1
|
Cao Y, Qin Y, Cheng Q, Zhong J, Han B, Li Y. Bifunctional nanomaterial enabled high-specific isolation of urinary exosomes for cervical cancer metabolomics analysis and biomarker discovery. Talanta 2025; 285:127280. [PMID: 39613490 DOI: 10.1016/j.talanta.2024.127280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/10/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024]
Abstract
Cervical cancer (CC) remains a critical public health issue, highlighting the importance of early detection. However, current methods such as cytological and HPV testing face challenges of invasiveness and low patient compliance. Exosomes, emerging as crucial in cancer diagnosis, offer promise due to their noninvasive, highly specificity, and abundant biomarkers. However, isolating exosomes efficiently remains challenging. In this study, we designed and synthesized a bifunctional affinity nanomaterial Fe3O4 @CD63-CLIKKPF, based on the synergistic interaction between its modified aptamer CD63 and peptide CLIKKPF, and CD63 protein and PS of exosomes which can achieve high specificity and high yield separation of urinary exosomes. Notably, the co-modified aptamer CD63 and peptide CLIKKPF not only enable efficient exosome isolation by leveraging dual-affinity mechanisms through a synergistic "AND" logic analysis, but also could be achieved on the Fe3O4 in one-step reaction at room temperature via Fe-S bonding. Combined with LC-MS/MS, we conducted exosome metabolomics analysis in healthy individuals and CC patients across various stages, and machine learning models demonstrated accurate classification (accuracy >0.822) and prediction capabilities for CC. Furthermore, six key metabolites indicative of CC progression were identified and validated in additional patient samples, highlighting their potential as biomarkers. Overall, this study establishes a novel method for exosome metabolomics in CC, offering insights for non-invasive early diagnosis and progression prediction on a large scale.
Collapse
Affiliation(s)
- Yiqing Cao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yulin Qin
- Department of Pharmacy, Minhang Hospital, Fudan University, Shanghai, 201100, China
| | - Qunxian Cheng
- Department of Gynecology and Obstetrics, Minhang Hospital, Fudan University, Shanghai, China
| | - Jialiang Zhong
- National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China.
| | - Bing Han
- Department of Pharmacy, Minhang Hospital, Fudan University, Shanghai, 201100, China.
| | - Yan Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai, 201203, China; Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University, Shanghai, 201203, China; Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
2
|
Ghahramani Almanghadim H, Karimi B, Valizadeh S, Ghaedi K. Biological functions and affected signaling pathways by Long Non-Coding RNAs in the immune system. Noncoding RNA Res 2025; 10:70-90. [PMID: 39315339 PMCID: PMC11417496 DOI: 10.1016/j.ncrna.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/14/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
Recently, the various regulative functions of long non-coding RNAs (LncRNAs) have been well determined. Recently, the vital role of LncRNAs as gene regulators has been identified in the immune system, especially in the inflammatory response. All cells of the immune system are governed by a complex and ever-changing gene expression program that is regulated through both transcriptional and post-transcriptional processes. LncRNAs regulate gene expression within the cell nucleus by influencing transcription or through post-transcriptional processes that affect the splicing, stability, or translation of messenger RNAs (mRNAs). Recent studies in immunology have revealed substantial alterations in the expression of lncRNAs during the activation of the innate immune system as well as the development, differentiation, and activation of T cells. These lncRNAs regulate key aspects of immune function, including the manufacturing of inflammatory molecules, cellular distinction, and cell movement. They do this by modulating protein-protein interactions or through base pairing with RNA and DNA. Here we review the current understanding of the mechanism of action of lncRNAs as novel immune-related regulators and their impact on physiological and pathological processes related to the immune system, including autoimmune diseases. We also highlight the emerging pattern of gene expression control in important research areas at the intersection between immunology and lncRNA biology.
Collapse
Affiliation(s)
| | - Bahareh Karimi
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Sepehr Valizadeh
- Department of Internal Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
3
|
Liu L, Liu W, Han Z, Shan Y, Xie Y, Wang J, Qi H, Xu Q. Extracellular Vesicles-in-Hydrogel (EViH) targeting pathophysiology for tissue repair. Bioact Mater 2025; 44:283-318. [PMID: 39507371 PMCID: PMC11539077 DOI: 10.1016/j.bioactmat.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 10/08/2024] [Accepted: 10/17/2024] [Indexed: 11/08/2024] Open
Abstract
Regenerative medicine endeavors to restore damaged tissues and organs utilizing biological approaches. Utilizing biomaterials to target and regulate the pathophysiological processes of injured tissues stands as a crucial method in propelling this field forward. The Extracellular Vesicles-in-Hydrogel (EViH) system amalgamates the advantages of extracellular vesicles (EVs) and hydrogels, rendering it a prominent biomaterial in regenerative medicine with substantial potential for clinical translation. This review elucidates the development and benefits of the EViH system in tissue regeneration, emphasizing the interaction and impact of EVs and hydrogels. Furthermore, it succinctly outlines the pathophysiological characteristics of various types of tissue injuries such as wounds, bone and cartilage injuries, cardiovascular diseases, nerve injuries, as well as liver and kidney injuries, underscoring how EViH systems target these processes to address related tissue damage. Lastly, it explores the challenges and prospects in further advancing EViH-based tissue regeneration, aiming to impart a comprehensive understanding of EViH. The objective is to furnish a thorough overview of EViH in enhancing regenerative medicine applications and to inspire researchers to devise innovative tissue engineering materials for regenerative medicine.
Collapse
Affiliation(s)
- Lubin Liu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Wei Liu
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266003, China
| | - Zeyu Han
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Yansheng Shan
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Yutong Xie
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Jialu Wang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Hongzhao Qi
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Quanchen Xu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| |
Collapse
|
4
|
Sánchez SV, Otavalo GN, Gazeau F, Silva AKA, Morales JO. Intranasal delivery of extracellular vesicles: A promising new approach for treating neurological and respiratory disorders. J Control Release 2025; 379:489-523. [PMID: 39800240 DOI: 10.1016/j.jconrel.2025.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
BACKGROUND Extracellular vesicles (EVs) are membrane vesicles secreted by all types of cells, including bacteria, animals, and plants. These vesicles contain proteins, nucleic acids, and lipids from their parent cells and can transfer these components between cells. EVs have attracted attention for their potential use in diagnosis and therapy due to their natural properties, such as low immunogenicity, high biocompatibility, and ability to cross the blood-brain barrier. They can also be engineered to carry therapeutic molecules. EVs can be delivered via various routes. The intranasal route is particularly advantageous for delivering them to the central nervous system, making it a promising approach for treating neurological disorders. SCOPE OF REVIEW This review delves into the promising potential of intranasally administered EVs-based therapies for various medical conditions, with a particular focus on those affecting the brain and central nervous system. Additionally, the potential use of these therapies for pulmonary conditions, cancer, and allergies is examined, offering a hopeful outlook for the future of medical treatments. MAJOR CONCLUSIONS The intranasal administration of EVs offers significant advantages over other delivery methods. By directly delivering EVs to the brain, specifically targeting areas that have been injured, this administration proves to be highly efficient and effective, providing reassurance about the progress in medical treatments. Intranasal delivery is not limited to brain-related conditions. It can also benefit other organs like the lungs and stimulate a mucosal immune response against various pathogens due to the highly vascularized nature of the nasal cavity and airways. Moreover, it has the added benefit of minimizing toxicity to non-targeted organs and allows the EVs to remain longer in the body. As a result, there is a growing emphasis on conducting clinical trials for intranasal administration of EVs, particularly in treating respiratory tract pathologies such as coronavirus disease.
Collapse
Affiliation(s)
- Sofía V Sánchez
- Drug Delivery Laboratory, Departamento de Ciencias y Tecnología Farmacéuticas, Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile; Center of New Drugs for Hypertension and Heart Failure (CENDHY), Santiago, Chile
| | - Gabriela N Otavalo
- Drug Delivery Laboratory, Departamento de Ciencias y Tecnología Farmacéuticas, Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile; Center of New Drugs for Hypertension and Heart Failure (CENDHY), Santiago, Chile
| | - Florence Gazeau
- Université Paris Cité, CNRS UMR8175, INSERM U1334, Laboratory NABI (Nanomédecine, Biologie Extracellulaire, Intégratome et Innovations en santé), Paris, France
| | - Amanda K A Silva
- Université Paris Cité, CNRS UMR8175, INSERM U1334, Laboratory NABI (Nanomédecine, Biologie Extracellulaire, Intégratome et Innovations en santé), Paris, France
| | - Javier O Morales
- Drug Delivery Laboratory, Departamento de Ciencias y Tecnología Farmacéuticas, Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile; Center of New Drugs for Hypertension and Heart Failure (CENDHY), Santiago, Chile.
| |
Collapse
|
5
|
Song W, Teng L, Wang H, Pang R, Liang R, Zhu L. Exercise preconditioning increases circulating exosome miR-124 expression and alleviates apoptosis in rats with cerebral ischemia-reperfusion injury. Brain Res 2025:149457. [PMID: 39824375 DOI: 10.1016/j.brainres.2025.149457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/22/2024] [Accepted: 01/13/2025] [Indexed: 01/20/2025]
Abstract
OBJECTIVES Exercise as a non-pharmacological intervention can exert beneficial effects directly through exosomes crossing the blood-brain barrier and reduce apoptosis after cerebral ischaemia/reperfusion injury (CI/RI). miRNA-124 (miR-124) is present in exosomes and plays an important role in regulating cerebral neurological activity; however, the mechanism of the relationship between exercise and the activity of exosomes and apoptosis after CI/RI remains unclear. Therefore, the present study investigated the effects of exercise preconditioning on cerebral ischemia/reperfusion injury from the perspective of exosomal miR-124 and apoptosis. METHODS The middle cerebral artery occlusion/reperfusion (MCAO/R) model was established by blocking the middle cerebral artery, and a motorized running wheel was chosen as the method of exercise preconditioning for rats, the morphology, particle concentration and particle size distribution of the exosome samples were identified at the 6 h, 12 h, and 24 h time points. RT-PCR, western blotting, immunohistochemistry, TUNEL staining, TTC staining and mNSS scores were used to investigate the effects of exercise preconditioning on apoptosis in MCAO/R rats. RESULTS The results showed exercise reduced neurological dysfunction and infarct size, increased the content of plasma exocrine miR-124 at 24 h, which inhibited the expression of STAT3, increased the expression of the anti-apoptotic BCL-2, and decreased the expression of the pro-apoptotic BAX, thereby reducing cell apoptosis. CONCLUSIONS Our findings indicated that exercise preconditioning can enhance the anti-apoptotic capacity of tissues in the rat ischemic penumbra and reduce apoptosis after CI/RI via the exosomal miR-124, STAT3, BCL-2/BAX pathway.
Collapse
Affiliation(s)
- Wenjing Song
- Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Lili Teng
- Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Haoran Wang
- Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Ruifeng Pang
- Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Runyu Liang
- Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Luwen Zhu
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 15000, China.
| |
Collapse
|
6
|
Figueroa-Valdés AI, Luz-Crawford P, Herrera-Luna Y, Georges-Calderón N, García C, Tobar HE, Araya MJ, Matas J, Donoso-Meneses D, de la Fuente C, Cuenca J, Parra E, Lillo F, Varela C, Cádiz MI, Vernal R, Ortloff A, Nardocci G, Castañeda V, Adasme-Vidal C, Kunze-Küllmer M, Hidalgo Y, Espinoza F, Khoury M, Alcayaga-Miranda F. Clinical-grade extracellular vesicles derived from umbilical cord mesenchymal stromal cells: preclinical development and first-in-human intra-articular validation as therapeutics for knee osteoarthritis. J Nanobiotechnology 2025; 23:13. [PMID: 39806427 PMCID: PMC11730155 DOI: 10.1186/s12951-024-03088-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025] Open
Abstract
Osteoarthritis (OA) is a joint disease characterized by articular cartilage degradation. Persistent low-grade inflammation defines OA pathogenesis, with crucial involvement of pro-inflammatory M1-like macrophages. While mesenchymal stromal cells (MSC) and their small extracellular vesicles (sEV) hold promise for OA treatment, achieving consistent clinical-grade sEV products remains a significant challenge. This study aims to develop fully characterized, reproducible, clinical-grade batches of sEV derived from umbilical cord (UC)-MSC for the treatment of OA while assessing its efficacy and safety. Initially, a standardized, research-grade manufacturing protocol was established to ensure consistent sEV production. UC-MSC-sEV characterization under non-cGMP conditions showed consistent miRNA and protein profiles, suggesting their potential for standardized manufacturing. In vitro studies evaluated the efficacy, safety, and potency of sEV; animal studies confirmed their effectiveness and safety. In vitro, UC-MSC-sEV polarized macrophages to an anti-inflammatory M2b-like phenotype, through STAT1 modulation, indicating their potential to create an anti-inflammatory environment in the affected joints. In silico studies confirmed sEV's immunosuppressive signature through miRNA and proteome analysis. In an OA mouse model, sEV injected intra-articularly (IA) induced hyaline cartilage regeneration, validated by histological and μCT analyses. The unique detection of sEV signals within the knee joint over time highlights its safety profile by confirming the retention of sEV in the joint. The product development of UC-MSC-sEV involved refining, standardizing, and validating processes in compliance with GMP standards. The initial assessment of the safety of the clinical-grade product via IA administration in a first-in-human study showed no adverse effects after a 12 month follow-up period. These results support the progress of this sEV-based therapy in an early-phase clinical trial, the details of which are presented and discussed in this work. This study provides data on using UC-MSC-sEV as local therapy for OA, highlighting their regenerative and anti-inflammatory properties and safety in preclinical and a proof-of-principle clinical application.
