1
|
Abulaiti A, Naseer Z, Ahmed Z, Tian S, Liu W, Shoaib M, Khan A, Abdelrahman M, Kiani FA, Hussain A, Shaukat A, Riaz U, Wang S, Hua J. Evaluation of antibody titer and associated risk factors of goat pox vaccine against lumpy skin disease in crossbred buffaloes. Vet Res Commun 2025; 49:104. [PMID: 39951183 PMCID: PMC11828800 DOI: 10.1007/s11259-025-10673-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 02/05/2025] [Indexed: 02/17/2025]
Abstract
Lumpy skin disease (LSD) is an infectious disease affecting large ruminants, caused by the lumpy skin disease virus (LSDV). It is characterized by symptoms such as hyperthermia, emaciation, lymphadenopathy, and skin nodules. Pregnant animals affected by LSD often experience abortions and may develop infertility syndrome, while affected males can become sterile. A live attenuated goat pox virus vaccine (GTPV) was administered to various groups of crossbred buffaloes. After vaccination, blood samples were collected from each group to analyze post-vaccination antibody titers. Additionally, vaccinated calves and buffaloes were monitored for growth, body temperature, blood profile, milk production and quality, and reproductive parameters. The study revealed an increase in antibody titer in the weeks following vaccination, with sustained levels for over 150 days before declining by 300 days. During the 7-day observational phase, the vaccinated calves and replacement heifers exhibited significant growth. There were no notable changes in body temperature or milk production in lactating buffaloes within 7 days post-vaccination. However, the buffalo category affected all blood profile indicators significantly (P < 0.05) except for MCHC (P > 0.05) after LSD vaccination. An interaction (P < 0.05) was observed between buffalo categories and days post-exposure for RBCs, HGB, HCT, and MCV values in vaccinated buffaloes. Reproductive parameters, including ovarian resumption, uterine involution rates, and synchronization rate, remained similar in both vaccinated and unvaccinated buffaloes. Overall, the use of the attenuated GTPV vaccine induces a considerable antibody titer without influencing general health or productive parameters, making it a safe and economical method for preventing LSD in buffaloes.
Collapse
Affiliation(s)
- Adili Abulaiti
- College of Animal Science, Anhui Science and Technology University, Fengyang, Anhui, China.
| | - Zahid Naseer
- Faculty of Veterinary and Animal Sciences, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Zulfiqar Ahmed
- Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - Shijun Tian
- College of Animal Science, Anhui Science and Technology University, Fengyang, Anhui, China
| | - Wenju Liu
- College of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, People's Republic of China
| | - Muhammad Shoaib
- Faculty of Veterinary and Animal Sciences, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Asghar Khan
- Faculty of Veterinary and Animal Sciences, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Mohamed Abdelrahman
- Animal Production Department, Faculty of Agriculture, Assuit University, Assuit, Egypt
| | - Faisal Ayub Kiani
- Faculty of Veterinary and Animal Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Abid Hussain
- Faculty of Veterinary and Animal Sciences, Mirpur University of Science and Technology, Bhimber-Campus, Bhimber, Azad Jammu and Kashmir, Pakistan
| | - Aftab Shaukat
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Umair Riaz
- Department of Theriogenology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Shujuan Wang
- College of Animal Science, Anhui Science and Technology University, Fengyang, Anhui, China
| | - Jinling Hua
- College of Animal Science, Anhui Science and Technology University, Fengyang, Anhui, China.
| |
Collapse
|
2
|
Zeedan GSG, Abdalhamed AM, Allam AM, Abdel-Shafy S. Molecular detection of lumpy skin disease virus in naturally infected cattle and buffaloes: unveiling the role of tick vectors in disease spread. Vet Res Commun 2024; 48:3921-3939. [PMID: 39377904 PMCID: PMC11538203 DOI: 10.1007/s11259-024-10541-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 09/12/2024] [Indexed: 10/09/2024]
Abstract
Lumpy skin disease (LSD) is a viral disease that affects cattle and buffaloes in Egypt, causing considerable economic losses in the animal sector. This study aimed to investigate the recent outbreak of LSDV in cattle and buffaloes and evaluate the potential role of the hard tick Rhipicephalus annulatus in their transmission through isolation and molecular characterization by multiplex PCR (mPCR) and real-time quantitative PCR (rt-qPCR) assays. A total of 50 skin biopsies (cattle n = 30, buffaloes n = 20), 110 nasal swabs (cattle n = 76, buffaloes n = 44), and 129 blood samples (cattle n = 84, buffaloes n = 45) were collected. In addition, 145 hard ticks of different stages were collected from cattle and buffaloes of different breeds and ages in different governorates in Egypt from November 2021 to June 2022. Multiplex PCR and real-time quantitative PCR (rt-qPCR) assays based on SYBR Green and targets (P32, VP32, G protein, and viral fusion protein) were used. We identified positive results in 17 out of 30 cattle skin biopsies (56.6%), 1 out of 7 buffalo skin scabs (14.3%), and 5 out of 45 buffalo blood samples (11.11%) using mPCR and RT-qPCR methods. We successfully isolated LSDV from hard ticks and cattle infested with ticks and exhibited characteristic signs of LSD on the chorioallantois membrane (CAM) of specific pathogen-free embryonated chicken eggs (SPF-ECE). The isolates were confirmed by multiplex PCR and RT-qPCR. The cyclic threshold (Ct) with correlation-slandered curve values of rt-qPCR ranging from 10.2 to 36.5 showed the amount of LSDV-DNA in different samples. The study's findings demonstrated the widespread circulation of LSDV in both cattle and buffaloes in Egypt and provided strong evidence that hard ticks R. annulatus play a role in the transmission of LSDV in susceptible animals.
Collapse
Affiliation(s)
- Gamil S G Zeedan
- Department of Parasitology and Animal Diseases, National Research Centre, 33 Bohouth Street, Dokki, Giza, 12622, Egypt.
| | - Abeer M Abdalhamed
- Department of Parasitology and Animal Diseases, National Research Centre, 33 Bohouth Street, Dokki, Giza, 12622, Egypt
| | - Ahmad M Allam
- Department of Parasitology and Animal Diseases, National Research Centre, 33 Bohouth Street, Dokki, Giza, 12622, Egypt
| | - Sobhy Abdel-Shafy
- Department of Parasitology and Animal Diseases, National Research Centre, 33 Bohouth Street, Dokki, Giza, 12622, Egypt
| |
Collapse
|
3
|
Haider A, Abbas Z, Taqveem A, Ali A, Khurshid M, Naggar RFE, Rohaim MA, Munir M. Lumpy Skin Disease: Insights into Molecular Pathogenesis and Control Strategies. Vet Sci 2024; 11:561. [PMID: 39591335 PMCID: PMC11598853 DOI: 10.3390/vetsci11110561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Lumpy skin disease (LSD) is a viral infection that affects buffaloes and cattle across various regions, including both tropical and temperate climates. Intriguingly, the virus-carrying skin sores remain the primary source of infection for extended periods, exacerbated by the abundance of vectors in disease-endemic countries. Recent scientific advances have revealed the molecular aspects of LSD and offered improved vaccines and valuable antiviral targets. This review summarizes the molecular features of LSD and its effect on various livestock species. We then provide an extensive discussion on the transmission dynamics of LSD and the roles of vectors in its continued spread among livestock populations. Additionally, this review critically analyses the rationales behind, as well as the affordability and effectiveness, of current control strategies worldwide.
