1
|
Levesque-Vargas M, Ohlund L, Sleno L, Gélinas Y, Höhener P, Ponsin V. Insights from multiple stable isotopes (C, N, Cl) into the photodegradation of herbicides atrazine and metolachlor. CHEMOSPHERE 2025; 370:144010. [PMID: 39716600 DOI: 10.1016/j.chemosphere.2024.144010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 12/25/2024]
Abstract
Many processes can contribute to the attenuation of the frequently detected and toxic herbicides atrazine and metolachlor in surface water, including photodegradation. Multi-element compound-specific isotope analysis has the potential to decipher between these different degradation pathways as Cl is a promising tool for both pathway identification and a sensitive indicator of degradation for both atrazine and metolachlor. In this study, photodegradation experiments of atrazine and metolachlor were conducted under simulated sunlight in buffered solutions (direct photodegradation) and with nitrate (indirect photodegradation by OH radicals) to determine kinetics, transformation products and isotope fractionation for C, N and for the first time Cl. For metolachlor, the C-Cl dual isotope slope (ΛC/Cl = 0.46 ± 0.19) is identical to previously reported values for hydrolysis and biodegradation in soils, suggesting the same reaction mechanism (C-Cl bond breakage by SN2 nucleophilic substitution). For atrazine, both direct and indirect photodegradation resulted in a pronounced inverse isotope effect for chlorine (εCl = 6.9 ± 3.3 ‰, and εCl = 2.3 ± 1.2 ‰, respectively), leading to characteristic dual isotope slopes (ΛC/Cl = -0.49 ± 0.17 and ΛC/Cl = -0.31 ± 0.10, respectively). These values are distinct from those previously reported for abiotic hydrolysis, biotic hydrolysis and oxidative dealkylation which are all relevant processes in surface water, opening the path for pathway identification in future field studies.
Collapse
Affiliation(s)
- Matias Levesque-Vargas
- Département des sciences de la Terre et de l'atmosphère, Université du Québec à Montréal, Montréal, QC, H2X 1Y4, Canada; Geotop Research Centre, Montréal, QC, H2X 3Y7, Canada.
| | - Leanne Ohlund
- Département de chimie, Université du Québec à Montréal, Montréal, QC, H3C 3P8, Canada.
| | - Lekha Sleno
- Département de chimie, Université du Québec à Montréal, Montréal, QC, H3C 3P8, Canada.
| | - Yves Gélinas
- Geotop Research Centre, Montréal, QC, H2X 3Y7, Canada; Department of Chemistry and Biochemistry, Concordia University, Montréal, QC, H4B 1R6, Canada.
| | - Patrick Höhener
- Laboratoire Chimie Environnement, Aix-Marseille Université, 13331, Marseille, France.
| | - Violaine Ponsin
- Département des sciences de la Terre et de l'atmosphère, Université du Québec à Montréal, Montréal, QC, H2X 1Y4, Canada; Geotop Research Centre, Montréal, QC, H2X 3Y7, Canada.
| |
Collapse
|
2
|
Saaristo M, Johnstone CP, Lewis P, Sharp S, Chaston T, Hoak M, Leahy P, Cottam D, Noble L, Leeder J, Taylor MP. Spatial and Temporal Dynamics of Chemical and Microbial Contamination in Nonurban Floodwaters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21411-21422. [PMID: 39582195 PMCID: PMC11636212 DOI: 10.1021/acs.est.4c03875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 11/26/2024]
Abstract
During major flood events, waterborne contaminants are relatively poorly characterized. This is due to logistical difficulties associated with obtaining water samples in potentially dangerous flood conditions. Herein, we report analyses of water samples from a large, flooded landscape in Victoria, Australia, during a major flood event. We collected 83 samples from seven rivers and 18 river locations as far apart as 520 km. The sampling campaign covered a 26-day window, with 3 samples taken weekly from each site. Floodwater samples were analyzed for 778 contaminants and 544 microbial species were identified using eDNA. Our study shows that 85 contaminants were detected in floodwaters. Fungicides, phthalates, plant macronutrients, metal(loid)s and PPCPs were better explained by land uses, whereas herbicides and insecticides were explained by a mixture of land use and water flow data. Potentially pathogenic orders with the highest detection rates were Enterobacterales (82.4%), Mycobacteriales (70.6%) and Legionellales (58.8%). Contaminants and microbial signatures responded to rainfall, water flow and water level, demonstrating increased and varied human and environmental risks of exposure during the sampling window. Our work underlines the importance of rigorous and timely monitoring and provides an evidence-base for decision making during increasingly frequent and intense climate driven flood events.
