1
|
Primavera R, Wang J, Buchwald P, Ganguly A, Patel S, Bettencourt L, Chetty S, Yarani R, Regmi S, Levitte S, Kevadiya B, Guindani M, Decuzzi P, Thakor AS. Controlled Nutrient Delivery to Pancreatic Islets Using Polydopamine-Coated Mesoporous Silica Nanoparticles. NANO LETTERS 2025; 25:939-950. [PMID: 39791700 DOI: 10.1021/acs.nanolett.4c03613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
In this study, we designed a nanoscale platform for sustained amino acid delivery to support transplanted pancreatic islets. The platform features mesoporous silica nanoparticles (MSNPs) loaded with glutamine (G), an essential amino acid required for islet survival and function, and coated with polydopamine (PD). We investigated various PD concentrations (0.5-2 mg/mL) and incubation times (0.5-2 h) to optimize G release, identifying that a PD concentration of 0.5 mg/mL incubated for 0.5 h yielded the best results to support islet viability and functionality ex vivo, particularly under inflammatory conditions. In syngeneic islet transplantation in STZ-diabetic mice, G alone provided only temporary benefits; however, PD-G-MSNPs significantly improved islet engraftment and function, with animals maintaining glycemic control for 30 days due to controlled G release. Our findings support the use of this nanoscale platform to provide essential nutrients like G to transplanted islets until they can establish their own blood and nutrient supply.
Collapse
Affiliation(s)
- Rosita Primavera
- Department of Radiology, Interventional Radiology Innovation at Stanford (IRIS), Stanford University School of Medicine, Palo Alto, California 94304, United States
| | - Jing Wang
- Department of Radiology, Interventional Radiology Innovation at Stanford (IRIS), Stanford University School of Medicine, Palo Alto, California 94304, United States
| | - Peter Buchwald
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida 33136, United States
| | - Abantika Ganguly
- Department of Radiology, Interventional Radiology Innovation at Stanford (IRIS), Stanford University School of Medicine, Palo Alto, California 94304, United States
| | - Shaini Patel
- Department of Radiology, Interventional Radiology Innovation at Stanford (IRIS), Stanford University School of Medicine, Palo Alto, California 94304, United States
| | - Lili Bettencourt
- Department of Radiology, Interventional Radiology Innovation at Stanford (IRIS), Stanford University School of Medicine, Palo Alto, California 94304, United States
| | - Shashank Chetty
- Department of Radiology, Interventional Radiology Innovation at Stanford (IRIS), Stanford University School of Medicine, Palo Alto, California 94304, United States
| | - Reza Yarani
- Translational Type 1 Diabetes Research, Department of Clinical, Research, Steno Diabetes Center Copenhagen, Herlev 2730, Denmark
| | - Shobha Regmi
- Department of Radiology, Interventional Radiology Innovation at Stanford (IRIS), Stanford University School of Medicine, Palo Alto, California 94304, United States
| | - Steven Levitte
- Department of Radiology, Interventional Radiology Innovation at Stanford (IRIS), Stanford University School of Medicine, Palo Alto, California 94304, United States
| | - Bhavesh Kevadiya
- Department of Radiology, Interventional Radiology Innovation at Stanford (IRIS), Stanford University School of Medicine, Palo Alto, California 94304, United States
| | - Michele Guindani
- Department of Biostatistics, Jonathan and Karin Fielding School of Public Health, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Avnesh S Thakor
- Department of Radiology, Interventional Radiology Innovation at Stanford (IRIS), Stanford University School of Medicine, Palo Alto, California 94304, United States
| |
Collapse
|
2
|
Chen S, Wu P, Zhang T, Zhang J, Gao H. Global scientific trends on the islet transplantation in the 21st century: A bibliometric and visualized analysis. Medicine (Baltimore) 2024; 103:e37945. [PMID: 38669398 PMCID: PMC11049693 DOI: 10.1097/md.0000000000037945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Islet transplantation (IT) has emerged as a significant research area for the treatment of diabetes mellitus and has witnessed a surge in scholarly attention. Despite its growing importance, there is a lack of bibliometric analyses that encapsulate the evolution and scientific underpinnings of this field. This study aims to fill this gap by conducting a comprehensive bibliometric analysis to delineate current research hotspots and forecast future trajectories within the IT domain with a particular focus on evidence-based medicine practices. METHODS This analysis scrutinized literature from January 1, 2000, to October 1, 2023, using the Web of Science Core Collection (WoSCC). Employing bibliometric tools such as VOSviewer, CiteSpace, and the R package "bibliometrix," we systematically evaluated the literature to uncover scientific trends and collaboration networks in IT research. RESULTS The analysis revealed 8388 publications from 82 countries, predominantly the United States and China. However, global cross-institutional collaboration in IT research requires further strengthening. The number of IT-related publications has increased annually. Leading research institutions in this field include Harvard University, the University of Alberta, the University of Miami, and the University of Minnesota. "Transplantation" emerges as the most frequently cited journal in this area. Shapiro and Ricordi were the most prolific authors, with 126 and 121 publications, respectively. Shapiro also led to co-citations, totaling 4808. Key research focuses on IT sites and procedures as well as novel therapies in IT. Emerging research hotspots are identified by terms like "xenotransplantation," "apoptosis," "stem cells," "immunosuppression," and "microencapsulation." CONCLUSIONS The findings underscore a mounting anticipation for future IT research, which is expected to delve deeper into evidence-based methodologies for IT sites, procedures, and novel therapeutic interventions. This shift toward evidence-based medicine underscores the field's commitment to enhancing the efficacy and safety of IT for diabetes treatment, signaling a promising direction for future investigations aimed at optimizing patient outcomes.