Collapse
Affiliation(s)
- Ali Haider
- Department of Allied Health Sciences, The University of Lahore, Gujrat Campus, Gujrat 50700, Pakistan; (A.H.); (Z.A.)
| | - Zaheer Abbas
- Department of Allied Health Sciences, The University of Lahore, Gujrat Campus, Gujrat 50700, Pakistan; (A.H.); (Z.A.)
| | - Ahsen Taqveem
- Institute of Microbiology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.T.); (M.K.)
| | - Abid Ali
- Department of Allied Health Sciences, The University of Chenab, Gujrat 50700, Pakistan;
| | - Mohsin Khurshid
- Institute of Microbiology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.T.); (M.K.)
| | - Rania F. El Naggar
- Department of Virology, Faculty of Veterinary Medicine, University of Sadat City, Sadat 32897, Egypt;
| | - Mohammed A. Rohaim
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK
| |
Collapse
|
4
|
Shumilova I, Shalina K, Abed Alhussen M, Prutnikov P, Krotova A, Byadovskaya O, Prokhvatilova L, Chvala I, Sprygin A. An Attenuated Vaccine Virus of the Neethling Lineage Protects Cattle against the Virulent Recombinant Vaccine-like Isolate of the Lumpy Skin Disease Virus Belonging to the Currently Established Cluster 2.5. Vaccines (Basel) 2024; 12:598. [PMID: 38932327 PMCID: PMC11209201 DOI: 10.3390/vaccines12060598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Lumpy skin disease (LSD) is an emerging transboundary and highly infectious viral disease mainly affecting cattle. The fact that it was initially confined to Africa and then spread beyond its geographical range to other regions, including the Middle East, Turkey, Europe, the Balkans, Russia and Asia, is an indication of the underestimation and neglect of this disease. Vaccination is considered the most effective way to control the spread of LSDV, when combined with other control measures. LSD is now on the rise in Southeast Asia, where the circulating virus belongs to recombinant lineage 2.5. In this study, we evaluated the efficacy of an attenuated LSDV strain belonging to the Neethling cluster 1.1 by challenge with a virulent recombinant vaccine-like LSDV isolate "Mongolia/2021" belonging to cluster 2.5. Some of the vaccinated animals showed an increase in body temperature of 1-1.5 °C above the physiological norm, without clinical signs, local reactions, vaccine-induced viremia or generalization, demonstrating the efficacy and safety of the vaccine strain against a recombinant strain. Furthermore, all the vaccinated animals showed strong immune responses, indicating a high level of immunogenicity. However, the control group challenged with "Mongolia/2021" LSD showed moderate to severe clinical signs seen in an outbreak, with high levels of virus shedding in blood samples and nasal swabs. Overall, the results of the present study demonstrate that the attenuated LSDV Neethling strain vaccine has a promising protective phenotype against the circulating strains, suggesting its potential as an effective tool for the containment and control of LSD in affected countries from Southeast Asia.
Collapse
|
5
|
Haga IR, Shih BB, Tore G, Polo N, Ribeca P, Gombo-Ochir D, Shura G, Tserenchimed T, Enkhbold B, Purevtseren D, Ulziibat G, Damdinjav B, Yimer L, Bari FD, Gizaw D, Adedeji AJ, Atai RB, Adole JA, Dogonyaro BB, Kumarawadu PL, Batten C, Corla A, Freimanis GL, Tennakoon C, Law A, Lycett S, Downing T, Beard PM. Sequencing and Analysis of Lumpy Skin Disease Virus Whole Genomes Reveals a New Viral Subgroup in West and Central Africa. Viruses 2024; 16:557. [PMID: 38675899 PMCID: PMC11053774 DOI: 10.3390/v16040557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 04/28/2024] Open
Abstract
Lumpy skin disease virus (LSDV) is a member of the capripoxvirus (CPPV) genus of the Poxviridae family. LSDV is a rapidly emerging, high-consequence pathogen of cattle, recently spreading from Africa and the Middle East into Europe and Asia. We have sequenced the whole genome of historical LSDV isolates from the Pirbright Institute virus archive, and field isolates from recent disease outbreaks in Sri Lanka, Mongolia, Nigeria and Ethiopia. These genome sequences were compared to published genomes and classified into different subgroups. Two subgroups contained vaccine or vaccine-like samples ("Neethling-like" clade 1.1 and "Kenya-like" subgroup, clade 1.2.2). One subgroup was associated with outbreaks of LSD in the Middle East/Europe (clade 1.2.1) and a previously unreported subgroup originated from cases of LSD in west and central Africa (clade 1.2.3). Isolates were also identified that contained a mix of genes from both wildtype and vaccine samples (vaccine-like recombinants, grouped in clade 2). Whole genome sequencing and analysis of LSDV strains isolated from different regions of Africa, Europe and Asia have provided new knowledge of the drivers of LSDV emergence, and will inform future disease control strategies.
Collapse
Grants
- BB/R002606/1, BB/R008833/1, BB/X011038/1, BB/X011046/1, BB/CCG2250, BB/CCG1780/1, BBS/E/RL/230002C, BBS/E/RL/230002D, , BBS/E/I/00007039, /1, BB/IDG2250/1, Biotechnology and Biological Sciences Research Council
Collapse
Affiliation(s)
- Ismar R. Haga
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (I.R.H.); (N.P.); (P.R.); (C.B.); (G.L.F.); (C.T.); (T.D.)
| | - Barbara B. Shih
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK; (B.B.S.); (A.L.); (S.L.)
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YW, UK
| | - Gessica Tore
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (I.R.H.); (N.P.); (P.R.); (C.B.); (G.L.F.); (C.T.); (T.D.)
| | - Noemi Polo
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (I.R.H.); (N.P.); (P.R.); (C.B.); (G.L.F.); (C.T.); (T.D.)
| | - Paolo Ribeca
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (I.R.H.); (N.P.); (P.R.); (C.B.); (G.L.F.); (C.T.); (T.D.)
- UK Health Security Agency, 61 Colindale Ave, London NW9 5EQ, UK
- NIHR Health Protection Research Unit in Genomics and Enabling Data, Mathematics Institute, Zeeman Builing, University of Warwick, Coventry CV4 7AL, UK
- NIHR Health Protection Research Unit in Gastrointestinal Infections, Ronald Ross Building, University of Liverpool, Liverpool L69 7BE, UK
- Biomathematics and Statistics Scotland, James Maxwell Clerk Building, Peter Guthrie Tait Road, Kings Buildings, Edinburgh EH9 3FD, UK
| | - Delgerzul Gombo-Ochir
- Laboratory of Transboundary Animal Disease Diagnosis and Surveillance, State Central Veterinary Laboratory, Zaisan, Ulaanbaatar 17024, Mongolia; (D.G.-O.); (G.S.); (T.T.); (B.E.); (D.P.); (G.U.)
| | - Gansukh Shura
- Laboratory of Transboundary Animal Disease Diagnosis and Surveillance, State Central Veterinary Laboratory, Zaisan, Ulaanbaatar 17024, Mongolia; (D.G.-O.); (G.S.); (T.T.); (B.E.); (D.P.); (G.U.)