Collapse
Affiliation(s)
- Minna Saaristo
- Environment
Protection Authority, EPA Science, Macleod, Victoria 3085, Australia
| | | | - Phoebe Lewis
- Environment
Protection Authority, EPA Science, Macleod, Victoria 3085, Australia
| | - Simon Sharp
- Environment
Protection Authority, EPA Science, Macleod, Victoria 3085, Australia
| | - Timothy Chaston
- Environment
Protection Authority, EPA Science, Macleod, Victoria 3085, Australia
| | - Molly Hoak
- Environment
Protection Authority, EPA Science, Macleod, Victoria 3085, Australia
| | - Paul Leahy
- Environment
Protection Authority, EPA Science, Macleod, Victoria 3085, Australia
| | - Darren Cottam
- Environment
Protection Authority, EPA Science, Macleod, Victoria 3085, Australia
| | - Luke Noble
- EnviroDNA, Melbourne, Victoria 3056, Australia
| | - John Leeder
- Leeder
Analytical, Melbourne, Victoria 3078, Australia
| | - Mark Patrick Taylor
- Environment
Protection Authority, EPA Science, Macleod, Victoria 3085, Australia
| |
Collapse
|
3
|
Joffre M, Sauvage S, Macary F, Bahi A, Tournebize J, Probst A, Probst JL, Payandi-Rolland D, Sánchez-Pérez JM. The role of ponds in pesticide dissipation at the catchment scale: The case of the Save agricultural catchment (Southwestern France). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173131. [PMID: 38734094 DOI: 10.1016/j.scitotenv.2024.173131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/19/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Pesticides are a major source of pollution for ecosystems. In agricultural catchments, ponds serve as buffer areas for pesticide transfers and biogeochemical hotspots for pesticide dissipation. Some studies have highlighted the specific impact of ponds on the dynamics of pesticides, but knowledge of their cumulative effect at the watershed scale is scarce. Hence, using a modelling approach, we assessed the cumulative role of ponds in pesticide transfer in an agricultural basin (Southwest of France, 1110 km2). The Soil and Water Assessment Tool (SWAT) model was used to model the Save basin, including 197 ponds selected with a Multi-Criteria Decision Aiding Model based on their pesticide interception capacities. The daily discharge, the suspended sediment loads and two herbicide loads (i.e. S-metolachlor and aclonifen) in dissolved and particulate phases were accurately simulated from January 2002 to July 2014 at a daily time step. The presence of ponds resulted in a yearly mean reduction at the watershed outlet of respectively 61 % and 42 % of aclonifen and S-metolachlor fluxes compared to the simulations in the absence of ponds. Sediment-related processes were the most efficient for pesticide dissipation, leading to a mean dissipation efficiency by ponds of 51.0 % for aclonifen and 34.4 % for S-metolachlor. This study provides a first quantification of the cumulative role of ponds in pesticide transfer at the catchment scale in an intensive agricultural catchment.
Collapse
Affiliation(s)
- Mathilde Joffre
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France.
| | - Sabine Sauvage
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France.
