1
|
Trogu T, Bellini S, Canziani S, Carrera M, Chiapponi C, Chiari M, Farioli M, Fusaro A, Savegnago E, Nucci A, Soliani L, Bortolami A, Lavazza A, Terregino C, Moreno A. Surveillance for Avian Influenza in Wild Birds in the Lombardy Region (Italy) in the Period 2022-2024. Viruses 2024; 16:1668. [PMID: 39599782 PMCID: PMC11598995 DOI: 10.3390/v16111668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
Influenza A virus (AIV) circulation was investigated in the Lombardy region, during 2022-2024, in wild ducks (through hunting and sampling of faecal samples within natural parks) and wild birds found dead. Samples were analysed through real-time RT-PCRs for Influenza A virus, H5 and H7. Whole genome sequencing was performed on AIV-positive samples. Screening of 3497 hunted Anatidae revealed a total of 184 positive samples. Complete sequencing of 136 samples highlighted the presence of 21 different subtypes ranging from H1N1 to H12N5. The H5N1 HPAIV (high pathogenic AIV) subtype, clade 2.3.4.4b, was the most common during the 2022-2023 winter season (31.8%), while H5 LPAI (low pathogenic AIV) strains were the most prevalent (28.6%) in the 2023-2024 season. The molecular survey on wild birds found dead (n = 481) showed two positive buzzards (14%, 2/14), one grey heron (5.5%, 1/18) and one kestrel (7.6%, 1/13). Regarding the order of Charadriiformes, the dead gulls sampled in 2022 (17 birds) were all negative, whereas 85 out of 167 (51%) individuals were positive in 2023. All positives were caused by an H5N1 HPAIV clade 2.3.4.4b virus belonging to genotype BB. All the faecal samples (1699) received from passive surveillance in nature parks were analysed for AIV with negative results.
Collapse
Affiliation(s)
- Tiziana Trogu
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Via Antonio Bianchi 7/9, 25124 Brescia, Italy; (T.T.); (S.B.); (S.C.); (M.C.); (C.C.); (A.N.); (L.S.); (A.L.)
| | - Silvia Bellini
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Via Antonio Bianchi 7/9, 25124 Brescia, Italy; (T.T.); (S.B.); (S.C.); (M.C.); (C.C.); (A.N.); (L.S.); (A.L.)
| | - Sabrina Canziani
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Via Antonio Bianchi 7/9, 25124 Brescia, Italy; (T.T.); (S.B.); (S.C.); (M.C.); (C.C.); (A.N.); (L.S.); (A.L.)
| | - Maya Carrera
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Via Antonio Bianchi 7/9, 25124 Brescia, Italy; (T.T.); (S.B.); (S.C.); (M.C.); (C.C.); (A.N.); (L.S.); (A.L.)
| | - Chiara Chiapponi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Via Antonio Bianchi 7/9, 25124 Brescia, Italy; (T.T.); (S.B.); (S.C.); (M.C.); (C.C.); (A.N.); (L.S.); (A.L.)
| | - Mario Chiari
- Direzione Generale Welfare, U.O. Veterinaria, Piazza Città di Lombardia 1, 20124 Milano, Italy; (M.C.); (M.F.)
| | - Marco Farioli
- Direzione Generale Welfare, U.O. Veterinaria, Piazza Città di Lombardia 1, 20124 Milano, Italy; (M.C.); (M.F.)
| | - Alice Fusaro
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Padova, Italy; (A.F.); (E.S.); (A.B.); (C.T.)
| | - Enrico Savegnago
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Padova, Italy; (A.F.); (E.S.); (A.B.); (C.T.)
| | - Ambra Nucci
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Via Antonio Bianchi 7/9, 25124 Brescia, Italy; (T.T.); (S.B.); (S.C.); (M.C.); (C.C.); (A.N.); (L.S.); (A.L.)
| | - Laura Soliani
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Via Antonio Bianchi 7/9, 25124 Brescia, Italy; (T.T.); (S.B.); (S.C.); (M.C.); (C.C.); (A.N.); (L.S.); (A.L.)
| | - Alessio Bortolami
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Padova, Italy; (A.F.); (E.S.); (A.B.); (C.T.)