| | - Tsagaan Tserenchimed
- Laboratory of Transboundary Animal Disease Diagnosis and Surveillance, State Central Veterinary Laboratory, Zaisan, Ulaanbaatar 17024, Mongolia; (D.G.-O.); (G.S.); (T.T.); (B.E.); (D.P.); (G.U.)
| | - Bazarragchaa Enkhbold
- Laboratory of Transboundary Animal Disease Diagnosis and Surveillance, State Central Veterinary Laboratory, Zaisan, Ulaanbaatar 17024, Mongolia; (D.G.-O.); (G.S.); (T.T.); (B.E.); (D.P.); (G.U.)
| | - Dulam Purevtseren
- Laboratory of Transboundary Animal Disease Diagnosis and Surveillance, State Central Veterinary Laboratory, Zaisan, Ulaanbaatar 17024, Mongolia; (D.G.-O.); (G.S.); (T.T.); (B.E.); (D.P.); (G.U.)
| | - Gerelmaa Ulziibat
- Laboratory of Transboundary Animal Disease Diagnosis and Surveillance, State Central Veterinary Laboratory, Zaisan, Ulaanbaatar 17024, Mongolia; (D.G.-O.); (G.S.); (T.T.); (B.E.); (D.P.); (G.U.)
| | - Batchuluun Damdinjav
- General Authority for Veterinary Service, Ministry of Food, Agriculture and Light Industry, Ulaanbaatar 13381, Mongolia;
| | - Lama Yimer
- School of Veterinary Medicine, Wollega University, Nekemte P.O. Box 395, Ethiopia;
- College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu P.O. Box 3434, Ethiopia;
| | - Fufa D. Bari
- College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu P.O. Box 3434, Ethiopia;
| | - Daniel Gizaw
- Animal Health Institute (AHI), Sebata P.O. Box 04, Ethiopia;
| | - Adeyinka Jeremy Adedeji
- National Veterinary Research Institute, Vom 930103, Nigeria; (A.J.A.); (R.B.A.); (J.A.A.); (B.B.D.)
| | - Rebecca Bitiyong Atai
- National Veterinary Research Institute, Vom 930103, Nigeria; (A.J.A.); (R.B.A.); (J.A.A.); (B.B.D.)
| | - Jolly Amoche Adole
- National Veterinary Research Institute, Vom 930103, Nigeria; (A.J.A.); (R.B.A.); (J.A.A.); (B.B.D.)
| | | | | | - Carrie Batten
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (I.R.H.); (N.P.); (P.R.); (C.B.); (G.L.F.); (C.T.); (T.D.)
| | - Amanda Corla
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (I.R.H.); (N.P.); (P.R.); (C.B.); (G.L.F.); (C.T.); (T.D.)
| | - Graham L. Freimanis
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (I.R.H.); (N.P.); (P.R.); (C.B.); (G.L.F.); (C.T.); (T.D.)
| | - Chandana Tennakoon
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (I.R.H.); (N.P.); (P.R.); (C.B.); (G.L.F.); (C.T.); (T.D.)
| | - Andy Law
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK; (B.B.S.); (A.L.); (S.L.)
| | - Samantha Lycett
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK; (B.B.S.); (A.L.); (S.L.)
| | - Tim Downing
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (I.R.H.); (N.P.); (P.R.); (C.B.); (G.L.F.); (C.T.); (T.D.)
| | - Philippa M. Beard
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (I.R.H.); (N.P.); (P.R.); (C.B.); (G.L.F.); (C.T.); (T.D.)
- School of Life Sciences, Keele University, Staffordshire ST5 5BG, UK
| |
Collapse
|
6
|
Xie S, Cui L, Liao Z, Zhu J, Ren S, Niu K, Li H, Jiang F, Wu J, Wang J, Wu J, Song B, Wu W, Peng C. Genomic analysis of lumpy skin disease virus asian variants and evaluation of its cellular tropism. NPJ Vaccines 2024; 9:65. [PMID: 38514651 PMCID: PMC10957905 DOI: 10.1038/s41541-024-00846-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/21/2024] [Indexed: 03/23/2024] Open
Abstract
Lumpy skin disease virus (LSDV) is a poxvirus that mainly affects cattle and can lead to symptoms such as severe reduction in milk production as well as infertility and mortality, which has resulted in dramatic economic loss in affected countries in Africa, Europe, and Asia. In this study, we successfully isolated two strains of LSDV from different geographical regions in China. Comparative genomic analyses were performed by incorporating additional LSDV whole genome sequences reported in other areas of Asia. Our analyses revealed that LSDV exhibited an 'open' pan-genome. Phylogenetic analysis unveiled distinct branches of LSDV evolution, signifying the prevalence of multiple lineages of LSDV across various regions in Asia. In addition, a reporter LSDV expressing eGFP directed by a synthetic poxvirus promoter was generated and used to evaluate the cell tropism of LSDV in various mammalian and avian cell lines. Our results demonstrated that LSDV replicated efficiently in several mammalian cell lines, including human A549 cells. In conclusion, our results underscore the necessity for strengthening LSD outbreak control measures and continuous epidemiological surveillance.
Collapse
Affiliation(s)
- Shijie Xie
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine (CVM), China Agricultural University, Beijing, 100193, China
| | - Lianxin Cui
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine (CVM), China Agricultural University, Beijing, 100193, China
| | - Zhiyi Liao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine (CVM), China Agricultural University, Beijing, 100193, China
| | - Junda Zhu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine (CVM), China Agricultural University, Beijing, 100193, China
| | - Shuning Ren
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine (CVM), China Agricultural University, Beijing, 100193, China
| | - Kang Niu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine (CVM), China Agricultural University, Beijing, 100193, China
| | - Hua Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine (CVM), China Agricultural University, Beijing, 100193, China
| | - Fei Jiang
- China Animal Disease Control Center, Beijing, 102618, China
| | - Jiajun Wu
- China Animal Disease Control Center, Beijing, 102618, China
| | - Jie Wang
- Xinjiang Key Laboratory of Animal Infectious Diseases/Institute of Veterinary Medicine, Xinjiang Academy of Animal Sciences, Urumqi, 830013, China
| | - Jian Wu
- Xinjiang Key Laboratory of Animal Infectious Diseases/Institute of Veterinary Medicine, Xinjiang Academy of Animal Sciences, Urumqi, 830013, China
| | - Baifen Song
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine (CVM), China Agricultural University, Beijing, 100193, China
| | - Wenxue Wu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine (CVM), China Agricultural University, Beijing, 100193, China.
