1
|
Vicidomini C, Palumbo R, Moccia M, Roviello GN. Oxidative Processes and Xenobiotic Metabolism in Plants: Mechanisms of Defense and Potential Therapeutic Implications. J Xenobiot 2024; 14:1541-1569. [PMID: 39449425 PMCID: PMC11503355 DOI: 10.3390/jox14040084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
Plants are continuously exposed to environmental challenges, including pollutants, pesticides, and heavy metals, collectively termed xenobiotics. These substances induce oxidative stress by generating reactive oxygen species (ROS), which can damage cellular components such as lipids, proteins, and nucleic acids. To counteract this, plants have evolved complex metabolic pathways to detoxify and process these harmful compounds. Oxidative stress in plants primarily arises from the overproduction of hydrogen peroxide (H2O2), superoxide anions (O2•-), singlet oxygen (1O2), and hydroxyl radicals (•OH), by-products of metabolic activities such as photosynthesis and respiration. The presence of xenobiotics leads to a notable increase in ROS, which can result in cellular damage and metabolic disruption. To combat this, plants have developed a strong antioxidant defense mechanism that includes enzymatic antioxidants that work together to eliminate ROS, thereby reducing their harmful effects. In addition to enzymatic defenses, plants also synthesize various non-enzymatic antioxidants, including flavonoids, phenolic acids, and vitamins. These compounds effectively neutralize ROS and help regenerate other antioxidants, offering extensive protection against oxidative stress. The metabolism of xenobiotic substances in plants occurs in three stages: the first involves modification, which refers to the chemical alteration of xenobiotics to make them less harmful. The second involves conjugation, where the modified xenobiotics are combined with other substances to increase their solubility, facilitating their elimination from the plant. The third stage involves compartmentalization, which is the storage or isolation of conjugated xenobiotics in specific parts of the plant, helping to prevent damage to vital cellular functions. Secondary metabolites found in plants, such as alkaloids, terpenoids, and flavonoids, play a vital role in detoxification and the defense against oxidative stress. Gaining a deeper understanding of the oxidative mechanisms and the pathways of xenobiotic metabolism in plants is essential, as this knowledge can lead to the formulation of plant-derived strategies aimed at alleviating the effects of environmental pollution and enhancing human health by improving detoxification and antioxidant capabilities, as discussed in this review.
Collapse
Affiliation(s)
- Caterina Vicidomini
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Rosanna Palumbo
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Maria Moccia
- Institute of Crystallography, Italian National Council for Research (IC-CNR), Strada Provinciale 35d, 9, Montelibretti, 00010 Rome, Italy
| | - Giovanni N. Roviello
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
2
|
Parvez MK, Al-Dosari MS, Tabish Rehman M, Al-Rehaily AJ, Alqahtani A, Alajmi MF. The anti-hepatitis B virus and anti-hepatotoxic efficacies of solanopubamine, a rare alkaloid from Solanum schimperianum. Saudi Pharm J 2022; 30:359-368. [PMID: 35527834 PMCID: PMC9068741 DOI: 10.1016/j.jsps.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/02/2022] [Indexed: 11/02/2022] Open
Abstract
Chronic liver disease caused by hepatitis B virus (HBV) remains an important health issue. Though there are effective HBV-polymerase inhibitors (e.g., lamivudine), their prolonged use leads to emergence of drug-resistant (polymerase mutant) strains. Several herbal formulations and phytochemicals have been therefore, reported as potential anti-HBV agents with no sign of resistance in experimental and clinical settings. In this study, we assessed the anti-HBV as well as hepatoprotective salutations of solanopubamine, a rare alkaloid isolated from S. schimperianum. In cultured HepG2.2.15 cells, solanopubamine showed marked anti-HBV activity in a time and dose-dependent manner. Solanopubamine (30 μM) efficiently inhibited HBsAg and HBeAg expressions by 66.5%, 70.5%, respectively as compared to 82.5% and 86.5% respective inhibition by lamivudine (2 μM) at day 5. Molecular docking analyses of solanopubamine revealed formations of stable complexes with lamivudine-sensitive as well as lamivudine-resistant polymerase through interactions of catalytic ‘YMDD/YIDD’ motif residues. Moreover, solanopubamine attenuated DCFH-induced oxidative and apoptotic damage and restored HepG2 cell viability by 28.5%, and downregulated caspase-3/7 activations by 33%. Further docking analyses of solanopubamine showed formation of stable complexes with caspase-3/7. Taken together, our data demonstrates promising anti-HBV and anti-hepatotoxic therapeutic potential of solanopubamine, and warrants further molecular and pharmacological studies.
