1
|
Jácome D, Cotrufo T, Andrés-Benito P, Lidón L, Martí E, Ferrer I, Del Río JA, Gavín R. miR-519a-3p, found to regulate cellular prion protein during Alzheimer's disease pathogenesis, as a biomarker of asymptomatic stages. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167187. [PMID: 38653354 DOI: 10.1016/j.bbadis.2024.167187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Clinical relevance of miRNAs as biomarkers is growing due to their stability and detection in biofluids. In this, diagnosis at asymptomatic stages of Alzheimer's disease (AD) remains a challenge since it can only be made at autopsy according to Braak NFT staging. Achieving the objective of detecting AD at early stages would allow possible therapies to be addressed before the onset of cognitive impairment. Many studies have determined that the expression pattern of some miRNAs is dysregulated in AD patients, but to date, none has been correlated with downregulated expression of cellular prion protein (PrPC) during disease progression. That is why, by means of cross studies of miRNAs up-regulated in AD with in silico identification of potential miRNAs-binding to 3'UTR of human PRNP gene, we selected miR-519a-3p for our study. Then, in vitro experiments were carried out in two ways. First, we validated miR-519a-3p target on 3'UTR-PRNP, and second, we analyzed the levels of PrPC expression after using of mimic technology on cell culture. In addition, RT-qPCR was performed to analyzed miR-519a-3p expression in human cerebral samples of AD at different stages of disease evolution. Additionally, samples of other neurodegenerative diseases such as other non-AD tauopathies and several synucleinopathies were included in the study. Our results showed that miR-519a-3p overlaps with PRNP 3'UTR in vitro and promotes downregulation of PrPC. Moreover, miR-519a-3p was found to be up-regulated exclusively in AD samples from stage I to VI, suggesting its potential use as a novel label of preclinical stages of the disease.
Collapse
Affiliation(s)
- Dayaneth Jácome
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia, Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain.
| | - Tiziana Cotrufo
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia, Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain; Institute of Neuroscience, University of Barcelona, Barcelona, Spain.
| | - Pol Andrés-Benito
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Madrid, Spain; Neurologic Diseases and Neurogenetics Group, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Laia Lidón
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia, Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain; Institute of Neuroscience, University of Barcelona, Barcelona, Spain; Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Madrid, Spain.
| | - Eulàlia Martí
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain; Functional Genomics of Neurodegenerative Diseases, Department of Biomedical Sciences, University of Barcelona, Barcelona, Spain; CIBERESP (Centro en Red de Epidemiología y Salud Pública), Spain.
| | - Isidre Ferrer
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain; Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Madrid, Spain; Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain; Senior Consultant Neuropathology, Service of Pathology, Bellvitge University Hospital, Hospitalet de Llobregat, Spain.
| | - José Antonio Del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia, Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain; Institute of Neuroscience, University of Barcelona, Barcelona, Spain; Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Madrid, Spain.
| | - Rosalina Gavín
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia, Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain; Institute of Neuroscience, University of Barcelona, Barcelona, Spain; Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Madrid, Spain.
| |
Collapse
|
2
|
Wagner K, Pierce R, Gordon E, Hay A, Lessard A, Telling GC, Ballard JR, Moreno JA, Zabel MD. Tissue-specific biochemical differences between chronic wasting disease prions isolated from free-ranging white-tailed deer (Odocoileus virginianus). J Biol Chem 2022; 298:101834. [PMID: 35304100 PMCID: PMC9019250 DOI: 10.1016/j.jbc.2022.101834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 01/21/2023] Open
Abstract
Chronic wasting disease (CWD) is an invariably fatal prion disease affecting cervid species worldwide. Prions can manifest as distinct strains that can influence disease pathology and transmission. CWD is profoundly lymphotropic, and most infected cervids likely shed peripheral prions replicated in lymphoid organs. However, CWD is a neurodegenerative disease, and most research on prion strains has focused on neurogenic prions. Thus, a knowledge gap exists comparing neurogenic prions to lymphogenic prions. In this study, we compared prions from the obex and lymph nodes of naturally exposed white-tailed deer to identify potential biochemical strain differences. Here, we report biochemical evidence of strain differences between the brain and lymph node from these animals. Conformational stability assays, glycoform ratio analyses, and immunoreactivity scanning across the structured domain of the prion protein that refolds into the amyloid aggregate of the infectious prion reveal significantly more structural and glycoform variation in lymphogenic prions than neurogenic prions. Surprisingly, we observed greater biochemical differences among neurogenic prions than lymphogenic prions across individuals. We propose that the lymphoreticular system propagates a diverse array of prions from which the brain selects a more restricted pool of prions that may be quite different than those from another individual of the same species. Future work should examine the biological and zoonotic impact of these biochemical differences and examine more cervids from multiple locations to determine if these differences are conserved across species and locations.
Collapse
Affiliation(s)
- Kaitlyn Wagner
- Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA,Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Robyn Pierce
- Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA,Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Elizabeth Gordon
- Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA,Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Arielle Hay
- Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA,Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Avery Lessard
- Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA,Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Glenn C. Telling
- Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA,Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Jennifer R. Ballard
- Research Division, Arkansas Game and Fish Commission, Little Rock, Arkansas, USA
| | - Julie A. Moreno
- Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA,Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Mark D. Zabel
- Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA,Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA,For correspondence: Mark D. Zabel
| |
Collapse
|
3
|
Dexter E, Kong Q. Neuroprotective effect and potential of cellular prion protein and its cleavage products for treatment of neurodegenerative disorders part I. a literature review. Expert Rev Neurother 2021; 21:969-982. [PMID: 34470561 DOI: 10.1080/14737175.2021.1965881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The cellular prion protein (PrPC) is well known for its pathogenic roles in prion diseases, several other neurodegenerative diseases (such as Alzheimer's disease), and multiple types of cancer, but the beneficial aspects of PrPC and its cleavage products received much less attention. AREAS COVERED Here the authors will systematically review the literatures on the negative as well as protective aspects of PrPC and its derivatives (especially PrP N-terminal N1 peptide and shed PrP). The authors will dissect the current findings on N1 and shed PrP, including evidence for their neuroprotective effects, the categories of PrPC cleavage, and numerous cleavage enzymes involved. The authors will also discuss the protective effects and therapeutic potentials of PrPC-rich exosomes. The cited articles were obtained from extensive PubMed searches of recent literature, including peer-reviewed original articles and review articles. EXPERT OPINION PrP and its N-terminal fragments have strong neuroprotective activities that should be explored for therapeutics and prophylactics development against prion disease, Alzheimer's disease and a few other neurodegenerative diseases. The strategies to develop PrP-based therapeutics and prophylactics for these neurodegenerative diseases will be discussed in a companion article (Part II).
Collapse
Affiliation(s)
- Emily Dexter
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, USA
| | - Qingzhong Kong
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, USA.,Department of Neurology, School of Medicine, Case Western Reserve University, Cleveland, USA
| |
Collapse
|
4
|
Harnessing the Physiological Functions of Cellular Prion Protein in the Kidneys: Applications for Treating Renal Diseases. Biomolecules 2021; 11:biom11060784. [PMID: 34067472 PMCID: PMC8224798 DOI: 10.3390/biom11060784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/16/2022] Open
Abstract
A cellular prion protein (PrPC) is a ubiquitous cell surface glycoprotein, and its physiological functions have been receiving increased attention. Endogenous PrPC is present in various kidney tissues and undergoes glomerular filtration. In prion diseases, abnormal prion proteins are found to accumulate in renal tissues and filtered into urine. Urinary prion protein could serve as a diagnostic biomarker. PrPC plays a role in cellular signaling pathways, reno-protective effects, and kidney iron uptake. PrPC signaling affects mitochondrial function via the ERK pathway and is affected by the regulatory influence of microRNAs, small molecules, and signaling proteins. Targeting PrPC in acute and chronic kidney disease could help improve iron homeostasis, ameliorate damage from ischemia/reperfusion injury, and enhance the efficacy of mesenchymal stem/stromal cell or extracellular vesicle-based therapeutic strategies. PrPC may also be under the influence of BMP/Smad signaling and affect the progression of TGF-β-related renal fibrosis. PrPC conveys TNF-α resistance in some renal cancers, and therefore, the coadministration of anti-PrPC antibodies improves chemotherapy. PrPC can be used to design antibody-drug conjugates, aptamer-drug conjugates, and customized tissue inhibitors of metalloproteinases to suppress cancer. With preclinical studies demonstrating promising results, further research on PrPC in the kidney may lead to innovative PrPC-based therapeutic strategies for renal disease.
Collapse
|
5
|
Co-invalidation of Prnp and Sprn in FVB/N mice affects reproductive performances and highlight complex biological relationship between PrP and Shadoo. Biochem Biophys Res Commun 2021; 551:1-6. [PMID: 33713980 DOI: 10.1016/j.bbrc.2021.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 01/06/2023]
Abstract
Shadoo and PrP belongs to the same protein family, whose biological function remains poorly understood. Previous experiments reported potential functional redundancies or antagonisms between these two proteins, depending on the tissue analysed. While knockdown experiments suggested the requirement of Shadoo in the absence of PrP during early mouse embryogenesis, knockout ones, on the contrary, highlighted little impact, if any, of the double-knockout of these two loci. In the present study, we reinvestigated the phenotype associated with the concomitant knockout of these two genes using newly produced FVB/N Sprn knockout mice. In this genetic background, the combined two genes' knockout induces intra-uterine growth retardations, likely resulting from placental failures highlighted by transcriptomic analyses that revealed potential redundant or antagonist roles of these two proteins in different developmental-related pathways. It also induced an increased perinatal-lethality and ascertained the role of these two loci in the lactation process.
Collapse
|
6
|
Scialò C, Legname G. The role of the cellular prion protein in the uptake and toxic signaling of pathological neurodegenerative aggregates. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 175:297-323. [PMID: 32958237 DOI: 10.1016/bs.pmbts.2020.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Neurodegenerative disorders are invariably associated with intra- or extra-cellular deposition of aggregates composed of misfolded insoluble proteins. These deposits composed of tau, amyloid-β or α-synuclein spread from cell to cell, in a prion-like manner. Emerging evidence suggests that the circulating soluble species of these misfolded proteins (usually referred as oligomers) could play a major role in pathology, while insoluble aggregates would represent their protective less toxic counterparts. Convincing data support the hypothesis that the cellular prion protein, PrPC, act as a toxicity-transducing receptor for amyloid-β oligomers. As a consequence, several studies extended investigations to the role played by PrPC in binding aggregates of proteins other than Aβ, such as tau and α-synuclein, for its possible common role in mediating toxic signaling. A better characterization of the biological relevance of PrPC as key ligand and potential mediator of toxicity for multiple proteinaceous aggregated species, prions or PrPSc included, would bring relevant therapeutic implications. Here we will first describe the structure of the prion protein and the hypothesized interplay with its pathological counterpart PrPSc and then we will recapitulate the most relevant discoveries regarding the role of PrPC in the interaction with aggregated forms of other neurodegeneration-associated proteins.