| | - Chen Peng
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine (CVM), China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
7
|
Enul H, Uzar S, Satir E, Sarac F, Adiay C, Parmaksiz A, Colak G, Asar E. Humoral immune response profile of a cattle herd vaccinated with 5- and 10-times Bakirköy strain sheep pox vaccine under field conditions. Vaccine 2024; 42:369-374. [PMID: 38057206 DOI: 10.1016/j.vaccine.2023.11.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023]
Abstract
Vaccination is the most effective control measure for Lumpy Skin Disease (LSD). The Bakırköy strain-derived sheep pox vaccine (SPPV) has been used against LSD in Türkiye since 2013. In this study, a cattle herd was vaccinated with SPPV and 35 cattle, of which 9 and 26 received 10 and 5 sheep doses, respectively, were followed for 200 days for humoral immune responses. Additionally, maternal antibodies in colostrum-fed calves were investigated. The humoral immune responses of naive and previously vaccinated cattle were compared to determine the effects of annual re-vaccination. Furthermore, the compatibility of the VNT and ELISA tests was analyzed. According to the results, on day 30 post-vaccination, 19 and 13 out of 35 cattle were positive for VNT and ELISA, respectively. The number of seropositive cattle was higher in the group that had been vaccinated in previous years than in naive cattle. No significant differences were observed in the number of positive cattle between the groups vaccinated with the 5- and 10- doses. In colostrum-fed calves grouped according to age, the seropositivity rate was 87 % (41/47) in the one-week-old group, while this rate was only 18 % (3/16) in the 3-month-old group. It was determined that vaccination at different stages in the last four months of pregnancy did not cause any difference in the number of seropositive calves in one-week-old calves fed with colostrum. The concordance between VNT and ELISA tests was lower in 5-dose vaccinated group than 10-dose vaccinated and colostrum-fed calves groups. This study provides insights into the effect of the vaccination strategy followed by Türkiye during its combat of LSD and revealed that annual repeated vaccination using heterologous vaccine has significant positive effects on humoral immun response at the herd level.
Collapse
Affiliation(s)
- Hakan Enul
- Pendik Veterinary Control Institute, 34890 İstanbul, Turkiye.
| | - Serdar Uzar
- Pendik Veterinary Control Institute, 34890 İstanbul, Turkiye
| | - Esra Satir
- Pendik Veterinary Control Institute, 34890 İstanbul, Turkiye
| | - Fahriye Sarac
- Pendik Veterinary Control Institute, 34890 İstanbul, Turkiye
| | - Cumhur Adiay
- Pendik Veterinary Control Institute, 34890 İstanbul, Turkiye
| | - Ayse Parmaksiz
- Pendik Veterinary Control Institute, 34890 İstanbul, Turkiye
| | - Gorkem Colak
- Pendik Veterinary Control Institute, 34890 İstanbul, Turkiye
| | - Erdogan Asar
- University of Health Sciences, Gulhane Faculty of Medicine, Division of Basic Medical Sciences, Department of Medical Informatics, Ankara, Turkiye
| |
Collapse
|
8
|
Ntombela N, Matsiela M, Zuma S, Hiralal S, Naicker L, Mokoena N, Khoza T. Production of recombinant lumpy skin disease virus A27L and L1R proteins for application in diagnostics and vaccine development. Vaccine X 2023; 15:100384. [PMID: 37736535 PMCID: PMC10509699 DOI: 10.1016/j.jvacx.2023.100384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023] Open
Abstract
Vaccination using live attenuated vaccines (LAVs) is considered the most effective method for control of lumpy skin disease (LSD). However, this method is limited by safety concerns, with reports of adverse reactions following vaccination. This study evaluates A27L and L1R which are essential proteins for virus attachment and membrane fusion as recombinant sub-unit vaccines against LSD. These proteins were recombinantly expressed in Escherichia coli and purified using affinity chromatography. Purified proteins were formulated individually (A27L or L1R) and in combination (A27L and L1R) with 10% (w/w) Montanide™ Gel 01 PR adjuvant at a final antigen dose of 20 µg per protein. The safety and immunogenicity of these formulations were evaluated in rabbits in a 42-day clinical trial. Animals were vaccinated on day 0 and boost injection administered 21 days later. No reduced morbidity, increased temperature and any other clinical signs were recorded in vaccinated animals for all three vaccine formulations. The highest neutralizing antibody response was detected on day 42 post-primary vaccination for all formulations when using serum neutralising assay. The neutralisation data correlates with antibody titres quantified using a whole cell ELISA. Evaluating the combination of A27L and L1R as potential diagnostic reagents showed highest sensitivity for detection of antibodies against LSD when compared to individual proteins. This study reports the immunogenicity of recombinant A27L and L1R combination for successful application in LSD vaccine development. Furthermore, these proteins demonstrated the potential use in LSD diagnostics.
Collapse
Affiliation(s)
- Nomfundo Ntombela
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Pietermaritzburg Campus), Scottsville 3209, KwaZulu-Natal, South Africa
| | - Matome Matsiela
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Pietermaritzburg Campus), Scottsville 3209, KwaZulu-Natal, South Africa
- Onderstepoort Biological Products (SOC. Ltd), 100, Old, Soutpan Road, Onderstepoort, 0110, Pretoria, South Africa
| | - Sbahle Zuma
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Pietermaritzburg Campus), Scottsville 3209, KwaZulu-Natal, South Africa
| | - Suhavna Hiralal
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Pietermaritzburg Campus), Scottsville 3209, KwaZulu-Natal, South Africa
| | - Leeann Naicker
- Onderstepoort Biological Products (SOC. Ltd), 100, Old, Soutpan Road, Onderstepoort, 0110, Pretoria, South Africa
| | - Nobalanda Mokoena
- Onderstepoort Biological Products (SOC. Ltd), 100, Old, Soutpan Road, Onderstepoort, 0110, Pretoria, South Africa
| | - Thandeka Khoza
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Pietermaritzburg Campus), Scottsville 3209, KwaZulu-Natal, South Africa
| |
Collapse
|
9
|
Kumar N, Barua S, Kumar R, Khandelwal N, Kumar A, Verma A, Singh L, Godara B, Chander Y, Kumar G, Riyesh T, Sharma DK, Pathak A, Kumar S, Dedar RK, Mehta V, Gaur M, Bhardwaj B, Vyas V, Chaudhary S, Yadav V, Bhati A, Kaul R, Bashir A, Andrabi A, Yousuf RW, Koul A, Kachhawaha S, Gurav A, Gautam S, Tiwari HA, Munjal VK, Gupta MK, Kumar R, Gulati BR, Misri J, Kumar A, Mohanty AK, Nandi S, Singh KP, Pal Y, Dutt T, Tripathi BN. Evaluation of the safety, immunogenicity and efficacy of a new live-attenuated lumpy skin disease vaccine in India. Virulence 2023; 14:2190647. [PMID: 36919498 PMCID: PMC10038050 DOI: 10.1080/21505594.2023.2190647] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Lumpy skin disease (LSD) was reported for the first time in India in 2019 and since then, it has become endemic. Since a homologous (LSD-virus based) vaccine was not available in the country, goatpox virus (GPV)-based heterologous vaccine was authorized for mass immunization to induce protection against LSD in cattle. This study describes the evaluation of safety, immunogenicity and efficacy of a new live-attenuated LSD vaccine developed by using an Indian field strain, isolated in 2019 from cattle. The virus was attenuated by continuous passage (P = 50) in Vero cells. The vaccine (50th LSDV passage in Vero cells, named as Lumpi-ProVacInd) did not induce any local or systemic reaction upon its experimental inoculation in calves (n = 10). At day 30 post-vaccination (pv), the vaccinated animals were shown to develop antibody- and cell-mediated immune responses and exhibited complete protection upon virulent LSDV challenge. A minimum Neethling response (0.018% animals; 5 out of 26,940 animals) of the vaccine was observed in the field trials conducted in 26,940 animals. There was no significant reduction in the milk yield in lactating animals (n = 10108), besides there was no abortion or any other reproductive disorder in the pregnant animals (n = 2889). Sero-conversion was observed in 85.18% animals in the field by day 30 pv.