Collapse
|
3
|
Parvez MK, Al-Dosari MS, Tabish Rehman M, Alajmi MF, Alqahtani AS, AlSaid MS. New terpenic and phenolic compounds from Suaeda monoica reverse oxidative and apoptotic damages in human endothelial cells. Saudi Pharm J 2021; 29:1102-1111. [PMID: 34703363 PMCID: PMC8523353 DOI: 10.1016/j.jsps.2021.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/01/2021] [Indexed: 11/20/2022] Open
Abstract
Elevation in hyperglycemia-associated methylglyoxal level can trigger vascular endothelial cells oxidative stress and apoptosis. The present work assesses the cell proliferative, anti-oxidative and anti-apoptotic potential of Suaeda monoica derived four new terpenes: a norsesquaterpenol (normonisesquaterpenol), a monocyclic triterpenoid (suaedanortriterpene dione), an aromatic monoterpenic ester and a labdane-type norditerpenic xyloside as well as two new phenols: an alkylated β-naphthol and a β-methoxy naphthalene in cultured human umbilical vein endothelial cells (HUVEC). Of these, suaedanortriterpenedione (53.7%), normonisesquaterpenol (51.4%) and norditerpenic xyloside (48%) showed the most promising cell proliferative activities compared to others. Moreover, normonisesquaterpenol, norditerpenic xyloside and suaedanortriterpenedione efficiently reversed the oxidative and apoptotic cell damage via downregulation of capase-3/7 by 44.3%, 42.2% and 39.4%, respectively against dichlorofluorescin, whereas by 46.2%, 43.5% and 42.5%, respectively against methylglyoxal. Aminoguanidine, the reference drug inhibited caspase-3/7 activity by 56.2% and 54.7% through attenuation of dichlorofluorescin and methylglyoxal, respectively. Further in silico molecular docking analysis revealed formation of stable complexes between the tested compounds and caspase-3/7. Conclusively, we for the first time demonstrate the growth stimulatory, anti-oxidative and anti-apoptotic salutations of S. monoica derived novel compounds in human endothelial cells. This warrants their further assessment as vascular cell protective and rejuvenating therapeutics, especially in hyperglycemic conditions.
Collapse
Affiliation(s)
- Mohammad K. Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed S. Al-Dosari
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Md. Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed F. Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali S. Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Medicinal, Aromatic and Poisonous Plants Research Center, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mansour S. AlSaid
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Medicinal, Aromatic and Poisonous Plants Research Center, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Al-Nour MY, Arbab AH, Parvez MK, Mohamed AY, Al-Dosari MS. In-vitro Cytotoxicity and In-silico Insights of the Multi-target Anticancer Candidates from Haplophyllum tuberculatum. BORNEO JOURNAL OF PHARMACY 2021. [DOI: 10.33084/bjop.v4i3.1955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This study aimed to investigate the anticancer activity of Haplophyllum tuberculatum(Forsk.) aerial parts ethanol extract and fractions and reveal the potential anticancer targets, binding modes, pharmacokinetics, and toxicity properties of its phytoconstituents. MTT assay was used to investigate the anticancer activity. TargetNet, ChemProt version 2.0, and CLC-Pred web servers were used for virtual screening, and Cresset Flare software was used for molecular docking with the 26 predicted targets. Moreover, pkCSM, swiss ADME, and eMolTox web servers were used to predict pharmacokinetics and safety. Ethanolic extracts of H. tuberculatum on HepG2 and HeLa cell lines showed promising activities with IC50 values 54.12 and 48.1 µg/mL, respectively. Further, ethyl acetate fraction showed the highest cytotoxicity on HepG2 and HeLa cell lines with IC50 values 41.7 and 52.31 µg/mL. Of 70 compounds screened virtually, polygamain, justicidin A, justicidin B, haplotubine, kusunokinin, and flindersine were predicted as safe anticancer drugs candidates. They showed the highest binding scores with targets involved in cell growth, proliferation, survival, migration, tumor suppression, induction of apoptosis, metastasis, and drug resistance. Our findings revealed the potency of H. tuberculatum as a source of anticancer candidates that further studies should support.