Collapse
Affiliation(s)
- Carlo Scialò
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy.
| |
Collapse
|
7
|
Passet B, Castille J, Makhzami S, Truchet S, Vaiman A, Floriot S, Moazami-Goudarzi K, Vilotte M, Gaillard AL, Helary L, Bertaud M, Andréoletti O, Vaiman D, Calvel P, Daniel-Carlier N, Moudjou M, Beauvallet C, Benharouga M, Laloé D, Mouillet-Richard S, Duchesne A, Béringue V, Vilotte JL. The Prion-like protein Shadoo is involved in mouse embryonic and mammary development and differentiation. Sci Rep 2020; 10:6765. [PMID: 32317725 PMCID: PMC7174383 DOI: 10.1038/s41598-020-63805-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 04/03/2020] [Indexed: 11/09/2022] Open
Abstract
Shadoo belongs to the prion protein family, an evolutionary conserved and extensively studied family due to the implication of PrP in Transmissible Spongiform Encephalopathies. However, the biological function of these genes remains poorly understood. While Sprn-knockdown experiments suggested an involvement of Shadoo during mouse embryonic development, Sprn-knockout experiments in 129Pas/C57BL/6J or 129Pas/FVB/NCr mice did not confirm it. In the present study, we analyzed the impact of Sprn gene invalidation in a pure FVB/NJ genetic background, using a zinc finger nuclease approach. The in-depth analysis of the derived knockout transgenic mice revealed a significant increase in embryonic lethality at early post-implantation stages, a growth retardation of young Sprn-knockout pups fed by wild type mice and a lactation defect of Sprn-knockout females. Histological and transcriptional analyses of knockout E7.5 embryos, E14.5 placentas and G7.5 mammary glands revealed specific roles of the Shadoo protein in mouse early embryogenesis, tissue development and differentiation with a potential antagonist action between PrP and Shadoo. This study thus highlights the entanglement between the proteins of the prion family.
Collapse
Affiliation(s)
- Bruno Passet
- Université Paris-Saclay, INRAE, AgroParisTech, UMR1313-GABI, 78350, Jouy-en-Josas, France
| | - Johan Castille
- Université Paris-Saclay, INRAE, AgroParisTech, UMR1313-GABI, 78350, Jouy-en-Josas, France
| | - Samira Makhzami
- Université Paris-Saclay, INRAE, AgroParisTech, UMR1313-GABI, 78350, Jouy-en-Josas, France
| | - Sandrine Truchet
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Anne Vaiman
- Université Paris-Saclay, INRAE, AgroParisTech, UMR1313-GABI, 78350, Jouy-en-Josas, France
| | - Sandrine Floriot
- Université Paris-Saclay, INRAE, AgroParisTech, UMR1313-GABI, 78350, Jouy-en-Josas, France
| | | | - Marthe Vilotte
- Université Paris-Saclay, INRAE, AgroParisTech, UMR1313-GABI, 78350, Jouy-en-Josas, France
| | - Anne-Laure Gaillard
- Université Paris-Saclay, INRAE, AgroParisTech, UMR1313-GABI, 78350, Jouy-en-Josas, France
| | - Louise Helary
- Université Paris-Saclay, INRAE, AgroParisTech, UMR1313-GABI, 78350, Jouy-en-Josas, France
| | - Maud Bertaud
- Université Paris-Saclay, INRAE, AgroParisTech, UMR1313-GABI, 78350, Jouy-en-Josas, France
| | | | - Daniel Vaiman
- Institut Cochin, U1016, INSERM, UMR 8504 CNRS, Université de Paris, Paris, France
| | - Pierre Calvel
- Université Paris-Saclay, INRAE, AgroParisTech, UMR1313-GABI, 78350, Jouy-en-Josas, France
| | | | - Mohammed Moudjou
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Christian Beauvallet
- Université Paris-Saclay, INRAE, AgroParisTech, UMR1313-GABI, 78350, Jouy-en-Josas, France
| | | | - Denis Laloé
- Université Paris-Saclay, INRAE, AgroParisTech, UMR1313-GABI, 78350, Jouy-en-Josas, France
| | - Sophie Mouillet-Richard
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006, Paris, France
| | - Amandine Duchesne
- Université Paris-Saclay, INRAE, AgroParisTech, UMR1313-GABI, 78350, Jouy-en-Josas, France
| | - Vincent Béringue
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Jean-Luc Vilotte
- Université Paris-Saclay, INRAE, AgroParisTech, UMR1313-GABI, 78350, Jouy-en-Josas, France.
| |
Collapse
|
8
|
Gavín R, Lidón L, Ferrer I, del Río JA. The Quest for Cellular Prion Protein Functions in the Aged and Neurodegenerating Brain. Cells 2020; 9:cells9030591. [PMID: 32131451 PMCID: PMC7140396 DOI: 10.3390/cells9030591] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/21/2020] [Accepted: 02/27/2020] [Indexed: 12/19/2022] Open
Abstract
Cellular (also termed ‘natural’) prion protein has been extensively studied for many years for its pathogenic role in prionopathies after misfolding. However, neuroprotective properties of the protein have been demonstrated under various scenarios. In this line, the involvement of the cellular prion protein in neurodegenerative diseases other than prionopathies continues to be widely debated by the scientific community. In fact, studies on knock-out mice show a vast range of physiological functions for the protein that can be supported by its ability as a cell surface scaffold protein. In this review, we first summarize the most commonly described roles of cellular prion protein in neuroprotection, including antioxidant and antiapoptotic activities and modulation of glutamate receptors. Second, in light of recently described interaction between cellular prion protein and some amyloid misfolded proteins, we will also discuss the molecular mechanisms potentially involved in protection against neurodegeneration in pathologies such as Alzheimer’s, Parkinson’s, and Huntington’s diseases.
Collapse
Affiliation(s)
- Rosalina Gavín
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Science Park of Barcelona, 08028 Barcelona, Spain; (L.L.); (J.A.d.R.)
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (Ciberned), 28031 Barcelona, Spain;
- Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-4031185
| | - Laia Lidón
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Science Park of Barcelona, 08028 Barcelona, Spain; (L.L.); (J.A.d.R.)
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (Ciberned), 28031 Barcelona, Spain;
- Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain
| | - Isidre Ferrer
- Center for Networked Biomedical Research on Neurodegenerative Diseases (Ciberned), 28031 Barcelona, Spain;
- Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain
- Department of Pathology and Experimental Therapeutics, University of Barcelona, 08907 Barcelona, Spain
- Senior Consultant, Bellvitge University Hospital, Hospitalet de Llobregat, 08907 Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - José Antonio del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Science Park of Barcelona, 08028 Barcelona, Spain; (L.L.); (J.A.d.R.)
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (Ciberned), 28031 Barcelona, Spain;
- Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
9
|
Bender H, Noyes N, Annis JL, Hitpas A, Mollnow L, Croak K, Kane S, Wagner K, Dow S, Zabel M. PrPC knockdown by liposome-siRNA-peptide complexes (LSPCs) prolongs survival and normal behavior of prion-infected mice immunotolerant to treatment. PLoS One 2019; 14:e0219995. [PMID: 31329627 PMCID: PMC6645518 DOI: 10.1371/journal.pone.0219995] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/05/2019] [Indexed: 11/29/2022] Open
Abstract
Prion diseases are members of neurodegenerative protein misfolding diseases (NPMDs) that include Alzheimer's, Parkinson's and Huntington diseases, amyotrophic lateral sclerosis, tauopathies, traumatic brain injuries, and chronic traumatic encephalopathies. No known therapeutics extend survival or improve quality of life of humans afflicted with prion disease. We and others developed a new approach to NPMD therapy based on reducing the amount of the normal, host-encoded protein available as substrate for misfolding into pathologic forms, using RNA interference, a catabolic pathway that decreases levels of mRNA encoding a particular protein. We developed a therapeutic delivery system consisting of small interfering RNA (siRNA) complexed to liposomes and addressed to the central nervous system using a targeting peptide derived from rabies virus glycoprotein. These liposome-siRNA-peptide complexes (LSPCs) cross the blood-brain barrier and deliver PrP siRNA to neuronal cells to decrease expression of the normal cellular prion protein, PrPC, which acts as a substrate for prion replication. Here we show that LSPCs can extend survival and improve behavior of prion-infected mice that remain immunotolerant to treatment. LSPC treatment may be a viable therapy for prion and other NPMDs that can improve the quality of life of patients at terminal disease stages.
Collapse
Affiliation(s)
- Heather Bender
- Prion Research Center, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Noelle Noyes
- Prion Research Center, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States of America
| | - Jessica L. Annis
- Prion Research Center, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Amanda Hitpas
- Prion Research Center, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Luke Mollnow
- Prion Research Center, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Kendra Croak
- Prion Research Center, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Sarah Kane
- Prion Research Center, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Kaitlyn Wagner
- Prion Research Center, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Steven Dow
- Prion Research Center, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Mark Zabel
- Prion Research Center, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America
| |
Collapse
|
10
|
Scialò C, De Cecco E, Manganotti P, Legname G. Prion and Prion-Like Protein Strains: Deciphering the Molecular Basis of Heterogeneity in Neurodegeneration. Viruses 2019; 11:E261. [PMID: 30875755 PMCID: PMC6466326 DOI: 10.3390/v11030261] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence suggests that neurodegenerative disorders share a common pathogenic feature: the presence of deposits of misfolded proteins with altered physicochemical properties in the Central Nervous System. Despite a lack of infectivity, experimental data show that the replication and propagation of neurodegenerative disease-related proteins including amyloid-β (Aβ), tau, α-synuclein and the transactive response DNA-binding protein of 43 kDa (TDP-43) share a similar pathological mechanism with prions. These observations have led to the terminology of "prion-like" to distinguish between conditions with noninfectious characteristics but similarities with the prion replication and propagation process. Prions are considered to adapt their conformation to changes in the context of the environment of replication. This process is known as either prion selection or adaptation, where a distinct conformer present in the initial prion population with higher propensity to propagate in the new environment is able to prevail over the others during the replication process. In the last years, many studies have shown that prion-like proteins share not only the prion replication paradigm but also the specific ability to aggregate in different conformations, i.e., strains, with relevant clinical, diagnostic and therapeutic implications. This review focuses on the molecular basis of the strain phenomenon in prion and prion-like proteins.
Collapse
Affiliation(s)
- Carlo Scialò
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy.
| | - Elena De Cecco
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy.
| | - Paolo Manganotti
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, University Hospital and Health Services of Trieste, University of Trieste, 34149 Trieste, Italy.
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy.