| | - Antonio Lavazza
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Via Antonio Bianchi 7/9, 25124 Brescia, Italy; (T.T.); (S.B.); (S.C.); (M.C.); (C.C.); (A.N.); (L.S.); (A.L.)
| | - Calogero Terregino
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Padova, Italy; (A.F.); (E.S.); (A.B.); (C.T.)
| | - Ana Moreno
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Via Antonio Bianchi 7/9, 25124 Brescia, Italy; (T.T.); (S.B.); (S.C.); (M.C.); (C.C.); (A.N.); (L.S.); (A.L.)
| |
Collapse
|
2
|
Graziosi G, Lupini C, Catelli E, Carnaccini S. Highly Pathogenic Avian Influenza (HPAI) H5 Clade 2.3.4.4b Virus Infection in Birds and Mammals. Animals (Basel) 2024; 14:1372. [PMID: 38731377 PMCID: PMC11083745 DOI: 10.3390/ani14091372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Avian influenza viruses (AIVs) are highly contagious respiratory viruses of birds, leading to significant morbidity and mortality globally and causing substantial economic losses to the poultry industry and agriculture. Since their first isolation in 2013-2014, the Asian-origin H5 highly pathogenic avian influenza viruses (HPAI) of clade 2.3.4.4b have undergone unprecedented evolution and reassortment of internal gene segments. In just a few years, it supplanted other AIV clades, and now it is widespread in the wild migratory waterfowl, spreading to Asia, Europe, Africa, and the Americas. Wild waterfowl, the natural reservoir of LPAIVs and generally more resistant to the disease, also manifested high morbidity and mortality with HPAIV clade 2.3.4.4b. This clade also caused overt clinical signs and mass mortality in a variety of avian and mammalian species never reported before, such as raptors, seabirds, sealions, foxes, and others. Most notably, the recent outbreaks in dairy cattle were associated with the emergence of a few critical mutations related to mammalian adaptation, raising concerns about the possibility of jumping species and acquisition of sustained human-to-human transmission. The main clinical signs and anatomopathological findings associated with clade 2.3.4.4b virus infection in birds and non-human mammals are hereby summarized.
Collapse
Affiliation(s)
- Giulia Graziosi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (G.G.); (C.L.); (E.C.)
| | - Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (G.G.); (C.L.); (E.C.)
| | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (G.G.); (C.L.); (E.C.)
| | - Silvia Carnaccini
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
3
|
Fusaro A, Zecchin B, Giussani E, Palumbo E, Agüero-García M, Bachofen C, Bálint Á, Banihashem F, Banyard AC, Beerens N, Bourg M, Briand FX, Bröjer C, Brown IH, Brugger B, Byrne AMP, Cana A, Christodoulou V, Dirbakova Z, Fagulha T, Fouchier RAM, Garza-Cuartero L, Georgiades G, Gjerset B, Grasland B, Groza O, Harder T, Henriques AM, Hjulsager CK, Ivanova E, Janeliunas Z, Krivko L, Lemon K, Liang Y, Lika A, Malik P, McMenamy MJ, Nagy A, Nurmoja I, Onita I, Pohlmann A, Revilla-Fernández S, Sánchez-Sánchez A, Savic V, Slavec B, Smietanka K, Snoeck CJ, Steensels M, Svansson V, Swieton E, Tammiranta N, Tinak M, Van Borm S, Zohari S, Adlhoch C, Baldinelli F, Terregino C, Monne I. High pathogenic avian influenza A(H5) viruses of clade 2.3.4.4b in Europe-Why trends of virus evolution are more difficult to predict. Virus Evol 2024; 10:veae027. [PMID: 38699215 PMCID: PMC11065109 DOI: 10.1093/ve/veae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/01/2024] [Accepted: 03/26/2024] [Indexed: 05/05/2024] Open
Abstract
Since 2016, A(H5Nx) high pathogenic avian influenza (HPAI) virus of clade 2.3.4.4b has become one of the most serious global threats not only to wild and domestic birds, but also to public health. In recent years, important changes in the ecology, epidemiology, and evolution of this virus have been reported, with an unprecedented global diffusion and variety of affected birds and mammalian species. After the two consecutive and devastating epidemic waves in Europe in 2020-2021 and 2021-2022, with the second one recognized as one of the largest epidemics recorded so far, this clade has begun to circulate endemically in European wild bird populations. This study used the complete genomes of 1,956 European HPAI A(H5Nx) viruses to investigate the virus evolution during this varying epidemiological outline. We investigated the spatiotemporal patterns of A(H5Nx) virus diffusion to/from and within Europe during the 2020-2021 and 2021-2022 epidemic waves, providing evidence of ongoing changes in transmission dynamics and disease epidemiology. We demonstrated the high genetic diversity of the circulating viruses, which have undergone frequent reassortment events, providing for the first time a complete overview and a proposed nomenclature of the multiple genotypes circulating in Europe in 2020-2022. We described the emergence of a new genotype with gull adapted genes, which offered the virus the opportunity to occupy new ecological niches, driving the disease endemicity in the European wild bird population. The high propensity of the virus for reassortment, its jumps to a progressively wider number of host species, including mammals, and the rapid acquisition of adaptive mutations make the trend of virus evolution and spread difficult to predict in this unfailing evolving scenario.