Collapse
Affiliation(s)
- Sheng Chen
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - PeiZhong Wu
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Ting Zhang
- Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Jianqiang Zhang
- Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Hongjun Gao
- Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
3
|
Brandhorst D, Brandhorst H, Acreman S, Johnson PRV. The ischaemic preconditioning paradox and its implications for islet isolation from heart-beating and non heart-beating donors. Sci Rep 2022; 12:19321. [PMID: 36369239 PMCID: PMC9652462 DOI: 10.1038/s41598-022-23862-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
The impact of ischaemia can severely damage procured donor organs for transplantation. The pancreas, and pancreatic islets in particular, is one of the most sensitive tissues towards hypoxia. The present study was aimed to assess the effect of hypoxic preconditioning (HP) performed ex-vivo in islets isolated from heart-beating donor (HBD) and non heart-beating donor (NHBD) rats. After HP purified islets were cultured for 24 h in hypoxia followed by islet characterisation. Post-culture islet yields were significantly lower in sham-treated NHBD than in HBD. This difference was reduced when NHBD islets were preconditioned. Similar results were observed regarding viability, apoptosis and in vitro function. Reactive oxygen species generation after hypoxic culture was significantly enhanced in sham-treated NHBD than in HBD islets. Again, this difference could be diminished through HP. qRT-PCR revealed that HP decreases pro-apoptotic genes but increases HIF-1 and VEGF. However, the extent of reduction and augmentation was always substantially higher in preconditioned NHBD than in HBD islets. Our findings indicate a lower benefit of HBD islets from HP than NHBD islets. The ischaemic preconditioning paradox suggests that HP should be primarily applied to islets from marginal donors. This observation needs evaluation in human islets.
Collapse
Affiliation(s)
- Daniel Brandhorst
- Research Group for Islet Transplantation, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK.
| | - Heide Brandhorst
- Research Group for Islet Transplantation, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Samuel Acreman
- Research Group for Islet Transplantation, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Paul R V Johnson
- Research Group for Islet Transplantation, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| |
Collapse
|
4
|
Eguchi N, Damyar K, Alexander M, Dafoe D, Lakey JRT, Ichii H. Anti-Oxidative Therapy in Islet Cell Transplantation. Antioxidants (Basel) 2022; 11:1038. [PMID: 35739935 PMCID: PMC9219662 DOI: 10.3390/antiox11061038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 01/27/2023] Open
Abstract
Islet cell transplantation has become a favorable therapeutic approach in the treatment of Type 1 Diabetes due to the lower surgical risks and potential complications compared to conventional pancreas transplantation. Despite significant improvements in islet cell transplantation outcomes, several limitations hamper long-term graft survival due to tremendous damage and loss of islet cells during the islet cell transplantation process. Oxidative stress has been identified as an omnipresent stressor that negatively affects both the viability and function of isolated islets. Furthermore, it has been established that at baseline, pancreatic β cells exhibit reduced antioxidative capacity, rendering them even more susceptible to oxidative stress during metabolic stress. Thus, identifying antioxidants capable of conferring protection against oxidative stressors present throughout the islet transplantation process is a valuable approach to improving the overall outcomes of islet cell transplantation. In this review we discuss the potential application of antioxidative therapy during each step of islet cell transplantation.
Collapse
Affiliation(s)
- Natsuki Eguchi
- Department of Surgery, University of California, Irvine, CA 92697, USA; (N.E.); (K.D.); (M.A.); (D.D.); (J.R.T.L.)
| | - Kimia Damyar
- Department of Surgery, University of California, Irvine, CA 92697, USA; (N.E.); (K.D.); (M.A.); (D.D.); (J.R.T.L.)
| | - Michael Alexander
- Department of Surgery, University of California, Irvine, CA 92697, USA; (N.E.); (K.D.); (M.A.); (D.D.); (J.R.T.L.)
| | - Donald Dafoe
- Department of Surgery, University of California, Irvine, CA 92697, USA; (N.E.); (K.D.); (M.A.); (D.D.); (J.R.T.L.)
| | - Jonathan R. T. Lakey
- Department of Surgery, University of California, Irvine, CA 92697, USA; (N.E.); (K.D.); (M.A.); (D.D.); (J.R.T.L.)
- Department of Biomedical Engineering, University of California, Irvine, CA 92686, USA
| | - Hirohito Ichii
- Department of Surgery, University of California, Irvine, CA 92697, USA; (N.E.); (K.D.); (M.A.); (D.D.); (J.R.T.L.)
| |
Collapse
|
5
|
Sato N, Marubashi S. Induction of Immune Tolerance in Islet Transplantation Using Apoptotic Donor Leukocytes. J Clin Med 2021; 10:5306. [PMID: 34830586 PMCID: PMC8625503 DOI: 10.3390/jcm10225306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/31/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
Allogeneic islet transplantation has become an effective treatment option for severe Type 1 diabetes with intractable impaired awareness due to hypoglycemic events. Although current immunosuppressive protocols effectively prevent the acute rejection associated with initial T cell activation in recipients, chronic rejection has remained an obstacle for achieving long-term allogeneic islet engraftment. The development of donor-specific immune tolerance to the allograft is the ultimate goal given its potential ability to overcome chronic rejection and disregard the need for maintenance immunosuppression, which may be toxic to islet grafts. Recently, a breakthrough in tolerance induction during allogeneic islet transplantation using apoptotic donor lymphocytes (ADLs) in a non-human primate model had been reported. Several studies have suggested that the clonal depletion, anergy, and expansion of the antigen-specific regulatory immune network are the mechanisms for donor-specific tolerance with ADLs, which act synergistically to induce robust transplant tolerance. This achievement represents a huge step forward toward the clinical application of immune tolerance induction. We herein summarize the reported operational induction therapies in islet transplantation using the ADLs. Moreover, a few obstacles for the engraftment of transplanted islets, such as islet immunogenicity and instant blood-mediated response, which need to be resolved in the future, are also discussed.