- ELETTRA Sincrotrone Trieste S.C.p.A, Basovizza, 34149 Trieste, Italy.
| |
Collapse
|
11
|
Abstract
Several studies have indicated that certain misfolded amyloids composed of tau, β-amyloid or α-synuclein can be transferred from cell to cell, suggesting the contribution of mechanisms reminiscent of those by which infective prions spread through the brain. This process of a 'prion-like' spreading between cells is also relevant as a novel putative therapeutic target that could block the spreading of proteinaceous aggregates throughout the brain which may underlie the progressive nature of neurodegenerative diseases. The relevance of β-amyloid oligomers and cellular prion protein (PrPC) binding has been a focus of interest in Alzheimer's disease (AD). At the molecular level, β-amyloid/PrPC interaction takes place in two differently charged clusters of PrPC. In addition to β-amyloid, participation of PrPC in α-synuclein binding and brain spreading also appears to be relevant in α-synucleopathies. This review summarizes current knowledge about PrPC as a putative receptor for amyloid proteins and the physiological consequences of these interactions.
Collapse
Affiliation(s)
- José A Del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain; Institute of Neuroscience, University of Barcelona, Barcelona, Spain.
| | - Isidre Ferrer
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain; Institute of Neuroscience, University of Barcelona, Barcelona, Spain; Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, Spain; Senior Consultant Neuropathology, Service of Pathology, Bellvitge University Hospital, Hospitalet de Llobregat, Spain.
| | - Rosalina Gavín
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain; Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| |
Collapse
|
12
|
Gasperini L, Meneghetti E, Legname G, Benetti F. In Absence of the Cellular Prion Protein, Alterations in Copper Metabolism and Copper-Dependent Oxidase Activity Affect Iron Distribution. Front Neurosci 2016; 10:437. [PMID: 27729845 PMCID: PMC5037227 DOI: 10.3389/fnins.2016.00437] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/09/2016] [Indexed: 12/21/2022] Open
Abstract
Essential elements as copper and iron modulate a wide range of physiological functions. Their metabolism is strictly regulated by cellular pathways, since dysregulation of metal homeostasis is responsible for many detrimental effects. Neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and prion diseases are characterized by alterations of metal ions. These neurodegenerative maladies involve proteins that bind metals and mediate their metabolism through not well-defined mechanisms. Prion protein, for instance, interacts with divalent cations via multiple metal-binding sites and it modulates several metal-dependent physiological functions, such as S-nitrosylation of NMDA receptors. In this work we focused on the effect of prion protein absence on copper and iron metabolism during development and adulthood. In particular, we investigated copper and iron functional values in serum and several organs such as liver, spleen, total brain and isolated hippocampus. Our results show that iron content is diminished in prion protein-null mouse serum, while it accumulates in liver and spleen. Our data suggest that these alterations can be due to impairments in copper-dependent cerulopalsmin activity which is known to affect iron mobilization. In prion protein-null mouse total brain and hippocampus, metal ion content shows a fluctuating trend, suggesting the presence of homeostatic compensatory mechanisms. However, copper and iron functional values are likely altered also in these two organs, as indicated by the modulation of metal-binding protein expression levels. Altogether, these results reveal that the absence of the cellular prion protein impairs copper metabolism and copper-dependent oxidase activity, with ensuing alteration of iron mobilization from cellular storage compartments.
Collapse
Affiliation(s)
- Lisa Gasperini
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati Trieste, Italy
| | - Elisa Meneghetti
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati Trieste, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati Trieste, Italy
| | - Federico Benetti
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati Trieste, Italy
| |
Collapse
|
13
|
Massimino ML, Peggion C, Loro F, Stella R, Megighian A, Scorzeto M, Blaauw B, Toniolo L, Sorgato MC, Reggiani C, Bertoli A. Age-dependent neuromuscular impairment in prion protein knockout mice. Muscle Nerve 2015; 53:269-79. [DOI: 10.1002/mus.24708] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2015] [Indexed: 12/26/2022]
Affiliation(s)
| | - Caterina Peggion
- Department of Biomedical Sciences; University of Padova; Via U. Bassi 58/B 35131 Padova Italy
| | - Federica Loro
- Department of Biomedical Sciences; University of Padova; Via U. Bassi 58/B 35131 Padova Italy
| | - Roberto Stella
- Department of Biomedical Sciences; University of Padova; Via U. Bassi 58/B 35131 Padova Italy
| | - Aram Megighian
- Department of Biomedical Sciences; University of Padova; Via U. Bassi 58/B 35131 Padova Italy
| | - Michele Scorzeto
- Department of Biomedical Sciences; University of Padova; Via U. Bassi 58/B 35131 Padova Italy
| | - Bert Blaauw
- Department of Biomedical Sciences; University of Padova; Via U. Bassi 58/B 35131 Padova Italy
| | - Luana Toniolo
- Department of Biomedical Sciences; University of Padova; Via U. Bassi 58/B 35131 Padova Italy
| | - Maria Catia Sorgato
- CNR Neuroscience Institute, University of Padova
- Department of Biomedical Sciences; University of Padova; Via U. Bassi 58/B 35131 Padova Italy
| | - Carlo Reggiani
- CNR Neuroscience Institute, University of Padova
- Department of Biomedical Sciences; University of Padova; Via U. Bassi 58/B 35131 Padova Italy
| | - Alessandro Bertoli
- Department of Biomedical Sciences; University of Padova; Via U. Bassi 58/B 35131 Padova Italy
| |
Collapse
|
14
|
Martin-Lannerée S, Hirsch TZ, Hernandez-Rapp J, Halliez S, Vilotte JL, Launay JM, Mouillet-Richard S. PrP(C) from stem cells to cancer. Front Cell Dev Biol 2014; 2:55. [PMID: 25364760 PMCID: PMC4207012 DOI: 10.3389/fcell.2014.00055] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/11/2014] [Indexed: 12/23/2022] Open
Abstract
The cellular prion protein PrP(C) was initially discovered as the normal counterpart of the pathological scrapie prion protein PrP(Sc), the main component of the infectious agent of Transmissible Spongiform Encephalopathies. While clues as to the physiological function of this ubiquitous protein were greatly anticipated from the development of knockout animals, PrP-null mice turned out to be viable and to develop without major phenotypic abnormalities. Notwithstanding, the discovery that hematopoietic stem cells from PrP-null mice have impaired long-term repopulating potential has set the stage for investigating into the role of PrP(C) in stem cell biology. A wealth of data have now exemplified that PrP(C) is expressed in distinct types of stem cells and regulates their self-renewal as well as their differentiation potential. A role for PrP(C) in the fate restriction of embryonic stem cells has further been proposed. Paralleling these observations, an overexpression of PrP(C) has been documented in various types of tumors. In line with the contribution of PrP(C) to stemness and to the proliferation of cancer cells, PrP(C) was recently found to be enriched in subpopulations of tumor-initiating cells. In the present review, we summarize the current knowledge of the role played by PrP(C) in stem cell biology and discuss how the subversion of its function may contribute to cancer progression.
Collapse
Affiliation(s)
- Séverine Martin-Lannerée
- Toxicology, Pharmacology and Cellular Signaling, INSERM UMR-S1124 Paris, France ; Toxicology, Pharmacology and Cellular Signaling, Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124 Paris, France
| | - Théo Z Hirsch
- Toxicology, Pharmacology and Cellular Signaling, INSERM UMR-S1124 Paris, France ; Toxicology, Pharmacology and Cellular Signaling, Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124 Paris, France
| | - Julia Hernandez-Rapp
- Toxicology, Pharmacology and Cellular Signaling, INSERM UMR-S1124 Paris, France ; Toxicology, Pharmacology and Cellular Signaling, Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124 Paris, France ; Université Paris Sud 11, ED419 Biosigne Orsay, France
| | - Sophie Halliez
- U892 Virologie et Immunologie Moléculaires, INRA Jouy-en-Josas, France
| | - Jean-Luc Vilotte
- UMR1313 Génétique Animale et Biologie Intégrative, INRA Jouy-en-Josas, France
| | - Jean-Marie Launay
- AP-HP Service de Biochimie, Fondation FondaMental, INSERM U942 Hôpital Lariboisière Paris, France ; Pharma Research Department, F. Hoffmann-La-Roche Ltd. Basel, Switzerland
| | - Sophie Mouillet-Richard
- Toxicology, Pharmacology and Cellular Signaling, INSERM UMR-S1124 Paris, France ; Toxicology, Pharmacology and Cellular Signaling, Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124 Paris, France
| |
Collapse
|
15
|
Cichon AC, Brown DR. Nrf-2 regulation of prion protein expression is independent of oxidative stress. Mol Cell Neurosci 2014; 63:31-7. [PMID: 25242137 DOI: 10.1016/j.mcn.2014.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/18/2014] [Accepted: 09/12/2014] [Indexed: 12/13/2022] Open
Abstract
Cellular expression of host prion protein (PrP) is essential to infection with prion disease. Understanding the mechanisms that regulate prion protein expression at both the transcriptional and translational levels is therefore an important goal. The cellular prion protein has been associated with resistance to oxidative, and its expression is also increased by oxidative stress. The transcription factor Nrf-2 is associated with cellular responses to oxidative stress and is known to induce upregulation of antioxidant defense mechanisms. We have identified an Nrf-2 binding site in the prion protein promoter (Prnp) and shown that Nrf-2 downregulated PrP expression. However, this effect is independent of oxidative stress as oxidative stress can up-regulate PrP expression regardless of the level of Nrf-2 expression. Furthermore, Nrf-2 has no impact on PrP expression when cells are infected with scrapie. These findings highlight that Nrf-2 can regulate PrP expression, but that this regulation becomes uncoupled during cellular stress.
Collapse
Affiliation(s)
| | - David R Brown
- Department of Biology and Biochemistry, University of Bath, Bath, UK.
| |
Collapse
|
16
|
Makzhami S, Passet B, Halliez S, Castille J, Moazami-Goudarzi K, Duchesne A, Vilotte M, Laude H, Mouillet-Richard S, Béringue V, Vaiman D, Vilotte JL. The prion protein family: a view from the placenta. Front Cell Dev Biol 2014; 2:35. [PMID: 25364742 PMCID: PMC4207016 DOI: 10.3389/fcell.2014.00035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/22/2014] [Indexed: 02/01/2023] Open
Abstract
Based on its developmental pattern of expression, early studies suggested the implication of the mammalian Prion protein PrP, a glycosylphosphatidylinositol-anchored ubiquitously expressed and evolutionary conserved glycoprotein encoded by the Prnp gene, in early embryogenesis. However, gene invalidation in several species did not result in obvious developmental abnormalities and it was only recently that it was associated in mice with intra-uterine growth retardation and placental dysfunction. A proposed explanation for this lack of easily detectable developmental-related phenotype is the existence in the genome of one or more gene (s) able to compensate for the absence of PrP. Indeed, two other members of the Prnp gene family have been recently described, Doppel and Shadoo, and the consequences of their invalidation alongside that of PrP tested in mice. No embryonic defect was observed in mice depleted for Doppel and PrP. Interestingly, the co-invalidation of PrP and Shadoo in two independent studies led to apparently conflicting observations, with no apparent consequences in one report and the observation of a developmental defect of the ectoplacental cone that leads to early embryonic lethality in the other. This short review aims at summarizing these recent, apparently conflicting data highlighting the related biological questions and associated implications in terms of animal and human health.