Collapse
Affiliation(s)
- Alice Fusaro
- European Reference Laboratory (EURL) for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'universita 10, Legnaro, Padua 35020, Italy
| | - Bianca Zecchin
- European Reference Laboratory (EURL) for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'universita 10, Legnaro, Padua 35020, Italy
| | - Edoardo Giussani
- European Reference Laboratory (EURL) for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'universita 10, Legnaro, Padua 35020, Italy
| | - Elisa Palumbo
- European Reference Laboratory (EURL) for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'universita 10, Legnaro, Padua 35020, Italy
| | - Montserrat Agüero-García
- Ministry of Agriculture, Fisheries and Food, Laboratorio Central de Veterinaria (LCV), Ctra. M-106, Km 1,4 Algete, Madrid 28110, Spain
| | - Claudia Bachofen
- Federal Department of Home Affairs FDHA Institute of Virology and Immunology IVI, Sensemattstrasse 293, Mittelhäusern 3147, Switzerland
| | - Ádám Bálint
- Veterinary Diagnostic Directorate (NEBIH), Laboratory of Virology, National Food Chain Safety Office, Tábornok utca 2, Budapest 1143, Hungary
| | - Fereshteh Banihashem
- Department of Microbiology, National Veterinary Institute (SVA), Travvägen 20, Uppsala 75189, Sweden
| | - Ashley C Banyard
- WOAH/FAO international reference laboratory for Avian Influenza and Newcastle Disease, Virology Department, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone KT15 3NB, United Kingdom
| | - Nancy Beerens
- Department of Virology Wageningen Bioveterinary Research, Houtribweg 39, Lelystad 8221 RA, The Netherlands
| | - Manon Bourg
- Luxembourgish Veterinary and Food Administration (ALVA), State Veterinary Laboratory, 1 Rue Louis Rech, Dudelange 3555, Luxembourg
| | - Francois-Xavier Briand
- Agence Nationale de Sécurité Sanitaire, de l’Alimentation, de l’Environnement et du Travail, Laboratoire de Ploufragan-Plouzané-Niort, Unité de Virologie, Immunologie, Parasitologie Avaires et Cunicoles, 41 Rue de Beaucemaine – BP 53, Ploufragan 22440, France
| | - Caroline Bröjer
- Department of Pathology and Wildlife Disease, National Veterinary Institute (SVA), Travvägen 20, Uppsala 75189, Sweden
| | - Ian H Brown
- WOAH/FAO international reference laboratory for Avian Influenza and Newcastle Disease, Virology Department, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone KT15 3NB, United Kingdom
| | - Brigitte Brugger
- Icelandic Food and Veterinary Authority, Austurvegur 64, Selfoss 800, Iceland
| | - Alexander M P Byrne
- WOAH/FAO international reference laboratory for Avian Influenza and Newcastle Disease, Virology Department, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone KT15 3NB, United Kingdom
| | - Armend Cana
- Kosovo Food and Veterinary Agency, Sector of Serology and Molecular Diagnostics, Kosovo Food and Veterinary Laboratory, Str Lidhja e Pejes, Prishtina 10000, Kosovo
| | - Vasiliki Christodoulou
- Laboratory for Animal Health Virology Section Veterinary Services (1417), 79, Athalassa Avenue Aglantzia, Nicosia 2109, Cyprus
| | - Zuzana Dirbakova
- Department of Animal Health, State Veterinary Institute, Pod Dráhami 918, Zvolen 96086, Slovakia
| | - Teresa Fagulha
- I.P. (INIAV, I.P.), Avenida da República, Instituto Nacional de Investigação Agrária e Veterinária, Quinta do Marquês, Oeiras 2780 – 157, Portugal
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus MC, Dr. Molewaterplein 40, Rotterdam 3015 GD, The Netherlands
| | - Laura Garza-Cuartero
- Department of Agriculture, Food and the Marine, Central Veterinary Research Laboratory (CVRL), Backweston Campus, Stacumny Lane, Celbridge, Co. Kildare W23 X3PH, Ireland