Collapse
Affiliation(s)
| | - Shigeru Marubashi
- Department of Hepato–Biliary–Pancreatic and Transplant Surgery, Fukushima Medical University, Hikagigaoka-1, Fukushima 960-1295, Japan;
| |
Collapse
|
6
|
Potential Benefits of Nrf2/Keap1 Targeting in Pancreatic Islet Cell Transplantation. Antioxidants (Basel) 2020; 9:antiox9040321. [PMID: 32316115 PMCID: PMC7222398 DOI: 10.3390/antiox9040321] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 12/26/2022] Open
Abstract
Permanent pancreatic islet cell destruction occurs in type 1 diabetes mellitus (T1DM) through the infiltration of inflammatory cells and cytokines. Loss of β-cell integrity secondary to oxidation leads to an inability to appropriately synthesize and secrete insulin. Allogenic islet cell transplantation (ICT) has risen as a therapeutic option to mitigate problematic hypoglycemia. Nevertheless, during the process of transplantation, islet cells are exposed to oxidatively caustic conditions that severely decrease the islet cell yield. Islet cells are at a baseline disadvantage to sustain themselves during times of metabolic stress as they lack a robust anti-oxidant defense system, glycogen stores, and vascularity. The Nrf2/Keap1 system is a master regulator of antioxidant genes that has garnered attention as pharmacologic activators have shown a protective response and a low side effect profile. Herein, we present the most recently studied Nrf2/Keap1 activators in pancreas for application in ICT: Dh404, dimethyl fumarate (DMF), and epigallocatechin gallate (EGCG). Furthermore, we discuss that Nrf2/Keap1 is a potential target to ameliorate oxidative stress at every step of the Edmonton Protocol.
Collapse
|
7
|
Borlongan CV, Yu G, Matsukawa N, Yasuhara T, Hara K, Xu L. Article Commentary: Cell Transplantation: Stem Cells in the Spotlight. Cell Transplant 2017; 14:519-526. [DOI: 10.3727/000000005783982774] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Cesar V. Borlongan
- Neurology/Insttitute of Molecular Medicind & Genetics/School of Graduate Studies, Medical College of Georgia, Augusta, GA, USA
- Research/Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| | - Guolong Yu
- Neurology/Insttitute of Molecular Medicind & Genetics/School of Graduate Studies, Medical College of Georgia, Augusta, GA, USA
- Research/Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| | - Noriyuki Matsukawa
- Neurology/Insttitute of Molecular Medicind & Genetics/School of Graduate Studies, Medical College of Georgia, Augusta, GA, USA
- Research/Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| | - Takao Yasuhara
- Neurology/Insttitute of Molecular Medicind & Genetics/School of Graduate Studies, Medical College of Georgia, Augusta, GA, USA
- Research/Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| | - Koichi Hara
- Neurology/Insttitute of Molecular Medicind & Genetics/School of Graduate Studies, Medical College of Georgia, Augusta, GA, USA
- Research/Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| | - Lin Xu
- Neurology/Insttitute of Molecular Medicind & Genetics/School of Graduate Studies, Medical College of Georgia, Augusta, GA, USA
- Research/Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| |
Collapse
|
8
|
Sanberg PR, Greene-Zavertnik C, Davis CD. Article Commentary: Cell Transplantation: The Regenerative Medicine Journal. A Biennial Analysis of Publications. Cell Transplant 2017; 12:815-825. [DOI: 10.3727/000000003771000165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Paul R. Sanberg
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., MDC 78, Tampa, FL 33612
| | - Cathryn Greene-Zavertnik
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., MDC 78, Tampa, FL 33612
| | - Cyndy D. Davis
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., MDC 78, Tampa, FL 33612
| |
Collapse
|
9
|
Krishnan R, Truong N, Gerges M, Stiewig M, Neel N, Ho-Nguyen K, Kummerfeld C, Alexander M, Spizzo T, Martin M, Foster CE, Monuki ES, Lakey JRT. Impact of donor age and weaning status on pancreatic exocrine and endocrine tissue maturation in pigs. Xenotransplantation 2016; 22:356-67. [PMID: 26381493 DOI: 10.1111/xen.12184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 07/09/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND During the process of islet isolation, pancreatic enzymes are activated and released, adversely affecting islet survival and function. We hypothesize that the exocrine component of pancreases harvested from pre-weaned juvenile pigs is immature and hence pancreatic tissue from these donors is protected from injury during isolation and prolonged tissue culture. METHODS Biopsy specimens taken from pancreases harvested from neonatal (5-10 days), pre-weaned juvenile (18-22 days), weaned juvenile (45-60 days), and young adult pigs (>90 days) were fixed and stained with hematoxylin and eosin. Sections were examined under a fluorescent microscope to evaluate exocrine zymogen fluorescence intensity (ZFI) and under an electron microscope to evaluate exocrine zymogen granule density (ZGD). RESULTS Exocrine content estimation showed significantly lower ZFI and ZGD in juvenile pig pancreases (1.5 ± 0.04 U/μm(2) , ZFI; 1.03 ± 0.07 × 10(3) /100 μm(2) , ZGD) compared to young adult pigs (2.4 ± 0.05U/μm(2) , ZFI; 1.53 ± 0.08 × 10(3) /100 μm(2) ZGD). Islets in juvenile pig pancreases were on average smaller (105.2 ± 11.2 μm) than islets in young adult pigs (192 ± 7.7 μm), but their insulin content was comparable (80.9 ± 2.2% juvenile; 84.2 ± 0.3% young adult, P > 0.05). All data expressed as mean ± SEM. CONCLUSION Porcine islet xenotransplantation continues to make strides toward utilization in clinical trials of type 1 diabetes. Porcine donor age and weaning status influence the extent of exocrine maturation of the pancreas. Juvenile porcine pancreases may represent an alternative donor source for islet xenotransplantation as their exocrine component is relatively immature; this preserves islet viability during extended tissue culture following isolation.
Collapse
Affiliation(s)
- Rahul Krishnan
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Nhat Truong
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Marina Gerges
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Miranda Stiewig
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Nicholas Neel
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - KhueTu Ho-Nguyen
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | | | - Michael Alexander
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Tom Spizzo
- SpringPoint Project, Minneapolis, MN, USA
| | | | - Clarence E Foster
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Edwin S Monuki
- Department of Pathology & Laboratory Medicine, University of California Irvine, Irvine, CA, USA
| | - Jonathan R T Lakey
- Department of Surgery, University of California Irvine, Orange, CA, USA.,Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
10
|
Hawthorne WJ, Williams L, Chew YV. Clinical Islet Isolation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 938:89-122. [PMID: 27586424 DOI: 10.1007/978-3-319-39824-2_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The overarching success of islet transplantation relies on the success in the laboratory to isolate the islets. This chapter focuses on the processes of human islet cell isolation and the ways to optimally provide islet cells for transplantation. The major improvements in regards to the choice of enzyme type, way the digested pancreas tissue is handled to best separate islets from the acinar and surrounding tissues, the various methods of purification of the islets, their subsequent culture and quality assurance to improve outcomes to culminate in safe and effective islet transplantation will be discussed. After decades of improvements, islet cell isolation and transplantation now clearly offer a safe, effective and feasible therapeutic treatment option for an increasing number of patients suffering from type 1 diabetes specifically for those with severe hypoglycaemic unawareness.