Collapse
Affiliation(s)
- Naveen Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Sanjay Barua
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Ram Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Nitin Khandelwal
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Amit Kumar
- Indian Veterinary Research Institute, Mukteswar, India
| | - Assim Verma
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Lokender Singh
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Bhagraj Godara
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Yogesh Chander
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Garvit Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Thachamvally Riyesh
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Deepak Kumar Sharma
- Department of Veterinary Microbiology, College of Veterinary and Animal Science, Udaipur, India
| | - Anubha Pathak
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Sanjay Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Ramesh Kumar Dedar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Vishal Mehta
- Department of Animal Husbandry, Banswara, Rajasthan, India
| | - Mitesh Gaur
- Department of Veterinary Gynaecology and Obstetrics, College of Veterinary and Animal Science, Udaipur, India
| | | | - Vithilesh Vyas
- Department of Animal Husbandry, Jodhpur, Rajasthan, India
| | | | | | - Adrish Bhati
- Livestock Research station, Nohar, Rajasthan, India
| | - Rakesh Kaul
- Animal Husbandry Department, Jammu and Kashmir, India
| | - Arif Bashir
- Animal Husbandry Department, Jammu and Kashmir, India
| | - Anjum Andrabi
- Animal Husbandry Department, Jammu and Kashmir, India
| | | | | | - Subhash Kachhawaha
- Krishi Vigyan Kendra, ICAR-Central Arid Zone Research Institute, Jodhpur, India
| | - Amol Gurav
- Indian Veterinary Research Institute, Mukteswar, India
| | | | | | | | - Madhurendu K Gupta
- Department of Veterinary Pathology, Birsa Agricultural University, Ranchi, India
| | - Rajender Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Baldev R Gulati
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Jyoti Misri
- Animal Science Division, Indian Council of Agricultural Research, India
| | - Ashok Kumar
- Animal Science Division, Indian Council of Agricultural Research, India
| | | | - Sukdeb Nandi
- Centre for Animal Disease Research and Diagnosis, Indian Veterinary Research Institute, Izatnagar, India
| | - Karam Pal Singh
- Centre for Animal Disease Research and Diagnosis, Indian Veterinary Research Institute, Izatnagar, India
| | - Yash Pal
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Triveni Dutt
- Centre for Animal Disease Research and Diagnosis, Indian Veterinary Research Institute, Izatnagar, India
| | - Bhupendra N Tripathi
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
- Animal Science Division, Indian Council of Agricultural Research, India
| |
Collapse
|
10
|
Van Borm S, Dellicour S, Martin DP, Lemey P, Agianniotaki EI, Chondrokouki ED, Vidanovic D, Vaskovic N, Petroviċ T, Laziċ S, Koleci X, Vodica A, Djadjovski I, Krstevski K, Vandenbussche F, Haegeman A, De Clercq K, Mathijs E. Complete genome reconstruction of the global and European regional dispersal history of the lumpy skin disease virus. J Virol 2023; 97:e0139423. [PMID: 37905838 PMCID: PMC10688313 DOI: 10.1128/jvi.01394-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE Lumpy skin disease virus (LSDV) has a complex epidemiology involving multiple strains, recombination, and vaccination. Its DNA genome provides limited genetic variation to trace outbreaks in space and time. Sequencing of LSDV whole genomes has also been patchy at global and regional scales. Here, we provide the first fine-grained whole genome sequence sampling of a constrained LSDV outbreak (southeastern Europe, 2015-2017), which we analyze along with global publicly available genomes. We formally evaluate the past occurrence of recombination events as well as the temporal signal that is required for calibrating molecular clock models and subsequently conduct a time-calibrated spatially explicit phylogeographic reconstruction. Our study further illustrates the importance of accounting for recombination events before reconstructing global and regional dynamics of DNA viruses. More LSDV whole genomes from endemic areas are needed to obtain a comprehensive understanding of global LSDV dispersal dynamics.
Collapse
Affiliation(s)
- Steven Van Borm
- Scientific Directorate Animal Infectious Diseases, Sciensano, Brussels, Belgium
| | - Simon Dellicour
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels, Belgium
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Darren P. Martin
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Philippe Lemey
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Eirini I. Agianniotaki
- National Reference Laboratory for Capripoxviruses, Department of Molecular Diagnostics, FMD, Virological, Rickettsial and Exotic Diseases, Directorate of Athens Veterinary Center, Ministry of Rural Development and Food, Athens, Greece
| | - Eleni D. Chondrokouki
- National Reference Laboratory for Capripoxviruses, Department of Molecular Diagnostics, FMD, Virological, Rickettsial and Exotic Diseases, Directorate of Athens Veterinary Center, Ministry of Rural Development and Food, Athens, Greece
| | - Dejan Vidanovic
- Department for laboratory diagnostics, Veterinary Specialized Institute, Kraljevo, Serbia
| | - Nikola Vaskovic
- Department for laboratory diagnostics, Veterinary Specialized Institute, Kraljevo, Serbia
| | - Tamaš Petroviċ
- Department for Virology, Scientific Veterinary Institute, Novi Sad, Serbia
| | - Sava Laziċ
- Department for Virology, Scientific Veterinary Institute, Novi Sad, Serbia
| | - Xhelil Koleci
- Faculty of Veterinary Medicine, The Agricultural University of Tirana, Tirana, Albania
| | - Ani Vodica
- Animal Health Department, Food Safety and Veterinary Institute, Tirana, Albania
| | - Igor Djadjovski
- Faculty of Veterinary Medicine, Ss. Cyril and Methodius University in Skopje, Skopje, Macedonia
| | - Kiril Krstevski
- Faculty of Veterinary Medicine, Ss. Cyril and Methodius University in Skopje, Skopje, Macedonia
| | - Frank Vandenbussche
- Scientific Directorate Animal Infectious Diseases, Sciensano, Brussels, Belgium
| | - Andy Haegeman
- Scientific Directorate Animal Infectious Diseases, Sciensano, Brussels, Belgium
| | - Kris De Clercq
- Scientific Directorate Animal Infectious Diseases, Sciensano, Brussels, Belgium
| | - Elisabeth Mathijs
- Scientific Directorate Animal Infectious Diseases, Sciensano, Brussels, Belgium
| |
Collapse
|
11
|
Desingu PA, Rubeni TP, Nagarajan K, Sundaresan NR. Sign of APOBEC editing, purifying selection, frameshift, and in-frame nonsense mutations in the microevolution of lumpy skin disease virus. Front Microbiol 2023; 14:1214414. [PMID: 38033577 PMCID: PMC10682384 DOI: 10.3389/fmicb.2023.1214414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
The lumpy skin disease virus (LSDV), which mostly affects ruminants and causes huge-economic loss, was endemic in Africa, caused outbreaks in the Middle East, and was recently detected in Russia, Serbia, Greece, Bulgaria, Kazakhstan, China, Taiwan, Vietnam, Thailand, and India. However, the role of evolutionary drivers such as codon selection, negative/purifying selection, APOBEC editing, and genetic variations such as frameshift and in-frame nonsense mutations in the LSDVs, which cause outbreaks in cattle in various countries, are still largely unknown. In the present study, a frameshift mutation in LSDV035, LSDV019, LSDV134, and LSDV144 genes and in-frame non-sense mutations in LSDV026, LSDV086, LSDV087, LSDV114, LSDV130, LSDV131, LSDV145, LSDV154, LSDV155, LSDV057, and LSDV081 genes were revealed among different clusters. Based on the available complete genome sequences, the prototype wild-type cluster-1.2.1 virus has been found in other than Africa only in India, the wild-type cluster-1.2.2 virus found in Africa were spread outside Africa, and the recombinant viruses spreading only in Asia and Russia. Although LSD viruses circulating in different countries form a specific cluster, the viruses detected in each specific country are distinguished by frameshift and in-frame nonsense mutations. Furthermore, the present study has brought to light that the selection pressure for codons usage bias is mostly exerted by purifying selection, and this process is possibly caused by APOBEC editing. Overall, the present study sheds light on microevolutions in LSDV, expected to help in future studies towards disturbed ORFs, epidemiological diagnostics, attenuation/vaccine reverts, and predicting the evolutionary direction of LSDVs.