Collapse
Affiliation(s)
- Aliosha I Figueroa-Valdés
- Laboratorio de Medicina Nano-Regenerativa, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Patricia Luz-Crawford
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Yeimi Herrera-Luna
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Nicolás Georges-Calderón
- Laboratorio de Medicina Nano-Regenerativa, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Cynthia García
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Hugo E Tobar
- Laboratorio de Medicina Nano-Regenerativa, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - María Jesús Araya
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - José Matas
- Centro de Terapia Celular, Clínica Universidad de los Andes, Santiago, Chile
- Departmento de Cirugía Ortopédica, Clínica Universidad de los Andes, Santiago, Chile
| | - Darío Donoso-Meneses
- Laboratorio de Medicina Nano-Regenerativa, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | | | - Jimena Cuenca
- Laboratorio de Medicina Nano-Regenerativa, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- Consorcio REGENERO, Chilean Consortium for Regenerative Medicine, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Cells for Cells, Santiago, Chile
| | - Eliseo Parra
- Consorcio REGENERO, Chilean Consortium for Regenerative Medicine, Santiago, Chile
| | - Fernando Lillo
- Consorcio REGENERO, Chilean Consortium for Regenerative Medicine, Santiago, Chile
| | - Cristóbal Varela
- Departmento de Radiología, Clínica Universidad de los Andes, Santiago, Chile
| | - María Ignacia Cádiz
- Laboratorio de Medicina Nano-Regenerativa, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- Consorcio REGENERO, Chilean Consortium for Regenerative Medicine, Santiago, Chile
- Cells for Cells, Santiago, Chile
| | - Rolando Vernal
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Alexander Ortloff
- Departamento de Ciencias Veterinarias y Salud Pública, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Gino Nardocci
- Laboratorio de Biología Molecular y Bioinformática, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Escuela de Medicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Verónica Castañeda
- Laboratorio de Biología Molecular y Bioinformática, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Catalina Adasme-Vidal
- Laboratorio de Medicina Nano-Regenerativa, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Maximiliano Kunze-Küllmer
- Consorcio REGENERO, Chilean Consortium for Regenerative Medicine, Santiago, Chile
- Cells for Cells, Santiago, Chile
- EVast Bio, Miami, FL, USA
| | - Yessia Hidalgo
- Laboratorio de Medicina Nano-Regenerativa, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Francisco Espinoza
- Consorcio REGENERO, Chilean Consortium for Regenerative Medicine, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Centro de Terapia Celular, Clínica Universidad de los Andes, Santiago, Chile
- Departmento de Reumatología, Clínica Universidad de los Andes, Santiago, Chile
| | - Maroun Khoury
- Laboratorio de Medicina Nano-Regenerativa, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile.
- Consorcio REGENERO, Chilean Consortium for Regenerative Medicine, Santiago, Chile.
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
- Cells for Cells, Santiago, Chile.
- EVast Bio, Miami, FL, USA.
| | - Francisca Alcayaga-Miranda
- Laboratorio de Medicina Nano-Regenerativa, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile.
- Consorcio REGENERO, Chilean Consortium for Regenerative Medicine, Santiago, Chile.
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
- Cells for Cells, Santiago, Chile.
| |
Collapse
|
7
|
Gristina V, Bazan V, Barraco N, Taverna S, Manno M, Raccosta S, Carreca AP, Bono M, Bazan Russo TD, Pepe F, Pisapia P, Incorvaia L, Badalamenti G, Troncone G, Malapelle U, Santini D, Russo A, Galvano A. On-treatment dynamics of circulating extracellular vesicles in the first-line setting of patients with advanced non-small cell lung cancer: the LEXOVE prospective study. Mol Oncol 2025. [PMID: 39780749 DOI: 10.1002/1878-0261.13737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/17/2024] [Accepted: 09/10/2024] [Indexed: 01/11/2025] Open
Abstract
Extracellular vesicle (EV) monitoring can complement clinical assessment of cancer response. In this study, patients with advanced non-small cell lung cancer (NSCLC) undergoing osimertinib, alectinib, pembrolizumab or platinum-based chemotherapy ± pembrolizumab were enrolled. EVs were characterized using Bradford assay to quantify the circulating cell-free EV protein content (cfEV), and dynamic light scattering to assess Rayleigh ratio excess at 90°, z-averaged hydrodynamic diameter and polydispersity index. A total of 135 plasma samples from 27 patients were collected at baseline (T0) and at the first radiological restaging (T1). A ∆cfEV < 20% was associated with improved median progression-free survival (mPFS) in responders versus non-responders. Specifically, cfEV responders on pembrolizumab had a significantly better mPFS (25.2 months) compared to those on chemotherapy plus pembrolizumab (6.1 months). EGFR-positive cfEV responders also experienced longer mPFS compared to cfEV non-responders (35.1 months, 95% CI: 14.9-35.5 vs. 20.8 months, 95% CI: 11.2-30.4). This study suggested that monitoring circulating EV could provide valuable insights into treatment efficacy in NSCLC, particularly for patients receiving pembrolizumab or osimertinib.
Collapse
Affiliation(s)
- Valerio Gristina
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Italy
| | - Viviana Bazan
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Italy
| | - Nadia Barraco
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Italy
| | - Simona Taverna
- Institute of Translational Pharmacology (IFT), National Research Council (CNR) of Italy, Palermo, Italy
| | - Mauro Manno
- Institute of Biophysics (IBF), National Research Council (CNR) of Italy, Palermo, Italy
| | - Samuele Raccosta
- Institute of Biophysics (IBF), National Research Council (CNR) of Italy, Palermo, Italy
| | - Anna Paola Carreca
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Italy
- Ri.MED Foundation, Palermo, Italy
| | - Marco Bono
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Italy
| | - Tancredi Didier Bazan Russo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Italy
| | - Francesco Pepe
- Department of Public Health, University of Naples Federico II, Italy
| | - Pasquale Pisapia
- Department of Public Health, University of Naples Federico II, Italy
| | - Lorena Incorvaia
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Italy
| | - Giuseppe Badalamenti
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Italy
| | | | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Italy
| | - Daniele Santini
- Medical Oncology A, Policlinico Umberto 1, La Sapienza Università Di Roma, Italy
| | - Antonio Russo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Italy
| | - Antonio Galvano
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Italy
| |
Collapse
|
8
|
Arabi S, Fadaee M, Kazemi T, Rahmani M. Advancements in colorectal cancer immunotherapy: from CAR-T cells to exosome-based therapies. J Drug Target 2025:1-12. [PMID: 39754507 DOI: 10.1080/1061186x.2024.2449482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/03/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
Colorectal cancer (CRC) continues to be a major worldwide health issue, with elevated death rates linked to late stages of the illness. Immunotherapy has made significant progress in developing effective techniques to improve the immune system's capacity to identify and eradicate cancerous cells. This study examines the most recent advancements in CAR-T cell treatment and exosome-based immunotherapy for CRC. CAR-T cell therapy, although effective in treating blood cancers, encounters obstacles when used against solid tumours such as CRC. These obstacles include the presence of an immunosuppressive tumour microenvironment and a scarcity of tumour-specific antigens. Nevertheless, novel strategies like dual-receptor CAR-T cells and combination therapy involving cytokines have demonstrated promise in surmounting these obstacles. Exosome-based immunotherapy is a promising approach for targeted delivery of therapeutic drugs to tumour cells, with high specificity and minimal off-target effects. However, there are still obstacles to overcome in the field, such as resistance to treatment, adverse effects associated with the immune system, and the necessity for more individualised methods. The current research is focused on enhancing these therapies, enhancing the results for patients, and ultimately incorporating these innovative immunotherapeutic approaches into the standard treatment protocols for CRC.
Collapse
Affiliation(s)
- Sepideh Arabi
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Manouchehr Fadaee
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Mohammadreza Rahmani
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
9
|
Aalhate M, Mahajan S, Dhuri A, Singh PK. Biohybrid nano-platforms manifesting effective cancer therapy: Fabrication, characterization, challenges and clinical perspective. Adv Colloid Interface Sci 2025; 335:103331. [PMID: 39522420 DOI: 10.1016/j.cis.2024.103331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 10/01/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Nanotechnology-based delivery systems have brought a paradigm shift in the management of cancer. However, the main obstacles to nanocarrier-based delivery are their limited circulation duration, excessive immune clearance, inefficiency in interacting effectively in a biological context and overcoming biological barriers. This demands effective engineering of nanocarriers to achieve maximum efficacy. Nanocarriers can be maneuvered with biological components to acquire biological identity for further regulating their biodistribution and cell-to-cell cross-talk. Thus, the integration of synthetic and biological components to deliver therapeutic cargo is called a biohybrid delivery system. These delivery systems possess the advantage of synthetic nanocarriers, such as high drug loading, engineerable surface, reproducibility, adequate communication and immune evasion ability of biological constituents. The biohybrid delivery vectors offer an excellent opportunity to harness the synergistic properties of the best entities of the two worlds for improved therapeutic outputs. The major spotlights of this review are different biological components, synthetic counterparts of biohybrid nanocarriers, recent advances in hybridization techniques, and the design of biohybrid delivery systems for cancer therapy. Moreover, this review provides an overview of biohybrid systems with therapeutic and diagnostic applications. In a nutshell, this article summarizes the advantages and limitations of various biohybrid nano-platforms, their clinical potential and future directions for successful translation in cancer management.
Collapse
Affiliation(s)
- Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad 500037, India
| | - Anish Dhuri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad 500037, India.
| |
Collapse
|
10
|
Carney RP, Mizenko RR, Bozkurt BT, Lowe N, Henson T, Arizzi A, Wang A, Tan C, George SC. Harnessing extracellular vesicle heterogeneity for diagnostic and therapeutic applications. NATURE NANOTECHNOLOGY 2025; 20:14-25. [PMID: 39468355 DOI: 10.1038/s41565-024-01774-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 07/11/2024] [Indexed: 10/30/2024]
Abstract
Extracellular vesicles (EVs) are diverse nanoparticles with large heterogeneity in size and molecular composition. Although this heterogeneity provides high diagnostic value for liquid biopsy and confers many exploitable functions for therapeutic applications in cancer detection, wound healing and neurodegenerative and cardiovascular diseases, it has also impeded their clinical translation-hence heterogeneity acts as a double-edged sword. Here we review the impact of subpopulation heterogeneity on EV function and identify key cornerstones for addressing heterogeneity in the context of modern analytical platforms with single-particle resolution. We outline concrete steps towards the identification of key active biomolecules that determine EV mechanisms of action across different EV subtypes. We describe how such knowledge could accelerate EV-based therapies and engineering approaches for mimetic artificial nanovesicle formulations. This approach blunts one edge of the sword, leaving only a single razor-sharp edge on which EV heterogeneity can be exploited for therapeutic applications across many diseases.
Collapse
Affiliation(s)
- Randy P Carney
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA.
| | - Rachel R Mizenko
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Batuhan T Bozkurt
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Neona Lowe
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Tanner Henson
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
- Center for Surgical Bioengineering, Department of Surgery, University of California, Davis, School of Medicine, Sacramento, CA, USA
| | - Alessandra Arizzi
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Aijun Wang
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
- Center for Surgical Bioengineering, Department of Surgery, University of California, Davis, School of Medicine, Sacramento, CA, USA
| | - Cheemeng Tan
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Steven C George
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA.
- Center for Surgical Bioengineering, Department of Surgery, University of California, Davis, School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
11
|
Ma Y, Dong S, Grippin AJ, Teng L, Lee AS, Kim BYS, Jiang W. Engineering therapeutical extracellular vesicles for clinical translation. Trends Biotechnol 2025; 43:61-82. [PMID: 39227240 PMCID: PMC11717644 DOI: 10.1016/j.tibtech.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/23/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024]
Abstract
Cell-based therapies are revolutionizing medicine by replacing or modifying dysfunctional cells with healthy cells or engineered derivatives, offering disease reversal and cure. One promising approach is using cell-derived extracellular vesicles (EVs), which offer therapeutic benefits similar to cell transplants without the biosafety risks. Although EV applications face challenges like limited production, inadequate therapeutic loading, and poor targeting efficiency, recent advances in bioengineering have enhanced their effectiveness. Herein, we summarize technological breakthroughs in EV bioengineering over the past 5 years, highlighting their improved therapeutic functionalities and potential clinical prospects. We also discuss biomanufacturing processes, regulation, and safety considerations for bioengineered EV therapies, emphasizing the significance of establishing robust frameworks to ensure translation capability, safety, and therapeutic effectiveness for successful clinical adoption.
Collapse
Affiliation(s)
- Yifan Ma
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shiyan Dong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Adam J Grippin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun, China
| | - Andrew S Lee
- Peking University Shenzhen Graduate School, Shenzhen, China; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
12
|
Adamo G, Picciotto S, Gargano P, Paterna A, Raccosta S, Rao E, Romancino DP, Ghersi G, Manno M, Salamone M, Bongiovanni A. DetectEV: A functional enzymatic assay to assess integrity and bioactivity of extracellular vesicles. J Extracell Vesicles 2025; 14:e70030. [PMID: 39776353 PMCID: PMC11705427 DOI: 10.1002/jev2.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 10/25/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
The application of extracellular vesicles (EVs) as therapeutics or nanocarriers in cell-free therapies necessitates meticulous evaluations of different features, including their identity, bioactivity, batch-to-batch reproducibility, and stability. Given the inherent heterogeneity in EV preparations, this assessment demands sensitive functional assays to provide key quality control metrics, complementing established methods to ensure that EV preparations meet the required functionality and quality standards. Here, we introduce the detectEV assay, an enzymatic-based approach for assessing EV luminal cargo bioactivity and membrane integrity. This method is fast, cost-effective, and quantifiable through enzymatic units. Utilizing microalgae-derived EVs, known as nanoalgosomes, as model systems, we optimised the assay parameters and validated its sensitivity and specificity in quantifying the enzymatic activity of esterases within the EV lumen while also evaluating EV membrane integrity. Compared to conventional methods that assess physicochemical features of EVs, our single-step analysis efficiently detects batch-to-batch variations by evaluating changes in luminal cargo bioactivity and integrity across various EV samples, including differences under distinct storage conditions and following diverse isolation and exogenous loading methods, all using small sample sizes. The detectEV assay's application to various human-derived EV types demonstrated its versatility and potential universality. Additionally, the assay effectively predicted EV functionality, such as the antioxidant activity of different nanoalgosome batches. Our findings underscore the detectEV assay's utility in comprehensive characterization of EV functionality and integrity, enhancing batch-to-batch reproducibility and facilitating their therapeutic applications.