Collapse
Affiliation(s)
- Wayne J Hawthorne
- National Pancreas and Islet Transplant Laboratories, The Westmead Institute for Medical Research, Westmead, NSW, 2145, Australia. .,Department of Surgery, Westmead Clinical School, Westmead Hospital, University of Sydney, Westmead, NSW, 2145, Australia.
| | - Lindy Williams
- National Pancreas and Islet Transplant Laboratories, The Westmead Institute for Medical Research, Westmead, NSW, 2145, Australia
| | - Yi Vee Chew
- National Pancreas and Islet Transplant Laboratories, The Westmead Institute for Medical Research, Westmead, NSW, 2145, Australia
| |
Collapse
|
11
|
Brandhorst H, Theisinger B, Guenther B, Johnson PR, Brandhorst D. Pancreatic L-Glutamine Administration Protects Pig Islets From Cold Ischemic Injury and Increases Resistance Toward Inflammatory Mediators. Cell Transplant 2015; 25:531-8. [PMID: 26177261 DOI: 10.3727/096368915x688623] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The isolation and transplantation of porcine islets represent a future option for the treatment of type 1 diabetic patients. Stringent product release criteria and limited availability of transgenic and specific pathogen-free pigs will essentially require processing of explanted pig pancreata in specialized, possibly remote isolation facilities, whereby pancreata are exposed to cold ischemia due to prolonged tissue transit time. In the present study we investigated whether pancreas oxygenation can be efficiently combined with an antioxidant strategy utilizing intraductal L-glutamine administration. Pig pancreata were intraductally perfused after retrieval and after cold storage in oxygen-precharged perfluorohexyloctane utilizing University of Wisconsin solution supplemented with (n = 16) or without (n = 14) 5 mmol/L L-glutamine. After isolation purified islets were subjected to extensive quality assessment. Islet recovery postpurification was significantly higher in glutamine-treated pancreata (77.0 ± 3.3% vs. 60.3 ± 6.0%, p < 0.05). Glutamine administration increased intraislet content of reduced glutathione (117.8 ± 16.5 vs. 15.9 ± 2.8 ng/ng protein, p < 0.001) associated with increased islet recovery after culture (65.8 ± 12.1% vs. 40.3 ± 11.7%, p < 0.05), enhanced glucose stimulation index (1.82 ± 0.16 vs. 1.38 ± 0.10, p < 0.05), and improved posttransplant function in diabetic nude mice (p < 0.05). Furthermore, intraductally administered glutamine increased pig islet resistance toward reactive oxygen species, nitric oxide, and high-dose proinflammatory cytokines. The present study demonstrates that quality and function of pig islets exposed to warm and cold ischemia can significantly be improved using intraductal l-glutamine administration. As the efficiency of the intraductal route may be inferior compared to intravascular administration further studies should aim on assessment of l-glutamine as supplement for pancreas perfusion during organ procurement.
Collapse
Affiliation(s)
- Heide Brandhorst
- Islet Transplant Research Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | | | | | | | | |
Collapse
|
12
|
Zhou Y, Waanders LF, Holmseth S, Guo C, Berger UV, Li Y, Lehre AC, Lehre KP, Danbolt NC. Proteome analysis and conditional deletion of the EAAT2 glutamate transporter provide evidence against a role of EAAT2 in pancreatic insulin secretion in mice. J Biol Chem 2013; 289:1329-44. [PMID: 24280215 DOI: 10.1074/jbc.m113.529065] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Islet function is incompletely understood in part because key steps in glutamate handling remain undetermined. The glutamate (excitatory amino acid) transporter 2 (EAAT2; Slc1a2) has been hypothesized to (a) provide islet cells with glutamate, (b) protect islet cells against high extracellular glutamate concentrations, (c) mediate glutamate release, or (d) control the pH inside insulin secretory granules. Here we floxed the EAAT2 gene to produce the first conditional EAAT2 knock-out mice. Crossing with Nestin-cyclization recombinase (Cre) eliminated EAAT2 from the brain, resulting in epilepsy and premature death, confirming the importance of EAAT2 for brain function and validating the genetic construction. Crossing with insulin-Cre lines (RIP-Cre and IPF1-Cre) to obtain pancreas-selective deletion did not appear to affect survival, growth, glucose tolerance, or β-cell number. We found (using TaqMan RT-PCR, immunoblotting, immunocytochemistry, and proteome analysis) that the EAAT2 levels were too low to support any of the four hypothesized functions. The proteome analysis detected more than 7,000 islet proteins of which more than 100 were transporters. Although mitochondrial glutamate transporters and transporters for neutral amino acids were present at high levels, all other transporters with known ability to transport glutamate were strikingly absent. Glutamate-metabolizing enzymes were abundant. The level of glutamine synthetase was 2 orders of magnitude higher than that of glutaminase. Taken together this suggests that the uptake of glutamate by islets from the extracellular fluid is insignificant and that glutamate is intracellularly produced. Glutamine synthetase may be more important for islets than assumed previously.