| | | | - Aya Bahi
- HYCAR- INRAE, University of Paris-Saclay, CS 10030, F-92761 Antony, France
| | - Julien Tournebize
- HYCAR- INRAE, University of Paris-Saclay, CS 10030, F-92761 Antony, France
| | - Anne Probst
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France
| | - Jean-Luc Probst
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France
| | - Dahedrey Payandi-Rolland
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France
| | - José Miguel Sánchez-Pérez
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France
| |
Collapse
|
4
|
Buscaroli E, Lavrnić S, Blasioli S, Gentile SL, Solimando D, Mancuso G, Anconelli S, Braschi I, Toscano A. Efficient dissipation of acetamiprid, metalaxyl, S-metolachlor and terbuthylazine in a full-scale free water surface constructed wetland in Bologna province, Italy: A kinetic modeling study. ENVIRONMENTAL RESEARCH 2024; 247:118275. [PMID: 38246295 DOI: 10.1016/j.envres.2024.118275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
The study investigated the dissipation ability of a vegetated free water surface (FWS) constructed wetland (CW) in treating pesticides-contaminated agricultural runoff/drainage water in a rural area belonging to Bologna province (Italy). The experiment simulated a 0.1% pesticide agricultural water runoff/drainage event from a 12.5-ha farm by dissolving acetamiprid, metalaxyl, S-metolachlor, and terbuthylazine in 1000 L of water and pumping it into the CW. Water and sediment samples from the CW were collected for 4 months at different time intervals to determine pesticide concentrations by multiresidue extraction and chromatography-mass spectrometry analyses. In parallel, no active compounds were detected in the CW sediments during the experimental period. Pesticides dissipation in the wetland water compartment was modeled according to best data practices by fitting the data to Single First Order (SFO), First Order Multi-Compartment (FOMC) and Double First Order in Parallel (DFOP) kinetic models. SFO (except for metalaxyl), FOMC and DFOP kinetic models adequately predicted the dissipation for the four investigated molecules, with the DFOP kinetic model that better fitted the observed data. The modeled distribution of each pesticide between biomass and water in the CW highly correlated with environmental indexes as Kow and bioconcentration factor. Computed DT50 by DFOP model were 2.169, 8.019, 1.551 and 2.047 days for acetamiprid, metalaxyl, S-metolachlor, and terbuthylazine, respectively. Although the exact degradation mechanisms of each pesticide require further study, the FWS CW was found to be effective in treating pesticides-contaminated agricultural runoff/drainage water within an acceptable time. Therefore, this technology proved to be a valuable tool for mitigating pesticides runoff occurring after intense rain events.
Collapse
Affiliation(s)
- Enrico Buscaroli
- Alma Mater Studiorum - University of Bologna, Department of Agricultural and Food Sciences, Viale G. Fanin 40-50, 40127 Bologna, Italy
| | - Stevo Lavrnić
- Alma Mater Studiorum - University of Bologna, Department of Agricultural and Food Sciences, Viale G. Fanin 40-50, 40127 Bologna, Italy
| | - Sonia Blasioli
- Alma Mater Studiorum - University of Bologna, Department of Agricultural and Food Sciences, Viale G. Fanin 40-50, 40127 Bologna, Italy
| | | | - Domenico Solimando
- Consorzio di Bonifica Canale Emiliano Romagnolo, Via E. Masi 8, 40137 Bologna, Italy
| | - Giuseppe Mancuso
- Alma Mater Studiorum - University of Bologna, Department of Agricultural and Food Sciences, Viale G. Fanin 40-50, 40127 Bologna, Italy
| | - Stefano Anconelli
- Consorzio di Bonifica Canale Emiliano Romagnolo, Via E. Masi 8, 40137 Bologna, Italy
| | - Ilaria Braschi
- Alma Mater Studiorum - University of Bologna, Department of Agricultural and Food Sciences, Viale G. Fanin 40-50, 40127 Bologna, Italy.
| | - Attilio Toscano
- Alma Mater Studiorum - University of Bologna, Department of Agricultural and Food Sciences, Viale G. Fanin 40-50, 40127 Bologna, Italy
| |
Collapse
|
5
|
Masbou J, Höhener P, Payraudeau S, Martin-Laurent F, Imfeld G. Stable isotope composition of pesticides in commercial formulations: The ISOTOPEST database. CHEMOSPHERE 2024; 352:141488. [PMID: 38368960 DOI: 10.1016/j.chemosphere.2024.141488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
By assessing the changes in stable isotope compositions within individual pesticide molecules, Compound Specific Isotope Analysis (CSIA) holds the potential to identify and differentiate sources and quantify pesticide degradation in the environment. However, the environmental application of pesticide CSIA is limited by the general lack of knowledge regarding the initial isotopic composition of active substances in commercially available formulations used by farmers. To address this limitation, we established a database aimed at cataloguing and disseminating isotopic signatures in commercial formulations to expand the use of pesticide CSIA. Our study involved the collection of 25 analytical standards and 120 commercial pesticide formulations from 23 manufacturers. Subsequently, 59 commercial formulations and 25 standards were extracted, and each of their active substance was analyzed for both δ13C (n = 84) and δ15N CSIA (n = 43). The extraction of pesticides did not cause significant isotope fractionation (Δ13C and Δ15N < 1‰). Incorporating existing literature data, stable carbon and nitrogen isotope signatures varied in a relatively narrow range among pesticide formulations for different pesticides (Δ13C and Δ15N < 10‰) and within different formulations for a single substance (Δ13C and Δ15N < 2‰). Overall, this suggests that pesticide CSIA is more suited for identifying pesticide transformation processes rather than differentiating pesticide sources. Moreover, an inter-laboratory comparison showed similar δ13C (Δ13C ≤ 1.2 ‰) for the targeted substances albeit varying GC-IRMS instruments. Insignificant carbon isotopic fractionation (Δ13C < 0.5‰) was observed after 4 years of storing the same pesticide formulations, confirming their viability for long-term storage at 4 °C and future inter-laboratory comparison exercises. Altogether, the ISOTOPEST database, in open access for public use and additional contributions, marks a significant advancement in establishing an environmentally relevant pesticide CSIA approach.