Collapse
Affiliation(s)
- Samira Makzhami
- INRA, UMR1313 Génétique Animale et Biologie Intégrative Jouy-en-Josas, France
| | - Bruno Passet
- INRA, UMR1313 Génétique Animale et Biologie Intégrative Jouy-en-Josas, France
| | - Sophie Halliez
- INRA, U892 Virologie et Immunologie Moléculaires Jouy-en-Josas, France
| | - Johan Castille
- INRA, UMR1313 Génétique Animale et Biologie Intégrative Jouy-en-Josas, France
| | | | - Amandine Duchesne
- INRA, UMR1313 Génétique Animale et Biologie Intégrative Jouy-en-Josas, France
| | - Marthe Vilotte
- INRA, UMR1313 Génétique Animale et Biologie Intégrative Jouy-en-Josas, France
| | - Hubert Laude
- INRA, U892 Virologie et Immunologie Moléculaires Jouy-en-Josas, France
| | - Sophie Mouillet-Richard
- INSERM, UMR-S1124 Signalisation et Physiopathologie Neurologique, Université Paris Descartes Paris, France
| | - Vincent Béringue
- INRA, U892 Virologie et Immunologie Moléculaires Jouy-en-Josas, France
| | - Daniel Vaiman
- Faculté Paris Descartes, UMR8104 CNRS, U1016 INSERM, Institut Cochin Paris, France
| | - Jean-Luc Vilotte
- INRA, UMR1313 Génétique Animale et Biologie Intégrative Jouy-en-Josas, France
| |
Collapse
|
17
|
Yang X, Zhang Y, Zhang L, He T, Zhang J, Li C. Prion protein and cancers. Acta Biochim Biophys Sin (Shanghai) 2014; 46:431-40. [PMID: 24681883 DOI: 10.1093/abbs/gmu019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The normal cellular prion protein, PrP(C) is a highly conserved and widely expressed cell surface glycoprotein in all mammals. The expression of PrP is pivotal in the pathogenesis of prion diseases; however, the normal physiological functions of PrP(C) remain incompletely understood. Based on the studies in cell models, a plethora of functions have been attributed to PrP(C). In this paper, we reviewed the potential roles that PrP(C) plays in cell physiology and focused on its contribution to tumorigenesis.
Collapse
Affiliation(s)
- Xiaowen Yang
- Department of the First Abdominal Surgery, Jiangxi Tumor Hospital, Nanchang 330029, China
| | - Yan Zhang
- Department of Molecular Endocrinology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Lihua Zhang
- Department of Pathology, Zhongda Hospital, Southeast University, Nanjing 210009, China
| | - Tianlin He
- Department of General Surgery, Changhai Hospital of Second Military Medical University, Shanghai 200433, China
| | - Jie Zhang
- Department of Stomatology, The First Affiliated Hospital of Shihezi University Medical College, Shihezi 832000, China
| | - Chaoyang Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
18
|
Llorens F, Ferrer I, del Río JA. Gene expression resulting from PrPC ablation and PrPC overexpression in murine and cellular models. Mol Neurobiol 2013; 49:413-23. [PMID: 23949728 DOI: 10.1007/s12035-013-8529-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 08/05/2013] [Indexed: 02/07/2023]
Abstract
The cellular prion protein (PrP(C)) plays a key role in prion diseases when it converts to the pathogenic form scrapie prion protein. Increasing knowledge of its participation in prion infection contrasts with the elusive and controversial data regarding its physiological role probably related to its pleiotropy, cell-specific functions, and cellular-specific milieu. Multiple approaches have been made to the increasing understanding of the molecular mechanisms and cellular functions modulated by PrP(C) at the transcriptomic and proteomic levels. Gene expression analyses have been made in several mouse and cellular models with regulated expression of PrP(C) resulting in PrP(C) ablation or PrP(C) overexpression. These analyses support previous functional data and have yielded clues about new potential functions. However, experiments on animal models have shown moderate and varied results which are difficult to interpret. Moreover, studies in cell cultures correlate little with in vivo counterparts. Yet, both animal and cell models have provided some insights on how to proceed in the future by using more refined methods and selected functional experiments.
Collapse
Affiliation(s)
- Franc Llorens
- Institute of Neuropathology, University Hospital Bellvitge-Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain,
| | | | | |
Collapse
|
19
|
Miranda A, Ramos-Ibeas P, Pericuesta E, Ramirez MA, Gutierrez-Adan A. The role of prion protein in stem cell regulation. Reproduction 2013; 146:R91-9. [PMID: 23740082 DOI: 10.1530/rep-13-0100] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cellular prion protein (PrP(C)) has been well described as an essential partner of prion diseases due to the existence of a pathological conformation (PrP(Sc)). Recently, it has also been demonstrated that PrP(C) is an important element of the pluripotency and self-renewal matrix, with an increasing amount of evidence pointing in this direction. Here, we review the data that demonstrate its role in the transcriptional regulation of pluripotency, in the differentiation of stem cells into different lineages (e.g. muscle and neurons), in embryonic development, and its involvement in reproductive cells. Also highlighted are recent results from our laboratory that describe an important regulation by PrP(C) of the major pluripotency gene Nanog. Together, these data support the appearance of new strategies to control stemness, which could represent an important advance in the field of regenerative medicine.
Collapse
Affiliation(s)
- A Miranda
- Departamento de Reproducción Animal, INIA, Avenida Puerta de Hierro no. 12, Local 10, Madrid 28040, Spain
| | | | | | | | | |
Collapse
|
20
|
Peralta OA, Huckle WR, Eyestone WH. Developmental expression of the cellular prion protein (PrP(C) ) in bovine embryos. Mol Reprod Dev 2013; 79:488-98. [PMID: 22674901 DOI: 10.1002/mrd.22057] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The mammalian cellular prion protein (PrP(C) ) is a highly conserved glycoprotein that may undergo conversion into a conformationally altered isoform (scrapie prion protein or PrP(Sc) ), widely believed to be the pathogenic agent of transmissible spongiform encephalopathies (TSEs). Although much is known about PrP(Sc) conversion and its role in TSEs, the normal function of PrP(C) has not been elucidated. In adult mammals, PrP(C) is most abundant in the central nervous tissue, with intermediate levels in the intestine and heart, and lower levels in the pancreas and liver. PrP(C) is expressed during neurogenesis throughout development, and it has recently been proposed that PrP(C) participates in neural cell differentiation during embryogenesis. In order to establish the developmental timing and to address the cell-specific expression of PrP(C) during mammalian development, we examined PrP(C) expression in bovine gametes and embryos through gestation Day 39. Our data revealed differential levels of Prnp mRNA at Days 4 and 18 in pre-attachment embryos. PrP(C) was detected in the developing central and peripheral nervous systems in Day-27, 32-, and -39 embryos. PrP(C) was particularly expressed in differentiated neural cells located in the marginal regions of the central nervous system, but was absent from mitotically active, periventricular areas. Moreover, a PrP(C) cell-specific pattern of expression was detected in non-nervous tissues, including liver and mesonephros, during these stages. The potential participation of PrP(C) in neural cell differentiation is supported by its specific expression in differentiated states of neurogenesis.
Collapse
Affiliation(s)
- Oscar A Peralta
- Department of Large Animal Clinical Sciences, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| | | | | |
Collapse
|
21
|
Abstract
The cellular prion protein (PrPC) is subjected to various processing under physiological and pathological conditions, of which the α-cleavage within the central hydrophobic domain not only disrupts a region critical for both PrP toxicity and PrPC to PrPSc conversion but also produces the N1 fragment that is neuroprotective and the C1 fragment that enhances the pro-apoptotic effect of staurosporine in one report and inhibits prion in another. The proteases responsible for the α-cleavage of PrPC are controversial. The effect of ADAM10, ADAM17, and ADAM9 on N1 secretion clearly indicates their involvement in the α-cleavage of PrPC, but there has been no report of direct PrPC α-cleavage activity with any of the three ADAMs in a purified protein form. We demonstrated that, in muscle cells, ADAM8 is the primary protease for the α-cleavage of PrPC, but another unidentified protease(s) must also play a minor role. We also found that PrPC regulates ADAM8 expression, suggesting that a close examination on the relationships between PrPC and its processing enzymes may reveal novel roles and underlying mechanisms for PrPC in non-prion diseases such as asthma and cancer.
Collapse
Affiliation(s)
- Jingjing Liang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | | |
Collapse
|
22
|
Passet B, Young R, Makhzami S, Vilotte M, Jaffrezic F, Halliez S, Bouet S, Marthey S, Khalifé M, Kanellopoulos-Langevin C, Béringue V, Le Provost F, Laude H, Vilotte JL. Prion protein and Shadoo are involved in overlapping embryonic pathways and trophoblastic development. PLoS One 2012; 7:e41959. [PMID: 22860039 PMCID: PMC3408428 DOI: 10.1371/journal.pone.0041959] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 06/27/2012] [Indexed: 12/24/2022] Open
Abstract
The potential requirement of either the Prion or Shadoo protein for early mouse embryogenesis was recently suggested. However, the current data did not allow to precise the developmental process that was affected in the absence of both proteins and that led to the observed early lethal phenotype. In the present study, using various Prnp transgenic mouse lines and lentiviral vectors expressing shRNAs that target the Shadoo-encoding mRNA, we further demonstrate the specific requirement of at least one of these two PrP-related proteins at early developmental stages. Histological analysis reveals developmental defect of the ectoplacental cone and important hemorrhage surrounding the Prnp-knockout-Sprn-knockdown E7.5 embryos. By restricting the RNA interference to the trophoblastic cell lineages, the observed lethal phenotype could be attributed to the sole role of these proteins in this trophectoderm-derived compartment. RNAseq analysis performed on early embryos of various Prnp and Sprn genotypes indicated that the simultaneous down-regulation of these two proteins affects cell-adhesion and inflammatory pathways as well as the expression of ectoplacental-specific genes. Overall, our data provide biological clues in favor of a crucial and complementary embryonic role of the prion protein family in Eutherians and emphasizes the need to further evaluate its implication in normal and pathological human placenta biology.