| | - George Georgiades
- Thessaloniki Veterinary Centre (TVC), Department of Avian Diseases, 26th October Street 80, Thessaloniki 54627, Greece
| | - Britt Gjerset
- Immunology & Virology department, Norwegian Veterinary Institute, Arboretveien 57, Oslo Pb 64, N-1431 Ås, Norway
| | - Beatrice Grasland
- Agence Nationale de Sécurité Sanitaire, de l’Alimentation, de l’Environnement et du Travail, Laboratoire de Ploufragan-Plouzané-Niort, Unité de Virologie, Immunologie, Parasitologie Avaires et Cunicoles, 41 Rue de Beaucemaine – BP 53, Ploufragan 22440, France
| | - Oxana Groza
- Republican Center for Veterinary Diagnostics (NRL), 3 street Murelor, Chisinau 2051, Republic of Moldova
| | - Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald-Insel Riems 17493, Germany
| | - Ana Margarida Henriques
- I.P. (INIAV, I.P.), Avenida da República, Instituto Nacional de Investigação Agrária e Veterinária, Quinta do Marquês, Oeiras 2780 – 157, Portugal
| | - Charlotte Kristiane Hjulsager
- Department for Virus and Microbiological Special Diagnostics, Statens Serum Institut, 5 Artillerivej, Copenhagen DK-2300, Denmark
| | - Emiliya Ivanova
- National Reference Laboratory for Avian Influenza and Newcastle Disease, National Diagnostic and Research Veterinary Medical Institute (NDRVMI), 190 Lomsko Shose Blvd., Sofia 1231, Bulgaria
| | - Zygimantas Janeliunas
- National Food and Veterinary Risk Assessment Institute (NFVRAI), Kairiukscio str. 10, Vilnius 08409, Lithuania
| | - Laura Krivko
- Institute of Food Safety, Animal Health and Environment (BIOR), Laboratory of Microbilogy and Pathology, 3 Lejupes Street, Riga 1076, Latvia
| | - Ken Lemon
- Virological Molecular Diagnostic Laboratory, Veterinary Sciences Division, Department of Virology, Agri-Food and Bioscience Institute (AFBI), Stoney Road, Belfast BT4 3SD, Northern Ireland
| | - Yuan Liang
- Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 15, Frederiksberg 1870, Denmark
| | - Aldin Lika
- Animal Health Department, Food Safety and Veterinary Institute, Rruga Aleksandër Moisiu 10, Tirana 1001, Albania
| | - Péter Malik
- Veterinary Diagnostic Directorate (NEBIH), Laboratory of Virology, National Food Chain Safety Office, Tábornok utca 2, Budapest 1143, Hungary
| | - Michael J McMenamy
- Virological Molecular Diagnostic Laboratory, Veterinary Sciences Division, Department of Virology, Agri-Food and Bioscience Institute (AFBI), Stoney Road, Belfast BT4 3SD, Northern Ireland
| | - Alexander Nagy
- Department of Molecular Biology, State Veterinary Institute Prague, Sídlištní 136/24, Praha 6-Lysolaje 16503, Czech Republic
| | - Imbi Nurmoja
- National Centre for Laboratory Research and Risk Assessment (LABRIS), Kreutzwaldi 30, Tartu 51006, Estonia
| | - Iuliana Onita
- Institute for Diagnosis and Animal Health (IDAH), Str. Dr. Staicovici 63, Bucharest 050557, Romania
| | - Anne Pohlmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald-Insel Riems 17493, Germany
| | - Sandra Revilla-Fernández
- Austrian Agency for Health and Food Safety (AGES), Institute for Veterinary Disease Control, Robert Koch Gasse 17, Mödling 2340, Austria
| | - Azucena Sánchez-Sánchez
- Ministry of Agriculture, Fisheries and Food, Laboratorio Central de Veterinaria (LCV), Ctra. M-106, Km 1,4 Algete, Madrid 28110, Spain
| | - Vladimir Savic
- Croatian Veterinary Institute, Poultry Centre, Heinzelova 55, Zagreb 10000, Croatia
| | - Brigita Slavec
- University of Ljubljana – Veterinary Faculty/National Veterinary Institute, Gerbičeva 60, Ljubljana 1000, Slovenia
| | - Krzysztof Smietanka