Collapse
Affiliation(s)
- Yun Zhou
- From The Neurotransporter Group, Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Raposo do Amaral AS, Pawlick RL, Rodrigues E, Costal F, Pepper A, Ferreira Galvão FH, Correa-Giannella ML, Shapiro AM. Glutathione ethyl ester supplementation during pancreatic islet isolation improves viability and transplant outcomes in a murine marginal islet mass model. PLoS One 2013; 8:e55288. [PMID: 23424628 PMCID: PMC3570543 DOI: 10.1371/journal.pone.0055288] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 12/19/2012] [Indexed: 12/28/2022] Open
Abstract
Background The success of pancreatic islet transplantation still faces many challenges, mainly related to cell damage during islet isolation and early post-transplant. The increased generation of reactive oxygen species (ROS) during islet isolation and the consumption of antioxidant defenses appear to be an important pathway related to islet damage. Methodology/Principal Findings In the present study we evaluated whether supplementation of glutathione-ethyl-ester (GEE) during islet isolation could improve islet viability and transplant outcomes in a murine marginal islet mass model. We also cultured human islets for 24 hours in standard CMRL media with or without GEE supplementation. Supplementation of GEE decreased the content of ROS in isolated islets, leading to a decrease in apoptosis and maintenance of islet viability. A higher percentage of mice transplanted with a marginal mass of GEE treated islets became euglycemic after transplant. The supplementation of 20 mM GEE in cultured human islets significantly reduced the apoptosis rate in comparison to untreated islets. Conclusions/Significance GEE supplementation was able to decrease the apoptosis rate and intracellular content of ROS in isolated islets and might be considered a potential intervention to improve islet viability during the isolation process and maintenance in culture before islet transplantation.
Collapse
Affiliation(s)
- Alexandre S. Raposo do Amaral
- Alberta Diabetes Institute, University of Alberta, Edmonton AB, Canada
- Laboratório de Endocrinologia Celular e Molecular (LIM-25) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Rena L. Pawlick
- Alberta Diabetes Institute, University of Alberta, Edmonton AB, Canada
| | - Erika Rodrigues
- Laboratório de Endocrinologia Celular e Molecular (LIM-25) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Flavia Costal
- Laboratório de Endocrinologia Celular e Molecular (LIM-25) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Andrew Pepper
- Alberta Diabetes Institute, University of Alberta, Edmonton AB, Canada
| | - Flávio H. Ferreira Galvão
- Unidade de Transplante e Cirurgia de Fígado (LIM37), Departamento de Gastroenterologia da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Maria Lucia Correa-Giannella
- Laboratório de Endocrinologia Celular e Molecular (LIM-25) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - A. M.James Shapiro
- Alberta Diabetes Institute, University of Alberta, Edmonton AB, Canada
- * E-mail:
| |
Collapse
|
14
|
Improved Islet Yield and Function by Use of a Chloride Channel Blocker During Collagenase Digestion. Transplantation 2011; 92:871-7. [DOI: 10.1097/tp.0b013e31822e6eb4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Stiegler P, Stadlbauer V, Hackl F, Schaffellner S, Iberer F, Greilberger J, Strunk D, Zelzer S, Lackner C, Tscheliessnigg K. Prevention of oxidative stress in porcine islet isolation. J Artif Organs 2010; 13:38-47. [DOI: 10.1007/s10047-010-0488-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Accepted: 12/24/2009] [Indexed: 01/11/2023]
|
16
|
Qi M, Strand BL, Mørch Y, Lacík I, Wang Y, Salehi P, Barbaro B, Gangemi A, Kuechle J, Romagnoli T, Hansen MA, Rodriguez LA, Benedetti E, Hunkeler D, Skjåk-Braek G, Oberholzer J. Encapsulation of human islets in novel inhomogeneous alginate-ca2+/ba2+ microbeads: in vitro and in vivo function. ACTA ACUST UNITED AC 2009; 36:403-20. [PMID: 18925451 DOI: 10.1080/10731190802369755] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Microencapsulation may allow for immunosuppression-free islet transplantation. Herein we investigated whether human islets can be shipped safely to a remote encapsulation core facility and maintain in vitro and in vivo functionality. In non-encapsulated islets before and encapsulated islets after shipment, viability was 88.3+/-2.5 and 87.5+/-2.7% (n=6, p=0.30). Stimulation index after static glucose incubation was 5.4+/-0.5 and 6.3+/-0.4 (n=6, p=0.18), respectively. After intraperitoneal transplantation, long-term normoglycemia was consistently achieved with 3,000, 5,000, and 10,000 IEQ encapsulated human islets. When transplanting 1,000 IEQ, mice returned to hyperglycemia after 30-55 (n=4/7) and 160 days (n=3/7). Transplanted mice showed human oral glucose tolerance with lower glucose levels than non-diabetic control mice. Capsules retrieved after transplantation were intact, with only minimal overgrowth. This study shows that human islets maintained the viability and in vitro function after encapsulation and the inhomogeneous alginate-Ca(2+)/Ba(2+) microbeads allow for long-term in vivo human islet graft function, despite long-distance shipment.
Collapse
Affiliation(s)
- Meirigeng Qi
- Department of Surgery, University of Illinois at Chicago, Illinois, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Mancarella R, Del Guerra S, Masini M, Bugliani M, Valgimigli L, Pedulli GF, Paolini M, Canistro D, Armando A, Soleti A, Filipponi F, Mosca F, Boggi U, Del Prato S, Marchetti P, Lupi R. Beneficial Effect of the Nonpeptidyl Low Molecular Weight Radical Scavenger IAC on Cultured Human Islet Function. Cell Transplant 2008; 17:1271-6. [DOI: 10.3727/096368908787236639] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We examined a possible protective effect of the nonpeptidyl low molecular weight radical scavenger IAC [bis(1-hydroxy-2,2,6,6-tetramethyl-4-piperidinyl)decanedioate di-hydrochloride] on isolated human islet cells against isolation and culture oxidative stress. Islets isolated from pancreases of nondiabetic multiorgan donors by collagenase digestion were purified by density gradient centrifugation. After the isolation, islets were either exposed or not exposed for 7 days to 10 μmol/L IAC. We found that IAC markedly reduced oxidative stress and ameliorated islets function. These results suggest that the use of IAC could be an interesting pharmacological approach for the treatment of the islets before transplantation.