Collapse
Affiliation(s)
- Giorgia Adamo
- Cell‐Tech HUB and Institute for Research and Biomedical Innovation (IRIB)National Research Council of Italy (CNR)PalermoItaly
| | - Sabrina Picciotto
- Cell‐Tech HUB and Institute for Research and Biomedical Innovation (IRIB)National Research Council of Italy (CNR)PalermoItaly
| | - Paola Gargano
- Cell‐Tech HUB and Institute for Research and Biomedical Innovation (IRIB)National Research Council of Italy (CNR)PalermoItaly
| | - Angela Paterna
- Cell‐Tech HUB and Institute of Biophysics (IBF)National Research Council of Italy (CNR)PalermoItaly
| | - Samuele Raccosta
- Cell‐Tech HUB and Institute of Biophysics (IBF)National Research Council of Italy (CNR)PalermoItaly
| | - Estella Rao
- Cell‐Tech HUB and Institute of Biophysics (IBF)National Research Council of Italy (CNR)PalermoItaly
| | - Daniele Paolo Romancino
- Cell‐Tech HUB and Institute for Research and Biomedical Innovation (IRIB)National Research Council of Italy (CNR)PalermoItaly
| | - Giulio Ghersi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF)University of PalermoPalermoItaly
| | - Mauro Manno
- Cell‐Tech HUB and Institute of Biophysics (IBF)National Research Council of Italy (CNR)PalermoItaly
| | - Monica Salamone
- Cell‐Tech HUB and Institute for Research and Biomedical Innovation (IRIB)National Research Council of Italy (CNR)PalermoItaly
| | - Antonella Bongiovanni
- Cell‐Tech HUB and Institute for Research and Biomedical Innovation (IRIB)National Research Council of Italy (CNR)PalermoItaly
| |
Collapse
|
13
|
Lehrich BM, Delgado ER. Lipid Nanovesicle Platforms for Hepatocellular Carcinoma Precision Medicine Therapeutics: Progress and Perspectives. Organogenesis 2024; 20:2313696. [PMID: 38357804 PMCID: PMC10878025 DOI: 10.1080/15476278.2024.2313696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/04/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality globally. HCC is highly heterogenous with diverse etiologies leading to different driver mutations potentiating unique tumor immune microenvironments. Current therapeutic options, including immune checkpoint inhibitors and combinations, have achieved limited objective response rates for the majority of patients. Thus, a precision medicine approach is needed to tailor specific treatment options for molecular subsets of HCC patients. Lipid nanovesicle platforms, either liposome- (synthetic) or extracellular vesicle (natural)-derived present are improved drug delivery vehicles which may be modified to contain specific cargos for targeting specific tumor sites, with a natural affinity for liver with limited toxicity. This mini-review provides updates on the applications of novel lipid nanovesicle-based therapeutics for HCC precision medicine and the challenges associated with translating this therapeutic subclass from preclinical models to the clinic.
Collapse
Affiliation(s)
- Brandon M. Lehrich
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Evan R. Delgado
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
14
|
Lahouty M, Fadaee M, Shanehbandi D, Kazemi T. Exosome-driven nano-immunotherapy: revolutionizing colorectal cancer treatment. Mol Biol Rep 2024; 52:83. [PMID: 39724304 DOI: 10.1007/s11033-024-10157-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024]
Abstract
Colorectal cancer (CRC) ranks as the third most common cancer worldwide and remains a major cause of cancer-related deaths, necessitating the development of innovative therapeutic approaches beyond conventional treatment modalities. Conventional therapies, such as radiation, chemotherapy, and surgery, are hindered by challenges like imprecise targeting, substantial toxicity, and the development of resistance. Exosome-driven nano-immunotherapy has emerged as a groundbreaking approach that leverages the natural properties of exosomes-cell-derived vesicles known for their role in intercellular communication-to deliver therapeutic agents with high precision and specificity. This approach utilizes the natural ability of exosomes to serve as natural nanocarriers for various biomolecules, such as proteins, nucleic acids, and lipids, enabling precise drug delivery and immune modulation. Exosomes offer distinct advantages compared to traditional drug delivery systems, including their biocompatibility, capability to traverse biological barriers, and suitability for personalized medicine approaches. We evaluate the effectiveness of exosome-based therapies in comparison to traditional approaches, emphasizing their ability to achieve precise delivery, minimize systemic toxicity, and enhance treatment results. Despite their promise, several challenges remain, including the standardization of exosome isolation and production, optimization of cargo loading techniques, and ensuring safety and efficacy in clinical applications. By overcoming these obstacles and leveraging the distinctive characteristics of exosomes, exosome-driven nano-immunotherapy presents a promising avenue for more efficient therapeutic interventions.
Collapse
Affiliation(s)
- Masoud Lahouty
- Department of Microbiology and Virology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Manouchehr Fadaee
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Tohid Kazemi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
15
|
He JG, Wu XX, Li S, Yan D, Xiao GP, Mao FG. Exosomes derived from microRNA-540-3p overexpressing mesenchymal stem cells promote immune tolerance via the CD74/nuclear factor-kappaB pathway in cardiac allograft. World J Stem Cells 2024; 16:1022-1046. [PMID: 39734479 PMCID: PMC11669987 DOI: 10.4252/wjsc.v16.i12.1022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/16/2024] [Accepted: 11/12/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND Heart transplantation is a crucial intervention for severe heart failure, yet the challenge of organ rejection is significant. Bone marrow mesenchymal stem cells (BMSCs) and their exosomes have demonstrated potential in modulating T cells, dendtitic cells (DCs), and cytokines to achieve immunomodulatory effects. DCs, as key antigen-presenting cells, play a critical role in shaping immune responses by influencing T-cell activation and cytokine production. Through this modulation, BMSCs and their exosomes enhance graft tolerance and prolonging survival. AIM To explore the immunomodulatory effects of exosomes derived from BMSCs overexpressing microRNA-540-3p (miR-540-3p) on cardiac allograft tolerance, focusing on how these exosomes modulating DCs and T cells activity through the CD74/nuclear factor-kappaB (NF-κB) pathway. METHODS Rat models were used to assess the impact of miR-540-3p-enhanced exosomes on immune tolerance in cardiac allografts. MiR-540-3p expression was manipulated in BMSCs, and derived exosomes were collected and administered to the rat models post-heart transplantation. The study monitored expression levels of major histocompatibility complex II, CD80, CD86, and CD274 in DCs, and quantified CD4+ and CD8+ T cells, T regulatory cells, and cytokine profiles. RESULTS Exosomes from miR-540-3p-overexpressing BMSCs lead to reduced expression of immune activation markers CD74 and NF-κB p65 in DCs and T cells. Rats treated with these exosomes showed decreased inflammation and improved cardiac function, indicated by lower levels of pro-inflammatory cytokines (interleukin-1β, interferon-γ) and higher levels of anti-inflammatory cytokines (interleukin-10, transforming growth factor β1). Additionally, miR-540-3p skewed the profiles of DCs and T cells towards immune tolerance, increasing the ratio of T regulatory cells and shifting cytokine secretion to favor graft acceptance. CONCLUSION Exosomes derived from BMSCs overexpressing miR-540-3p significantly enhance immune tolerance and prolong cardiac allograft survival by modulating the CD74/NF-κB pathway, which regulates activities of DCs and T cells. These findings highlight a promising therapeutic strategy to improve heart transplantation outcomes and potentially reduce the need for prolonged immunosuppression.
Collapse
Affiliation(s)
- Ji-Gang He
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Kunming 650032, Yunnan Province, China
| | - Xin-Xin Wu
- Yunnan University of Traditional Chinese Medicine, Kunming 650500, Yunnan Province, China
| | - Si Li
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Kunming 650032, Yunnan Province, China
| | - Dan Yan
- Department of Medical Intensive Care Unit, The First People's Hospital of Yunnan Province, Kunming 650032, Yunnan Province, China
| | - Gao-Peng Xiao
- Department of Anaesthesia, The First People's Hospital of Yunnan Province, Kunming 650032, Yunnan Province, China
| | - Fu-Gang Mao
- Department of Ultrasonic, The First People's Hospital of Yunnan Province, Kunming 650032, Yunnan Province, China.
| |
Collapse
|
16
|
Di SJ, Cui XW, Liu TJ, Shi YY. Therapeutic potential of human breast milk-derived exosomes in necrotizing enterocolitis. Mol Med 2024; 30:243. [PMID: 39701931 DOI: 10.1186/s10020-024-01010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 11/23/2024] [Indexed: 12/21/2024] Open
Abstract
Necrotizing enterocolitis (NEC) is a severe inflammatory and necrotizing disease of the intestine that primarily affects the neonates, particularly premature infants. It has a high incidence of approximately 8.9% in extremely preterm infants, with a mortality rate ranging from 20 to 30%. In recent years, exosomes, particularly those derived from breast milk, have emerged as potential candidates for NEC therapy. Human breast milk-derived exosomes (BME) have been shown to enhance intestinal barrier function, protect intestinal epithelial cells from oxidative stress, promote the proliferation and migration of intestinal epithelial cells, and reduce the severity of experimental NEC models. As a subset of extracellular vesicles, BME possess the membrane structure, low immunogenicity, and high permeability, making them ideal vehicles for the treatment of NEC. Additionally, exosomes derived from various sources, including stem cells, intestinal epithelial cells, plants, and bacteria, have been implicated in the development and protection of intestinal diseases. This article summarizes the mechanisms through which exosomes, particularly BME, exert their effects on NEC and discusses the feasibility and obstacles associated with this novel therapeutic strategy.
Collapse
Affiliation(s)
- Si-Jia Di
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xue-Wei Cui
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Tian-Jing Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Yong-Yan Shi
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
17
|
Fu E, Pan K, Li Z. Engineering extracellular vesicles for targeted therapeutics in cardiovascular disease. Front Cardiovasc Med 2024; 11:1503830. [PMID: 39749310 PMCID: PMC11693616 DOI: 10.3389/fcvm.2024.1503830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025] Open
Abstract
Extracellular vesicles (EVs) are nanosized particles secreted by cells that play crucial roles in intercellular communication, especially in the context of cardiovascular diseases (CVDs). These vesicles carry complex cargo, including proteins, lipids, and nucleic acids, that reflects the physiological or pathological state of their cells of origin. Multiomics analysis of cell-derived EVs has provided valuable insights into the molecular mechanisms underlying CVDs by identifying specific proteins and EV-bound targets involved in disease progression. Recent studies have demonstrated that engineered EVs, which are designed to carry specific therapeutic molecules or modified to enhance their targeting capabilities, hold promise for treating CVDs. Analysis of the EV proteome has been instrumental in identifying key proteins that can be targeted or modulated within these engineered vesicles. For example, proteins involved in inflammation, thrombosis, and cardiac remodeling have been identified as potential therapeutic targets. Furthermore, the engineering of EVs to increase their delivery to specific tissues, such as the myocardium, or to modulate their immunogenicity and therapeutic efficacy is an emerging area of research. By leveraging the insights gained from multiomics analyses, researchers are developing EV-based therapies that can selectively target pathological processes in CVDs, offering a novel and potentially more effective treatment strategy. This review integrates the core findings from EV multiomics analysis in the context of CVDs and highlights the potential of engineered EVs in therapeutic applications.
Collapse
Affiliation(s)
- Enze Fu
- School of Medicine, Nankai University, Tianjin, China
- Institute of Ophthalmology, Nankai University, Tianjin, China
| | - Kai Pan
- School of Medicine, Nankai University, Tianjin, China
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Seventh People's Hospital, Zhengzhou, China
| | - Zongjin Li
- School of Medicine, Nankai University, Tianjin, China
- Institute of Ophthalmology, Nankai University, Tianjin, China
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Seventh People's Hospital, Zhengzhou, China
- National Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
18
|
Li MX, Hu S, Lei HH, Yuan M, Li X, Hou WK, Huang XJ, Xiao BW, Yu TX, Zhang XH, Wu XT, Jing WQ, Lee HJ, Li JJ, Fu D, Zhang LM, Yan W. Tumor-derived miR-9-5p-loaded EVs regulate cholesterol homeostasis to promote breast cancer liver metastasis in mice. Nat Commun 2024; 15:10539. [PMID: 39627188 PMCID: PMC11615374 DOI: 10.1038/s41467-024-54706-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 11/15/2024] [Indexed: 12/06/2024] Open
Abstract
Cancer cells secrete extracellular vesicles (EV) encapsulating bioactive cargoes to facilitate inter-organ communication in vivo and are emerging as critical mediators of tumor progression and metastasis, a condition which is often accompanied by a dysregulated cholesterol metabolism. Whether EVs are involved in the control of cholesterol homeostasis during tumor metastasis is still undefined and warrant further investigation. Here, we find that breast cancer-derived exosomal miR-9-5p induces the expression of HMGCR and CH25H, two enzymes involved in cholesterol synthesis and the conversion of 25-hydroxycholesterol from cholesterol by targeting INSIG1, INSIG2 and ATF3 genes in the liver. Notably, in vivo miR-9-5p antagomir treatment and genetic CH25H ablation prevents tumor metastasis in a mouse model of breast cancer. Thus, our findings reveal the regulatory mechanism of tumor-derived miR-9-5p in liver metastasis by linking oxysterol metabolism and Kupffer cell polarization, shedding light on future applications for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Mei-Xin Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Sheng Hu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - He-Hua Lei
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan, Hubei, 430064, China
- University of Chinese Academy of Sciences, 100864, Beijing, China
| | - Meng Yuan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Xu Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Wen-Kui Hou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Xiang-Jie Huang
- College of Biomedical Engineering and Instrument Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Bing-Wen Xiao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Teng-Xiang Yu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Xiao-Hui Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Xiao-Ting Wu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Wen-Qiang Jing
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Hyeon-Jeong Lee
- College of Biomedical Engineering and Instrument Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Juan-Juan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Da Fu
- General Surgery, Ruijin Hospital & Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Li-Min Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan, Hubei, 430064, China.
- University of Chinese Academy of Sciences, 100864, Beijing, China.
| | - Wei Yan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China.
| |
Collapse
|
19
|
Selvakumar SC, Preethi KA, Ross K, Sekar D. The emerging role of microRNA-based therapeutics in the treatment of preeclampsia. Placenta 2024; 158:38-47. [PMID: 39361986 DOI: 10.1016/j.placenta.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/09/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024]
Abstract
Preeclampsia (PE) is a pregnancy complication that is often diagnosed due to elevated blood pressure and proteinuria. Though current research focuses on the identification of novel biomarkers and therapeutic targets, still, there is a lack of clinical validation for the use of biomarkers and therapeutic targets for early diagnosis and treatment of PE. Several molecules are being studied for their potential role in PE. Among them, microRNAs are studied vastly for their role in the diagnosis, prognosis, and treatment of PE. But only a few studies are focused on the therapeutic efficacy of miRNAs in PE. Thus, the relevant articles were identified and discussed in this review. These studies provide evidence that miRNAs are indeed important molecules in PE that have the role of both therapeutic targets and therapeutic molecules. However, the studies are limited to in vivo an in vitro models, hence further studies are required to validate the complete potential of miRNA therapeutics. Long non-coding RNA (lncRNA) sponges, miRNA mimics, miRNA inhibitors, exosome-associated miRNAs, and several other molecules have been studied as miRNA-based therapeutics in PE. Thus, miRNAs are postulated to be potential therapeutic targets and miRNA-based therapeutics might pave the way for novel therapeutic approaches for PE.