Collapse
|
5
|
Dwivedi S, Kushalan S, Paithankar JG, D'Souza LC, Hegde S, Sharma A. Environmental toxicants, oxidative stress and health adversities: interventions of phytochemicals. J Pharm Pharmacol 2021; 74:516-536. [PMID: 33822130 DOI: 10.1093/jpp/rgab044] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/17/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Oxidative stress is the most common factor mediating environmental chemical-induced health adversities. Recently, an exponential rise in the use of phytochemicals as an alternative therapeutics against oxidative stress-mediated diseases has been documented. Due to their free radical quenching property, plant-derived natural products have gained substantial attention as a therapeutic agent in environmental toxicology. The present review aimed to describe the therapeutic role of phytochemicals in mitigating environmental toxicant-mediated sub-cellular and organ toxicities via controlling cellular antioxidant response. METHODS The present review has covered the recently related studies, mainly focussing on the free radical scavenging role of phytochemicals in environmental toxicology. KEY FINDINGS In vitro and in vivo studies have reported that supplementation of antioxidant-rich compounds can ameliorate the toxicant-induced oxidative stress, thereby improving the health conditions. Improving the cellular antioxidant pool has been considered as a mode of action of phytochemicals. However, the other cellular targets of phytochemicals remain uncertain. CONCLUSIONS Knowing the therapeutic value of phytochemicals to mitigate the chemical-induced toxicity is an initial stage; mechanistic understanding needs to decipher for development as therapeutics. Moreover, examining the efficacy of phytochemicals against mixer toxicity and identifying the bioactive molecule are major challenges in the field.
Collapse
Affiliation(s)
- Shiwangi Dwivedi
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Deralakatte, Mangaluru, India
| | - Sharanya Kushalan
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Bioresource and Biotechnology, Deralakatte, Mangaluru, India
| | - Jagdish Gopal Paithankar
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Deralakatte, Mangaluru, India
| | - Leonard Clinton D'Souza
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Deralakatte, Mangaluru, India
| | - Smitha Hegde
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Bioresource and Biotechnology, Deralakatte, Mangaluru, India
| | - Anurag Sharma
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Deralakatte, Mangaluru, India
| |
Collapse
|
6
|
Roshdy WH, Rashed HA, Kandeil A, Mostafa A, Moatasim Y, Kutkat O, Abo Shama NM, Gomaa MR, El-Sayed IH, El Guindy NM, Naguib A, Kayali G, Ali MA. EGYVIR: An immunomodulatory herbal extract with potent antiviral activity against SARS-CoV-2. PLoS One 2020; 15:e0241739. [PMID: 33206688 PMCID: PMC7673558 DOI: 10.1371/journal.pone.0241739] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022] Open
Abstract
Due to the challenges for developing vaccines in devastating pandemic situations of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), developing and screening of novel antiviral agents are peremptorily demanded. Herein, we developed EGYVIR as a potent immunomodulatory herbal extract with promising antiviral activity against SARS-CoV-2. It constitutes of a combination of black pepper extract with curcumin extract. The antiviral effect of EGYVIR extract is attributed to the two key phases of the disease in severe cases. First, the inhibition of the nuclear translocation of NF-kβ p50, attenuating the SARS-CoV-2 infection-associated cytokine storm. Additionally, the EGYVIR extract has an in vitro virucidal effect for SARS-CoV-2. The in vitro study of EGYVIR extract against SARS-CoV-2 on Huh-7 cell lines, revealed the potential role of NF-kβ/TNFα/IL-6 during the infection process. EGYVIR antagonizes the NF-kβ pathway in-silico and in-vitro studies. Consequently, it has the potential to hinder the release of IL-6 and TNFα, decreasing the production of essential cytokines storm elements.