Collapse
Affiliation(s)
- Jérémy Masbou
- CNRS, ENGEES, Institut Terre Et Environnement de Strasbourg (ITES, UMR 7063), Université de Strasbourg, Strasbourg, France
| | - Patrick Höhener
- CNRS, UMR 7376, Laboratory of Environmental Chemistry, Aix Marseille University, Marseille, France
| | - Sylvain Payraudeau
- CNRS, ENGEES, Institut Terre Et Environnement de Strasbourg (ITES, UMR 7063), Université de Strasbourg, Strasbourg, France
| | - Fabrice Martin-Laurent
- Institut Agro Dijon, INRAE, Université Bourgogne Franche-Comté, Agroécologie, Dijon, France
| | - Gwenaël Imfeld
- CNRS, ENGEES, Institut Terre Et Environnement de Strasbourg (ITES, UMR 7063), Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
6
|
Gilevska T, Payraudeau S, Imfeld G. Evaluating pesticide degradation in artificial wetlands with compound-specific isotope analysis: A case study with the fungicide dimethomorph. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165767. [PMID: 37506910 DOI: 10.1016/j.scitotenv.2023.165767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/19/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023]
Abstract
Pesticide degradation in wetland systems intercepting agricultural runoff is often overlooked and mixed with other dissipation processes when assessing pesticide concentrations alone. This study focused on the potential of compound-specific isotope analysis (CSIA) to estimate pesticide degradation in a stormwater wetland receiving pesticide runoff from a vineyard catchment. The fungicide dimethomorph (DIM), with diastereoisomers E and Z, was the prevalent pesticide in the runoff entering the wetland from June to September 2020. DIM Z, the most commonly detected isomer, exhibited a significant change (Δ(13C) > 3 ‰) in its carbon isotopic composition in the wetland water compared to the runoff and commercial formulation, which indicated degradation. Laboratory DIM degradation assays, including photodegradation and biodegradation in oxic wetland water with and without aquatic plants and in anoxic sediments, indicated that DIM degradation mainly occurred in the wetland sediments. The rapid degradation of both DIM isomers (E:t1/2 = 1.2 ± 0.6, Z: t1/2 = 1.5 ± 0.8 days) in the wetland sediment led to significant carbon isotopic fractionation (εDIM-E = -3.0 ± 0.6 ‰, εDIM-Z = -2.0 ± 0.2 ‰). In contrast, no significant isotope fractionation occurred during DIM photodegradation, despite the rapid isomerization of the E isomer to the Z isomer and a half-life of 15.3 ± 2.2 days for both isomers. DIM degradation was slow (E: t1/2 = 56-62 days, Z: t1/2 = 82-103 days) in oxic water with plants, while DIM persisted (120 days) in water without plants. DIM CSIA was thus used to evaluate the in situ biodegradation of DIM Z in the wetland. The DIM Z degradation estimates based on a classical concentration mass balance (86-94 %) were slightly higher than estimates based on the isotopic mass balance (61-68 %). Altogether, this study shows the potential of CSIA to conservatively evaluate pesticide degradation in wetland systems, offering a reliable alternative to classical labor-intensive mass balance approaches.).