Collapse
Affiliation(s)
| | - T. P. Rubeni
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - K. Nagarajan
- Department of Veterinary Pathology, Madras Veterinary College, Chennai, India
- Veterinary and Animal Sciences University (TANUVAS), Chennai, India
| | | |
Collapse
|
12
|
Sareyyüpoğlu B, Uzar S, Saraç F, Enül H, Adıay C, Çokçalışkan C, Arslan A, Öztap G, Gülyaz V. Immune response against lumpy skin disease after simultaneous vaccination of cattle with sheep pox and goatpox and foot and mouth disease vaccines. Vet Microbiol 2023; 281:109726. [PMID: 37054661 DOI: 10.1016/j.vetmic.2023.109726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/12/2023] [Accepted: 03/18/2023] [Indexed: 04/03/2023]
Abstract
Foot and mouth disease (FMD) and Lumpy skin disease (LSD) are contagious viral diseases that cause significant economic damage in the livestock industry of countries. Cattle are vaccinated two times a year with FMD and sheep pox and goat pox vaccines (SGP) within 30-day intervals to combat both diseases in Türkiye. However, vaccinations in different periods increase vaccination costs, labor, and distress on animals. Therefore, it was aimed to determine the effects of simultaneous vaccination of FMD and SGP vaccines on the immunity against LSD and FMD in cattle. For this purpose, animals were divided into 4 groups; SGP vaccinated group (Group 1, n = 10), FMD vaccinated group (Group 2, n = 10), FMD and SGP simultaneously vaccinated group (Group 3, n = 10), and the unvaccinated control group (Group 4, n = 6). Blood samples were collected and analyzed to detect the antibody response against the LSD via Capripoxvirus (CaPV) ELISA and FMD by Virus Neutralisation test (VNT) and Liquid Phase Blocking ELISA (LPBE). A live virus challenge study was performed to determine the immune response against LSD. The mean antibody titers were determined protective levels on 28 days post vaccination (DPV) against FMDV serotypes O and A, respectively. The logarithmic difference of skin lesions was calculated log10 titer > 2.5. LSD genome could not be detected in the blood, eyes, and nose swap samples of the challenged animals on the 15th day via PCR. In conclusion, adequate protective immune response was provided against LSD when the SGP and FMD vaccines were used simultaneously in cattle.
Collapse
Affiliation(s)
| | - Serdar Uzar
- Pendik Veterinary Control Institute, Istanbul, Turkiye
| | - Fahriye Saraç
- Pendik Veterinary Control Institute, Istanbul, Turkiye
| | - Hakan Enül
- Pendik Veterinary Control Institute, Istanbul, Turkiye
| | - Cumhur Adıay
- Pendik Veterinary Control Institute, Istanbul, Turkiye
| | | | | | - Gonca Öztap
- Ministry of Agriculture and Forestry, General Directorate Food and Control, Ankara, Turkiye
| | - Veli Gülyaz
- Harran University Veterinary Faculty Department of Virology, Sanlıurfa, Turkiye
| |
Collapse
|
13
|
Duration of Immunity Induced after Vaccination of Cattle with a Live Attenuated or Inactivated Lumpy Skin Disease Virus Vaccine. Microorganisms 2023; 11:microorganisms11010210. [PMID: 36677502 PMCID: PMC9864976 DOI: 10.3390/microorganisms11010210] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Vaccines have proven themselves as an efficient way to control and eradicate lumpy skin disease (LSD). In addition to the safety and efficacy aspects, it is important to know the duration for which the vaccines confer protective immunity, as this impacts the design of an efficient control and eradication program. We evaluated the duration of immunity induced by a live attenuated vaccine (LSDV LAV) and an inactivated vaccine (LSDV Inac), both based on LSDV. Cattle were vaccinated and challenged after 6, 12 and 18 months for LSDV LAV or after 6 and 12 months for the LSDV Inac. The LSDV LAV elicited a strong immune response and protection for up to 18 months, as no clinical signs or viremia could be observed after a viral LSDV challenge in any of the vaccinated animals. A good immune response and protection were similarly seen for the LSDV Inac after 6 months. However, two animals developed clinical signs and viremia when challenged after 12 months. In conclusion, our data support the annual booster vaccination when using the live attenuated vaccine, as recommended by the manufacturer, which could potentially even be prolonged. In contrast, a bi-annual vaccination seems necessary when using the inactivated vaccine.
Collapse
|
14
|
Bazid AH, Wasfy M, Fawzy M, Nayel M, Abdelmegeid M, Thabet RY, Yong HS, El-Sayed MM, Magouz A, Badr Y. Emergency vaccination of cattle against lumpy skin disease: Evaluation of safety, efficacy, and potency of MEVAC ® LSD vaccine containing Neethling strain. Vet Res Commun 2022; 47:767-777. [PMID: 36460903 PMCID: PMC9734455 DOI: 10.1007/s11259-022-10037-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/08/2022] [Indexed: 12/04/2022]
Abstract
Lumpy skin disease (LSD) is an emerging disease of cattle causing significantly high economic losses. Control of LSD depends on the use of homologous attenuated LSD virus strains isolated originally from South Africa (the Neethling strain). The virus belongs to the genus Capripoxvirus, which includes sheep pox virus and goat pox virus. The present study was conducted to evaluate the safety and efficacy of a new live attenuated LSD vaccine produced by Middle East for Vaccines (MEVAC®) based on the Neethling strain. Tests were performed both in Egypt and Vietnam. Safety was evaluated by inoculation of five cattle with 10 times the recommended dose and observation of the animals for 14 days. Immunogenicity was tested at different periods post-vaccination (PV) in animals receiving the recommended doses of the vaccine using ELISA and virus neutralization test. Five cows were used to determine the protection index (PI) and non-vaccinated control cattle were included. Three calves were challenged by intradermal inoculation of the wild virus (5 × 105 TCID50) 28 days PV. Field or mass vaccination experiments were conducted in Vietnam during national campaigns in the summer of 2021 with 4301 vaccinated animals closely monitored after vaccination. In the field, around 2% (80/4301) of the animals showed hyper-reactivity, and 0.6% (24/4301) showed small skin swellings that disappeared within few hours PV. Abortion was recorded in three animals (0.3% 3/867). Challenged animals were resistant to clinical disease and PI value was 3.5 log10. Meanwhile, antibody levels determined by the ELISA were inconsistent among animals and laboratories during the study period. Overall, the findings point to a new safe and effective LSD vaccine.