- Department of Poultry Diseases, National Veterinary Research Institute, Al. Partyzantow 57, Puławy 24-100, Poland
| | - Chantal J Snoeck
- Luxembourg Institute of Health (LIH), Department of Infection and Immunity, 29 Rue Henri Koch, Esch-sur-Alzette 4354, Luxembourg
| | - Mieke Steensels
- Avian Virology and Immunology, Sciensano, Rue Groeselenberg 99, Ukkel 1180, Ukkel, Belgium
| | - Vilhjálmur Svansson
- Biomedical Center, Institute for Experimental Pathology, University of Iceland, Keldnavegi 3 112 Reykjavík Ssn. 650269 4549, Keldur 851, Iceland
| | - Edyta Swieton
- Department of Poultry Diseases, National Veterinary Research Institute, Al. Partyzantow 57, Puławy 24-100, Poland
| | - Niina Tammiranta
- Finnish Food Authority, Animal Health Diagnostic Unit, Veterinary Virology, Mustialankatu 3, Helsinki FI-00790, Finland
| | - Martin Tinak
- Department of Animal Health, State Veterinary Institute, Pod Dráhami 918, Zvolen 96086, Slovakia
| | - Steven Van Borm
- Avian Virology and Immunology, Sciensano, Rue Groeselenberg 99, Ukkel 1180, Ukkel, Belgium
| | - Siamak Zohari
- Department of Microbiology, National Veterinary Institute (SVA), Travvägen 20, Uppsala 75189, Sweden
| | - Cornelia Adlhoch
- European Centre for Disease Prevention and Control, Gustav III:s boulevard 40, Solna 169 73, Sweden
| | | | - Calogero Terregino
- European Reference Laboratory (EURL) for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'universita 10, Legnaro, Padua 35020, Italy
| | - Isabella Monne
- European Reference Laboratory (EURL) for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'universita 10, Legnaro, Padua 35020, Italy
| |
Collapse
|
4
|
Glazunova A, Krasnova E, Bespalova T, Sevskikh T, Lunina D, Titov I, Sindryakova I, Blokhin A. A highly pathogenic avian influenza virus H5N1 clade 2.3.4.4 detected in Samara Oblast, Russian Federation. Front Vet Sci 2024; 11:1244430. [PMID: 38389580 PMCID: PMC10881870 DOI: 10.3389/fvets.2024.1244430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Avian influenza (AI) is a global problem impacting birds and mammals, causing economic losses in commercial poultry farms and backyard settings. In 2022, over 8,500 AI cases were reported worldwide, with the H5 subtype being responsible for many outbreaks in wild and domestic birds. In the territory of the Russian Federation, outbreaks of AI have been massively reported since 2020, both among domestic bird species and wild bird species. Wild migratory birds often serve as natural reservoirs for AI viruses, and interactions between bird species can lead to the emergence of new, highly pathogenic variants through genetic recombination between strains. In order to combat the widespread outbreaks of the disease and potential risks of further spread in 2021, monitoring studies were conducted in the Samara Oblast, the southeastern region of European Russian Federation. These studies aimed to diagnose and characterize circulating AI virus variants among wild migratory birds during waterfowl hunting in areas of mass nesting. Among the 98 shot birds, a highly pathogenic A/H5N1 AI virus was detected in a Eurasian Teal from the Bolshechernigovsky district. It was classified into clade 2.3.4.4 based on the cleavage site structure of HA. Phylogenetic analysis showed a high relatedness of the identified strain in the Samara Oblast with field isolates from Russia, Nigeria, Bangladesh, and Benin. The article emphasizes the importance of monitoring AI virus spread in both wild and poultry, highlighting the need for timely information exchange to assess risks. Further comprehensive studies are necessary to understand virus dissemination pathways.