Collapse
Affiliation(s)
- Tetyana Gilevska
- Université de Strasbourg, CNRS/ENGEES, ITES UMR 7063, Institut Terre et Environnement de Strasbourg, Strasbourg, France.
| | - Sylvain Payraudeau
- Université de Strasbourg, CNRS/ENGEES, ITES UMR 7063, Institut Terre et Environnement de Strasbourg, Strasbourg, France
| | - Gwenaël Imfeld
- Université de Strasbourg, CNRS/ENGEES, ITES UMR 7063, Institut Terre et Environnement de Strasbourg, Strasbourg, France
| |
Collapse
|
7
|
Hofman‐Caris R, Dingemans M, Reus A, Shaikh SM, Muñoz Sierra J, Karges U, der Beek TA, Nogueiro E, Lythgo C, Parra Morte JM, Bastaki M, Serafimova R, Friel A, Court Marques D, Uphoff A, Bielska L, Putzu C, Ruggeri L, Papadaki P. Guidance document on the impact of water treatment processes on residues of active substances or their metabolites in water abstracted for the production of drinking water. EFSA J 2023; 21:e08194. [PMID: 37644961 PMCID: PMC10461463 DOI: 10.2903/j.efsa.2023.8194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023] Open
Abstract
This guidance document provides a tiered framework for risk assessors and facilitates risk managers in making decisions concerning the approval of active substances (AS) that are chemicals in plant protection products (PPPs) and biocidal products, and authorisation of the products. Based on the approaches presented in this document, a conclusion can be drawn on the impact of water treatment processes on residues of the AS or its metabolites in surface water and/or groundwater abstracted for the production of drinking water, i.e. the formation of transformation products (TPs). This guidance enables the identification of actual public health concerns from exposure to harmful compounds generated during the processing of water for the production of drinking water, and it focuses on water treatment methods commonly used in the European Union (EU). The tiered framework determines whether residues from PPP use or residues from biocidal product use can be present in water at water abstraction locations. Approaches, including experimental methods, are described that can be used to assess whether harmful TPs may form during water treatment and, if so, how to assess the impact of exposure to these water treatment TPs (tTPs) and other residues including environmental TPs (eTPs) on human and domesticated animal health through the consumption of TPs via drinking water. The types of studies or information that would be required are described while avoiding vertebrate testing as much as possible. The framework integrates the use of weight-of-evidence and, when possible alternative (new approach) methods to avoid as far as possible the need for additional testing.
Collapse
|
8
|
Blessing M, Baran N. A review on environmental isotope analysis of aquatic micropollutants: Recent advances, pitfalls and perspectives. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Chaumet B, Probst JL, Payré-Suc V, Granouillac F, Riboul D, Probst A. Pond mitigation in dissolved and particulate pesticide transfers: Influence of storm events and seasonality (Auradé agricultural catchment, SW-France). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115911. [PMID: 35961144 DOI: 10.1016/j.jenvman.2022.115911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/18/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
In agricultural headwater catchments, wetlands such as ponds are numerous and well known to partly dissipate contamination. Most of the pesticides are transferred from soils to the aquatic environment during flood events. This study reports the annual/seasonal behaviour of 6 pesticides (metolachlor, boscalid, epoxiconazole, tebuconazole, aclonifen and pendimethalin) in such an environment. Because it is rarely considered, the study focussed on the high frequency of the distribution of pesticides between dissolved and particulate phases, as well as the main controlling factors of their upstream-downstream transfer. The pond removal rate was calculated to evaluate the wetland efficiency in pesticide mitigation. We conducted a one-year high frequency hydrochemical survey, with particular emphasis on flood events, in the upper Auradé catchment (SW-France), an area of long-term conventional agriculture on highly erosive carbonated soils. The inlet and outlet of the pond were instrumented for water level measurements and water sampling. The highest concentrations were observed for tebuconazole and, in general, the presence of the molecules during the year depended on the season. The pond showed satisfactory efficiency in pesticide attenuation for the six molecules considered, although the removal rate depended on the molecule and the bearing phase (from 28.4% for boscalid to 89.4% for aclonifen in the dissolved phase and from 22.1% for pendimethalin to 96.8% for metolachlor in the particulate fraction). Interestingly, the more hydrophilic the molecule (low LogKOW), the more efficient the pesticide removal rate was for its particulate fraction, and the opposite for hydrophobic molecules (high LogKOW). Flood events carried a large amount of Total Suspended Solid (TSS) bearing hydrophobic molecules from a major legacy of upper catchment soils, although 52% of the pesticides were transported by the dissolved fraction. Significant resuspension of TSS from the pond was evidenced by the annual mass balance with four tons of TSS released, while the positive rate of pesticide removal involved other effective mechanisms such as exchange and complexation. Although these constructed wetlands may be beneficial for pesticide mitigation, the results highlighted the need for improved land management in the upstream catchment during the different seasons to avoid bare soils that pose a risk of high surface water contamination, especially due to the presence of hydrophobic molecules in combination with a high erosive context.