Collapse
Affiliation(s)
- Wael H. Roshdy
- Central Public Health Laboratory, Ministry of Health and Population, Cairo, Egypt
| | - Helmy A. Rashed
- Central Public Health Laboratory, Ministry of Health and Population, Cairo, Egypt
| | - Ahmed Kandeil
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Yassmin Moatasim
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Omnia Kutkat
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Noura M. Abo Shama
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Mokhtar R. Gomaa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Ibrahim H. El-Sayed
- Biochemistry Department, Faculty of Science, Kafr El Sheikh University, Kafr El-Shaikh, Egypt
| | - Nancy M. El Guindy
- Central Public Health Laboratory, Ministry of Health and Population, Cairo, Egypt
| | - Amal Naguib
- Central Public Health Laboratory, Ministry of Health and Population, Cairo, Egypt
| | - Ghazi Kayali
- Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas, Houston, Texas, United States of America
- Human Link, Baabda, Lebanon
| | - Mohamed A. Ali
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| |
Collapse
|
7
|
Parvez MK, Basudan OA, Noman OM, Al-Dosari MS, Alqasoumi SI. The first bioactivity studies of Acantholimon lycopodioides from high altitude Karakoram-Himalayan desert. Saudi J Biol Sci 2020; 27:2514-2520. [PMID: 32994707 PMCID: PMC7499106 DOI: 10.1016/j.sjbs.2020.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 10/31/2022] Open
Abstract
Couple of ethnopharmacological surveys in the Indian Ladakh and Pakistani Shigar valleys has reported the medicinal use of Acantholimon lycopodioides against cardiac and gastric disorders that however, remains without scientific rationale or experimental validations. Here, we assess the in vitro bio/therapeutic activities of A. lycopodioides extracts as well as chloroform, ethyl acetate, n-butanol and aqueous fractions. The in vitro β-carotene-linoleic acid bleaching and DPPH radical scavenging methods demonstrated a very high anti-oxidative property of chloroform and ethyl acetate fractions compared to others. Cell viability assay (MTT) on human cervical (HeLa), breast (MDA-MB321) and liver (HepG2) cancer cells revealed their differential cytotoxicity, except the chloroform fraction. Of these, the precipitate exerted highest cytotoxicity on HepG2 cells followed by aqueous fraction on MDA-MB321 cells. Notably, the non-cytotoxicity of chloroform fraction coincided with its highest anti-oxidative activity. Further, the chloroform fraction showed marked hepatoprotection (up to 84%) against 3'7'dichlorofluorescin triggered free radicals induced oxidative damage. Also, the hepatoprotective chloroform fraction mildly activated CYP3A4 in HepG2 cells (dual-luciferase assay). Moreover, the A. lycopodioides extracts and fractions showed differential anti-bacterial and anti-fungal activities. Of these, while S. aureus was more sensitive to the water-insoluble extract, ethyl acetate fraction showed moderate activity against E. coli and C. albicans. On the other hand, the chloroform fraction showed promising activity against S. Aureus, C. albicans, P. vulgaris and E. faecalis. In conclusion, our data for the first time, demonstrated promising anti-oxidative, hepatoprotective, anti-cancer, anti-microbial and CYP3A4 activating salutations of A. lycopodioides. This warrants further studies towards isolation and identification of its therapeutically active principles.
Collapse
Affiliation(s)
- Mohammad K Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Omar A Basudan
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Omar M Noman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed S Al-Dosari
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh I Alqasoumi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Chen S, Zhang CL, Zhou XF, Gao Y, Chen H, Fu BD, Yi PF, Shen HQ. Anti-inflammatory and antioxidative properties of helicid protect against CCl 4 induced acute liver injury in mice. Biotech Histochem 2020; 95:483-489. [PMID: 32067515 DOI: 10.1080/10520295.2020.1718210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Acute liver injury can be caused by chemicals and can lead to liver failure. We investigated the protective effect of helicid (HEL) on acute liver injury caused by CCl4 in mice. We found that ALT and AST levels as well as hepatic pathological damage in mice treated with CCl4 was increased significantly, while the effects were decreased by HEL treatment. HEL treatment increased the activity of T-SOD, GSH and CAT and reduced the level of MDA in CCl4 treated mice. HEL improved the histopathology of liver caused by CCl4. HEL also reduced TNF-α, IL-1β and IL- 6 activity caused by CCl4. We investigated the phosphorylation of p65 and IκB protein and found that HEL can alleviate liver damage via the NF-κB signaling pathway. Our findings indicate that HEL protects against acute liver injury induced by CCl4. The protective effect of HEL appears to be due to its antioxidative and anti-inflammatory properties through the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Shuang Chen
