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Anna-Lise Williamson
- Department of Pathology, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (M.v.D.); (R.C.); (L.W.); (N.C.); (S.G.); (C.C.); (A.S.)
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
- Correspondence: (N.D.); (A.-L.W.); Tel.: +27-832310553 (N.D.)
| |
Collapse
|
35
|
The Importance of Quality Control of LSDV Live Attenuated Vaccines for Its Safe Application in the Field. Vaccines (Basel) 2021; 9:vaccines9091019. [PMID: 34579256 PMCID: PMC8472990 DOI: 10.3390/vaccines9091019] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 01/25/2023] Open
Abstract
Vaccination is an effective approach to prevent, control and eradicate diseases, including lumpy skin disease (LSD). One of the measures to address farmer hesitation to vaccinate is guaranteeing the quality of vaccine batches. The purpose of this study was to demonstrate the importance of a quality procedure via the evaluation of the LSD vaccine, Lumpivax (Kevevapi). The initial PCR screening revealed the presence of wild type LSD virus (LSDV) and goatpox virus (GTPV), in addition to vaccine LSDV. New phylogenetic PCRs were developed to characterize in detail the genomic content and a vaccination/challenge trial was conducted to evaluate the impact on efficacy and diagnostics. The characterization confirmed the presence of LSDV wild-, vaccine- and GTPV-like sequences in the vaccine vial and also in samples taken from the vaccinated animals. The analysis was also suggestive for the presence of GTPV-LSDV (vaccine/wild) recombinants. In addition, the LSDV status of some of the animal samples was greatly influenced by the differentiating real-PCR used and could result in misinterpretation. Although the vaccine was clinically protective, the viral genomic content of the vaccine (being it multiple Capripox viruses and/or recombinants) and the impact on the diagnostics casts serious doubts of its use in the field.
Collapse
|
36
|
Clemmons EA, Alfson KJ, Dutton JW. Transboundary Animal Diseases, an Overview of 17 Diseases with Potential for Global Spread and Serious Consequences. Animals (Basel) 2021; 11:2039. [PMID: 34359167 PMCID: PMC8300273 DOI: 10.3390/ani11072039] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022] Open
Abstract
Animals provide food and other critical resources to most of the global population. As such, diseases of animals can cause dire consequences, especially disease with high rates of morbidity or mortality. Transboundary animal diseases (TADs) are highly contagious or transmissible, epidemic diseases, with the potential to spread rapidly across the globe and the potential to cause substantial socioeconomic and public health consequences. Transboundary animal diseases can threaten the global food supply, reduce the availability of non-food animal products, or cause the loss of human productivity or life. Further, TADs result in socioeconomic consequences from costs of control or preventative measures, and from trade restrictions. A greater understanding of the transmission, spread, and pathogenesis of these diseases is required. Further work is also needed to improve the efficacy and cost of both diagnostics and vaccines. This review aims to give a broad overview of 17 TADs, providing researchers and veterinarians with a current, succinct resource of salient details regarding these significant diseases. For each disease, we provide a synopsis of the disease and its status, species and geographic areas affected, a summary of in vitro or in vivo research models, and when available, information regarding prevention or treatment.
Collapse
Affiliation(s)
- Elizabeth A. Clemmons
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA;
| | - Kendra J. Alfson
- Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA
| | - John W. Dutton
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA;
| |
Collapse
|