Collapse
Affiliation(s)
- Rita Mancarella
- Department of Endocrinology and Metabolism, Metabolic Unit, University of Pisa, Pisa, Italy
| | - Silvia Del Guerra
- Department of Endocrinology and Metabolism, Metabolic Unit, University of Pisa, Pisa, Italy
| | - Matilde Masini
- Department of Experimental Pathology, University of Pisa, Pisa, Italy
| | - Marco Bugliani
- Department of Endocrinology and Metabolism, Metabolic Unit, University of Pisa, Pisa, Italy
| | - Luca Valgimigli
- Department of Organic Chemistry “A. Mangini”, University of Bologna, Bologna, Italy
| | - Gian Franco Pedulli
- Department of Organic Chemistry “A. Mangini”, University of Bologna, Bologna, Italy
| | - Moreno Paolini
- Department of Pharmacology, Molecular Toxicology Unit, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Donatella Canistro
- Department of Pharmacology, Molecular Toxicology Unit, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | | | | | - Franco Filipponi
- Department of Oncology and Transplant Surgery, University of Pisa, Pisa, Italy
| | - Franco Mosca
- Department of Oncology and Transplant Surgery, University of Pisa, Pisa, Italy
| | - Ugo Boggi
- Department of Oncology and Transplant Surgery, University of Pisa, Pisa, Italy
| | - Stefano Del Prato
- Department of Endocrinology and Metabolism, Metabolic Unit, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Endocrinology and Metabolism, Metabolic Unit, University of Pisa, Pisa, Italy
| | - Roberto Lupi
- Department of Endocrinology and Metabolism, Metabolic Unit, University of Pisa, Pisa, Italy
| |
Collapse
|
18
|
Gangemi A, Salehi P, Hatipoglu B, Martellotto J, Barbaro B, Kuechle JB, Qi M, Wang Y, Pallan P, Owens C, Bui J, West D, Kaplan B, Benedetti E, Oberholzer J. Islet transplantation for brittle type 1 diabetes: the UIC protocol. Am J Transplant 2008; 8:1250-61. [PMID: 18444920 DOI: 10.1111/j.1600-6143.2008.02234.x] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This prospective phase 1/2 trial investigated the safety and reproducibility of allogeneic islet transplantation (Tx) in type I diabetic (T1DM) patients and tested a strategy to achieve insulin-independence with lower islet mass. Ten C-peptide negative T1DM subjects with hypoglycemic unawareness received 1-3 intraportal allogeneic islet Tx and were followed for 15 months. Four subjects (Group 1) received the Edmonton immunosuppression regimen (daclizumab, sirolimus, tacrolimus). Six subjects (Group 2) received the University of Illinois protocol (etanercept, exenatide and the Edmonton regimen). All subjects became insulin- independent. Group 1 received a mean total number of islets (EIN) of 1460 080 +/- 418 330 in 2 (n = 2) or 3 (n = 2) Tx, whereas Group 2 became insulin- independent after 1 Tx (537 495 +/- 190 968 EIN, p = 0.028). All Group 1 subjects remained insulin free through the follow-up. Two Group 2 subjects resumed insulin: one after immunosuppression reduction during an infectious complication, the other with exenatide intolerance. HbA1c reached normal range in both groups (6.5 +/- 0.6 at baseline to 5.6 +/- 0.5 after 2-3 Tx in Group 1 vs. 7.8 +/- 1.1 to 5.8 +/- 0.3 after 1 Tx in Group 2). HYPO scores markedly decreased in both groups. Combined treatment of etanercept and exenatide improves islet graft function and facilitates achievement of insulin-independence with less islets.
Collapse
Affiliation(s)
- A Gangemi
- Division of Transplantation/Department of Surgery, University of Illinois at Chicago, Chicago, IL, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Merani S, Schur C, Truong W, Knutzen VK, Lakey JRT, Anderson CC, Ricordi C, Shapiro AMJ. Compaction of islets is detrimental to transplant outcome in mice. Transplantation 2007; 82:1472-6. [PMID: 17164719 DOI: 10.1097/01.tp.0000243166.64244.3d] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Despite recent progress in clinical islet transplantation, the cumulative world experience remains small. Optimizing protection of islets throughout the isolation, purification, and peritransplant period remains critical to outcome. We herein investigate the potential detrimental impact of maintaining islets in a pelleted state for periods preceding implantation. We hypothesize that periods of islet compaction lead to impairment if islet function in vivo. METHODS In this study, 250-islet marginal mass transplants were conducted in the BALB/c syngeneic mouse model using islets either preincubated as an islet pellet or suspended in culture during the 30 min immediately preceding transplant. Nonfasting blood glucose, intraperitoneal glucose tolerance test, graft histology, and graft insulin content were all used to monitor graft function up to four weeks posttransplant. RESULTS Maintaining islets in a compact pellet for 30 min prior to transplantation significantly reduces the proportion of transplant recipients that achieve normoglycemia (from 100% to 38%, P=0.026) and increases the proportion of apoptotic beta-cells. CONCLUSION Our findings confirm that damage induced by sustained islet compaction results in poor graft outcome in mice. These findings raise concerns relating to potential damage to human islets prior to clinical transplantation, and this will be explored in further studies.
Collapse
Affiliation(s)
- Shaheed Merani
- Department of Surgery, Faculty of Medicine, University of Alberta, Edmonton AB, Canada
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Kin T, Johnson PRV, Shapiro AMJ, Lakey JRT. Factors influencing the collagenase digestion phase of human islet isolation. Transplantation 2007; 83:7-12. [PMID: 17220782 DOI: 10.1097/01.tp.0000243169.09644.e6] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Substantial advances in human islet isolation technology have occurred during the past decade. However, it is still difficult to recover the entire quantity of islets contained in a pancreas. A major obstacle to successful human islet isolation has been the variability of the collagenase digestion phase of islet isolation. Future advances in enzyme technology will make it possible to optimally liberate islets with enzyme blends "tailor-made" for each individual donor pancreas. Such innovative strategies will be advantageous in improving islet isolation efficiency, recovery, viability, and ultimately posttransplant function.