- College of Veterinary Medicine, Jilin University , 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Chun-Lei Zhang
- College of Veterinary Medicine, Jilin University , 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Xiao-Fei Zhou
- College of Veterinary Medicine, Jilin University , 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Yu Gao
- College of Veterinary Medicine, Jilin University , 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Hao Chen
- College of Veterinary Medicine, Jilin University , 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Ben-Dong Fu
- College of Veterinary Medicine, Jilin University , 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Peng-Fei Yi
- College of Veterinary Medicine, Jilin University , 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Hai-Qing Shen
- College of Veterinary Medicine, Jilin University , 5333 Xi'an Road, Changchun, Jilin 130062, China
| |
Collapse
|
9
|
Parvez MK, Al-Dosari MS, Arbab AH, Alam P, Alsaid MS, Khan AA. Hepatoprotective effect of Solanum surattense leaf extract against chemical- induced oxidative and apoptotic injury in rats. Altern Ther Health Med 2019; 19:154. [PMID: 31269948 PMCID: PMC6610804 DOI: 10.1186/s12906-019-2553-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 06/07/2019] [Indexed: 12/11/2022]
Abstract
Background Of over 35 Saudi plants traditionally used to treat liver disorders, majority still lack scientific validations. We therefore, evaluated the anti-oxidative, anti-apoptotic and hepatoprotective potential of Solanum surattense leaves total ethanol-extract (SSEE). Methods The cytoprotective (4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide/ MTT assay) and anti-apoptotic (caspase-3/7) potential of SSEE (25–200 μg/mL) were assessed in cultured HepG2 cells against dichlorofluorescein (DCFH)-induced toxicity. The hepatoprotective salutation of SSEE (100 and 200 mg/kg.bw/day) in carbon tetrachloride (CCl4)-intoxicated rats was evaluated by serum biochemistry and histopathology. The anti-oxidative activity of SSEE (31.25–500 μg/mL) was tested by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging and linoleic acid bleaching assays. Also, SSEE was subjected to qualitative phytochemical analysis, and standardized by validated high-performance liquid chromatography (HPTLC). Results SSEE at doses 50, 100 and 200 μg/mL showed HepG2 cell proliferative and protective potential by about 61.0, 67.2 and 95%, respectively through inhibition of caspase-3/7 against DCFH-toxicity. In CCl4-injured rats, SSEE (200 mg/kg) significantly (P < 0.001) normalized serum transaminases, alkaline phosphatase, bilirubin, cholesterol, triglycerides, and total protein, including tissue malondialdehyde and nonprotein sulfhydryls levels, supported by the liver histopathology. SSEE further showed strong in vitro anti-oxidative and anti-lipid peroxidative activities, evidenced by the presence of alkaloids, flavonoids, tannins, sterols and saponins. Identification of β-sitosterol (3.46 μg/mg) strongly supported the anti-oxidative and hepatoprotective salutation of SSEE. Conclusion Our findings suggest the therapeutic potential of S. surattense against chemical-induced oxidative stress and liver damage. However, isolation of the active principles and elucidation of mechanism of action remain to be addressed.
Collapse
|
10
|
Saleem H, Zengin G, Khan KUR, Ahmad I, Waqas M, Mahomoodally FM, Rengasamy KRR, Zainol N, Abidin SAZ, Ahemad N. New insights into the phytochemical composition, enzyme inhibition and antioxidant properties of desert cotton ( Aerva javanica (Bum.f) Shult. -Amaranthaceae). Nat Prod Res 2019; 35:664-668. [PMID: 30919661 DOI: 10.1080/14786419.2019.1587427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This study sets out to probe into total bioactive contents, UHPLC-MS secondary metabolites profiling, antioxidant (DPPH, ABTS, FRAP, CUPRAC, phosphomolybdenum and metal chelating) and enzyme inhibitory (acetylcholinesterase- AChE, butyrylcholinesterase- BChE, α-amylase, α glucosidase, and tyrosinase) activities of methanol extract of Aerva javanica, also known as desert cotton or Kapok bush. Aerva javanica contains considerable phenolic (44.79 ± 3.12 mg GAE/g) and flavonoid (28.86 ± 0.12 mg QE/g) contents which tends to correlate with its significant antioxidant potential for ABTS, FRAP and CUPRAC assays with values of 101.41 ± 1.18, 124.10 ± 1.71 and 190.22 ± 5.70 mg TE/g, respectively. The UHPLC-MS analysis identified the presence of 45 phytochemicals belonging to six major groups: phenolic, flavonoids, lignin, terpenes, glycoside and alkaloid. Moreover, the plant extract also showed potent inhibitory action against AChE (3.73 ± 0.22 mg GALAE/g), BChE (3.31 ± 0.19 mg GALAE/g) and tyrosinase (126.05 ± 1.77 mg KAE/g). The observed results suggest A. javanica could be further explored as a natural source of bioactive compounds.