Collapse
Affiliation(s)
- Betty Chaumet
- Laboratory of Functional Ecology and Environment, University of Toulouse, CNRS, Auzeville Tolosane, 31326 Castanet Tolosan, France; LTSER Zone Atelier Pyrénées-Garonne, CNRS, University of Toulouse, 31326 Castanet Tolosan, France; LTER Bassin versant Auradé, IR OZCAR, CNRS, University of Toulouse, 31326 Castanet Tolosan, France.
| | - Jean-Luc Probst
- Laboratory of Functional Ecology and Environment, University of Toulouse, CNRS, Auzeville Tolosane, 31326 Castanet Tolosan, France; LTSER Zone Atelier Pyrénées-Garonne, CNRS, University of Toulouse, 31326 Castanet Tolosan, France; LTER Bassin versant Auradé, IR OZCAR, CNRS, University of Toulouse, 31326 Castanet Tolosan, France
| | - Virginie Payré-Suc
- Laboratory of Functional Ecology and Environment, University of Toulouse, CNRS, Auzeville Tolosane, 31326 Castanet Tolosan, France; LTSER Zone Atelier Pyrénées-Garonne, CNRS, University of Toulouse, 31326 Castanet Tolosan, France; LTER Bassin versant Auradé, IR OZCAR, CNRS, University of Toulouse, 31326 Castanet Tolosan, France
| | - Franck Granouillac
- Laboratory of Functional Ecology and Environment, University of Toulouse, CNRS, Auzeville Tolosane, 31326 Castanet Tolosan, France; LTSER Zone Atelier Pyrénées-Garonne, CNRS, University of Toulouse, 31326 Castanet Tolosan, France; LTER Bassin versant Auradé, IR OZCAR, CNRS, University of Toulouse, 31326 Castanet Tolosan, France
| | - David Riboul
- Laboratory of Functional Ecology and Environment, University of Toulouse, CNRS, Auzeville Tolosane, 31326 Castanet Tolosan, France
| | - Anne Probst
- Laboratory of Functional Ecology and Environment, University of Toulouse, CNRS, Auzeville Tolosane, 31326 Castanet Tolosan, France; LTSER Zone Atelier Pyrénées-Garonne, CNRS, University of Toulouse, 31326 Castanet Tolosan, France; LTER Bassin versant Auradé, IR OZCAR, CNRS, University of Toulouse, 31326 Castanet Tolosan, France.
| |
Collapse
|
10
|
Willkommen S, Lange J, Pfannerstill M, Fohrer N, Ulrich U. Gain and retain - On the efficiency of modified agricultural drainage ponds for pesticide retention. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155405. [PMID: 35469862 DOI: 10.1016/j.scitotenv.2022.155405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/24/2022] [Accepted: 04/16/2022] [Indexed: 06/14/2023]
Abstract
Drainage ponds have the potential to serve as long-term interface measures primarily for flood control, and mass retention. They are often considered as promising supplements for the mitigation of drainage pipe loads to improve the water quality in agricultural landscapes. In this study, a highly dynamic drainage pond system with non-steady inflows and groundwater interaction was modified and investigated regarding its potential for pesticide and transformation product (TP) retention. For this purpose, two 104-day monitoring campaigns were conducted before and after pond modification. Field experiments with fluorescent tracers, Uranine and Sulforhodamine-B, proved that structural modifications improved the hydraulic functionality of the ponds. The effective volume (Ɛ) increased from 20% to almost 100% in the modified pond and the mean hydraulic residence time (τ) was ten times longer. After a dry period, pesticide retention was high during slow refilling of the ponds, still TP loads posed a risk by infiltration into shallow groundwater due to the permeable ground. During wet periods, short nominal detention times together with high inflows led to rare high retention rates through peak attenuation. Moderate inflows resulted in extremely variable retention values, owing to the small pond storage capacity. Along with this, the total retention efficiency after modification reached up to 38% for mobile, 29% for sorptive pesticides, and 32% for mobile TPs. To achieve the best performances for ponds as natural landscape elements, they should be analysed for their hydrological functionality as a prerequisite and then modified for delayed pesticide and TP transport. Then, dynamic drainage ponds can utilize their full potential regarding mitigation of pesticide and TP loads in agricultural catchments.