Collapse
Affiliation(s)
- Bruno Passet
- INRA, UMR1313, Génétique Animale et Biologie Intégrative, INRA, Jouy-en-Josas, France
| | - Rachel Young
- INRA, UMR1313, Génétique Animale et Biologie Intégrative, INRA, Jouy-en-Josas, France
| | - Samira Makhzami
- INRA, UMR1313, Génétique Animale et Biologie Intégrative, INRA, Jouy-en-Josas, France
| | - Marthe Vilotte
- INRA, UMR1313, Génétique Animale et Biologie Intégrative, INRA, Jouy-en-Josas, France
| | - Florence Jaffrezic
- INRA, UMR1313, Génétique Animale et Biologie Intégrative, INRA, Jouy-en-Josas, France
| | - Sophie Halliez
- INRA, UR892, Virologie et Immunologie Moléculaires, INRA, Jouy-en-Josas, France
| | - Stéphan Bouet
- INRA, UMR1313, Génétique Animale et Biologie Intégrative, INRA, Jouy-en-Josas, France
| | - Sylvain Marthey
- INRA, UMR1313, Génétique Animale et Biologie Intégrative, INRA, Jouy-en-Josas, France
| | - Manal Khalifé
- INRA, UMR1313, Génétique Animale et Biologie Intégrative, INRA, Jouy-en-Josas, France
| | - Colette Kanellopoulos-Langevin
- Laboratory of Inflammation, Gestation and Autoimmunity, J. Monod Institute, UMR 7592 (CNRS and University Diderot), Paris, France
| | - Vincent Béringue
- INRA, UR892, Virologie et Immunologie Moléculaires, INRA, Jouy-en-Josas, France
| | - Fabienne Le Provost
- INRA, UMR1313, Génétique Animale et Biologie Intégrative, INRA, Jouy-en-Josas, France
| | - Hubert Laude
- INRA, UR892, Virologie et Immunologie Moléculaires, INRA, Jouy-en-Josas, France
| | - Jean-Luc Vilotte
- INRA, UMR1313, Génétique Animale et Biologie Intégrative, INRA, Jouy-en-Josas, France
- * E-mail:
| |
Collapse
|
23
|
Liang J, Wang W, Sorensen D, Medina S, Ilchenko S, Kiselar J, Surewicz WK, Booth SA, Kong Q. Cellular prion protein regulates its own α-cleavage through ADAM8 in skeletal muscle. J Biol Chem 2012; 287:16510-20. [PMID: 22447932 DOI: 10.1074/jbc.m112.360891] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ubiquitously expressed cellular prion protein (PrP(C)) is subjected to the physiological α-cleavage at a region critical for both PrP toxicity and the conversion of PrP(C) to its pathogenic prion form (PrP(Sc)), generating the C1 and N1 fragments. The C1 fragment can activate caspase 3 while the N1 fragment is neuroprotective. Recent articles indicate that ADAM10, ADAM17, and ADAM9 may not play a prominent role in the α-cleavage of PrP(C) as previously thought, raising questions on the identity of the responsible protease(s). Here we show that, ADAM8 can directly cleave PrP to generate C1 in vitro and PrP C1/full-length ratio is greatly decreased in the skeletal muscles of ADAM8 knock-out mice; in addition, the PrP C1/full-length ratio is linearly correlated with ADAM8 protein level in myoblast cell line C2C12 and in skeletal muscle tissues of transgenic mice. These results indicate that ADAM8 is the primary protease responsible for the α-cleavage of PrP(C) in muscle cells. Moreover, we found that overexpression of PrP(C) led to up-regulation of ADAM8, suggesting that PrP(C) may regulate its own α-cleavage through modulating ADAM8 activity.
Collapse
Affiliation(s)
- Jingjing Liang
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Young R, Bouet S, Polyte J, Le Guillou S, Passet B, Vilotte M, Castille J, Beringue V, Le Provost F, Laude H, Vilotte JL. Expression of the prion-like protein Shadoo in the developing mouse embryo. Biochem Biophys Res Commun 2011; 416:184-7. [DOI: 10.1016/j.bbrc.2011.11.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 11/04/2011] [Indexed: 01/29/2023]
|
25
|
Santos TG, Silva IR, Costa-Silva B, Lepique AP, Martins VR, Lopes MH. Enhanced neural progenitor/stem cells self-renewal via the interaction of stress-inducible protein 1 with the prion protein. Stem Cells 2011; 29:1126-36. [PMID: 21608082 DOI: 10.1002/stem.664] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Prion protein (PrP(C) ), when associated with the secreted form of the stress-inducible protein 1 (STI1), plays an important role in neural survival, neuritogenesis, and memory formation. However, the role of the PrP(C) -STI1 complex in the physiology of neural progenitor/stem cells is unknown. In this article, we observed that neurospheres cultured from fetal forebrain of wild-type (Prnp(+/+) ) and PrP(C) -null (Prnp(0/0) ) mice were maintained for several passages without the loss of self-renewal or multipotentiality, as assessed by their continued capacity to generate neurons, astrocytes, and oligodendrocytes. The homogeneous expression and colocalization of STI1 and PrP(C) suggest that they may associate and function as a complex in neurosphere-derived stem cells. The formation of neurospheres from Prnp(0/0) mice was reduced significantly when compared with their wild-type counterparts. In addition, blockade of secreted STI1, and its cell surface ligand, PrP(C) , with specific antibodies, impaired Prnp(+/+) neurosphere formation without further impairing the formation of Prnp(0/0) neurospheres. Alternatively, neurosphere formation was enhanced by recombinant STI1 application in cells expressing PrP(C) but not in cells from Prnp(0/0) mice. The STI1-PrP(C) interaction was able to stimulate cell proliferation in the neurosphere-forming assay, while no effect on cell survival or the expression of neural markers was observed. These data suggest that the STI1-PrP(C) complex may play a critical role in neural progenitor/stem cells self-renewal via the modulation of cell proliferation, leading to the control of the stemness capacity of these cells during nervous system development.
Collapse
Affiliation(s)
- Tiago G Santos
- Department of Molecular and Cell Biology, International Center for Research and Education, Antonio Prudente Foundation, A. C. Camargo Hospital and National Institute for Translational Neuroscience (CNPq/MCT), São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
26
|
Khalifé M, Young R, Passet B, Halliez S, Vilotte M, Jaffrezic F, Marthey S, Béringue V, Vaiman D, Le Provost F, Laude H, Vilotte JL. Transcriptomic analysis brings new insight into the biological role of the prion protein during mouse embryogenesis. PLoS One 2011; 6:e23253. [PMID: 21858045 PMCID: PMC3156130 DOI: 10.1371/journal.pone.0023253] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 07/11/2011] [Indexed: 11/25/2022] Open
Abstract
The biological function of the Prion protein remains largely unknown but recent data revealed its implication in early zebrafish and mammalian embryogenesis. To gain further insight into its biological function, comparative transcriptomic analysis between FVB/N and FVB/N Prnp knockout mice was performed at early embryonic stages. RNAseq analysis revealed the differential expression of 73 and 263 genes at E6.5 and E7.5, respectively. The related metabolic pathways identified in this analysis partially overlap with those described in PrP1 and PrP2 knockdown zebrafish embryos and prion-infected mammalian brains and emphasize a potentially important role for the PrP family genes in early developmental processes.
Collapse
Affiliation(s)
- Manal Khalifé
- INRA, UMR1313, Génétique Animale et Biologie Intégrative, INRA, Jouy-en-Josas, France
| | - Rachel Young
- INRA, UMR1313, Génétique Animale et Biologie Intégrative, INRA, Jouy-en-Josas, France
| | - Bruno Passet
- INRA, UMR1313, Génétique Animale et Biologie Intégrative, INRA, Jouy-en-Josas, France
| | - Sophie Halliez
- INRA, UR892, Virologie et Immunologie Moléculaires, INRA, Jouy-en-Josas, France
| | - Marthe Vilotte
- INRA, UMR1313, Génétique Animale et Biologie Intégrative, INRA, Jouy-en-Josas, France
| | - Florence Jaffrezic
- INRA, UMR1313, Génétique Animale et Biologie Intégrative, INRA, Jouy-en-Josas, France
| | - Sylvain Marthey
- INRA, UMR1313, Génétique Animale et Biologie Intégrative, INRA, Jouy-en-Josas, France
| | - Vincent Béringue
- INRA, UR892, Virologie et Immunologie Moléculaires, INRA, Jouy-en-Josas, France
| | | | - Fabienne Le Provost
- INRA, UMR1313, Génétique Animale et Biologie Intégrative, INRA, Jouy-en-Josas, France
| | - Hubert Laude
- INRA, UR892, Virologie et Immunologie Moléculaires, INRA, Jouy-en-Josas, France
| | - Jean-Luc Vilotte
- INRA, UMR1313, Génétique Animale et Biologie Intégrative, INRA, Jouy-en-Josas, France
- * E-mail:
| |
Collapse
|
27
|
Pathmajeyan MS, Patel SA, Carroll JA, Seib T, Striebel JF, Bridges RJ, Chesebro B. Increased excitatory amino acid transport into murine prion protein knockout astrocytes cultured in vitro. Glia 2011; 59:1684-94. [PMID: 21766339 DOI: 10.1002/glia.21215] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 06/16/2011] [Indexed: 11/06/2022]
Abstract
Prion protein (PrP) is expressed on a wide variety of cells and plays an important role in the pathogenesis of transmissible spongiform encephalopathies. However, its normal function remains unclear. Mice that do not express PrP exhibit deficits in spatial memory and abnormalities in excitatory neurotransmission suggestive that PrP may function in the glutamatergic synapse. Here, we show that transport of D-aspartate, a nonmetabolized L-glutamate analog, through excitatory amino acid transporters (EAATs) was faster in astrocytes from PrP knockout (PrPKO) mice than in astrocytes from C57BL/10SnJ wild-type (WT) mice. Experiments using EAAT subtype-specific inhibitors demonstrated that in both WT and PrPKO astrocytes, the majority of transport was mediated by EAAT1. Furthermore, PrPKO astrocytes were more effective than WT astrocytes at alleviating L-glutamate-mediated excitotoxic damage in both WT and PrPKO neuronal cultures. Thus, in this in vitro model, PrPKO astrocytes exerted a functional influence on neuronal survival and may therefore influence regulation of glutamatergic neurotransmission in vivo.