Collapse
Affiliation(s)
- Abdel-Hamid Bazid
- Department of Virology, Faculty of Veterinary Medicine, University of Sadat City, 32958 Menoufiya, Egypt
| | - Momtaz Wasfy
- Middle East for Vaccines (MEVAC®), 44813 Sharquia, Egypt
| | - Mohamed Fawzy
- Department of Virology, Faculty of Veterinary Medicine, Suez Canal University, 41522 Ismailia, Egypt
| | - Mohamed Nayel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Menoufiya, Egypt
| | - Mohamed Abdelmegeid
- Department of Animal Medicine, Faculty of Veterinary Medicine, Kafrelsheikh, University, Kafr El Sheikh, Egypt
| | | | - Hui Sian Yong
- Senior Regional Business Manager, Asia Kemin Biologics®, 12 Senoko Drive, 758200 Singapore, Singapore
| | | | - Asmaa Magouz
- Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt
| | - Yassien Badr
- Department of Animal Medicine (Branch of Infectious Diseases), Faculty of Veterinary Medicine, Damanhour University, 22511 El‑Beheira, Egypt
| |
Collapse
|
15
|
Liang Z, Yao K, Wang S, Yin J, Ma X, Yin X, Wang X, Sun Y. Understanding the research advances on lumpy skin disease: A comprehensive literature review of experimental evidence. Front Microbiol 2022; 13:1065894. [PMID: 36519172 PMCID: PMC9742232 DOI: 10.3389/fmicb.2022.1065894] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/27/2022] [Indexed: 10/28/2023] Open
Abstract
Lumpy skin disease is caused by lumpy skin disease virus (LSDV), which can induce cattle with high fever and extensive nodules on the mucosa or the scarfskin, seriously influencing the cattle industry development and international import and export trade. Since 2013, the disease has spread rapidly and widely throughout the Russia and Asia. In the past few decades, progress has been made in the study of LSDV. It is mainly transmitted by blood-sucking insects, and various modes of transmission with distinct seasonality. Figuring out how the virus spreads will help eradicate LSDV at its source. In the event of an outbreak, selecting the most effective vaccine to block and eliminate the threat posed by LSDV in a timely manner is the main choice for farmers and authorities. At present, a variety of vaccines for LSDV have been developed. The available vaccine products vary in quality, protection rate, safety and side effects. Early detection of LSDV can help reduce the cost of disease. In addition, because LSDV has a huge genome, it is currently also used as a vaccine carrier, forming a new complex with other viral genes through homologous recombination. The vaccine prepared based on this can have a certain preventive effect on many kinds of diseases. Clinical detection of disease including nucleic acid and antigen level. Each method varies in convenience, accuracy, cost, time and complexity of equipment. This article reviews our current understanding of the mode of transmission of LSDV and advances in vaccine types and detection methods, providing a background for further research into various aspects of LSDV in the future.
Collapse
Affiliation(s)
- Zhengji Liang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Kaishen Yao
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shasha Wang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Juanbin Yin
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaoqin Ma
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangping Yin
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangwei Wang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yuefeng Sun
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
16
|
Uddin MB, Tanni FY, Hoque SF, Sajib EH, Faysal MA, Rahman MA, Galib A, Emon AA, Hossain MM, Hasan M, Ahmed SSU. A candidate multi-epitope vaccine against Lumpy skin disease. Transbound Emerg Dis 2022; 69:3548-3561. [PMID: 36183192 DOI: 10.1111/tbed.14718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 09/21/2022] [Accepted: 09/28/2022] [Indexed: 02/07/2023]
Abstract
Lumpy skin disease (LSD) is a fulminant infectious disease that mostly affects cattle and causes considerable economic loss throughout the globe. This study was conducted to develop a new multi-epitope-based vaccine against LSD that can elicit immunological responses using an in silico reverse vaccinology approach. Initially, three antigenic proteins, protein E5, E3 ubiquitin-protein ligase LAP and 62 kDa protein, were manipulated to recognize potential T-cell and B-cell epitopes. To identify superior epitopes, a variety of bioinformatic techniques including antigenicity testing, transmembrane topology screening, allergenicity assessment, conservancy analysis, and toxicity evaluation were used. Finally, three new subunit vaccines (construct V1, V2 and V3) were developed employing the most effective epitopes, suitable adjuvants, pan HLA DR-binding epitope (PADRE) and linkers. Then, based on the antigenicity, solubility, and validation score of the 3D structures, construct V2 was chosen as one of the best candidate vaccines. The results of the molecular dynamic simulation and disulphide engineering indicated that the vaccine (construct V2) was stable. Additionally, the immunological simulation findings supported the vaccine candidate's ability to trigger humoral and cellular immune responses. Further validation of the proposed vaccine candidate may necessitate additional in vitro and in vivo investigations.
Collapse
Affiliation(s)
- Md Bashir Uddin
- Department of Medicine, Sylhet Agricultural University, Sylhet, Bangladesh.,Department of Microbiology & Immunology, University of Texas Medical Branch (UTMB), Galveston, United States
| | | | - Syeda Farjana Hoque
- Department of Pharmaceuticals and Industrial Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Emran Hossain Sajib
- Department of Pharmaceuticals and Industrial Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Md Atik Faysal
- Department of Medicine, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Md Anisur Rahman
- Department of Medicine, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Asaduzzaman Galib
- Department of Medicine, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Ahsan Al Emon
- Department of Medicine, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Md Mukter Hossain
- Department of Medicine, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Mahmudul Hasan
- Department of Pharmaceuticals and Industrial Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Syed Sayeem Uddin Ahmed
- Department of Epidemiology and Public Health, Sylhet Agricultural University, Sylhet, Bangladesh
| |
Collapse
|
17
|
Vandenbussche F, Mathijs E, Philips W, Saduakassova M, De Leeuw I, Sultanov A, Haegeman A, De Clercq K. Recombinant LSDV Strains in Asia: Vaccine Spillover or Natural Emergence? Viruses 2022; 14:v14071429. [PMID: 35891412 PMCID: PMC9318037 DOI: 10.3390/v14071429] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/23/2022] Open
Abstract
From 2017 to 2019, several vaccine-like recombinant strains of lumpy skin disease virus (LSDV) were discovered in Kazakhstan and neighbouring regions of Russia and China. Shortly before their emergence, the authorities in Kazakhstan launched a mass vaccination campaign with the Neethling-based Lumpivax vaccine. Since none of the other countries in the affected region had used a homologous LSDV vaccine, it was soon suspected that the Lumpivax vaccine was the cause of these unusual LSDV strains. In this study, we performed a genome-wide molecular analysis to investigate the composition of two Lumpivax vaccine batches and to establish a possible link between the vaccine and the recent outbreaks. Although labelled as a pure Neethling-based LSDV vaccine, the Lumpivax vaccine appears to be a complex mixture of multiple CaPVs. Using an iterative enrichment/assembly strategy, we obtained the complete genomes of a Neethling-like LSDV vaccine strain, a KSGP-like LSDV vaccine strain and a Sudan-like GTPV strain. The same analysis also revealed the presence of several recombinant LSDV strains that were (almost) identical to the recently described vaccine-like LSDV strains. Based on their InDel/SNP signatures, the vaccine-like recombinant strains can be divided into four groups. Each group has a distinct breakpoint pattern resulting from multiple recombination events, with the number of genetic exchanges ranging from 126 to 146. The enormous divergence of the recombinant strains suggests that they arose during seed production. The recent emergence of vaccine-like LSDV strains in large parts of Asia is, therefore, most likely the result of a spillover from animals vaccinated with the Lumpivax vaccine.