Collapse
Affiliation(s)
- Sandra Willkommen
- Christian-Albrechts-University of Kiel, Institute of Natural Resource Conservation, Department of Hydrology and Water Resource Management, Kiel, Germany.
| | - Jens Lange
- Hydrology, Faculty of Environment and Natural Resources, University Freiburg, Germany
| | - Matthias Pfannerstill
- State Agency for Agriculture, Environment and Rural Areas Schleswig-Holstein (LLUR), Hamburger Chaussee 25, 24220 Flintbek, Germany
| | - Nicola Fohrer
- Christian-Albrechts-University of Kiel, Institute of Natural Resource Conservation, Department of Hydrology and Water Resource Management, Kiel, Germany
| | - Uta Ulrich
- Christian-Albrechts-University of Kiel, Institute of Natural Resource Conservation, Department of Hydrology and Water Resource Management, Kiel, Germany
| |
Collapse
|
11
|
Schönenberger UT, Beck B, Dax A, Vogler B, Stamm C. Pesticide concentrations in agricultural storm drainage inlets of a small Swiss catchment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43966-43983. [PMID: 35124778 PMCID: PMC9200698 DOI: 10.1007/s11356-022-18933-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Agricultural pesticides transported to surface waters pose a major risk for aquatic ecosystems. Modelling studies indicate that the inlets of agricultural storm drainage systems can considerably increase the connectivity of surface runoff and pesticides to surface waters. These model results have however not yet been validated with field measurements. In this study, we measured discharge and concentrations of 51 pesticides in four out of 158 storm drainage inlets of a small Swiss agricultural catchment (2.8 km2) and in the receiving stream. For this, we performed an event-triggered sampling during 19 rain events and collected plot-specific pesticide application data. Our results show that agricultural storm drainage inlets strongly influence surface runoff and pesticide transport in the study catchment. The concentrations of single pesticides in inlets amounted up to 62 µg/L. During some rain events, transport through single inlets caused more than 10% of the stream load of certain pesticides. An extrapolation to the entire catchment suggests that during selected events on average 30 to 70% of the load in the stream was transported through inlets. Pesticide applications on fields with surface runoff or spray drift potential to inlets led to increased concentrations in the corresponding inlets. Overall, this study corroborates the relevance of such inlets for pesticide transport by establishing a connectivity between fields and surface waters, and by their potential to deliver substantial pesticide loads to surface waters.
Collapse
Affiliation(s)
- Urs T Schönenberger
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland.
| | - Birgit Beck
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
| | - Anne Dax
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
| | - Bernadette Vogler
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
| | - Christian Stamm
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
| |
Collapse
|
12
|
Ulrich U, Lorenz S, Hörmann G, Stähler M, Neubauer L, Fohrer N. Multiple pesticides in lentic small water bodies: Exposure, ecotoxicological risk, and contamination origin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151504. [PMID: 34785230 DOI: 10.1016/j.scitotenv.2021.151504] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Lentic small water bodies (LSWB) are a highly valuable landscape element with important ecosystem services and benefits for humans and the environment. However, data about their pesticide contamination dynamic and the associated ecotoxicological effects are scarce. To overcome these knowledge gaps, five LSWBs located in agricultural fields in Northern Germany were studied during the spring pesticide application period (April to July 2018) and the concentrations of 94 pesticides were measured in weekly intervals. The goals of this study were to observe the trends of pesticide contamination during the application period, assess the ecotoxicity of the contamination, and assign the findings to temporal and spatial origins. Samples contained pesticide concentrations between 0.12 and 4.83 μg L-1 as sums. High detection frequencies (81% of samples) and concentrations (max 1.2 μg L-1) were observed for metazachlor transformation products. Contamination from multiple pesticides was detected with up to 25 compounds per sample and a maximum of 37 compounds per LSWB during the entire sampling period. High toxicities for algae and macrophytes were recorded using toxic units (TU) of -0.2 to -3.5. TUs for invertebrates were generally lower than for algae/macrophytes (-2.7 to -5.2) but were also recorded at levels with ecological impacts. Pesticide detections were separated into four categories to assign them to different temporal and spatial origins. Pesticides from the spring (5-11%) and the previous autumn (0-36%) application periods were detected in the LSWB. Some pesticides could be related to the application of the previous crop on the same field (0-39%), but most of the compounds (44-85%) were not related to the crop management in the last two years on the respective LSWB fields. The relevance of different input pathways is still unknown. Particularly, the effect of long-distance transport needs to be clarified to protect aquatic biota in LSWBs.