Collapse
Affiliation(s)
- Anastasia Glazunova
- Federal Research Center for Virology and Microbiology, Branch in Samara, Samara, Russia
| | - Elena Krasnova
- Federal Research Center for Virology and Microbiology, Branch in Samara, Samara, Russia
| | - Tatiana Bespalova
- Federal Research Center for Virology and Microbiology, Branch in Samara, Samara, Russia
| | - Timofey Sevskikh
- Federal Research Center for Virology and Microbiology, Samara, Russia
| | - Daria Lunina
- Federal Research Center for Virology and Microbiology, Branch in Samara, Samara, Russia
| | - Ilya Titov
- Federal Research Center for Virology and Microbiology, Samara, Russia
| | - Irina Sindryakova
- Federal Research Center for Virology and Microbiology, Samara, Russia
| | - Andrey Blokhin
- Federal Research Center for Virology and Microbiology, Branch in Nizhny Novgorod, Nizhny Novgorod, Russia
| |
Collapse
|
5
|
Kim JY, Jeong S, Kim DW, Lee DW, Lee DH, Kim D, Kwon JH. Genomic epidemiology of highly pathogenic avian influenza A (H5N1) virus in wild birds in South Korea during 2021-2022: Changes in viral epidemic patterns. Virus Evol 2024; 10:veae014. [PMID: 38455682 PMCID: PMC10919474 DOI: 10.1093/ve/veae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/28/2024] [Accepted: 02/06/2024] [Indexed: 03/09/2024] Open
Abstract
Clade 2.3.4.4b highly pathogenic avian influenza A (HPAI) viruses have been detected in wild birds worldwide, causing recurrent outbreaks since 2016. During the winter of 2021-2022, we detected one H5N8 and forty-three H5N1 clade 2.3.4.4b HPAI viruses from wild birds in South Korea. Phylogenetic analysis revealed that HA gene of H5N1 viruses was divided into two genetically distinct groups (N1.G1 and N1.G2). Bayesian phylodynamic analysis demonstrated that wild birds play a vital role in viral transmission and long-term maintenance. We identified five genotypes (N1.G1.1, N1.G2, N1.G2.1, N1.G2.2, and N1.G2.2.1) having distinct gene segment constellations most probably produced by reassortments with low-pathogenic avian influenza viruses. Our results suggest that clade 2.3.4.4b persists in wild birds for a long time, causing continuous outbreaks, compared with previous clades of H5 HPAI viruses. Our study emphasizes the need for enhancing control measures in response to the changing viral epidemiology.