Collapse
Affiliation(s)
- Melissa S Pathmajeyan
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, National Institute of Health, Hamilton, Montana, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Peralta OA, Huckle WR, Eyestone WH. Expression and knockdown of cellular prion protein (PrPC) in differentiating mouse embryonic stem cells. Differentiation 2011; 81:68-77. [PMID: 20926176 DOI: 10.1016/j.diff.2010.09.181] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 08/06/2010] [Accepted: 09/06/2010] [Indexed: 02/03/2023]
Abstract
The mammalian cellular prion protein (PrP(C)) is a highly conserved glycoprotein that may undergo conversion into a conformationally altered isoform (scrapie prion protein or PrP(Sc)), widely believed to be the pathogenic agent of transmissible spongiform encephalopathies (TSEs). Although much is known about pathogenic PrP conversion and its role in TSEs, the normal function of PrP(C) is poorly understood. Given the abundant expression of PrP(C) in the developing mammalian CNS and the spatial association with differentiated stages of neurogenesis, recently it has been proposed that PrP(C) participates in neural cell differentiation. In the present study, we investigated the role of PrP(C) in neural development during early embryogenesis. In bovine fetuses, PrP(C) was differentially expressed in the neuroepithelium, showing higher levels at the intermediate and marginal layers where more differentiated states of neurogenesis were located. We utilized differentiating mouse embryonic stem (ES) cells to test whether PrP(C) contributed to the process of neural differentiation during early embryogenesis. PrP(C) showed increasing levels of expression starting on Day 9 until Day 18 of ES cell differentiation. PrP(C) expression was negatively correlated with pluripotency marker Oct-4 confirming that ES cells had indeed differentiated. Induction of ES cells differentiation by retinoic acid (RA) resulted in up-regulation of PrP(C) at Day 20 and nestin at Day 12. PrP(C) expression was knocked down in PrP-targeted siRNA ES cells between Days 12 and 20. PrP(C) knockdown in ES cells resulted in nestin reduction at Days 16 and 20. Analysis of bovine fetuses suggests the participation of PrP(C) in neural cell differentiation during early embryogenesis. The positive association between PrP(C) and nestin expression provide evidence for the contribution of PrP(C) to ES cell differentiation into neural progenitor cells.
Collapse
Affiliation(s)
- Oscar A Peralta
- Department of Large Animal Clinical Sciences, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061-0442, USA.
| | | | | |
Collapse
|
29
|
Abstract
It is now well established that the conversion of the cellular prion protein, PrP(C), into its anomalous conformer, PrP(Sc), is central to the onset of prion disease. However, both the mechanism of prion-related neurodegeneration and the physiologic role of PrP(C) are still unknown. The use of animal and cell models has suggested a number of putative functions for the protein, including cell signaling, adhesion, proliferation, and differentiation. Given that skeletal muscles express significant amounts of PrP(C) and have been related to PrP(C) pathophysiology, in the present study, we used skeletal muscles to analyze whether the protein plays a role in adult morphogenesis. We employed an in vivo paradigm that allowed us to compare the regeneration of acutely damaged hind-limb tibialis anterior muscles of mice expressing, or not expressing, PrP(C). Using morphometric and biochemical parameters, we provide compelling evidence that the absence of PrP(C) significantly slows the regeneration process compared to wild-type muscles by attenuating the stress-activated p38 pathway, and the consequent exit from the cell cycle, of myogenic precursor cells. Demonstrating the specificity of this finding, restoring PrP(C) expression completely rescued the muscle phenotype evidenced in the absence of PrP(C).
Collapse
|
30
|
Chadi S, Young R, Le Guillou S, Tilly G, Bitton F, Martin-Magniette ML, Soubigou-Taconnat L, Balzergue S, Vilotte M, Peyre C, Passet B, Béringue V, Renou JP, Le Provost F, Laude H, Vilotte JL. Brain transcriptional stability upon prion protein-encoding gene invalidation in zygotic or adult mouse. BMC Genomics 2010; 11:448. [PMID: 20649983 PMCID: PMC3091645 DOI: 10.1186/1471-2164-11-448] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 07/22/2010] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The physiological function of the prion protein remains largely elusive while its key role in prion infection has been expansively documented. To potentially assess this conundrum, we performed a comparative transcriptomic analysis of the brain of wild-type mice with that of transgenic mice invalidated at this locus either at the zygotic or at the adult stages. RESULTS Only subtle transcriptomic differences resulting from the Prnp knockout could be evidenced, beside Prnp itself, in the analyzed adult brains following microarray analysis of 24 109 mouse genes and QPCR assessment of some of the putatively marginally modulated loci. When performed at the adult stage, neuronal Prnp disruption appeared to sequentially induce a response to an oxidative stress and a remodeling of the nervous system. However, these events involved only a limited number of genes, expression levels of which were only slightly modified and not always confirmed by RT-qPCR. If not, the qPCR obtained data suggested even less pronounced differences. CONCLUSIONS These results suggest that the physiological function of PrP is redundant at the adult stage or important for only a small subset of the brain cell population under classical breeding conditions. Following its early reported embryonic developmental regulation, this lack of response could also imply that PrP has a more detrimental role during mouse embryogenesis and that potential transient compensatory mechanisms have to be searched for at the time this locus becomes transcriptionally activated.
Collapse
Affiliation(s)
- Sead Chadi
- INRA, UMR1313, Génétique Animale et Biologie Intégrative, F-78350, Jouy-en-Josas, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hajj GNM, Santos TG, Cook ZSP, Martins VR. Developmental expression of prion protein and its ligands stress-inducible protein 1 and vitronectin. J Comp Neurol 2010; 517:371-84. [PMID: 19760599 DOI: 10.1002/cne.22157] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Prion protein (PrP(C)) is the normal isoform of PrP(Sc), a protein involved in neurodegenerative disorders. PrP(C) participates in neuritogenesis, neuroprotection, and memory consolidation through its interaction with the secreted protein stress-inducible protein 1 (STI1) and the extracellular matrix protein vitronectin (Vn). Although PrP(C) mRNA expression has been documented during embryogenesis, its protein expression patterns have not been evaluated. Furthermore, little is known about either Vn or STI protein expression. In this study, PrP(C), STI1, and Vn protein expression was explored throughout mouse embryonic life. We found that the distributions of the three proteins were spatiotemporally related. STI1 and Vn expression became evident at E8, earlier than PrP(C), in the nervous system and heart. At E10, we observed, in the spinal cord, a gradient of expression of the three proteins, more abundant in the notochord and floor plate, suggesting that they can have a role in axonal growth. As development proceeded, the three proteins were detected in other organs, suggesting that they may play a role in the development of nonneural tissues as well. Finally, although STI1 and Vn are PrP(C) ligands, their expression was not altered in PrP(C)-null mice.
Collapse
Affiliation(s)
- Glaucia N M Hajj
- Ludwig Institute for Cancer Research, São Paulo 01323-903, Brazil
| | | | | | | |
Collapse
|
32
|
Young R, Passet B, Vilotte M, Cribiu EP, Béringue V, Le Provost F, Laude H, Vilotte JL. The prion or the related Shadoo protein is required for early mouse embryogenesis. FEBS Lett 2009; 583:3296-300. [PMID: 19766638 DOI: 10.1016/j.febslet.2009.09.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 09/14/2009] [Indexed: 10/25/2022]
Abstract
The prion protein PrP has a key role in transmissible spongiform encephalopathies but its biological function remains largely unknown. Recently, a related protein, Shadoo, was discovered. Its biological properties and brain distribution partially overlap that of PrP. We report that the Shadoo-encoding gene knockdown in PrP-knockout mouse embryos results in a lethal phenotype, occurring between E8 and E11, not observed on the wild-type genetic background. It reveals that these two proteins play a shared, crucial role in mammalian embryogenesis, explaining the lack of severe phenotype in PrP-knockout mammals, an appreciable step towards deciphering the biological role of this protein family.
Collapse
Affiliation(s)
- Rachel Young
- INRA-UMR1313, Génétique Animale et Biologie Intégrative, Institut National de la Recherche Agronomique, 78350 Jouy-en-Josas, France
| | | | | | | | | | | | | | | |
Collapse
|
33
|
New insights into cellular prion protein (PrPc) functions: the "ying and yang" of a relevant protein. ACTA ACUST UNITED AC 2009; 61:170-84. [PMID: 19523487 DOI: 10.1016/j.brainresrev.2009.06.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 05/26/2009] [Accepted: 06/03/2009] [Indexed: 12/19/2022]
Abstract
The conversion of cellular prion protein (PrP(c)), a GPI-anchored protein, into a protease-K-resistant and infective form (generally termed PrP(sc)) is mainly responsible for Transmissible Spongiform Encephalopathies (TSEs), characterized by neuronal degeneration and progressive loss of basic brain functions. Although PrP(c) is expressed by a wide range of tissues throughout the body, the complete repertoire of its functions has not been fully determined. Recent studies have confirmed its participation in basic physiological processes such as cell proliferation and the regulation of cellular homeostasis. Other studies indicate that PrP(c) interacts with several molecules to activate signaling cascades with a high number of cellular effects. To determine PrP(c) functions, transgenic mouse models have been generated in the last decade. In particular, mice lacking specific domains of the PrP(c) protein have revealed the contribution of these domains to neurodegenerative processes. A dual role of PrP(c) has been shown, since most authors report protective roles for this protein while others describe pro-apoptotic functions. In this review, we summarize new findings on PrP(c) functions, especially those related to neural degeneration and cell signaling.
Collapse
|
34
|
Mild cognitive deficits associated to neocortical microgyria in mice with genetic deletion of cellular prion protein. Brain Res 2008; 1241:148-56. [DOI: 10.1016/j.brainres.2008.08.097] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 08/12/2008] [Accepted: 08/13/2008] [Indexed: 11/23/2022]
|
35
|
Tamplin OJ, Kinzel D, Cox BJ, Bell CE, Rossant J, Lickert H. Microarray analysis of Foxa2 mutant mouse embryos reveals novel gene expression and inductive roles for the gastrula organizer and its derivatives. BMC Genomics 2008; 9:511. [PMID: 18973680 PMCID: PMC2605479 DOI: 10.1186/1471-2164-9-511] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 10/30/2008] [Indexed: 01/05/2023] Open
Abstract
Background The Spemann/Mangold organizer is a transient tissue critical for patterning the gastrula stage vertebrate embryo and formation of the three germ layers. Despite its important role during development, there are still relatively few genes with specific expression in the organizer and its derivatives. Foxa2 is a forkhead transcription factor that is absolutely required for formation of the mammalian equivalent of the organizer, the node, the axial mesoderm and the definitive endoderm (DE). However, the targets of Foxa2 during embryogenesis, and the molecular impact of organizer loss on the gastrula embryo, have not been well defined. Results To identify genes specific to the Spemann/Mangold organizer, we performed a microarray-based screen that compared wild-type and Foxa2 mutant embryos at late gastrulation stage (E7.5). We could detect genes that were consistently down-regulated in replicate pools of mutant embryos versus wild-type, and these included a number of known node and DE markers. We selected 314 genes without previously published data at E7.5 and screened for expression by whole mount in situ hybridization. We identified 10 novel expression patterns in the node and 5 in the definitive endoderm. We also found significant reduction of markers expressed in secondary tissues that require interaction with the organizer and its derivatives, such as cardiac mesoderm, vasculature, primitive streak, and anterior neuroectoderm. Conclusion The genes identified in this screen represent novel Spemann/Mangold organizer genes as well as potential Foxa2 targets. Further investigation will be needed to define these genes as novel developmental regulatory factors involved in organizer formation and function. We have placed these genes in a Foxa2-dependent genetic regulatory network and we hypothesize how Foxa2 may regulate a molecular program of Spemann/Mangold organizer development. We have also shown how early loss of the organizer and its inductive properties in an otherwise normal embryo, impacts on the molecular profile of surrounding tissues.