Collapse
Affiliation(s)
- Uta Ulrich
- Institute of Natural Resource Conservation, Christian-Albrechts University Kiel, Olshausenstr. 75, 24118 Kiel, Germany.
| | - Stefan Lorenz
- Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius Kuehn Institute, Koenigin-Luise-Straße 19, 14195 Berlin, Germany
| | - Georg Hörmann
- Institute of Natural Resource Conservation, Christian-Albrechts University Kiel, Olshausenstr. 75, 24118 Kiel, Germany
| | - Matthias Stähler
- Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius Kuehn Institute, Koenigin-Luise-Straße 19, 14195 Berlin, Germany
| | - Lydia Neubauer
- Institute of Natural Resource Conservation, Christian-Albrechts University Kiel, Olshausenstr. 75, 24118 Kiel, Germany
| | - Nicola Fohrer
- Institute of Natural Resource Conservation, Christian-Albrechts University Kiel, Olshausenstr. 75, 24118 Kiel, Germany
| |
Collapse
|
13
|
Pyraclostrobin Removal in Pilot-Scale Horizontal Subsurface Flow Constructed Wetlands and in Porous Media Filters. Processes (Basel) 2022. [DOI: 10.3390/pr10020414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Pyraclostrobin is a fungicide extensively used for the control of various fungal diseases and is frequently detected in environmental samples. Natural systems, such as constructed wetlands (CWs) and gravity filters, are effective and environmentally friendly treatment systems, which can reduce or eliminate pesticides from the environment. The aim of this study was to investigate the capacity of two pilot-scale CWs (porous media: cobbles and fine gravel, planted with Phragmites australis) and six gravity filters (filling material: bauxite, carbonate gravel and zeolite) to remove pyraclostrobin from polluted water originating from spraying equipment rinsing sites. For this, experiments were conducted to test the performance of the above natural systems in removing this fungicide. The results showed that the mean percent pyraclostrobin removal efficiencies for cobbles and fine gravel CW units were 56.7% and 75.2%, respectively, and the mean percent removals for HRTs of 6 and 8 days were 68.7% and 62.8%, respectively. The mean removal efficiencies for the bauxite, carbonate gravel and zeolite filter units were 32.5%, 36.7% and 61.2%, respectively, and the mean percent removals for HRTs 2, 4 and 8 days were 39.9%, 43.4% and 44.1%, respectively. Regarding the feeding strategy, the mean removal values of pyraclostrobin in gravity filter units were 43.44% and 40.80% for continuous and batch feeding, respectively. Thus, these systems can be used in rural areas for the treatment of spraying equipment rinsing water.
Collapse
|
14
|
Role of Pond Sediments for Trapping Pesticides in an Agricultural Catchment (Auradé, SW France): Distribution and Controlling Factors. WATER 2021. [DOI: 10.3390/w13131734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In agricultural areas, ponds are suitable wetland environments to dissipate and reduce the occurrence of pesticides in aquatic environments. However, their impact at a catchment scale is still poorly understood. This study aims to determine how these organic contaminants were trapped in a pond located in an agricultural critical zone from SW France (Auradé catchment). The spatial distribution of pesticide concentrations and their different controlling factors were investigated in waters and sediments collected during two distinct seasons. The results highlighted (i) the link between the presence of the molecules and the agricultural practices upstream, (ii) the influence of hydrological/seasonal conditions, especially on hydrophobic molecule accumulation such as tebuconazole, (iii) the key role of clay content in sediments on the control of moderately hydrophilic pesticides (metolachlor and boscalid), but also the unexpected role of coarse particles for boscalid; and (iv) the influence of sediment depth on pesticide storage. Nevertheless, other physico-chemical parameters, such as mineralogical composition of sediment, needed to be considered to explain the pesticide patterns. This study brings a new hypothesis to be investigated in the future about pesticide behaviour in such pond environments.
Collapse
|