Collapse
Affiliation(s)
- Sushmaa Chandralekha Selvakumar
- RNA Biology Lab, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India
| | - K Auxzilia Preethi
- RNA Biology Lab, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India
| | - Kehinde Ross
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, United Kingdom
| | - Durairaj Sekar
- RNA Biology Lab, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India.
| |
Collapse
|
20
|
Li L, Al‐Jallad H, Sun A, Georgiopoulos M, Bokhari R, Ouellet J, Jarzem P, Cherif H, Haglund L. The proteomic landscape of extracellular vesicles derived from human intervertebral disc cells. JOR Spine 2024; 7:e70007. [PMID: 39507593 PMCID: PMC11538033 DOI: 10.1002/jsp2.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/17/2024] [Accepted: 10/05/2024] [Indexed: 11/08/2024] Open
Abstract
Background Extracellular vesicles (EVs) function as biomarkers and are crucial in cell communication and regulation, with therapeutic potential for intervertebral disc (IVD)-related low back pain (LBP). EV cargo is often affected by tissue health, which may affect the therapeutic potential. There is currently limited knowledge of how the cargo of IVD cell-derived EVs varies with tissue health and how differences in proteomic profile affect the predicted biological functions. Methods Our study purified EVs from human IVD cell conditioned media by size-exclusion chromatography. Nanoparticle tracking analysis was conducted to measure EV size and concentration. Transmission electron microscopy and Western blot were performed to examine EV structure and markers. Tandem mass tag-mass spectrometry was conducted to determine protein cargo. Results Most EVs were exosomes and intermediate microvesicles with an increasing amount linked to disease progression. Of the proteins detected, 88.6% were shared across the non-degenerate, mildly-degenerate, and degenerate samples. GO and KEGG analyses revealed that cargo from the mildly-degenerate samples was the most distinct, with the proteins in high abundance strongly associated with extracellular matrix (ECM) organization and structure. Shared proteins, highly expressed in the non-degenerate and degenerate samples, showed strong associations with cell adhesion, ECM-receptor interaction, and vesicle-mediated transport, respectively. Conclusions Our findings indicate that EVs from IVD cells from tissue with different degrees of degeneration share a majority of the cargo proteins. However, the level of expression differs with degeneration grade. Cargo from the mildly-degenerate samples exhibits the most differences. A better understanding of changes in EV cargo in the degenerative process may provide novel information related to molecular mechanisms underlying IVD degeneration and suggest new potential treatment modalities for IVD-related LBP.
Collapse
Affiliation(s)
- Li Li
- Department of Surgery, Division of OrthopaedicsMcGill UniversityMontrealQuebecCanada
- The McGill Scoliosis and Spine Group, McGill University Health CentreMontrealQuebecCanada
- The Orthopaedic Research Laboratory, Research Institute of the McGill University Health CentreMontrealQuebecCanada
| | | | - Aiwei Sun
- Department of Anatomy and Cell BiologyMcGill UniversityMontrealQuebecCanada
| | - Miltiadis Georgiopoulos
- Department of Surgery, Division of OrthopaedicsMcGill UniversityMontrealQuebecCanada
- The McGill Scoliosis and Spine Group, McGill University Health CentreMontrealQuebecCanada
| | - Rakan Bokhari
- Department of Surgery, Division of OrthopaedicsMcGill UniversityMontrealQuebecCanada
- Department of Surgery, Division of NeurosurgeryFaculty of Medicine, King Abdulaziz UniversityJeddahSaudi Arabia
| | - Jean Ouellet
- Department of Surgery, Division of OrthopaedicsMcGill UniversityMontrealQuebecCanada
- The McGill Scoliosis and Spine Group, McGill University Health CentreMontrealQuebecCanada
- Shriners Hospital for ChildrenMontrealQuebecCanada
| | - Peter Jarzem
- Department of Surgery, Division of OrthopaedicsMcGill UniversityMontrealQuebecCanada
- The McGill Scoliosis and Spine Group, McGill University Health CentreMontrealQuebecCanada
| | - Hosni Cherif
- Department of Surgery, Division of OrthopaedicsMcGill UniversityMontrealQuebecCanada
- The McGill Scoliosis and Spine Group, McGill University Health CentreMontrealQuebecCanada
- The Orthopaedic Research Laboratory, Research Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Lisbet Haglund
- Department of Surgery, Division of OrthopaedicsMcGill UniversityMontrealQuebecCanada
- The McGill Scoliosis and Spine Group, McGill University Health CentreMontrealQuebecCanada
- The Orthopaedic Research Laboratory, Research Institute of the McGill University Health CentreMontrealQuebecCanada
- Shriners Hospital for ChildrenMontrealQuebecCanada
| |
Collapse
|
21
|
Yuan M, Ma W, Liu B, Zou X, Huang B, Tian X, Jin Y, Zheng N, Wu Z, Wang Y. Delivery of therapeutic RNA by extracellular vesicles derived from Saccharomyces cerevisiae for medicine applications. J Pharm Sci 2024; 113:3574-3585. [PMID: 39454948 DOI: 10.1016/j.xphs.2024.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Employing small extracellular vesicles (EVs) as drug delivery vehicles presents a plethora of advantages over conventional drug delivery methods, including biological compatibility, engineering versatility for targeted delivery, and biodegradability. Therefore, strategies aimed at amplifying their therapeutic potential involve developing efficient, tissue-specific, and non-immunogenic delivery approaches. Despite rapid advancements in the realm of EVs as drug delivery systems in recent years, the availability of a high-yield, reproducible, and cost-effective source for EVs production and isolation remains a limiting factor for practical application. In this study, we isolated EVs from Saccharomyces cerevisiae (S.c) and loaded them with cargoes such as hsa-miR-143 (an apoptosis-inducing miRNA) or miR-H6 (a miRNA targeting HSV-1). We demonstrated the capability of these EVs to deliver microRNAs or even large mRNA to a variety of cell types. The therapeutic potential of S.c-derived EVs (S.c-EVs) was further evidenced by their ability to inhibit tumor growth in animal models. The S.c-EVs proved to be safe and non-immunogenic in vivo. Our results suggest that Saccharomyces cerevisiae represents a cost-effective source of extracellular vesicles, serving as nanocarriers for functional drug delivery in therapeutic applications.
Collapse
Affiliation(s)
- Meng Yuan
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Wenyuan Ma
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Bingxin Liu
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Xue Zou
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Bilian Huang
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Xiaoyan Tian
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Yu Jin
- Department of Clinical Medicine, Medical School of Nanjing University, Nanjing, People's Republic of China; Nanjing Children's Hospital, Nanjing Medical University, Nanjing, People's Republic of China.
| | - Nan Zheng
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, People's Republic of China.
| | - Zhiwei Wu
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, People's Republic of China; State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, People's Republic of China; Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, People's Republic of China.
| | - Yongxiang Wang
- Department of Orthopedics, Northern Jiangsu People's Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Yangzhou, China.
| |
Collapse
|
22
|
Silva Couto P, Stibbs DJ, Sanchez BC, Khalife R, Panagopoulou TI, Barnes B, George V, Taghizadeh RR, Rafiq QA. Generating suspension-adapted human mesenchymal stromal cells (S-hMSCs) for the scalable manufacture of extracellular vesicles. Cytotherapy 2024; 26:1532-1546. [PMID: 39269403 DOI: 10.1016/j.jcyt.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUD Human mesenchymal stromal cells (hMSCs) are a naturally adherent cell type and one of the most studied cellular agents used in cell therapy over the last 20 years. Their mechanism of action has been primarily associated with paracrine signaling, which has contributed to an increase in the number of studies focused on hMSC-related extracellular vesicles (EVs). METHODS In this study, we demonstrate for the first time that human telomerase reverse transcriptase (hTERT) immortalized hMSCs can be adapted to suspension culture, eliminating the need for microcarriers or other matrixes to support cell growth. RESULTS This novel cell line, named suspension hMSCs (S-hMSCs), has a doubling time of approximately 55 hours, with a growth rate of 0.423/d. Regarding its immunophenotype characteristics, S-hMSCs retained close to 90% of CD73 and CD105 expression levels, with the CD90 receptor being downregulated during the adherent to suspension adaptation process. An RNA sequencing analysis showed an upregulation of the transcripts coding for CD44, CD46 and CD47 compared to the expression levels in AT-hMSCs and hTERT-hMSCs. The cell line herein established was able to generate EVs using a chemically defined medium formulation with these nanoparticles averaging 150 nm in size and displaying the markers CD63, CD81, and TSG101, while not expressing the negative marker calnexin. CONCLUSION This body of evidence, combined with the visual confirmation of EV presence using transmission electron microscopy, demonstrates the EV-producing capabilities of the novel S-hMSCs. This cell line provides a platform for process development, drug discovery and translational studies in the EV field.
Collapse
Affiliation(s)
- Pedro Silva Couto
- Department of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, London, UK
| | - Dale J Stibbs
- Department of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, London, UK
| | - Braulio Carrillo Sanchez
- Department of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, London, UK
| | - Rana Khalife
- Department of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, London, UK
| | - Theano I Panagopoulou
- Department of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, London, UK
| | - Benjamin Barnes
- Department of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, London, UK
| | - Vaques George
- Department of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, London, UK
| | | | - Qasim A Rafiq
- Department of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, London, UK.
| |
Collapse
|
23
|
Loria F, Picciotto S, Adamo G, Zendrini A, Raccosta S, Manno M, Bergese P, Liguori GL, Bongiovanni A, Zarovni N. A decision-making tool for navigating extracellular vesicle research and product development. J Extracell Vesicles 2024; 13:e70021. [PMID: 39670350 PMCID: PMC11638734 DOI: 10.1002/jev2.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 10/31/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024] Open
Abstract
Due to their intercellular communication properties and involvement in a wide range of biological processes, extracellular vesicles (EVs) are increasingly being studied and exploited for different applications. Nevertheless, their complex nature and heterogeneity, as well as the challenges related to their purification and characterization procedures, require a cautious assessment of the qualitative and quantitative parameters that need to be monitored. This translates into a multitude of choices and putative solutions that any EV researcher must confront in both research and translational environments. In this respect, decision-making tools may help assess various options, weigh pros and cons, and ultimately arrive at a thought-out decision that considers both the best fit-to-source and fit-to-scope EV application(s). Here, we present a multi-criteria EV decision-making grid (EV-DMG) as a novel, efficient, customizable, and easy-to-use tool to support EV research and innovation. By identifying and weighing key assessment criteria for comparing distinct EV-based preparations and related processes, our EV-DMG may assist any EV community member in making informed, traceable, and reproducible decisions regarding the management of EV sources or samples. Ultimately, this EV-DMG may guide the adoption of the most suitable EV production and analytical pipelines for targeting a defined aim or application.
Collapse
Affiliation(s)
- Francesca Loria
- HansaBioMed Life Sciences LtdTallinnEstonia
- Department of Chemistry and BiotechnologyTallinn University of TechnologyTallinnEstonia
| | - Sabrina Picciotto
- Institute of Biomedical Research and Innovation (IRIB)National Research Council of ItalyPalermoItaly
| | - Giorgia Adamo
- Institute of Biomedical Research and Innovation (IRIB)National Research Council of ItalyPalermoItaly
| | - Andrea Zendrini
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
- CSGIItalian Center for Colloid and Interface ScienceFlorenceItaly
| | - Samuele Raccosta
- Institute of BiophysicsNational Research Council of ItalyPalermoItaly
| | - Mauro Manno
- Institute of BiophysicsNational Research Council of ItalyPalermoItaly
- EVEBiofactory SrlPalermoItaly
| | - Paolo Bergese
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
- CSGIItalian Center for Colloid and Interface ScienceFlorenceItaly
| | - Giovanna L. Liguori
- Institute of Genetics and Biophysics (IGB)National Research Council of ItalyNaplesItaly
| | - Antonella Bongiovanni
- Institute of Biomedical Research and Innovation (IRIB)National Research Council of ItalyPalermoItaly
- EVEBiofactory SrlPalermoItaly
| | | |
Collapse
|
24
|
Lv L, Li Z, Liu X, Zhang W, Zhang Y, Liang Y, Zhang Z, Li Y, Ding M, Li R, Lin J. Revolutionizing medicine: Harnessing plant-derived vesicles for therapy and drug transport. Heliyon 2024; 10:e40127. [PMID: 39634409 PMCID: PMC11615498 DOI: 10.1016/j.heliyon.2024.e40127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/29/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
The emergence of extracellular vesicles (EVs), which are natural lipid bilayer membrane structures facilitating intercellular substance and information exchange, has sparked innovative approaches in drug development and carrier enhancement. Plant-derived EVs notably offer advantages including low preparation cost, low immunogenicity, flexible drug delivery, high stability, good tissue permeability, and high inherent medicinal value compared to their animal-derived counterparts. Despite these promising attributes, the research on plant-derived EVs remains fragmented and lacks comprehensive synthesis. This review aims to address this gap by summarizing the isolation methods, biological characteristics, and storage techniques of plant-derived EVs. Additionally, we explore the potential of plant-derived EVs as therapeutic agents and drug carriers for treating various diseases. Finally, we delineate the current impediments to plant-derived EV development and highlight future research directions. By providing a detailed overview, we hope to facilitate further research and application in this emerging field.
Collapse
Affiliation(s)
- Li Lv
- Department of Medical Oncology, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Wuhua District, Kunming, 650101, Yunnan, China
| | - Zhenkun Li
- Department of Medical Oncology, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Wuhua District, Kunming, 650101, Yunnan, China
| | - Xin Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Wuhua District, Kunming, 650101, Yunnan, China
| | - Wenhui Zhang
- Department of Medical Oncology, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Wuhua District, Kunming, 650101, Yunnan, China
| | - Yi Zhang
- Department of Thyroid - Breast Surgery, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Wuhua District, Kunming, 650101, Yunnan, China
| | - Ying Liang
- Department of Thyroid - Breast Surgery, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Wuhua District, Kunming, 650101, Yunnan, China
| | - Zhixian Zhang
- Department of Medical Oncology, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Wuhua District, Kunming, 650101, Yunnan, China
| | - Yueqiao Li
- Department of Medical Oncology, Yanjin Country People's Hospital, No. 87, Pingjie Street, Yanjin County, Zhaotong, 657500, Yunnan, China
| | - Mingxia Ding
- Department of Medical Oncology, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Wuhua District, Kunming, 650101, Yunnan, China
| | - Rongqing Li
- Department of Radiation Oncology, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Wuhua District, Kunming, 650032, Yunnan, China
| | - Jie Lin
- Department of Medical Oncology, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Wuhua District, Kunming, 650101, Yunnan, China
| |
Collapse
|
25
|
Lee J, Geum D, Park DH, Kim JH. Molecular Targeting of Ischemic Stroke: The Promise of Naïve and Engineered Extracellular Vesicles. Pharmaceutics 2024; 16:1492. [PMID: 39771472 PMCID: PMC11678501 DOI: 10.3390/pharmaceutics16121492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 01/04/2025] Open
Abstract
Ischemic stroke (IS) remains a leading cause of mortality and long-term disability worldwide, with limited therapeutic options available. Despite the success of early interventions, such as tissue-type plasminogen activator administration and mechanical thrombectomy, many patients continue to experience persistent neurological deficits. The pathophysiology of IS is multifaceted, encompassing excitotoxicity, oxidative and nitrosative stress, inflammation, and blood-brain barrier disruption, all of which contribute to neural cell death, further complicating the treatment of IS. Recently, extracellular vesicles (EVs) secreted naturally by various cell types have emerged as promising therapeutic agents because of their ability to facilitate selective cell-to-cell communication, neuroprotection, and tissue regeneration. Furthermore, engineered EVs, designed to enhance targeted delivery and therapeutic cargo, hold the potential to improve their therapeutic benefits by mitigating neuronal damage and promoting neurogenesis and angiogenesis. This review summarizes the characteristics of EVs, the molecular mechanisms underlying IS pathophysiology, and the emerging role of EVs in IS treatment at the molecular level. This review also explores the recent advancements in EV engineering, including the incorporation of specific proteins, RNAs, or pharmacological agents into EVs to enhance their therapeutic efficacy.