Collapse
Affiliation(s)
- Hammad Saleem
- School of Pharmacy, Monash University Malaysia, Selangor Darul Ehsan, Malaysia.,Institute of Pharmaceutical Sciences (IPS), University of Veterinary & Animal Sciences (UVAS), Lahore, Pakistan
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Campus/Konya, Turkey
| | - Kashif-Ur-Rehman Khan
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary & Animal Sciences (UVAS), Lahore, Pakistan
| | - Irshad Ahmad
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Waqas
- Johor Institute of Professional Studies, Lahore, Pakistan
| | - Fawzi M Mahomoodally
- Department of Health Sciences, Faculty of Science, University of Mauritius, Mauritius
| | | | - Noorazwani Zainol
- Institute Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru, Johor, Malaysia
| | | | - Nafees Ahemad
- School of Pharmacy, Monash University Malaysia, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
11
|
Deniz GY, Laloglu E, Koc K, Geyikoglu F. Hepatoprotective potential of Ferula communis extract for carbon tetrachloride induced hepatotoxicity and oxidative damage in rats. Biotech Histochem 2019; 94:334-340. [PMID: 30712392 DOI: 10.1080/10520295.2019.1566831] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We investigated the hepatoprotective potential of Ferula communis extract for CCI4 induced liver damage. We used six groups of rats: group 1, untreated control; group 2, CCl4 treated (hepatotoxic); group 3, treated with 150 mg/kg F. communis; group 4, treated with 300 mg/kg F. communis; group 5, treated with CCl4 + 150 mg/kg F. communis; and group 6, treated with CCl4 + 300 mg/kg F. communis. Liver damage was produced by injection of 1 ml/kg CCI4 twice/week. Extracts of F. communis, 150 and 300 mg/kg/day, were administered for 8 weeks. The effects of F. communis were assessed by measuring aspartate aminotransferase (AST), alanine aminotransferase (ALT), γ-glutamyl transferase (GGT) and total bilirubin (T-BIL) levels, and the activities of antioxidant enzymes, superoxide dismutase (SOD) and glutathione peroxidase (GPx) in the liver. The histology and immunohistochemistry of liver tissue were evaluated using hematoxylin and eosin staining, and caspase 3 and 8-OHdG immunostaining. F. communis extract produced significant reductions in elevated levels of ALT, AST, GGT and T-BIL and increased levels of GPx and SOD in rats treated with CCl4. F. communis extract decreased CCl4 induced 8-OHdG formation and caspase 3 activation significantly in hepatocytes, especially at the 150 mg/kg dose. Our findings demonstrate the potential efficacy of F. communis for attenuating CCl4 induced hepatotoxicity and oxidative damage.
Collapse
Affiliation(s)
- G Y Deniz
- a Vocational High School of Health Services, Ataturk University , Erzurum , Turkey
| | - E Laloglu
- b Department of Medical Biochemistry of Faculty of Medicine, Ataturk University , Erzurum , Turkey
| | - K Koc
- c Department of Biology, Faculty of Science, Ataturk University , Erzurum , Turkey
| | - F Geyikoglu
- c Department of Biology, Faculty of Science, Ataturk University , Erzurum , Turkey
| |
Collapse
|
12
|
Protective aptitude of Periploca hydaspidis Falc against CCl4 induced hepatotoxicity in experimental rats. Biomed Pharmacother 2018; 105:1117-1132. [DOI: 10.1016/j.biopha.2018.06.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/11/2018] [Accepted: 06/11/2018] [Indexed: 01/06/2023] Open
|
13
|
Carolini Thiesen L, de Oliveira Nunes ML, Meyre-Silva C, Dávila Pastor V, de Andrade SF, Garcia Couto A, da Silva LM, Bellé Bresolin TM, Santin JR. The hydroethanolic Litchi chinensis leaf extract alleviate hepatic injury induced by carbon tetrachloride (CCl 4) through inhibition of hepatic inflammation. Biomed Pharmacother 2018; 107:929-936. [PMID: 30257405 DOI: 10.1016/j.biopha.2018.08.076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/26/2018] [Accepted: 08/15/2018] [Indexed: 02/08/2023] Open
Abstract