Collapse
Affiliation(s)
- Owen J Tamplin
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada.
| | | | | | | | | | | |
Collapse
|
36
|
Linden R, Martins VR, Prado MAM, Cammarota M, Izquierdo I, Brentani RR. Physiology of the prion protein. Physiol Rev 2008; 88:673-728. [PMID: 18391177 DOI: 10.1152/physrev.00007.2007] [Citation(s) in RCA: 435] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Prion diseases are transmissible spongiform encephalopathies (TSEs), attributed to conformational conversion of the cellular prion protein (PrP(C)) into an abnormal conformer that accumulates in the brain. Understanding the pathogenesis of TSEs requires the identification of functional properties of PrP(C). Here we examine the physiological functions of PrP(C) at the systemic, cellular, and molecular level. Current data show that both the expression and the engagement of PrP(C) with a variety of ligands modulate the following: 1) functions of the nervous and immune systems, including memory and inflammatory reactions; 2) cell proliferation, differentiation, and sensitivity to programmed cell death both in the nervous and immune systems, as well as in various cell lines; 3) the activity of numerous signal transduction pathways, including cAMP/protein kinase A, mitogen-activated protein kinase, phosphatidylinositol 3-kinase/Akt pathways, as well as soluble non-receptor tyrosine kinases; and 4) trafficking of PrP(C) both laterally among distinct plasma membrane domains, and along endocytic pathways, on top of continuous, rapid recycling. A unified view of these functional properties indicates that the prion protein is a dynamic cell surface platform for the assembly of signaling modules, based on which selective interactions with many ligands and transmembrane signaling pathways translate into wide-range consequences upon both physiology and behavior.
Collapse
Affiliation(s)
- Rafael Linden
- Instituto de Biofísica da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | | | | | | | | | | |
Collapse
|
37
|
Aguzzi A, Sigurdson C, Heikenwaelder M. Molecular mechanisms of prion pathogenesis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2008; 3:11-40. [PMID: 18233951 DOI: 10.1146/annurev.pathmechdis.3.121806.154326] [Citation(s) in RCA: 261] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Prion diseases are infectious neurodegenerative diseases occurring in humans and animals with an invariably lethal outcome. One fundamental mechanistic event in prion diseases is the aggregation of aberrantly folded prion protein into large amyloid plaques and fibrous structures associated with neurodegeneration. The cellular prion protein (PrPC) is absolutely required for disease development, and prion knockout mice are not susceptible to prion disease. Prions accumulate not only in the central nervous system but also in lymphoid organs, as shown for new variant and sporadic Creutzfeldt-Jakob patients and for some animals. To date it is largely accepted that prions consist primarily of PrPSc, a misfolded and aggregated beta-sheet-rich isoform of PrPC. However, PrPSc may or may not be completely congruent with the infectious moiety. Here, we discuss the molecular mechanisms leading to neurodegeneration, the role of the immune system in prion pathogenesis, and the existence of prion strains that appear to have different tropisms and biochemical characteristics.
Collapse
Affiliation(s)
- Adriano Aguzzi
- Institute of Neuropathology, University Hospital of Zürich, CH-8091 Zürich, Switzerland.
| | | | | |
Collapse
|
38
|
du Plessis DG. Prion protein disease and neuropathology of prion disease. Neuroimaging Clin N Am 2008; 18:163-82; ix. [PMID: 18319161 DOI: 10.1016/j.nic.2007.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Human prion diseases, in common with other neurodegenerative diseases, may be sporadic or inherited and are characterized by the accumulation of cellular proteins accompanied by neuronal death and synaptic loss. Prion diseases are, however, unique in being transmissible. Central to the pathogenesis of all forms of prion disease is the prion protein. This article provides a brief overview of the biology of human prion diseases followed by a more in-depth discussion of the neuropathology of these diseases, including features of neuroradiologic relevance.
Collapse
Affiliation(s)
- Daniel G du Plessis
- Neuropathology Unit, Department of Cellular Pathology and Greater Manchester Neurosciences Centre, Salford Royal Hospital, Stott Lane, Salford, M6 8HD, UK.
| |
Collapse
|
39
|
Weis S, Haybaeck J, Dulay JR, Llenos IC. Expression of cellular prion protein (PrPc) in schizophrenia, bipolar disorder, and depression. J Neural Transm (Vienna) 2008; 115:761-71. [DOI: 10.1007/s00702-007-0013-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Accepted: 11/19/2007] [Indexed: 01/27/2023]
|
40
|
Witusik M, Gresner SM, Hulas-Bigoszewska K, Krynska B, Azizi SA, Liberski PP, Brown P, Rieske P. Neuronal and astrocytic cells, obtained after differentiation of human neural GFAP-positive progenitors, present heterogeneous expression of PrPc. Brain Res 2007; 1186:65-73. [PMID: 17996224 DOI: 10.1016/j.brainres.2007.10.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 09/28/2007] [Accepted: 10/06/2007] [Indexed: 11/19/2022]
Abstract
PrP(c) is a cellular isoform of the prion protein with an unknown normal function. One of the putative physiological roles of this protein is its involvement in cell differentiation. Recently, in vitro and in vivo studies showed that GFAP-positive cells have characteristics of stem/progenitor cells that generate neurons and glia. We used an in vitro model of human neurogenesis from GFAP-positive progenitor cells to study the expression of PrP(c) during neural differentiation. Semi-quantitative multiplex-PCR assay and Western blot analysis revealed a significant increase of PRNP expression level in differentiated cells compared to undifferentiated cell population. As determined by immunocytochemistry followed by a quantitative image analysis, the PrP(c) level increased significantly in neuronal cells and did not increase significantly in glial cells. Of note, glial and neuronal cells showed a very large heterogeneity of PrP(c) expression. Our results provide the basis for studying the role of PrP(c) in cell differentiation and neurogenesis from human GFAP-positive progenitor cells.
Collapse
Affiliation(s)
- Monika Witusik
- Department of Molecular Pathology and Neuropathology, Chair of Oncology, Medical University of Lodz, 8/10 Czechoslowacka str., Lodz, Poland
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Hajj GNM, Lopes MH, Mercadante AF, Veiga SS, da Silveira RB, Santos TG, Ribeiro KCB, Juliano MA, Jacchieri SG, Zanata SM, Martins VR. Cellular prion protein interaction with vitronectin supports axonal growth and is compensated by integrins. J Cell Sci 2007; 120:1915-26. [PMID: 17504807 DOI: 10.1242/jcs.03459] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The physiological functions of the cellular prion protein, PrP(C), as a cell surface pleiotropic receptor are under debate. We report that PrP(C) interacts with vitronectin but not with fibronectin or collagen. The binding sites mediating this PrP(C)-vitronectin interaction were mapped to residues 105-119 of PrP(C) and the residues 307-320 of vitronectin. The two proteins were co-localized in embryonic dorsal root ganglia from wild-type mice. Vitronectin addition to cultured dorsal root ganglia induced axonal growth, which could be mimicked by vitronectin peptide 307-320 and abrogated by anti-PrP(C) antibodies. Full-length vitronectin, but not the vitronectin peptide 307-320, induced axonal growth of dorsal root neurons from two strains of PrP(C)-null mice. Functional assays demonstrated that relative to wild-type cells, PrP(C)-null dorsal root neurons were more responsive to the Arg-Gly-Asp peptide (an integrin-binding site), and exhibited greater alphavbeta3 activity. Our findings indicate that PrP(C) plays an important role in axonal growth, and this function may be rescued in PrP(C)-knockout animals by integrin compensatory mechanisms.
Collapse
Affiliation(s)
- Glaucia N M Hajj
- Ludwig Institute for Cancer Research, Hospital Alemão Oswaldo Cruz, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
The infectious particle causing transmissible spongiform encephalopathy (TSE), a fatal neurodegenerative disease of humans and animals, has been termed prion. Its major component is an aggregated variant of the cellular prion protein, PrP(C). The main target of prion pathology is the central nervous system (CNS), yet most prion diseases are initiated or accompanied by prion replication at extracerebral locations, including secondary lymphoid organs, muscle and, in some instances, blood. How do prions travel from the periphery into the CNS? Is this an active or a passive process and does neuronal prion transport explain the long incubation times in prion diseases? Alternatively, if prion infectivity arises spontaneously in the CNS, as believed from sporadic Creutzfeldt-Jakob patients, how do prions manage to travel from the CNS into the periphery (e.g., spleen, muscle) of the infected host? The mechanisms of neuronal prion transport from the periphery into the CNS or vice versa are heavily investigated and debated but poorly understood. Although research in the past has accumulated knowledge on prion progression from the periphery to the brain, we are far from understanding the molecular mechanisms of neuronal prion transport.
Collapse
Affiliation(s)
- Mathias Heikenwalder
- Department of Pathology, Institute of Neuropathology, University Hospital of Zürich, Zürich, Switzerland.
| | | | | |
Collapse
|
43
|
Thumdee P, Ponsuksili S, Murani E, Nganvongpanit K, Gehrig B, Tesfaye D, Gilles M, Hoelker M, Jennen D, Griese J, Schellander K, Wimmers K. Expression of the prion protein gene (PRNP) and cellular prion protein (PrPc) in cattle and sheep fetuses and maternal tissues during pregnancy. Gene Expr 2007; 13:283-97. [PMID: 17605301 PMCID: PMC6032460 DOI: 10.3727/000000006780666984] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We investigated the expression of prion protein gene both on mRNA and protein levels in bovine and ovine female reproductive organs during gestation and various tissues of their fetuses. The fetal tissues of both species included brain, cotyledon, heart, intestine, kidney, liver, lung, and muscle. In cattle, prion protein gene (PRNP) transcripts were detected by semiquantitative RT-PCR in reproductive tissues such as ovary, oviduct, endometrium, myometrium, follicles, and granulosa cells. In various tissues of 2-month-old fetuses, higher expression levels were found in brain and cotyledon compared to the other tissues. To detect the expression of the gene transcript in in vivo preimplantation embryos and 1-month-old fetuses, real-time PCR was performed showing that the level of gene expression in zygote stage was significantly higher (p < or = 0.05) than that of the other stages. Sheep were categorized as resistant (RI) or high susceptible (R5) to scrapie according to their PRNP genotype. In both genotype groups, the PRNP mRNA was detectable in all tissues studied including ovary, oviduct, endometrium, myometrium, and caruncle of ewes and all tissues of 2-month-old fetuses of both groups. Comparison between reproductive organs demonstrates the highest expression level in caruncle tissue of R1 ewes, whereas the level was high in brain and low in liver of both R1 and R5 fetuses. In addition, real-time RT-PCR was performed in immature oocytes, mature oocytes, in vivo embryos at morula stage, and 1-month-old fetuses. The results showed that the relative expression levels of the ovine PRNP mRNA in mature oocytes and morula stage embryos were significantly lower than those in immature oocytes and 1-month-old fetuses (p < or = 0.05). Western blot analyses revealed the immunoreactive bands corresponding to the cellular prion protein (PrPc) in all maternal and fetal tissues examined of both cattle and sheep. Moreover, immunohistochemical staining implicated localization of the PrPc in ovarian cortex and ovarian medulla of both species. However, PrPc was not detected in oocyte, granulosa cells, theca cells, and corpus luteum in this study.