Collapse
Affiliation(s)
- Jihun Lee
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea;
| | - Dongho Geum
- Department of Medical Science, College of Medicine, Korea University, Seoul 02841, Republic of Korea;
| | - Dong-Hyuk Park
- Department of Neurosurgery, Anam Hospital, College of Medicine, Korea University, Seoul 02841, Republic of Korea;
| | - Jong-Hoon Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea;
| |
Collapse
|
26
|
Kodali MC, Salim C, Ismael S, Lebovitz SG, Lin G, Liao FF. Characterization of exosome-mediated propagation of systemic inflammatory responses into the central nervous system. Mol Brain 2024; 17:80. [PMID: 39548504 PMCID: PMC11568607 DOI: 10.1186/s13041-024-01120-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/17/2024] [Indexed: 11/18/2024] Open
Abstract
The mechanisms through which systemic inflammation exerts its effect on the central nervous system (CNS) are still not completely understood. Exosomes are small (30 to 100 nm) membrane-bound extracellular vesicles released by most of the mammalian cells. Exosomes play a vital role in cell-to-cell communication. This includes regulation of inflammatory responses by shuttling mRNAs, miRNAs, and cytokines, both locally and systemically to the neighboring as well as distant cells to further modulate the transcriptional and/or translational states and affect the functional phenotype of those cells that have taken up these exosomes. The role of circulating blood exosomes leading to neuroinflammation during systemic inflammatory conditions was hereby characterized. Serum-derived exosomes from LPS-challenged mice (SDEL) were freshly isolated from the sera of the mice that were earlier treated with LPS and used to study the effects on neuroinflammation. Exosomes isolated from the sera of the mice injected with saline were used as a control. In-vitro studies showed that the SDEL upregulate pro-inflammatory cytokine gene expression in the murine cell lines of microglia (BV-2), astrocytes (C8-D1A), and cerebral microvascular endothelial cells (bEnd.3). To further study their effects in-vivo, SDEL were intravenously injected into normal adult mice. Elevated mRNA expression of pro-inflammatory cytokines was observed in the brains of SDEL recipient mice. Proteomic analysis of the SDEL confirmed the increased expression of inflammatory cytokines in them. Together, these results demonstrate and strengthen the novel role of peripheral circulating exosomes in causing neuroinflammation during systemic inflammatory conditions.
Collapse
Affiliation(s)
- Mahesh Chandra Kodali
- Department of Neurology, Harvard Medical School, Harvard University, Cambridge, MA, 02115, USA.
- Department of Neurology, Massachusetts General Hospital, 114 16th Street, Room 2300, Charlestown, MA, 02129, USA.
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38103, USA.
- Integrated Biomedical Sciences Program, Molecular and Systems Pharmacology Track, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| | - Chinnu Salim
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38103, USA
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Saifudeen Ismael
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University, New Orleans, LA, 70112, USA
| | - Sarah Grace Lebovitz
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38103, USA
| | - Geng Lin
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38103, USA
| | - Francesca-Fang Liao
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38103, USA.
| |
Collapse
|
27
|
Colao IL, Corteling RL, Bracewell DG, Wall IB. Neural stem cell-derived extracellular vesicles purified by monolith chromatography retain stimulatory effect in in vitro scratch assay. Cytotherapy 2024:S1465-3249(24)00932-0. [PMID: 39755977 DOI: 10.1016/j.jcyt.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/25/2024] [Accepted: 11/05/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND AIMS Extracellular vesicles (EVs) have gained traction as potential cell-free therapeutic candidates. Development of purification methods that are scalable and robust is a major focus of EV research. Yet there is still little in the literature that evaluates purification methods against potency of the EV product. In the present study, we examined two monolith chromatography methods with a focus on assessing the ability of purified EVs to retain stimulatory effects on fibroblasts to connect scalable purification methods with product outputs. METHODS We characterized EVs recovered from CTX0E03 (CTX) neural stem cell-conditioned medium in terms of biomarker distribution, functional capacity and purity. We evaluated the ability of EVs to promote wound closure in an in vitro scratch assay prior to and following two monolith chromatography steps (anion exchange and hydrophobic interaction) to determine whether these options may better serve EV bioprocessing. RESULTS EVs from CTX cells were successful in initiating wound repair in a fibroblast scratch assay over 72 h with a single 20-μg dose. EV preparations presented the markers CD9, CD81 and CD63 but also contained culture albumin and DNA as process impurities. EVs recovered by tangential flow filtration could be successfully purified further by both monolith chromatography steps. Post-monolith EV stimulation was conserved. CONCLUSIONS The results indicate that monolith chromatography is a viable purification method for EVs derived from cell culture that does not detract from the product's ability to stimulate fibroblasts, suggesting that product functionality is conserved. Further work is needed in developing suitable downstream processes and analytics to achieve clinically relevant purities for injectable biologics.
Collapse
Affiliation(s)
- Ivano Luigi Colao
- Department of Biochemical Engineering, University College London, London, UK
| | | | - Daniel G Bracewell
- Department of Biochemical Engineering, University College London, London, UK.
| | - Ivan B Wall
- Institute of Immunology and Immunotherapy, College of Medicine and Health, University of Birmingham, Birmingham, UK.
| |
Collapse
|
28
|
Robbins BT, Montreuil KA, Kundu N, Kumar P, Agrahari V. Corneal Treatment, Repair, and Regeneration: Exosomes at Rescue. Pharmaceutics 2024; 16:1424. [PMID: 39598547 PMCID: PMC11597686 DOI: 10.3390/pharmaceutics16111424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
Exosomes are extracellular vesicles within the nanosized range that play roles in intercellular communication and thus have certain biological activities. The secretory signaling communication mechanism is an efficient way of exchanging information between cells and has been investigated as nature's therapeutic drug carriers. This review will summarize the potential of exosomes as therapeutic tools and drug delivery vehicles for corneal pathologies. The cornea is an avascular ocular tissue, and its healing is a complex process including cell death and migration, cell proliferation and differentiation, and extracellular matrix remodeling. Here, we discussed the structure, barrier, phases, and healing cascade of cornea. We briefly reviewed the immunogenicity and toxicity of exosomes and role of exosomes in preserving cornea. Additionally, we provided combining exosome strategies with hydrogels, gene and stem cells therapy focused on corneal treatment, repair, and regeneration.
Collapse
Affiliation(s)
- Brooke T. Robbins
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Kate A. Montreuil
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Neloy Kundu
- Graduate College, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Prashant Kumar
- Vaccine Analytics and Formulation Center, Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA;
| | - Vibhuti Agrahari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| |
Collapse
|
29
|
Rahnama M, Heidari M, Poursalehi Z, Golchin A. Global Trends of Exosomes Application in Clinical Trials: A Scoping Review. Stem Cell Rev Rep 2024; 20:2165-2193. [PMID: 39340738 DOI: 10.1007/s12015-024-10791-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Exosomes, nano-sized extracellular vesicles, have emerged as a promising tool for the diagnosis and treatment of various intractable diseases, including chronic wounds and cancers. As our understanding of exosomes continues to grow, their potential as a powerful therapeutic modality in medicine is also expanding. This systematic review aims to examine the progress of exosome-based clinical trials and provide a comprehensive overview of the therapeutic perspectives of exosomes. METHODS This systematic review strictly follows PRISMA guidelines and has been registered in PROSPERO, the International Prospective Register of Systematic Reviews. It encompasses articles from January 2000 to January 2023, sourced from bibliographic databases, with targeted search terms targeting exosome applications in clinical trials. During the screening process, strict inclusion and exclusion criteria were applied, including a focus on clinical trials utilizing different cell-derived exosomes for therapeutic purposes. RESULTS Among the 522 publications initially identified, only 10 studies met the stringent eligibility criteria after meticulous screening. The selection process involved systematically excluding duplicates and irrelevant articles to provide a transparent overview. CONCLUSION According to our systematic review, exosomes have promising applications in a variety of medical fields, including cell-free therapies and drug delivery systems for treating a variety of diseases, especially cancers and chronic wounds. To ensure safety, potency, and broader clinical applications, further optimization of exosome extraction, loading, targeting, and administration is necessary. While cell-based therapeutics are increasingly utilizing exosomes, this field is still in its infancy, and ongoing clinical trials will provide valuable insights into the clinical utility of exosomes.
Collapse
Affiliation(s)
- Maryam Rahnama
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Heidari
- Department of Biostatistics and Epidemiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Zahra Poursalehi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Golchin
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran.
- Department of Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
30
|
Bader J, Brigger F, Leroux JC. Extracellular vesicles versus lipid nanoparticles for the delivery of nucleic acids. Adv Drug Deliv Rev 2024; 215:115461. [PMID: 39490384 DOI: 10.1016/j.addr.2024.115461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Extracellular vesicles (EVs) are increasingly investigated for delivering nucleic acid (NA) therapeutics, leveraging their natural role in transporting NA and protein-based cargo in cell-to-cell signaling. Their synthetic counterparts, lipid nanoparticles (LNPs), have been developed over the past decades as NA carriers, culminating in the approval of several marketed formulations such as patisiran/Onpattro® and the mRNA-1273/BNT162 COVID-19 vaccines. The success of LNPs has sparked efforts to develop innovative technologies to target extrahepatic organs, and to deliver novel therapeutic modalities, such as tools for in vivo gene editing. Fueled by the recent advancements in both fields, this review aims to provide a comprehensive overview of the basic characteristics of EV and LNP-based NA delivery systems, from EV biogenesis to structural properties of LNPs. It addresses the primary challenges encountered in utilizing these nanocarriers from a drug formulation and delivery perspective. Additionally, biodistribution profiles, in vitro and in vivo transfection outcomes, as well as their status in clinical trials are compared. Overall, this review provides insights into promising research avenues and potential dead ends for EV and LNP-based NA delivery systems.
Collapse
Affiliation(s)
- Johannes Bader
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Finn Brigger
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
31
|
Wang FD, Ding Y, Zhou JH, Zhou E, Zhang TT, Fan YQ, He Q, Zhang ZQ, Mao CY, Zhang JF, Zhou J. Gamma-aminobutyric acid enhances miR-21-5p loading into adipose-derived stem cell extracellular vesicles to alleviate myocardial ischemia-reperfusion injury via TXNIP regulation. World J Stem Cells 2024; 16:873-895. [PMID: 39493825 PMCID: PMC11525649 DOI: 10.4252/wjsc.v16.i10.873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/21/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Myocardial ischemia-reperfusion injury (MIRI) poses a prevalent challenge in current reperfusion therapies, with an absence of efficacious interventions to address the underlying causes. AIM To investigate whether the extracellular vesicles (EVs) secreted by adipose mesenchymal stem cells (ADSCs) derived from subcutaneous inguinal adipose tissue (IAT) under γ-aminobutyric acid (GABA) induction (GABA-EVsIAT) demonstrate a more pronounced inhibitory effect on mitochondrial oxidative stress and elucidate the underlying mechanisms. METHODS We investigated the potential protective effects of EVs derived from mouse ADSCs pretreated with GABA. We assessed cardiomyocyte injury using terminal deoxynucleotidyl transferase dUTP nick end-labeling and Annexin V/propidium iodide assays. The integrity of cardiomyocyte mitochondria morphology was assessed using electron microscopy across various intervention backgrounds. To explore the functional RNA diversity between EVsIAT and GABA-EVsIAT, we employed microRNA (miR) sequencing. Through a dual-luciferase reporter assay, we confirmed the molecular mechanism by which EVs mediate thioredoxin-interacting protein (TXNIP). Western blotting and immunofluorescence were conducted to determine how TXNIP is involved in mediation of oxidative stress and mitochondrial dysfunction. RESULTS Our study demonstrates that, under the influence of GABA, ADSCs exhibit an increased capacity to encapsulate a higher abundance of miR-21-5p within EVs. Consequently, this leads to a more pronounced inhibitory effect on mitochondrial oxidative stress compared to EVs from ADSCs without GABA intervention, ultimately resulting in myocardial protection. On a molecular mechanism level, EVs regulate the expression of TXNIP and mitigating excessive oxidative stress in mitochondria during MIRI process to rescue cardiomyocytes. CONCLUSION Administration of GABA leads to the specific loading of miR-21-5p into EVs by ADSCs, thereby regulating the expression of TXNIP. The EVs derived from ADSCs treated with GABA effectively ameliorates mitochondrial oxidative stress and mitigates cardiomyocytes damage in the pathological process of MIRI.