Collapse
Affiliation(s)
- Ji-Yun Kim
- College of Veterinary Medicine, Kyungpook National University, 80 Daehak-ro, Daegu 41566, Republic of Korea
| | - Sol Jeong
- Wildlife Disease Research Team, National Institute of Wildlife Disease Control and Prevention (NIWDC), Ministry of Environment, 1, Songam-gil, Gwangju 62407, Republic of Korea
| | - Da-Won Kim
- College of Veterinary Medicine, Kyungpook National University, 80 Daehak-ro, Daegu 41566, Republic of Korea
| | - Dong-Wook Lee
- College of Veterinary Medicine, Kyungpook National University, 80 Daehak-ro, Daegu 41566, Republic of Korea
| | - Dong-Hun Lee
- College of Veterinary Medicine, Konkuk University, 120, Neungdong-ro, Seoul 05029, Republic of Korea
| | - Daehun Kim
- Wildlife Disease Research Team, National Institute of Wildlife Disease Control and Prevention (NIWDC), Ministry of Environment, 1, Songam-gil, Gwangju 62407, Republic of Korea
| | - Jung-Hoon Kwon
- College of Veterinary Medicine, Kyungpook National University, 80 Daehak-ro, Daegu 41566, Republic of Korea
| |
Collapse
|
6
|
Khalil AM, Esaki M, Okuya K, Ozawa M. Stability of the Virucidal Activity of Commercial Disinfectants against Avian Influenza Viruses under Different Environmental Conditions. Pathogens 2023; 12:1382. [PMID: 38133267 PMCID: PMC10745779 DOI: 10.3390/pathogens12121382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Highly pathogenic avian influenza viruses (HPAIVs) have caused outbreaks in both domestic and wild birds during the winter seasons in several countries in the Northern Hemisphere, most likely because virus-infected wild ducks overwinter and serve as the primary source of infection for other birds in these countries. Several chemical disinfectants are available to deactivate these viruses outside a living organism. However, their virucidal activity is known to be compromised by various factors, including temperature and contamination with organic matter. Hence, the effectiveness of virucidal activity under winter field conditions is crucial for managing HPAIV outbreaks. To investigate the impact of the winter field conditions on the virucidal activity of disinfectants against AIVs, we assessed the stability of the virucidal activity of seven representative disinfectants that are commercially available for poultry farms in Japan against both LPAIVs and HPAIVs under cold and/or organic contamination conditions. Of the seven disinfectants examined, the ortho-dichlorobenzene/cresol-based disinfectant exhibited the most consistent virucidal activity under winter field conditions, regardless of the virus pathogenicity or subtype tested.
Collapse
Affiliation(s)
- Ahmed Magdy Khalil
- Department of Pathogenetic and Preventive Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (A.M.K.); (M.E.); (K.O.)
- United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8515, Japan
- Department of Zoonotic Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Mana Esaki
- Department of Pathogenetic and Preventive Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (A.M.K.); (M.E.); (K.O.)
- Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - Kosuke Okuya
- Department of Pathogenetic and Preventive Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (A.M.K.); (M.E.); (K.O.)
- Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - Makoto Ozawa
- Department of Pathogenetic and Preventive Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (A.M.K.); (M.E.); (K.O.)
- United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8515, Japan
- Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
- Kagoshima Crane Conservation Committee, Izumi 899-0208, Japan
| |
Collapse
|
7
|
Jung Kjær L, Ward MP, Boklund AE, Larsen LE, Hjulsager CK, Kirkeby CT. Using surveillance data for early warning modelling of highly pathogenic avian influenza in Europe reveals a seasonal shift in transmission, 2016-2022. Sci Rep 2023; 13:15396. [PMID: 37717056 PMCID: PMC10505205 DOI: 10.1038/s41598-023-42660-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023] Open
Abstract
Avian influenza in wild birds and poultry flocks constitutes a problem for animal welfare, food security and public health. In recent years there have been increasing numbers of outbreaks in Europe, with many poultry flocks culled after being infected with highly pathogenic avian influenza (HPAI). Continuous monitoring is crucial to enable timely implementation of control to prevent HPAI spread from wild birds to poultry and between poultry flocks within a country. We here utilize readily available public surveillance data and time-series models to predict HPAI detections within European countries and show a seasonal shift that happened during 2021-2022. The output is models capable of monitoring the weekly risk of HPAI outbreaks, to support decision making.