Collapse
Affiliation(s)
- Tatsuya Kin
- Clinical Islet Transplant Program, University of Alberta and Capital Health Authority, Canada
| | | | | | | |
Collapse
|
22
|
Avila JG, Wang Y, Barbaro B, Gangemi A, Qi M, Kuechle J, Doubleday N, Doubleday M, Churchill T, Salehi P, Shapiro J, Philipson LH, Benedetti E, Lakey JRT, Oberholzer J. Improved outcomes in islet isolation and transplantation by the use of a novel hemoglobin-based O2 carrier. Am J Transplant 2006; 6:2861-70. [PMID: 17062000 DOI: 10.1111/j.1600-6143.2006.01551.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
During isolation, islets are exposed to warm ischemia. In this study, intraductal administration of oxygenated polymerized, stroma-free hemoglobin-pyridoxalated (Poly SFH-P) was performed to improve O2 delivery. Rat pancreata subjected to 30-min warm ischemia were perfused intraductally with collagenase in oxygenated Poly SFH-P/RPMI or RPMI (control). PO2 was increased by Poly SFH-P (381.7 +/- 35.3 mmHg vs. 202.3 +/- 28.2, p = 0.01) and pH maintained within physiological range (7.4-7.2 vs. 7.1-6.6, p = 0.009). Islet viability (77% +/- 4.6 vs. 63% +/- 4.7, p = 0.04) was improved and apoptosis lower with Poly SFH-P (caspase-3: 34,714 +/- 2167 vs. 45,985 +/- 1382, respectively, p = 0.01). Poly SFH-P improved islet responsiveness to glucose as determined by increased intracellular Ca2+ levels and improved insulin secretion (SI 5.4 +/- 0.1 vs. 3.1 +/- 0.2, p = 0.03). Mitochondrial integrity was improved in Poly SFH-P-treated islets, which showed higher percentage change in membrane potential after glucose stimulation (14.7% +/- 1.8 vs. 9.8 +/- 1.4, respectively, p < 0.05). O2 delivery by Poly SFH-P did not increase oxidative stress (GSH 7.1 +/- 2.9 nm/mg protein for Poly SFH-P vs. 6.8 +/- 2.4 control, p = 0.9) or oxidative injury (MDA 1.8 +/- 0.9 nmol/mg protein vs. 6.2 +/- 2.4, p = 0.19). Time to reach normoglycemia in transplanted diabetic nude mice was shorter (1.8 +/- 0.4 vs. 7 +/- 2.5 days, p = 0.02), and glucose tolerance improved in the Poly SFH-P group (AUC 8106 +/- 590 vs. 10,863 +/- 946, p = 0.03). Oxygenated Poly SFH-P improves islet isolation and transplantation outcomes by preserving mitochondrial integrity.
Collapse
Affiliation(s)
- J G Avila
- Division of Transplantation, University of Illinois at Chicago, Illinois, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Salehi P, Hansen MA, Avila JG, Barbaro B, Gangemi A, Romagnoli T, Wang Y, Qi M, Murdock P, Benedetti E, Oberholzer J. Human Islet Isolation Outcomes From Pancreata Preserved with Histidine-Tryptophan Ketoglutarate versus University of Wisconsin Solution. Transplantation 2006; 82:983-5. [PMID: 17038916 DOI: 10.1097/01.tp.0000232310.49237.06] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This study was designed to compare Histadine-Tryptophan-Ketogluterate (HTK) with University of Wisconsin (UW) solution. Pancreata from extended criteria donors were flushed and transported with HTK (n=41) or UW (n=45). Isolation outcomes were determined by islet yields, viability and in vitro and in vivo function. Final yields were similar between two groups (HTK: 383,085 vs. UW: 328,514 EIN, P=0.14). In the HTK group, 63.4% (26/41) of isolations resulted in a yield of over 300,000, and in the UW group this was achieved in 46.7% (21/45; P=0.12). Viability results were similar (HTK: 82.9 vs. UW: 82.7%, P=0.93). Stimulation index in the HTK and UW groups were comparable (5.28 vs. 4.91, P=0.62). Ten out of 41 islet preparations in HTK and 4 of 45 in UW group were suitable for clinical transplantation (P=0.05). Our study shows HTK is equivalent to UW solution in the preservation of pancreata for islet isolation.
Collapse
Affiliation(s)
- Payam Salehi
- Department of Surgery, Division of Transplantation/Islet Transplantation Program, University of Illinois Medical Center at Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Pileggi A, Cobianchi L, Inverardi L, Ricordi C. Overcoming the Challenges Now Limiting Islet Transplantation: A Sequential, Integrated Approach. Ann N Y Acad Sci 2006; 1079:383-98. [PMID: 17130583 DOI: 10.1196/annals.1375.059] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Steady improvements in islet cell processing technology and immunosuppressive protocols have made pancreatic islet transplantation a clinical reality for the treatment of patients with Type 1 diabetes mellitus (T1DM). Recent trials are showing that improved glycemic metabolic control, prevention of severe hypoglycemia, and better quality of life can be reproducibly achieved after transplantation of allogeneic islets in patients with unstable T1DM. Despite these encouraging results, challenges ahead comprise obtaining adequate islet cells for transplant, enhancing islets engraftment, sustaining beta cell mass and function over time, and defining effective immune interventions, among others. In order to overcome the current hurdles to the widespread application of islet transplantation there is a need for implementation of integrated, sequential therapeutic approaches.
Collapse
Affiliation(s)
- Antonello Pileggi
- Cell Transplant Center, Diabetes Research Institute, Miller School of Medicine, University of Miami, 1450 NW 10th Avenue (R-134), Miami, FL 33136, USA
| | | | | | | |
Collapse
|
25
|
Gimi B, Leoni L, Oberholzer J, Braun M, Avila J, Wang Y, Desai T, Philipson LH, Magin RL, Roman BB. Functional MR microimaging of pancreatic beta-cell activation. Cell Transplant 2006; 15:195-203. [PMID: 16719054 DOI: 10.3727/000000006783982151] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The increasing incidence of diabetes and the need to further understand its cellular basis has resulted in the development of new diagnostic and therapeutic techniques. Nonetheless, the quest to noninvasively ascertain beta-cell mass and function has not been achieved. Manganese (Mn)-enhanced MRI is presented here as a tool to image beta-cell functionality in cell culture and isolated islets. Similar to calcium, extracellular Mn was taken up by glucose-activated beta-cells resulting in 200% increase in MRI contrast enhancement, versus nonactivated cells. Similarly, glucose-activated islets showed an increase in MRI contrast up to 45%. Although glucose-stimulated Ca influx was depressed in the presence of 100 microM Mn, no significant effect was seen at lower Mn concentrations. Moreover, islets exposed to Mn showed normal glucose sensitivity and insulin secretion. These results demonstrate a link between image contrast enhancement and beta-cell activation in vitro, and provide the basis for future noninvasive in vivo imaging of islet functionality and beta-cell mass.