Collapse
Affiliation(s)
- Feng-Dan Wang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yi Ding
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jian-Hong Zhou
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - En Zhou
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Tian-Tian Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yu-Qi Fan
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Qing He
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Zong-Qi Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Cheng-Yu Mao
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jun-Feng Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jing Zhou
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
32
|
Smail SW, Hirmiz SM, Ahmed AA, Albarzinji N, Awla HK, Amin K, Janson C. Decoding the intricacies: a comprehensive analysis of microRNAs in the pathogenesis, diagnosis, prognosis and therapeutic strategies for COVID-19. Front Med (Lausanne) 2024; 11:1430974. [PMID: 39434774 PMCID: PMC11492531 DOI: 10.3389/fmed.2024.1430974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
The pandemic of coronavirus disease-19 (COVID-19), provoked by the appearance of a novel coronavirus named severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), required a worldwide healthcare emergency. This has elicited an immediate need for accelerated research into its mechanisms of disease, criteria for diagnosis, methods for forecasting outcomes, and treatment approaches. microRNAs (miRNAs), are diminutive RNA molecules, that are non-coding and participate in gene expression regulation post-transcriptionally, having an important participation in regulating immune processes. miRNAs have granted substantial interest in their impact on viral replication, cell proliferation, and modulation of how the host's immune system responds. This narrative review delves into host miRNAs' multifaceted roles within the COVID-19 context, highlighting their involvement in disease progression, diagnostics, and prognostics aspects, given their stability in biological fluids and varied expression profiles when responding to an infection. Additionally, we discuss complicated interactions between SARS-CoV-2 and host cellular machinery facilitated by host miRNAs revealing how dysregulation of host miRNA expression profiles advances viral replication, immune evasion, and inflammatory responses. Furthermore, it investigates the potential of host miRNAs as therapeutic agents, whether synthetic or naturally occurring, which could be harnessed to either mitigate harmful inflammation or enhance antiviral responses. However, searching more deeply is needed to clarify how host's miRNAs are involved in pathogenesis of COVID-19, its diagnosis processes, prognostic assessments, and treatment approaches for patients.
Collapse
Affiliation(s)
- Shukur Wasman Smail
- College of Pharmacy, Cihan University-Erbil, Kurdistan Region, Erbil, Iraq
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Sarah Mousa Hirmiz
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Akhter Ahmed Ahmed
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Niaz Albarzinji
- Department of Medicine, Hawler Medical University, Erbil, Iraq
| | - Harem Khdir Awla
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Kawa Amin
- College of Medicine, University of Sulaimani, Sulaymaniyah, Iraq
- Department of Medical Sciences: Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Christer Janson
- Department of Medical Sciences: Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| |
Collapse
|
33
|
Walker SN, Lucas K, Dewey MJ, Badylak SF, Hussey GS, Flax J, McGrath JL. Rapid Assessment of Biomarkers on Single Extracellular Vesicles Using "Catch and Display" on Ultrathin Nanoporous Silicon Nitride Membranes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405505. [PMID: 39358943 DOI: 10.1002/smll.202405505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/27/2024] [Indexed: 10/04/2024]
Abstract
Extracellular vesicles (EVs) are particles released from cells that facilitate intercellular communication and have tremendous diagnostic and therapeutic potential. Bulk assays lack the sensitivity to detect rare EV subsets relevant to disease, and while single EV analysis techniques remedy this, they are often undermined by complicated detection schemes and prohibitive instrumentation. To address these issues, a microfluidic technique for EV characterization called "catch and display for liquid biopsy (CAD-LB)" is proposed. In this method, minimally processed samples are pipette-injected and fluorescently labeled EVs are captured in the nanopores of an ultrathin membrane. This enables the rapid assessment of EV number and biomarker colocalization by light microscopy. Here, nanoparticles are used to define the accuracy and dynamic range for counting and colocalization. The same assessments are then made for purified EVs and for unpurified EVs in plasma. Biomarker detection is validated using CD9 and Western blot analysis to confirm that CAD-LB accurately reports relative protein expression levels. Using unprocessed conditioned media, CAD-LB captures the known increase in EV-associated ICAM-1 following endothelial cell cytokine stimulation. Finally, to demonstrate CAD-LB's clinical potential, EV biomarkers indicative of immunotherapy responsiveness are successfully detected in the plasma of bladder cancer patients treated with immune checkpoint blockade.
Collapse
Affiliation(s)
- Samuel N Walker
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Kilean Lucas
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Marley J Dewey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - George S Hussey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Jonathan Flax
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
- Department of Urology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - James L McGrath
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| |
Collapse
|
34
|
Luo X, McAndrews KM, Arian KA, Morse SJ, Boeker V, Kumbhar SV, Hu Y, Mahadevan KK, Church KA, Chitta S, Ryujin NT, Hensel J, Dai J, Dowlatshahi DP, Sugimoto H, Kirtley ML, LeBleu VS, Shalapour S, Simmons JH, Kalluri R. Development of an engineered extracellular vesicles-based vaccine platform for combined delivery of mRNA and protein to induce functional immunity. J Control Release 2024; 374:550-562. [PMID: 39146981 DOI: 10.1016/j.jconrel.2024.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/03/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
mRNA incorporated in lipid nanoparticles (LNPs) became a new class of vaccine modality for induction of immunity against COVID-19 and ushered in a new era in vaccine development. Here, we report a novel, easy-to-execute, and cost effective engineered extracellular vesicles (EVs)-based combined mRNA and protein vaccine platform (EVX-M+P vaccine) and explore its utility in proof-of-concept immunity studies in the settings of cancer and infectious disease. As a first example, we engineered EVs, natural nanoparticle carriers shed by all cells, to contain ovalbumin mRNA and protein (EVOvaM+P vaccine) to serve as cancer vaccine against ovalbumin-expressing melanoma tumors. EVOvaM+P administration to mice with established melanoma tumors resulted in tumor regression associated with effective humoral and adaptive immune responses. As a second example, we generated engineered EVs that contain Spike (S) mRNA and protein to serve as a combined mRNA and protein vaccine (EVSpikeM+P vaccine) against SARS-CoV-2 infection. EVSpikeM+P vaccine administration in mice and baboons elicited robust production of neutralizing IgG antibodies against RBD (receptor binding domain) of S protein and S protein specific T cell responses. Our proof-of-concept study describes a new platform with an ability for rapid development of combination mRNA and protein vaccines employing EVs for deployment against cancer and other diseases.
Collapse
Affiliation(s)
- Xin Luo
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America; Department of Bioengineering, Rice University, Houston, TX, United States of America
| | - Kathleen M McAndrews
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Kent A Arian
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Sami J Morse
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Viktoria Boeker
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Shreyasee V Kumbhar
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Yingying Hu
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Krishnan K Mahadevan
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Kaira A Church
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Sriram Chitta
- Michale E. Keeling Center for Comparative Medicine and Research, University of Texas MD Anderson Cancer Center, Bastrop, TX, United States of America
| | - Nicolas T Ryujin
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Janine Hensel
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Jianli Dai
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Dara P Dowlatshahi
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Hikaru Sugimoto
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Michelle L Kirtley
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Valerie S LeBleu
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America; Department of Internal Medicine, Baylor College of Medicine, Houston, TX, United States of America
| | - Shabnam Shalapour
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Joe H Simmons
- Michale E. Keeling Center for Comparative Medicine and Research, University of Texas MD Anderson Cancer Center, Bastrop, TX, United States of America
| | - Raghu Kalluri
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America; Department of Bioengineering, Rice University, Houston, TX, United States of America; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America.
| |
Collapse
|
35
|
Mizenko RR, Feaver M, Bozkurt BT, Lowe N, Nguyen B, Huang K, Wang A, Carney RP. A critical systematic review of extracellular vesicle clinical trials. J Extracell Vesicles 2024; 13:e12510. [PMID: 39330928 PMCID: PMC11428870 DOI: 10.1002/jev2.12510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/06/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
This systematic review examines the landscape of extracellular vesicle (EV)-related clinical trials to elucidate the field's trends in clinical applications and EV-related methodologies, with an additional focus on the acknowledgement of EV subpopulations. By analysing data from public reporting repositories, we catalogued 471 EV-related clinical trials to date, with indications for over 200 diseases. Diagnostics and companion diagnostics represented the bulk of EV-related clinical trials with cancer being the most frequent application. EV-related therapeutics trials mainly utilized mesenchymal stromal cell (MSC) EVs and were most frequently used for treatment of respiratory illnesses. Ultracentrifugation and RNA-sequencing were the most common isolation and characterization techniques; however, methodology for each was not frequently reported in study records. Most of the reported characterization relied on bulk characterization of EV isolates, with only 11% utilizing EV subpopulations in their experimental design. While this may be connected to a lack of available techniques suitable for clinical implementation, it also highlights the opportunity for use of EV subpopulations to improve translational efforts. As academic research identifies more chemically distinct subpopulations and technologies for their enrichment, we forecast to more refined EV trials in the near future. This review emphasizes the need for meticulous methodological reporting and consideration of EV subpopulations to enhance the translational success of EV-based interventions, pointing towards a paradigm shift in personalized medicine.
Collapse
Affiliation(s)
- Rachel R. Mizenko
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Madison Feaver
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Batuhan T. Bozkurt
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Neona Lowe
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Bryan Nguyen
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Kuan‐Wei Huang
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Aijun Wang
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
- Department of SurgeryUniversity of CaliforniaDavisCaliforniaUSA
| | - Randy P. Carney
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| |
Collapse
|
36
|
Zhang W, Uyemura R, Zhong K, Guo R, Zhong L. Current Advances and Future Perspectives on Mesenchymal Stem Cell-Derived Extracellular Vesicles in Alzheimer's Disease. Aging Dis 2024; 15:2015-2027. [PMID: 38270122 PMCID: PMC11346404 DOI: 10.14336/ad.2023.1206] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/06/2023] [Indexed: 01/26/2024] Open
Abstract
The incidence of Alzheimer's disease (AD) has been increasing in recent years as the world's population ages, which poses a significant challenge to public health. Due to the complexity of pathogenesis of AD, currently there is no effective treatment for it. In recent years, cell and gene therapy has attracted widespread attention in the treatment of neurodegenerative diseases. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) represent a novel cell-free therapy with numerous advantages over cell-based therapies owing to their low immunogenicity and high safety profile. We summarize recent progress in the application of EVs for treating AD and the specific mechanisms and outline the underlying mechanisms. We also explore various methods for optimizing the function of MSC-EVs, including gene editing, modifying stem cell culture conditions and peptide modification. In addition, we discuss the therapeutic potentials of MSC-EVs, as well as the obstacles that currently impede their clinical utilization.
Collapse
Affiliation(s)
- Wenjing Zhang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Russell Uyemura
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766, USA
| | - Kun Zhong
- American Center of Stem Cell Research and Regenerative Medicine, Farmington Hills, Michigan 48336, USA
| | - Rui Guo
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Li Zhong
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766, USA
| |
Collapse
|
37
|
Huang P, Zhu Y, Qin J. Research advances in understanding crosstalk between organs and pancreatic β-cell dysfunction. Diabetes Obes Metab 2024; 26:4147-4164. [PMID: 39044309 DOI: 10.1111/dom.15787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024]
Abstract
Obesity has increased dramatically worldwide. Being overweight or obese can lead to various conditions, including dyslipidaemia, hypertension, glucose intolerance and metabolic syndrome (MetS), which may further lead to type 2 diabetes mellitus (T2DM). Previous studies have identified a link between β-cell dysfunction and the severity of MetS, with multiple organs and tissues affected. Identifying the associations between pancreatic β-cell dysfunction and organs is critical. Research has focused on the interaction between the liver, gut and pancreatic β-cells. However, the mechanisms and related core targets are still not perfectly elucidated. The aims of this review were to summarize the mechanisms of β-cell dysfunction and to explore the potential pathogenic pathways and targets that connect the liver, gut, adipose tissue, muscle, and brain to pancreatic β-cell dysfunction.
Collapse
Affiliation(s)
- Peng Huang
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yunling Zhu
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jian Qin
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
38
|
Batista IA, Machado JC, Melo SA. Advances in exosomes utilization for clinical applications in cancer. Trends Cancer 2024; 10:947-968. [PMID: 39168775 DOI: 10.1016/j.trecan.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/04/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
Exosomes are regarded as having transformative potential for clinical applications. Exosome-based liquid biopsies offer a noninvasive method for early cancer detection and real-time disease monitoring. Clinical trials are underway to validate the efficacy of exosomal biomarkers for enhancing diagnostic accuracy and predicting treatment responses. Additionally, engineered exosomes are being developed as targeted drug delivery systems that can navigate the bloodstream to deliver therapeutic agents to tumor sites, thus enhancing treatment efficacy while minimizing systemic toxicity. Exosomes also exhibit immunomodulatory properties, which are being harnessed to boost antitumor immune responses. In this review, we detail the latest advances in clinical trials and research studies, underscoring the potential of exosomes to revolutionize cancer care.
Collapse
Affiliation(s)
- Inês A Batista
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - José C Machado
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Departamento de Patologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal; P.CCC Porto Comprehensive Cancer Centre, Raquel Seruca, Portugal
| | - Sonia A Melo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Departamento de Patologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal; P.CCC Porto Comprehensive Cancer Centre, Raquel Seruca, Portugal.
| |
Collapse
|
39
|
Deng H, Zhao J, Li J, Chen C, Hu Z, Wu X, Ge L. Therapeutic Efficacy of Extracellular Vesicles Derived from Stem Cell for Alzheimer's Disease: A Meta-Analysis Study. FRONT BIOSCI-LANDMRK 2024; 29:340. [PMID: 39344329 DOI: 10.31083/j.fbl2909340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) poses a significant public health challenge, increasingly affecting patients' finances, mental health, and functional abilities as the global population ages. Stem cell-derived extracellular vesicles (SC-EVs) have emerged as a promising cell-free therapeutic approach for AD, although their precise mechanisms remain unclear. This meta-analysis aims to evaluate the effectiveness of SC-EVs in treating AD. METHODS We systematically searched PubMed, EMBASE, and Web of Science databases up to December 31, 2023, identifying studies investigating SC-EVs therapy in AD rodent models. Outcome measures included Morris water maze and Y maze tests, β-amyloid pathology, and inflammatory markers. Statistical analyses utilized Stata 15.1 and R software. RESULTS This meta-analysis of 16 studies (2017-2023, 314 animals) demonstrates significant efficacy of SC-EVs therapy in AD models. Pooled analyses demonstrated that SC-EVs therapy significantly increased the learning function as measured by Morris water maze tests (MWM) by -1.83 (95% CI = -2.51 to -1.15, p < 0.0001), Y maze test by 1.66 (95% CI = 1.03 to 2.28, p < 0.0001), decreased Aβ plaques in the hippocampal by -2.10 (95% CI = -2.96 to -1.23, p < 0.0001), and proinflammatory cytokines Tumor necrosis factor alpha (TNFα) by -2.61 (95% CI = -4.87 to -0.35, p < 0.05), Interleukin-1 beta (IL-1β) by -2.37 (95% CI = -3.68 to -1.05, p < 0.001). CONCLUSIONS SC-EVs therapy shows promise in enhancing cognitive function and mitigating AD progression in preclinical models. Future research should focus on standardizing methodologies and comparing SC-EVs isolation techniques and dosing strategies to facilitate clinical translation.