Various medicinal plants are traditionally used in a hepatoprotective manner, like, for example, the Litchi chinensis leaf infusion that is employed in Chinese medicine as liver tonics to strengthen hepatic functioning. In this context, the present study was designed to evaluate the hepatoprotective and acute toxicological effects of hydroethanolic L. chinensis leaf extract in HepG2 cells and mice. Specifically, the cytotoxicity and hepatoprotective activities of L. chinensis leaf extract were evaluated in HepG2 cells and in vivo against carbon tetrachloride (CCl4)-induced acute liver injury. The administration of CCl4 in mice provokes cell swelling, loss of sinusoid capillary spaces and structural disarrangement of the hepatic lobe, apoptosis and leukocyte infiltration. Further, CCl4 evokes an increase in serum alanine aminotransferase (ALT), tumor necrosis factor (TNF) and interleukin-6 (IL-6) levels in hepatic tissue. However, Silymarin, the positive control, and the L. chinensis extract were able to restore the viability of cells treated with CCl4 at all concentrations evaluated, reduced the inflammatory parameters, TNF and IL-6, reestablished hepatic tissue morphology and did not induce acute toxicological alterations. The data obtained underscore that the extract from L. chinensis leaves features hepatoprotective activity, corroborating with ethnopharmacological use, and does not lead to acute toxicological effects.
Collapse
Affiliation(s)
| | | | | | | | - Sérgio Faloni de Andrade
- Postgraduation Program in Pharmaceutical Sciences, Itajaí, SC, Brazil; Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Itajaí, SC, Brazil; Pharmacy Course, Universidade do Vale de Itajaí (UNIVALI), Itajaí, SC, Brazil
| | - Angélica Garcia Couto
- Postgraduation Program in Pharmaceutical Sciences, Itajaí, SC, Brazil; Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Itajaí, SC, Brazil; Pharmacy Course, Universidade do Vale de Itajaí (UNIVALI), Itajaí, SC, Brazil
| | - Luisa Mota da Silva
- Postgraduation Program in Pharmaceutical Sciences, Itajaí, SC, Brazil; Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Itajaí, SC, Brazil; Pharmacy Course, Universidade do Vale de Itajaí (UNIVALI), Itajaí, SC, Brazil
| | - Tania Mari Bellé Bresolin
- Postgraduation Program in Pharmaceutical Sciences, Itajaí, SC, Brazil; Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Itajaí, SC, Brazil; Pharmacy Course, Universidade do Vale de Itajaí (UNIVALI), Itajaí, SC, Brazil
| | - José Roberto Santin
- Postgraduation Program in Pharmaceutical Sciences, Itajaí, SC, Brazil; Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Itajaí, SC, Brazil.
| |
Collapse
|
14
|
Sesquiterpenoids from the root of Panax Ginseng protect CCl 4 –induced acute liver injury by anti-inflammatory and anti-oxidative capabilities in mice. Biomed Pharmacother 2018; 102:412-419. [DOI: 10.1016/j.biopha.2018.02.041] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/11/2018] [Accepted: 02/13/2018] [Indexed: 01/27/2023] Open
|
15
|
Parvez MK, Alam P, Arbab AH, Al-Dosari MS, Alhowiriny TA, Alqasoumi SI. Analysis of antioxidative and antiviral biomarkers β-amyrin, β-sitosterol, lupeol, ursolic acid in Guiera senegalensis leaves extract by validated HPTLC methods. Saudi Pharm J 2018; 26:685-693. [PMID: 29991912 PMCID: PMC6035322 DOI: 10.1016/j.jsps.2018.02.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 02/08/2018] [Indexed: 12/11/2022] Open
Abstract
Guiera senegalensis J.F. Gmel is a broad-spectrum African folk- medicinal plant, having activities against fowlpox and herpes viruses. Very recently, we have shown the anti-hepatitis B vius (HBV) potential of G. senegalensis leaves extract (GSLE). Here, we report the antioxidative and hepatoprotective efficacy of GSLE, including HPTLC quantification of four biomarkers of known antioxidative and antiviral activities. In cultured liver cells (HuH7) GSLE attenuated DCFH-induced oxidative stress and cytotoxicity. This was supported by in vitro DPPH radical-scavenging and β-carotene-linoleic acid bleaching assays that showed strong antioxidant activity of GSLE. Further, two simple and sensitive HPTLC methods (I and II) were developed and validated to quantify β-amyrin, β- sitosterol, lupeol, ursolic acid in GSLE. While HPTLC-I (hexane: ethylacetate; 75:25; v/v) enabled quantification of β-amyrin (Rf = 0.39; 20.64 μg/mg) and β-sitosterol (Rf = 0.25; 18.56 μg/mg), HPTLC-II (chloroform: methanol; 97:3; v/v) allowed estimation of lupeol (Rf = 0.47; 6.72 μg/mg) and ursolic acid (Rf = 0.23; 5.81 μg/mg) in GSLE. Taken together, the identified biomarkers strongly supported the antioxidant and anti-HBV potential of GSLE, suggesting its activity via abating the oxidative stress. To our knowledge, this is the first report on HPTLC analysis of these biomarkers in G. senegalensis that could be adopted for standardization and quality-control of herbal-formulations.