Collapse
Affiliation(s)
- Frank Vandenbussche
- EURL for Diseases Caused by Capripoxviruses, Scientific Directorate Infectious Diseases in Animals, Sciensano, Groeselenberg 99, B-1180 Brussels, Belgium; (F.V.); (E.M.); (W.P.)
| | - Elisabeth Mathijs
- EURL for Diseases Caused by Capripoxviruses, Scientific Directorate Infectious Diseases in Animals, Sciensano, Groeselenberg 99, B-1180 Brussels, Belgium; (F.V.); (E.M.); (W.P.)
| | - Wannes Philips
- EURL for Diseases Caused by Capripoxviruses, Scientific Directorate Infectious Diseases in Animals, Sciensano, Groeselenberg 99, B-1180 Brussels, Belgium; (F.V.); (E.M.); (W.P.)
| | - Meruyert Saduakassova
- Kazakh Scientific Research Veterinary Institute (KazSRVI/KazNIVI), Raiymbek ave. 223, Almaty 050016, Kazakhstan; (M.S.); (A.S.)
| | - Ilse De Leeuw
- Unit of Exotic and Particular Diseases, Scientific Directorate Infectious Diseases in Animals, Sciensano, Groeselenberg 99, B-1180 Brussels, Belgium; (I.D.L.); (A.H.)
| | - Akhmetzhan Sultanov
- Kazakh Scientific Research Veterinary Institute (KazSRVI/KazNIVI), Raiymbek ave. 223, Almaty 050016, Kazakhstan; (M.S.); (A.S.)
| | - Andy Haegeman
- Unit of Exotic and Particular Diseases, Scientific Directorate Infectious Diseases in Animals, Sciensano, Groeselenberg 99, B-1180 Brussels, Belgium; (I.D.L.); (A.H.)
| | - Kris De Clercq
- Unit of Exotic and Particular Diseases, Scientific Directorate Infectious Diseases in Animals, Sciensano, Groeselenberg 99, B-1180 Brussels, Belgium; (I.D.L.); (A.H.)
- Correspondence:
| |
Collapse
|
18
|
Development and Evaluation of a Combined Contagious Bovine Pleuropneumonia (CBPP) and Lumpy Skin Disease (LSD) Live Vaccine. Viruses 2022; 14:v14020372. [PMID: 35215965 PMCID: PMC8880402 DOI: 10.3390/v14020372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/22/2022] [Accepted: 01/30/2022] [Indexed: 12/10/2022] Open
Abstract
Mycoplasma mycoides subsp. mycoides (Mmm) is the causative agent of contagious bovine pleuropneumonia (CBPP). Lumpy skin disease (LSD) is a viral disease of cattle caused by lumpy skin disease virus (LSDV). LSD and CBPP are both transboundary diseases spreading in the same areas of Africa and Asia. A combination vaccine to control CBPP and LSD offers significant value to small-scale livestock keepers as a single administration. Access to a bivalent vaccine may improve vaccination rates for both pathogens. In the present study, we evaluated the LSDV/CBPP live combined vaccine by testing the generation of virus neutralizing antibodies, immunogenicity, and safety on target species. In-vitro assessment of the Mycoplasma effect on LSDV growth in cell culture was evaluated by infectious virus titration and qPCR during 3 serial passages, whereas in-vivo interference was assessed through the antibody response to vaccination. This combined Mmm/LSDV vaccine could be used to protect cattle against both diseases with a single vaccination in the endemic countries. There were no adverse reactions detected in this study and inoculated cattle produced high levels of specific antibodies starting from day 7 post-vaccination, suggesting that this combination vaccine is both safe and effective.
Collapse
|
19
|
Fay PC, Wijesiriwardana N, Munyanduki H, Sanz-Bernardo B, Lewis I, Haga IR, Moffat K, van Vliet AHM, Hope J, Graham SP, Beard PM. The immune response to lumpy skin disease virus in cattle is influenced by inoculation route. Front Immunol 2022; 13:1051008. [PMID: 36518761 PMCID: PMC9742517 DOI: 10.3389/fimmu.2022.1051008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/31/2022] [Indexed: 11/29/2022] Open
Abstract
Lumpy skin disease virus (LSDV) causes severe disease in cattle and water buffalo and is transmitted by hematophagous arthropod vectors. Detailed information of the adaptive and innate immune response to LSDV is limited, hampering the development of tools to control the disease. This study provides an in-depth analysis of the immune responses of calves experimentally inoculated with LSDV via either needle-inoculation or arthropod-inoculation using virus-positive Stomoxys calcitrans and Aedes aegypti vectors. Seven out of seventeen needle-inoculated calves (41%) developed clinical disease characterised by multifocal necrotic cutaneous nodules. In comparison 8/10 (80%) of the arthropod-inoculated calves developed clinical disease. A variable LSDV-specific IFN-γ immune response was detected in the needle-inoculated calves from 5 days post inoculation (dpi) onwards, with no difference between clinical calves (developed cutaneous lesions) and nonclinical calves (did not develop cutaneous lesions). In contrast a robust and uniform cell-mediated immune response was detected in all eight clinical arthropod-inoculated calves, with little response detected in the two nonclinical arthropod-inoculated calves. Neutralising antibodies against LSDV were detected in all inoculated cattle from 5-7 dpi. Comparison of the production of anti-LSDV IgM and IgG antibodies revealed no difference between clinical and nonclinical needle-inoculated calves, however a strong IgM response was evident in the nonclinical arthropod-inoculated calves but absent in the clinical arthropod-inoculated calves. This suggests that early IgM production is a correlate of protection in LSD. This study presents the first evidence of differences in the immune response between clinical and nonclinical cattle and highlights the importance of using a relevant transmission model when studying LSD.
Collapse
Affiliation(s)
- Petra C Fay
- The Pirbright Institute, Pirbright, United Kingdom
| | - Najith Wijesiriwardana
- The Pirbright Institute, Pirbright, United Kingdom.,School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| | | | | | - Isabel Lewis
- The Pirbright Institute, Pirbright, United Kingdom
| | - Ismar R Haga
- The Pirbright Institute, Pirbright, United Kingdom
| | - Katy Moffat
- The Pirbright Institute, Pirbright, United Kingdom
| | | | - Jayne Hope
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Simon P Graham
- The Pirbright Institute, Pirbright, United Kingdom.,School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| | | |
Collapse
|
20
|
Draft Genome Sequence of the Capripoxvirus Vaccine Strain KSGP 0240, Reisolated from Cattle. Microbiol Resour Announc 2021; 10:e0044021. [PMID: 34323614 PMCID: PMC8320456 DOI: 10.1128/mra.00440-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Control of lumpy skin disease in cattle is based on vaccination with live attenuated vaccines. The Kenyan strain KSGP 0240 is commonly used to vaccinate ruminants against capripox infections, but the conferred protection is still controversial. In this study, we report the draft genome sequence of the vaccine strain KSGP 0240, reisolated from cattle.
Collapse
|