Collapse
Affiliation(s)
- Barjor Gimi
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD, 21205, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Matsumoto S, Noguchi H, Yonekawa Y, Okitsu T, Iwanaga Y, Liu X, Nagata H, Kobayashi N, Ricordi C. Pancreatic islet transplantation for treating diabetes. Expert Opin Biol Ther 2006; 6:23-37. [PMID: 16370912 DOI: 10.1517/14712598.6.1.23] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pancreatic islet transplantation is one of the options for treating diabetes and has been shown to improve the quality of life of severe diabetic patients. Since the Edmonton protocol was announced, islet transplantation have advanced considerably, including islet after kidney transplantation, utilisation of non-heart-beating donors, single-donor islet transplantation and living-donor islet transplantation. These advances were based on revised immunosuppression protocols, improved pancreas procurement and islet isolation methods, and enhanced islet engraftment. Further improvements are necessary to make islet transplantation a routine clinical treatment. To synergise efforts towards a cure for type 1 diabetes, a Diabetes Research Institute (DRI) Federation is currently being established to include leading diabetes research centres worldwide, including DRIs in Miami, Edmonton and Kyoto among others.
Collapse
Affiliation(s)
- Shinichi Matsumoto
- Transplantation Unit, Kyoto University Hospital, Diabetes Research Institute Kyoto, Shogoin, Kyoto 606-8507, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Brandhorst H, Duan Y, Iken M, Bretzel RG, Brandhorst D. Effect of stable glutamine compounds on porcine islet culture. Transplant Proc 2006; 37:3519-20. [PMID: 16298648 DOI: 10.1016/j.transproceed.2005.09.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND Pig islets are characterized by significant fragility, preventing successful islet culture prior to xenotransplantation. To improve outcome after culture, we compared the effects of glutamine supplementation on survival and viability of isolated pig islets during culture. METHODS Pig islets were suspended in CMRL 1066 supplemented either with 2.5 mmol/L N-acetyl-L-alanyl-L-glutamine (NALG), a stable compound of L-glutamine, or with 2.5 or 5.0 mmol/L of free L-glutamine (L-Glu). After 24 hours of preincubation, islets were stressed for additional 48 hours with H2O2, DETA, or a cytokine mix. RESULTS Twenty-four-hour survival of unstressed controls precultured with 2.5 mmol/L NALG was significantly decreased compared with islets pretreated with 2.5 or 5.0 mmol/L L-Glu (P < .01). Fresh islets, viability decreased significantly after NALG preincubation, but was maintained after preincubation in 2.5 or 5.0 mmol/L L-Glu (not significant vs fresh; P < .05 vs NALG). Compared with NALG pretreatment L-Glu did not significantly ameliorate the relative survival (related to cultured controls) of islets during proinflammatory treatment. Nevertheless, the beneficial effect of L-Glu preculture on absolute survival (related to freshly isolated islets) of stressed islets was still present in contrast to NALG pretreatment (P < .01). Viability of stressed islets was significantly protected by L-Glu but not by NALG. CONCLUSIONS Pig islet culture is significantly improved if L-glutamine is administered in an unbound form compared with the stable compound NALG. Stress resistance of pig islets seems to be increased by free L-glutamine as well.
Collapse
Affiliation(s)
- H Brandhorst
- Third Medical Department, University Hospital, Rodthohl 6, 35385 Giessen, Germany.
| | | | | | | | | |
Collapse
|
28
|
Avila J, Barbaro B, Gangemi A, Romagnoli T, Kuechle J, Hansen M, Shapiro J, Testa G, Sankary H, Benedetti E, Lakey J, Oberholzer J. Intra-ductal glutamine administration reduces oxidative injury during human pancreatic islet isolation. Am J Transplant 2005; 5:2830-7. [PMID: 16302995 DOI: 10.1111/j.1600-6143.2005.01109.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Oxidative stress during islet isolation induces a cascade of events injuring islets and hampering islet engraftment. This study evaluated islet isolation and transplantation outcomes after intra-ductal glutamine administration. Human pancreata deemed unsuitable for pancreas or islet transplantation were treated with either a 5 mM solution of l-glutamine (n = 6) or collagenase enzyme alone (n = 6) through the main pancreatic duct. Islet yield, viability, in vitro function; markers of oxidative stress [malondialdehyde (MDA) and Glutathione (GSH)] and apoptosis were assessed. Islet yields were significantly increased in the glutamine group compared to controls (318, 559 +/- 25, 800 vs. 165, 582 +/- 39, 944 mean +/- SEM, p < 0.01). The amount of apoptotic cells per islet was smaller in the glutamine group than the control. The percentage of nude mice rendered normoglycemic with glutamine-treated islets was higher than the controls (83% n = 10/12 vs. 26% n = 6/23; p < 0.01), and the time to reach normoglycemia was decreased in the glutamine group (1.83 +/- 0.4 vs. 7.3 +/- 3 days; p < 0.01). Glutamine administration increased GSH levels (7.6 +/- 1.7 nmol/mg protein vs. 4.03 +/- 0.5 in control, p < 0.05) and reduced lipid-peroxidation (MDA 2.45 +/- 0.7 nmol/mg of protein vs. 6.54 +/- 1.7 in control; p < 0.05). We conclude that intra-ductal administration of glutamine reduces oxidative injury and apoptosis and improves islet yield and islet graft function after transplantation.
Collapse
Affiliation(s)
- J Avila
- University of Illinois at Chicago, Division of Transplantation, Chicago, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|