Collapse
Affiliation(s)
- Huiyin Deng
- Department of Neurology, The Second Xiangya Hospital, Central South University, 410011 Changsha, Hunan, China
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, 410011 Changsha, Hunan, China
| | - Jing Zhao
- Department of Neurology, The Second Xiangya Hospital, Central South University, 410011 Changsha, Hunan, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, The Second Xiangya Hospital, Central South University, 410011 Changsha, Hunan, China
| | - Jiuyi Li
- Department of Anesthesiology, the Fouth People's Hospital of Changsha, 410006 Changsha, Hunan, China
| | - Chunli Chen
- Department of Neurology, The Second Xiangya Hospital, Central South University, 410011 Changsha, Hunan, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, The Second Xiangya Hospital, Central South University, 410011 Changsha, Hunan, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, 410011 Changsha, Hunan, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, The Second Xiangya Hospital, Central South University, 410011 Changsha, Hunan, China
| | - Xiaomei Wu
- Department of Neurology, The Second Xiangya Hospital, Central South University, 410011 Changsha, Hunan, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, The Second Xiangya Hospital, Central South University, 410011 Changsha, Hunan, China
| | - Lite Ge
- Department of Neurology, The Second Xiangya Hospital, Central South University, 410011 Changsha, Hunan, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, The Second Xiangya Hospital, Central South University, 410011 Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Neurorestoratology, the Second Affiliated Hospital, Hunan Normal University, 410003 Changsha, Hunan, China
| |
Collapse
|
40
|
Wang LH, Huang CH, Lin IC. Advances in Neuroprotection in Glaucoma: Pharmacological Strategies and Emerging Technologies. Pharmaceuticals (Basel) 2024; 17:1261. [PMID: 39458902 PMCID: PMC11510571 DOI: 10.3390/ph17101261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
Glaucoma is a major global health concern and the leading cause of irreversible blindness worldwide, characterized by the progressive degeneration of retinal ganglion cells (RGCs) and their axons. This review focuses on the need for neuroprotective strategies in glaucoma management, addressing the limitations of current treatments that primarily target intraocular pressure (IOP) reduction. Despite effective IOP management, many patients continue to experience RGC degeneration, leading to irreversible blindness. This review provides an overview of both pharmacological interventions and emerging technologies aimed at directly protecting RGCs and the optic nerve, independent of IOP reduction. Pharmacological agents such as brimonidine, neurotrophic factors, memantine, Ginkgo biloba extract, citicoline, nicotinamide, insulin, and resveratrol show promise in preclinical and early clinical studies for their neuroprotective properties. Emerging technologies, including stem cell therapy, gene therapy, mitochondrial-targeted therapies, and nanotechnologies, offer innovative approaches for neuroprotection and regeneration of damaged RGCs. While these interventions hold significant potential, further research and clinical trials are necessary to confirm their efficacy and establish their role in clinical practice. This review highlights the multifaceted nature of neuroprotection in glaucoma, aiming to guide future research and clinical practice toward more effective management of glaucoma-induced neurodegeneration.
Collapse
Affiliation(s)
- Li-Hsin Wang
- School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
| | - Chun-Hao Huang
- Department of Ophthalmology, Wan Fang Hospital, Taipei Medical University, Taipei 110301, Taiwan;
| | - I-Chan Lin
- Department of Ophthalmology, Wan Fang Hospital, Taipei Medical University, Taipei 110301, Taiwan;
- Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
41
|
Li Y, Wang Y, Zhang Y, Zhu Y, Dong Y, Cheng H, Zhang Y, Wang Y, Li Z, Gao J. Engineered mesenchymal stem cell-derived extracellular vesicles: kill tumors and protect organs. Theranostics 2024; 14:6202-6217. [PMID: 39431009 PMCID: PMC11488101 DOI: 10.7150/thno.99618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/20/2024] [Indexed: 10/22/2024] Open
Abstract
Solid tumors cause 90% of cancers and remain the primary cause of mortality. However, treating solid tumors presents significant challenges due to the complex tumor microenvironment and drug resistance, leading to inadequate treatment targeting and severe side effects. Surgery, radiotherapy, and chemotherapy Although it is an effective method for the treatment of solid tumors, it can lead to organ dysfunction and affect patient prognosis. Therefore, it is imperative to improve treatment precision and organ repair capabilities to manage solid tumors. Mesenchymal stem cell extracellular vesicles (MSC-EVs) have wide application prospects as a new agent for solid tumor therapy. Firstly, MSC-EVs is a derivative of MSCs. It has the function of promoting tissue regeneration by inducing dedifferentiation in surviving cells after injury. Additionally, MSC-EVs offer unique advantages in terms of safety, stability and penetrability, making them a promising extracellular therapeutic modality for solid tumor treatment. Finally, MSC-EVs are able to enhance therapeutic efficacy through engineering strategies. To sum up, this review takes MSC-EVs as its object. And then we discuss recent advancements and engineering strategies in the use of MSC-EVs for soid tumor suppression. This review aims to inspire researchers to devise a new method for effectively treat solid tumors.
Collapse
Affiliation(s)
- Yu Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Stem Cell and Regeneration Medicine Institute, Research Center of Translational Medicine, Naval Medical University, Shanghai, 200433, China
- Changhai Clinical Research Unit, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yao Wang
- Changhai Clinical Research Unit, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- College of Life Science, Mudanjiang Medical University, Heilongjiang Mudanjiang, 157011, China
| | - Yu Zhang
- Shanghai Key Laboratory of Cell Engineering, Shanghai, 200120, China
| | - Yuruchen Zhu
- School of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Yuhui Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Haobin Cheng
- School of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Yinan Zhang
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yue Wang
- Stem Cell and Regeneration Medicine Institute, Research Center of Translational Medicine, Naval Medical University, Shanghai, 200433, China
- Shanghai Key Laboratory of Cell Engineering, Shanghai, 200120, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Changhai Clinical Research Unit, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- National Key Laboratory of lmmunology and Inflammation, Naval Medical University, Shanghai, 200433, China
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, 200433, China
| | - Jie Gao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Changhai Clinical Research Unit, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, 200433, China
| |
Collapse
|
42
|
Abuzan M, Surugiu R, Wang C, Mohamud-Yusuf A, Tertel T, Catalin B, Doeppner TR, Giebel B, Hermann DM, Popa-Wagner A. Extracellular Vesicles Obtained from Hypoxic Mesenchymal Stromal Cells Induce Neurological Recovery, Anti-inflammation, and Brain Remodeling After Distal Middle Cerebral Artery Occlusion in Rats. Transl Stroke Res 2024:10.1007/s12975-024-01266-5. [PMID: 39243323 DOI: 10.1007/s12975-024-01266-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/18/2024] [Accepted: 05/30/2024] [Indexed: 09/09/2024]
Abstract
Small extracellular vesicles (sEVs) obtained from mesenchymal stromal cells (MSCs) have shown considerable promise as restorative stroke treatment. In a head-to-head comparison in mice exposed to transient proximal middle cerebral artery occlusion (MCAO), sEVs obtained from MSCs cultured under hypoxic conditions particularly potently enhanced long-term brain tissue survival, microvascular integrity, and angiogenesis. These observations suggest that hypoxic preconditioning might represent the strategy of choice for harvesting MSC-sEVs for clinical stroke trials. To test the efficacy of hypoxic MSCs in a second stroke model in an additional species, we now exposed 6-8-month-old Sprague-Dawley rats to permanent distal MCAO and intravenously administered vehicle, platelet sEVs, or sEVs obtained from hypoxic MSCs (1% O2; 2 × 106 or 2 × 107 cell equivalents/kg) at 24 h, 3, 7, and 14 days post-MCAO. Over 28 days, motor-coordination recovery was evaluated by rotating pole and cylinder tests. Ischemic injury, brain inflammatory responses, and peri-infarct angiogenesis were assessed by infarct volumetry and immunohistochemistry. sEVs obtained from hypoxic MSCs did not influence infarct volume in this permanent MCAO model, but promoted motor-coordination recovery over 28 days at both sEV doses. Ischemic injury was associated with brain ED1+ macrophage infiltrates and Iba1+ microglia accumulation in the peri-infarct cortex of vehicle-treated rats. Hypoxic MSC-sEVs reduced brain macrophage infiltrates and microglia accumulation in the peri-infarct cortex. In vehicle-treated rats, CD31+/BrdU+ proliferating endothelial cells were found in the peri-infarct cortex. Hypoxic MSC-sEVs increased the number of CD31+/BrdU+ proliferating endothelial cells. Our results provide evidence that hypoxic MSC-derived sEVs potently enhance neurological recovery, reduce neuroinflammation. and increase angiogenesis in rat permanent distal MCAO.
Collapse
Affiliation(s)
- Mihaela Abuzan
- Experimental Research Center in Normal and Pathological Aging (ARES), University of Medicine and Pharmacy, Craiova, Romania
| | - Roxana Surugiu
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Experimental Research Center in Normal and Pathological Aging (ARES), University of Medicine and Pharmacy, Craiova, Romania
| | - Chen Wang
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ayan Mohamud-Yusuf
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Tobias Tertel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bogdan Catalin
- Experimental Research Center in Normal and Pathological Aging (ARES), University of Medicine and Pharmacy, Craiova, Romania
| | - Thorsten R Doeppner
- Department of Neurology, University Hospital Gießen and Marburg, Campus Gießen, Giessen, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
- Experimental Research Center in Normal and Pathological Aging (ARES), University of Medicine and Pharmacy, Craiova, Romania.
| | - Aurel Popa-Wagner
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
- Experimental Research Center in Normal and Pathological Aging (ARES), University of Medicine and Pharmacy, Craiova, Romania.
| |
Collapse
|
43
|
Mazzini L, De Marchi F, Buzanska L, Follenzi A, Glover JC, Gelati M, Lombardi I, Maioli M, Mesa-Herrera F, Mitrečić D, Olgasi C, Pivoriūnas A, Sanchez-Pernaute R, Sgromo C, Zychowicz M, Vescovi A, Ferrari D. Current status and new avenues of stem cell-based preclinical and therapeutic approaches in amyotrophic lateral sclerosis. Expert Opin Biol Ther 2024; 24:933-954. [PMID: 39162129 DOI: 10.1080/14712598.2024.2392307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024]
Abstract
INTRODUCTION Cell therapy development represents a critical challenge in amyotrophic lateral sclerosis (ALS) research. Despite more than 20 years of basic and clinical research, no definitive safety and efficacy results of cell-based therapies for ALS have been published. AREAS COVERED This review summarizes advances using stem cells (SCs) in pre-clinical studies to promote clinical translation and in clinical trials to treat ALS. New technologies have been developed and new experimental in vitro and animal models are now available to facilitate pre-clinical research in this field and to determine the most promising approaches to pursue in patients. New clinical trial designs aimed at developing personalized SC-based treatment with biological endpoints are being defined. EXPERT OPINION Knowledge of the basic biology of ALS and on the use of SCs to study and potentially treat ALS continues to grow. However, a consensus has yet to emerge on how best to translate these results into therapeutic applications. The selection and follow-up of patients should be based on clinical, biological, and molecular criteria. Planning of SC-based clinical trials should be coordinated with patient profiling genetically and molecularly to achieve personalized treatment. Much work within basic and clinical research is still needed to successfully transition SC therapy in ALS.
Collapse
Affiliation(s)
- Letizia Mazzini
- ALS Center, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Fabiola De Marchi
- ALS Center, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Leonora Buzanska
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Antonia Follenzi
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, Novara, Italy
- Dipartimento Attività Integrate Ricerca Innovazione, Azienda Ospedaliero-Universitaria SS. Antonio e Biagio e C. Arrigo, Alessandria, Italy
| | - Joel Clinton Glover
- Norwegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital; Laboratory of Neural Development and Optical Recording (NDEVOR), Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Maurizio Gelati
- Unità Produttiva per Terapie Avanzate (UPTA), IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Ivan Lombardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Center for Developmental Biology and Reprogramming-CEDEBIOR, University of Sassari, Sassari, Italy
| | - Fatima Mesa-Herrera
- Reprogramming and Neural Regeneration Lab, BioBizkaia Health Research Institute, Barakaldo, Spain
| | - Dinko Mitrečić
- Laboratory for Stem Cells, Croatian Institute for Brain Research and Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Cristina Olgasi
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Augustas Pivoriūnas
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Rosario Sanchez-Pernaute
- Reprogramming and Neural Regeneration Lab, BioBizkaia Health Research Institute, Barakaldo, Spain
- Ikerbaske, Basque Foundation for Science, Bilbao, Spain
| | - Chiara Sgromo
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, Novara, Italy
| | - Marzena Zychowicz
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Angelo Vescovi
- Unità Produttiva per Terapie Avanzate (UPTA), IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Daniela Ferrari
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| |
Collapse
|
44
|
Barekzai J, Refflinghaus L, Okpara M, Tasto L, Tertel T, Giebel B, Czermak P, Salzig D. Process development for the production of mesenchymal stromal cell-derived extracellular vesicles in conventional 2D systems. Cytotherapy 2024; 26:999-1012. [PMID: 38819363 DOI: 10.1016/j.jcyt.2024.04.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND In recent years, the importance of extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) has increased significantly. For their widespread use, a standardized EV manufacturing is needed which often includes conventional, static 2D systems. For these system critical process parameters need to be determined. METHODS We studied the impact of process parameters on MSC proliferation, MSC-derived particle production including EVs, EV- and MSC-specific marker expression, and particle functionality in a HaCaT cell migration assay. RESULTS We found that cell culture growth surface and media affected MSCs and their secretory behavior. Interestingly, the materials that promoted MSC proliferation did not necessarily result in the most functional MSC-derived particles. In addition, we found that MSCs seeded at 4 × 103 cells cm-2 produced particles with improved functional properties compared to higher seeding densities. MSCs in a highly proliferative state did not produce the most particles, although these particles were significantly more effective in promoting HaCaT cell migration. The same correlation was found when investigating the cultivation temperature. A physiological temperature of 37°C was not optimal for particle yield, although it resulted in the most functional particles. We observed a proliferation-associated particle production and found potential correlations between particle production and glucose consumption, enabling the estimation of final particle yields. CONCLUSIONS Our findings suggest that parameters, which must be defined prior to each individual cultivation and do not require complex and expensive equipment, can significantly increase MSC-derived particle production including EVs. Integrating these parameters into a standardized EV process development paves the way for robust and efficient EV manufacturing for early clinical phases.