Collapse
Affiliation(s)
- Patama Thumdee
- *Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Bonn, Germany
| | | | - Eduard Murani
- †Research Institute for the Biology of Farm Animals, Dummerstorf, Germany
| | - Korakot Nganvongpanit
- *Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Bonn, Germany
| | - Bernhard Gehrig
- ‡Institute of Animal Physiology, Biochemistry and Hygiene, University of Bonn, Bonn, Germany
| | - Dawit Tesfaye
- *Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Bonn, Germany
| | - Markus Gilles
- *Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Bonn, Germany
| | - Michael Hoelker
- *Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Bonn, Germany
| | - Danyel Jennen
- *Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Bonn, Germany
| | - Josef Griese
- *Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Bonn, Germany
| | - Karl Schellander
- *Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Bonn, Germany
| | - Klaus Wimmers
- †Research Institute for the Biology of Farm Animals, Dummerstorf, Germany
| |
Collapse
|
44
|
Martínez del Hoyo G, López-Bravo M, Metharom P, Ardavín C, Aucouturier P. Prion Protein Expression by Mouse Dendritic Cells Is Restricted to the Nonplasmacytoid Subsets and Correlates with the Maturation State. THE JOURNAL OF IMMUNOLOGY 2006; 177:6137-42. [PMID: 17056541 DOI: 10.4049/jimmunol.177.9.6137] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Expression of the physiological cellular prion protein (PrP(C)) is remarkably regulated during differentiation and activation of cells of the immune system. Among these, dendritic cells (DCs) display particularly high levels of membrane PrP(C), which increase upon maturation, in parallel with that of molecules involved in Ag presentation to T cells. Freshly isolated mouse Langerhans cells, dermal DCs, and DCs from thymus, spleen, and mesenteric lymph nodes expressed low to intermediate levels of PrP(C). Highest levels of both PrP(C) and MHC class II molecules were displayed by lymph node CD8alpha(int) DCs, which represent fully mature cells having migrated from peripheral tissues. Maturation induced by overnight culture resulted in increased levels of surface PrP(C), as did in vivo DC activation by bacterial LPS. Studies on Fms-like tyrosine kinase 3 ligand bone marrow-differentiated B220(-) DCs confirmed that PrP(C) expression followed that of MHC class II and costimulatory molecules, and correlated with IL-12 production in response to TLR-9 engagement by CpG. However, at variance with conventional DCs, B220(+) plasmacytoid DCs isolated from the spleen, or in vitro differentiated, did not significantly express PrP(C), both before and after activation by TLR-9 engagement. PrP knockout mice displayed higher numbers of spleen CD8alpha(+) DCs, but no significant differences in their maturation response to stimulation through TLR-4 and TLR-9 were noticed. Results are discussed in relation to the functional relevance of PrP(C) expression by DCs in the induction of T cell responses, and to the pathophysiology of prion diseases.
Collapse
Affiliation(s)
- Gloria Martínez del Hoyo
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Cientificas, Universidad Autónoma, Madrid, Spain
| | | | | | | | | |
Collapse
|
45
|
Aguzzi A, Heikenwalder M. Pathogenesis of prion diseases: current status and future outlook. Nat Rev Microbiol 2006; 4:765-75. [PMID: 16980938 DOI: 10.1038/nrmicro1492] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The prion, a conformational variant of a host protein, is the infectious particle responsible for transmissible spongiform encephalopathy (TSE), a fatal neurodegenerative disease of humans and animals. The principal target of prion pathology is the brain, yet most TSEs also display prion replication at extra-cerebral locations, including secondary lymphoid organs and sites of chronic inflammation. Despite significant progress in our understanding of this infectious agent, many fundamental questions relating to the nature of the prion, including the mechanism of replication and the molecular events underlying brain damage, remain unanswered. Here we focus on the unresolved issues pertaining to prion pathogenesis, particularly on the role played by the immune system.
Collapse
Affiliation(s)
- Adriano Aguzzi
- Institute of Neuropathology, University Hospital of Zürich, Schmelzbergstrasse 12, CH-8091 Zürich, Switzerland.
| | | |
Collapse
|
46
|
Adle-Biassette H, Verney C, Peoc'h K, Dauge MC, Razavi F, Choudat L, Gressens P, Budka H, Henin D. Immunohistochemical expression of prion protein (PrPC) in the human forebrain during development. J Neuropathol Exp Neurol 2006; 65:698-706. [PMID: 16825956 DOI: 10.1097/01.jnen.0000228137.10531.72] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The cellular prion protein (PrPC) is a ubiquitous protein whose expression in the adult brain occurs mainly in synapses. We used monoclonal antibodies to study fetal and perinatal PrPC expression in the human forebrain. Double immunofluorescence and confocal microscopy with GFAP, Iba1, MAP2, doublecortin, synaptophysin, and GAP-43 were used to localize PrPC. PrPC immunoreactivity was observed in axonal tracts and fascicles from the 11th week to the end of gestation. Synapses expressed PrPC at increasing levels throughout synaptogenesis. At midgestation, a few PrPC-labeled neurons were detected in the cortical anlage and numerous ameboid and intermediate microglial cells were PrPC-positive. In contrast, at the end of gestation, microglial PrPC expression decreased to almost nothing, whereas neuronal PrPC expression increased, most notably in ischemic areas. In adults, PrPC immunoreactivity was restricted to the synaptic neuropil of the gray matter. At all ages, choroid plexus, ependymal, and endothelial cells were labeled, whereas astrocytes were only occasionally immunoreactive. In conclusion, the early expression of PrPC in the axonal field may suggest a specific role for this molecule in axonal growth during development. Moreover, PrPC may play a role in early microglial cell development.
Collapse
Affiliation(s)
- Homa Adle-Biassette
- AP HP, Hôpital Bichat-Claude Bernard, Service d'Anatomie Pathologie, Université Paris 7, Faculté de Médecine Denis Diderot, Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Massimino ML, Ferrari J, Sorgato MC, Bertoli A. Heterogeneous PrPC metabolism in skeletal muscle cells. FEBS Lett 2006; 580:878-84. [PMID: 16430889 DOI: 10.1016/j.febslet.2006.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2005] [Revised: 12/13/2005] [Accepted: 01/03/2006] [Indexed: 02/07/2023]
Abstract
Recent reports have shown that prions, the causative agent of transmissible spongiform encephalopathies, accumulate in the skeletal muscle of diseased animals and man. In an attempt to characterise in this tissue the prion protein (PrP(C)), whose conformational rearrangement governs the generation of prions, we have analysed the protein in primary cultured murine myocytes and in different skeletal muscle types. Our results indicate that the expression and cellular processing of PrP(C) change during myogenesis, and in muscle fibres with different contractile properties. These findings imply a potential role for PrP(C) in the skeletal muscle physiology, but may also explain the different capability of muscles to sustain prion replication.
Collapse
Affiliation(s)
- Maria Lina Massimino
- Department of Biological Chemistry, University of Padova, viale G. Colombo 3, 35121 Padova, Italy
| | | | | | | |
Collapse
|
48
|
Cotto E, André M, Forgue J, Fleury HJ, Babin PJ. Molecular characterization, phylogenetic relationships, and developmental expression patterns of prion genes in zebrafish (Danio rerio). FEBS J 2005; 272:500-13. [PMID: 15654888 DOI: 10.1111/j.1742-4658.2004.04492.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Prion diseases are characterized by the accumulation of a pathogenic misfolded form of a prion protein (PrP) encoded by the Prnp gene in humans. In the present study in zebrafish, two transcripts and the corresponding genes encoding prion proteins, PrP1 and PrP2, related to human PrP have been characterized with a relatively divergent deduced amino acid sequence, but a well preserved overall organization of structural prion protein motifs. Whole-mount in situ hybridization analysis performed during embryonic and larval development showed a high level of PrP1 mRNA spatially restricted to the anterior floor-plate of the central nervous system and in ganglia. Transcripts of prp2 were detected in embryonic cells from the mid-blastula transition to the end of the segmentation period. From 24 h postfertilization up to larval stages, prp2 transcripts were localized in distinct anatomical structures, including a major expression in the brain, eye, kidney, lateral line neuromasts, liver, heart, pectoral fins and posterior intestine. The observed differential developmental expression patterns of the two long PrP forms, prp1 and prp2, and the short PrP form prp3, a more divergent prion-related gene previously identified in zebrafish, should contribute to understanding of the phylogenetic and functional relationships of duplicated prion gene forms in the fish genome. Together, the complex history of prion-related genes, reflected in the deduced structural features, conserved amino acid sequence and repeat motifs of the corresponding proteins, and the presence of differential developmental expression patterns suggest possible acquisition or loss of prion protein functions during vertebrate evolution.
Collapse
Affiliation(s)
- Emmanuelle Cotto
- Laboratoire Génomique et Physiologie des Poissons, UMR 1067 NUAGE INRA-IFREMER, Université Bordeaux 1, 33405 Talence cedex, France
| | | | | | | | | |
Collapse
|
49
|
Abstract
Although human prion diseases are rare, they are invariably fatal, and treatments remain elusive. Hundreds of iatrogenic prion transmissions have occurred in the past two decades, and the bovine spongiform encephalopathy epidemic has raised concerns about prion transmission from cattle to humans. Research into therapeutics for prion disease is being pursued in several centres and prominently includes immunological strategies. Currently, the options that are being explored aim either to mobilize the innate and adaptive immune systems towards prion destruction or to suppress or dedifferentiate the lymphoreticular compartments that replicate prions. This article reviews the pathophysiology of prion diseases in mouse models and discusses their relevance to immunotherapeutic and immunoprophylactic antiprion strategies.
Collapse
Affiliation(s)
- Adriano Aguzzi
- Institute of Neuropathology, University Hospital Zürich, Switzerland.
| | | |
Collapse
|