Collapse
Affiliation(s)
- Lene Jung Kjær
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Michael P Ward
- Faculty of Science, Sydney School of Veterinary Science, University of Sydney, Camden, NSW, Australia
| | - Anette Ella Boklund
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Erik Larsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Carsten Thure Kirkeby
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Patyk KA, Fields VL, Beam AL, Branan MA, McGuigan RE, Green A, Torchetti MK, Lantz K, Freifeld A, Marshall K, Delgado AH. Investigation of risk factors for introduction of highly pathogenic avian influenza H5N1 infection among commercial turkey operations in the United States, 2022: a case-control study. Front Vet Sci 2023; 10:1229071. [PMID: 37711433 PMCID: PMC10498466 DOI: 10.3389/fvets.2023.1229071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction The 2022-2023 highly pathogenic avian influenza (HPAI) H5N1 outbreak in the United States (U.S.) is the largest and most costly animal health event in U.S. history. Approximately 70% of commercial farms affected during this outbreak have been turkey farms. Methods We conducted a case-control study to identify potential risk factors for introduction of HPAI virus onto commercial meat turkey operations. Data were collected from 66 case farms and 59 control farms in 12 states. Univariate and multivariable analyses were conducted to compare management and biosecurity factors on case and control farms. Results Factors associated with increased risk of infection included being in an existing control zone, having both brooders and growers, having toms, seeing wild waterfowl or shorebirds in the closest field, and using rendering for dead bird disposal. Protective factors included having a restroom facility, including portable, available to crews that visit the farm and workers having access and using a shower at least some of the time when entering a specified barn. Discussion Study results provide a better understanding of risk factors for HPAI infection and can be used to inform prevention and control measures for HPAI on U.S. turkey farms.
Collapse
Affiliation(s)
- Kelly A. Patyk
- Center for Epidemiology and Animal Health, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, United States
| | - Victoria L. Fields
- Center for Epidemiology and Animal Health, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, United States
| | - Andrea L. Beam
- Center for Epidemiology and Animal Health, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, United States
| | - Matthew A. Branan
- Center for Epidemiology and Animal Health, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, United States
| | - Rachel E. McGuigan
- Center for Epidemiology and Animal Health, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, United States
| | - Alice Green
- Center for Epidemiology and Animal Health, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, United States
| | - Mia K. Torchetti
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, IA, United States
| | - Kristina Lantz
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, IA, United States
| | - Alexis Freifeld
- Center for Epidemiology and Animal Health, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, United States
| | - Katherine Marshall
- Center for Epidemiology and Animal Health, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, United States
| | - Amy H. Delgado
- Center for Epidemiology and Animal Health, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, United States
| |
Collapse
|
9
|
Adlhoch C, Fusaro A, Gonzales JL, Kuiken T, Marangon S, Niqueux É, Staubach C, Terregino C, Guajardo IM, Chuzhakina K, Baldinelli F. Avian influenza overview June - September 2022. EFSA J 2022; 20:e07597. [PMID: 36247870 PMCID: PMC9552036 DOI: 10.2903/j.efsa.2022.7597] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The 2021-2022 highly pathogenic avian influenza (HPAI) epidemic season is the largest HPAI epidemic so far observed in Europe, with a total of 2,467 outbreaks in poultry, 47.7 million birds culled in the affected establishments, 187 outbreaks in captive birds, and 3,573 HPAI virus detections in wild birds with an unprecedent geographical extent reaching from Svalbard islands to South Portugal and Ukraine, affecting 37 European countries. Between 11 June and 9 September 2022, 788 HPAI virus detections were reported in 16 European countries in poultry (56), captive (22) and wild birds (710). Several colony-breeding seabird species exhibited widespread and massive mortality from HPAI A(H5N1) virus along the northwest coast of Europe. This resulted in an unprecedentedly high level of HPAI virus detections in wild birds between June and August 2022 and represents an ongoing risk of infection for domestic birds. HPAI outbreaks were still observed in poultry from June to September with five-fold more infected premises than observed during the same period in 2021 and mostly distributed along the Atlantic coast. Response options to this new epidemiological situation include the definition and rapid implementation of suitable and sustainable HPAI mitigation strategies such as appropriate biosecurity measures and surveillance strategies for early detection in the different poultry production systems. The viruses currently circulating in Europe belong to clade 2.3.4.4b with seven genotypes, three of which identified for the first time during this time period, being detected during summer. HPAI A(H5) viruses were also detected in wild mammal species in Europe and North America and showed genetic markers of adaptation to replication in mammals. Since the last report, two A(H5N6), two A(H9N2) and one A(H10N3) human infections were reported in China. The risk of infection is assessed as low for the general population in the EU/EEA, and low to medium for occupationally exposed people.
Collapse
|