Collapse
Affiliation(s)
- Mohammad K Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Perwez Alam
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed H Arbab
- Department of Pharmacognosy, College of Pharmacy, Omdurman Islamic University, Khartoom 14415, Sudan
| | - Mohammed S Al-Dosari
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tawfeq A Alhowiriny
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh I Alqasoumi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
16
|
Ravan AP, Bahmani M, Ghasemi Basir HR, Salehi I, Oshaghi EA. Hepatoprotective effects of Vaccinium arctostaphylos against CCl4-induced acute liver injury in rats. J Basic Clin Physiol Pharmacol 2017; 28:463-471. [PMID: 28467312 DOI: 10.1515/jbcpp-2016-0181] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 03/03/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND This study was carried out to evaluate the antioxidant and hepatoprotective effects of Vaccinium arctostaphylos (V.a) methanolic extract on carbon tetrachloride (CCl4)-induced acute liver injury in Wistar rats. METHODS Total phenolic and total flavonoid contents as well as antioxidant activity of V.a were determined. Extracts of V.a at doses of 200 and 400 mg/kg were administered by oral gavage to rats once per day for 7 days and then were given an intraperitoneal injection of 1 mL/kg CCl4 (1:1 in olive oil) for 3 consecutive days. Serum biochemical markers of liver injury, oxidative markers, as well as hydroxyproline (HP) content and histopathology of liver were evaluated. RESULTS The obtained results showed that V.a had strong antioxidant activity. Treatment of rats with V.a blocked the CCl4-induced elevation of serum markers of liver function and enhanced albumin and total protein levels. The level of hepatic HP content was also reduced by the administration of V.a treatment. Histological examination of the liver section revealed that V.a prevented the occurrence of pathological changes in CCl4-treated rats. CONCLUSIONS These findings suggested that V.a may be useful in the treatment and prevention of hepatic injury induced by CCl4.
Collapse
|
17
|
Ameliorative effects of Compound K and ginsenoside Rh1 on non-alcoholic fatty liver disease in rats. Sci Rep 2017; 7:41144. [PMID: 28106137 PMCID: PMC5247696 DOI: 10.1038/srep41144] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/15/2016] [Indexed: 02/08/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common liver disease, which has no standard treatment available. Panax notoginseng saponines (PNS) have recently been reported to protect liver against hepatocyte injury induced by ethanol or high fat diet (HFD) in rats. Compound K and ginsenoside Rh1 are the main metabolites of PNS. In this study, we evaluated the effects of CK and Rh1 on NAFLD. Rats fed HFD showed significant elevations in liver function markers, lipids, glucose tolerance, and insulin resistance. Treatment with CK or Rh1 either alone or in combination dramatically ameliorated the liver function impairment induced by HFD. Histologically, CK and Rh1 significantly reversed HFD-induced hepatocyte injury and liver fibrosis. In vitro experiments demonstrated that treatment with CK or Rh1 alone or in combination markedly induced cell apoptosis, and inhibited cell proliferation and activation in HSC-T6 cells. Additionally, CK and Rh1, either alone or in combination, also repressed the expression of fibrotic factors TIMP-1, PC-I, and PC-III. Taken together, our results demonstrate that CK and Rh1 have positive effects on NAFLD via the anti-fibrotic and hepatoprotective activity.
Collapse
|