Collapse
Affiliation(s)
- Jan Barekzai
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Laura Refflinghaus
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Maduwuike Okpara
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Lars Tasto
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Tobias Tertel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Peter Czermak
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany; Faculty of Biology and Chemistry, Justus-Liebig-University of Giessen, Giessen Germany
| | - Denise Salzig
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany; Faculty of Biology and Chemistry, Justus-Liebig-University of Giessen, Giessen Germany.
| |
Collapse
|
45
|
Mouloud Y, Staubach S, Stambouli O, Mokhtari S, Kutzner TJ, Zwanziger D, Hemeda H, Giebel B. Calcium chloride declotted human platelet lysate promotes the expansion of mesenchymal stromal cells and allows manufacturing of immunomodulatory active extracellular vesicle products. Cytotherapy 2024; 26:988-998. [PMID: 38819364 DOI: 10.1016/j.jcyt.2024.04.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) exert immunomodulatory effects, primarily through released extracellular vesicles (EVs). For the clinical-grade manufacturing of MSC-EV products culture conditions need to support MSC expansion and allow the manufacturing of potent MSC-EV products. Traditionally, MSCs are expanded in fetal bovine serum-supplemented media. However, according to good manufacturing practice (GMP) guidelines the use of animal sera should be avoided. To this end, human platelet lysate (hPL) has been qualified as an animal serum replacement. Although hPL outcompetes animal sera in promoting MSC expansion, hPL typically contains components of the coagulation system that need to be inhibited or removed to avoid coagulation reactions in the cell culture. Commonly, heparin is utilized as an anticoagulant; however, higher concentrations of heparin can negatively impact MSC viability, and conventional concentrations alone do not sufficiently prevent clot formation in prepared media. METHODS To circumvent unwanted coagulation processes, this study compared various clotting prevention strategies, including different anticoagulants and calcium chloride (CaCl2)-mediated declotting methods, which in combination with heparin addition was found effective. We evaluated the influence of the differently treated hPLs on the proliferation and phenotype of primary bone marrow-derived MSCs and identified the CaCl2-mediated declotting method as the most effective option. To determine whether CaCl2 declotted hPL allows the manufacturing of immunomodulatory MSC-EV products, EVs were prepared from conditioned media of MSCs expanded with either conventional or CaCl2 declotted hPL. In addition to metric analyses, the immunomodulatory potential of resulting MSC-EV products was assessed in a recently established multi-donor mixed lymphocyte reaction assay. RESULTS AND CONCLUSIONS Our findings conclusively show that CaCl2-declotted hPLs support the production of immunomodulatory-active MSC-EV products.
Collapse
Affiliation(s)
- Yanis Mouloud
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Simon Staubach
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; Sartorius Stedim Biotech GmbH, Göttingen, Germany
| | - Oumaima Stambouli
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Shakiba Mokhtari
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Tanja J Kutzner
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Denise Zwanziger
- Department of Endocrinology, Diabetes and Metabolism and Clinical Chemistry - Division of Laboratory Research, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Hatim Hemeda
- PL BioScience GmbH, Technology Centre Aachen, Aachen, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
46
|
Hama Faraj GS, Hussen BM, Abdullah SR, Fatih Rasul M, Hajiesmaeili Y, Baniahmad A, Taheri M. Advanced approaches of the use of circRNAs as a replacement for cancer therapy. Noncoding RNA Res 2024; 9:811-830. [PMID: 38590433 PMCID: PMC10999493 DOI: 10.1016/j.ncrna.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 04/10/2024] Open
Abstract
Cancer is a broad name for a group of diseases in which abnormal cells grow out of control and are characterized by their complexity and recurrence. Although there has been progress in cancer therapy with the entry of precision medicine and immunotherapy, cancer incidence rates have increased globally. Non-coding RNAs in the form of circular RNAs (circRNAs) play crucial roles in the pathogenesis, clinical diagnosis, and therapy of different diseases, including cancer. According to recent studies, circRNAs appear to serve as accurate indicators and therapeutic targets for cancer treatment. However, circRNAs are promising candidates for cutting-edge cancer therapy because of their distinctive circular structure, stability, and wide range of capabilities; many challenges persist that decrease the applications of circRNA-based cancer therapeutics. Here, we explore the roles of circRNAs as a replacement for cancer therapy, highlight the main challenges facing circRNA-based cancer therapies, and discuss the key strategies to overcome these challenges to improve advanced innovative therapies based on circRNAs with long-term health effects.
Collapse
Affiliation(s)
- Goran Sedeeq Hama Faraj
- Department of Medical Laboratory Science, Komar University of Science and Technology, Sulaymaniyah, 46001, Iraq
| | - Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Erbil, Kurdistan Region, 44001, Iraq
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, 44001, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, Lebanese French University, Erbil, Kurdistan Region, 44001, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | | | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
D'Arrigo D, Salerno M, De Marziani L, Boffa A, Filardo G. A call for standardization for secretome and extracellular vesicles in osteoarthritis: results show disease-modifying potential, but protocols are too heterogeneous-a systematic review. Hum Cell 2024; 37:1243-1275. [PMID: 38909330 DOI: 10.1007/s13577-024-01084-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/22/2024] [Indexed: 06/24/2024]
Abstract
The currently available osteoarthritis (OA) treatments offer symptoms' relief without disease-modifying effects. Increasing evidence supports the role of human mesenchymal stem cells (MSCs) to drive beneficial effects provided by their secretome and extracellular vesicles (EVs), which includes trophic and biologically active factors. Aim of this study was to evaluate the in vitro literature to understand the potential of human secretome and EVs for OA treatment and identify trends, gaps, and potential translational challenges. A systematic review was performed on PubMed, Embase, and Web-of-Science, identifying 58 studies. The effects of secretome and EVs were analysed on osteoarthritic cells regarding anabolic, anti-apoptotic/anti-inflammatory and catabolic/pro-inflammatory/degenerative activity, chondroinduction, and immunomodulation. The results showed that MSC-derived EVs elicit an increase in proliferation and migration, reduction of cell death and inflammation, downregulation of catabolic pathways, regulation of immunomodulation, and promotion of anabolic processes in arthritic cells. However, a high heterogeneity in several technical or more applicative aspects emerged. In conclusion, the use of human secretome and EVs as strategy to address OA processes has overall positive effects and disease-modifying potential. However, it is crucial to reduce protocol variability and strive toward a higher standardization, which will be essential for the translation of this promising OA treatment from the in vitro research setting to the clinical practice.
Collapse
Affiliation(s)
- Daniele D'Arrigo
- Regenerative Medicine Technologies Laboratory, EOC, Via Francesco Chiesa 5, 6500, Bellinzona, Switzerland
- Laboratoire Matière et Systèmes Complexes, Université Paris Cité, 45 Rue des Saints Pères, 75006, Paris, France
- Abbelight, Cachan, 191 Av. Aristide Briand, 94230, Cachan, France
| | - Manuela Salerno
- Applied and Translational Research center, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy.
| | - Luca De Marziani
- Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, 40136, Bologna, Italy
| | - Angelo Boffa
- Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, 40136, Bologna, Italy
| | - Giuseppe Filardo
- Applied and Translational Research center, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy
- Service of Orthopaedics and Traumatology, Department of Surgery, EOC, Via Tesserete 46, 6900, Lugano, Switzerland
- Università Della Svizzera Italiana, Faculty of Biomedical Sciences, Via Buffi 13, 6900, Lugano, Switzerland
| |
Collapse
|
48
|
Soltanmohammadi F, Gharehbaba AM, Zangi AR, Adibkia K, Javadzadeh Y. Current knowledge of hybrid nanoplatforms composed of exosomes and organic/inorganic nanoparticles for disease treatment and cell/tissue imaging. Biomed Pharmacother 2024; 178:117248. [PMID: 39098179 DOI: 10.1016/j.biopha.2024.117248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024] Open
Abstract
Exosome-nanoparticle hybrid nanoplatforms, can be prepared by combining exosomes with different types of nanoparticles. The main purpose of combining exosomes with nanoparticles is to overcome the limitations of using each of them as drug delivery systems. Using nanoparticles for drug delivery has some limitations, such as high immunogenicity, poor cellular uptake, low biocompatibility, cytotoxicity, low stability, and rapid clearance by immune cells. However, using exosomes as drug delivery systems also has its own drawbacks, such as poor encapsulation efficiency, low production yield, and the inability to load large molecules. These limitations can be addressed by utilizing hybrid nanoplatforms. Additionally, the use of exosomes allows for targeted delivery within the hybrid system. Exosome-inorganic/organic hybrid nanoparticles may be used for both therapy and diagnosis in the future. This may lead to the development of personalized medicine using hybrid nanoparticles. However, there are a few challenges associated with this. Surface modifications, adding functional groups, surface charge adjustments, and preparing nanoparticles with the desired size are crucial to the possibility of preparing exosome-nanoparticle hybrids. Additional challenges for the successful implementation of hybrid platforms in medical treatments and diagnostics include scaling up the manufacturing process and ensuring consistent quality and reproducibility across various batches. This review focuses on various types of exosome-nanoparticle hybrid systems and also discusses the preparation and loading methods for these hybrid nanoplatforms. Furthermore, the potential applications of these hybrid nanocarriers in drug/gene delivery, disease treatment and diagnosis, and cell/tissue imaging are explained.
Collapse
Affiliation(s)
- Fatemeh Soltanmohammadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Adel Mahmoudi Gharehbaba
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Rajabi Zangi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Javadzadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
49
|
Akhlaghpasand M, Tavanaei R, Hosseinpoor M, Yazdani KO, Soleimani A, Zoshk MY, Soleimani M, Chamanara M, Ghorbani M, Deylami M, Zali A, Heidari R, Oraee-Yazdani S. Safety and potential effects of intrathecal injection of allogeneic human umbilical cord mesenchymal stem cell-derived exosomes in complete subacute spinal cord injury: a first-in-human, single-arm, open-label, phase I clinical trial. Stem Cell Res Ther 2024; 15:264. [PMID: 39183334 PMCID: PMC11346059 DOI: 10.1186/s13287-024-03868-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024] Open
Abstract
OBJECTIVE Neurological and functional impairments are commonly observed in individuals with spinal cord injury (SCI) due to insufficient regeneration of damaged axons. Exosomes play a crucial role in the paracrine effects of mesenchymal stem cells (MSCs) and have emerged as a promising therapeutic approach for SCI. Thus, this study aimed to evaluate the safety and potential effects of intrathecal administration of allogeneic exosomes derived from human umbilical cord MSCs (HUC-MSCs) in patients with complete subacute SCI. METHODS This study was a single-arm, open-label, phase I clinical trial with a 12-month follow-up period. HUC-MSCs were extracted from human umbilical cord tissue, and exosomes were isolated via ultracentrifugation. After intrathecal injection, each participant a underwent complete evaluation, including neurological assessment using the American Spinal Injury Association (ASIA) scale, functional assessment using the Spinal Cord Independence Measure (SCIM-III), neurogenic bowel dysfunction (NBD) assessment using the NBD score, modified Ashworth scale (MAS), and lower urinary tract function questionnaire. RESULTS Nine patients with complete subacute SCI were recruited. The intrathecal injection of allogeneic HUC-MSCs-exosomes was safe and well tolerated. No early or late adverse event (AE) attributable to the study intervention was observed. Significant improvements in ASIA pinprick (P-value = 0.039) and light touch (P-value = 0.038) scores, SCIM III total score (P-value = 0.027), and NBD score (P-value = 0.042) were also observed at 12-month after the injection compared with baseline. CONCLUSIONS This study demonstrated that intrathecal administration of allogeneic HUC-MSCs-exosomes is safe in patients with subacute SCI. Moreover, it seems that this therapy might be associated with potential clinical and functional improvements in these patients. In this regard, future larger phase II/III clinical trials with adequate power are highly required. TRIAL REGISTRATION Iranian Registry of Clinical Trials, IRCT20200502047277N1. Registered 2 October 2020, https://en.irct.ir/trial/48765 .
Collapse
Affiliation(s)
- Mohammadhosein Akhlaghpasand
- Medical Biotechnology Research Center, AJA University of Medical Sciences, PO box: 1411718541, Tehran, Iran
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, PO box: 1988873554, Tehran, Iran
| | - Roozbeh Tavanaei
- Medical Biotechnology Research Center, AJA University of Medical Sciences, PO box: 1411718541, Tehran, Iran
| | - Maede Hosseinpoor
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, PO box: 1988873554, Tehran, Iran
- Stem Cell Technology Research Center (STRC), Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Kaveh Oraii Yazdani
- Department of cardiovascular diseases, Zahedan university of medical science, Zahedan, Iran
| | - Afsane Soleimani
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, PO box: 1988873554, Tehran, Iran
| | - Mojtaba Yousefi Zoshk
- Department of Pediatrics, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohsen Chamanara
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Mahdi Ghorbani
- Medical Biotechnology Research Center, AJA University of Medical Sciences, PO box: 1411718541, Tehran, Iran
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
| | - Mohammad Deylami
- Department of ICU &Critical care, Faculty of Medicine, Loghman-e Hakim Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Alireza Zali
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, PO box: 1988873554, Tehran, Iran
| | - Reza Heidari
- Medical Biotechnology Research Center, AJA University of Medical Sciences, PO box: 1411718541, Tehran, Iran.
- Cancer Epidemiology Research Center, AJA University of Medical Sciences, Tehran, Iran.
| | - Saeed Oraee-Yazdani
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, PO box: 1988873554, Tehran, Iran.
| |
Collapse
|
50
|
Vadhan A, Gupta T, Hsu WL. Mesenchymal Stem Cell-Derived Exosomes as a Treatment Option for Osteoarthritis. Int J Mol Sci 2024; 25:9149. [PMID: 39273098 PMCID: PMC11395657 DOI: 10.3390/ijms25179149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Osteoarthritis (OA) is a leading cause of pain and disability worldwide in elderly people. There is a critical need to develop novel therapeutic strategies that can effectively manage pain and disability to improve the quality of life for older people. Mesenchymal stem cells (MSCs) have emerged as a promising cell-based therapy for age-related disorders due to their multilineage differentiation and strong paracrine effects. Notably, MSC-derived exosomes (MSC-Exos) have gained significant attention because they can recapitulate MSCs into therapeutic benefits without causing any associated risks compared with direct cell transplantation. These exosomes help in the transport of bioactive molecules such as proteins, lipids, and nucleic acids, which can influence various cellular processes related to tissue repair, regeneration, and immune regulation. In this review, we have provided an overview of MSC-Exos as a considerable treatment option for osteoarthritis. This review will go over the underlying mechanisms by which MSC-Exos may alleviate the pathological hallmarks of OA, such as cartilage degradation, synovial inflammation, and subchondral bone changes. Furthermore, we have summarized the current preclinical evidence and highlighted promising results from in vitro and in vivo studies, as well as progress in clinical trials using MSC-Exos to treat OA.
Collapse
Affiliation(s)
- Anupama Vadhan
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Yunlin 632007, Taiwan
| | - Tanvi Gupta
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
| | - Wen-Li Hsu
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Yunlin 632007, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| |
Collapse
|